

1

3

Volcanic eruption tremor from particle impacts and 4 turbulence using conduit flow models

5 **Katherine R. Coppess** ¹, **Fredric Y. K. Lam** ², **Eric M. Dunham** * ^{2,3}6 ¹Department of Physics, Stanford University, CA, USA, ²Institute for Computational and Mathematical Engineering, Stanford University,
7 Stanford, CA, USA, ³Department of Geophysics, Stanford University, CA, USA8 Author contributions: *Conceptualization*: Eric M. Dunham. *Methodology*: Katherine R. Coppess, Fredric Y.K. Lam, Eric M. Dunham. *Software*: Fredric Y.K. Lam. *Validation*: Katherine R. Coppess. *Formal Analysis*: Katherine R. Coppess, Eric M. Dunham. *Investigation*: Katherine R. Coppess, Fredric Y.K. Lam, Eric M. Dunham. *Resources*: Eric M. Dunham. *Writing - Original draft*: Katherine R. Coppess. *Writing - Review & Editing*: Eric M. Dunham. *Visualization*: Katherine R. Coppess. *Supervision*: Eric M. Dunham. *Project administration*: Eric M. Dunham. *Funding acquisition*: Katherine R. Coppess, Eric M. Dunham.12 **Abstract** The intensity of explosive volcanic eruptions is correlated with the amplitude of eruption tremor, a ubiquitously observed seismic signal during eruptions. Here we expand upon a recently introduced theoretical model that attributes eruption tremor to particle impacts and dynamic pressure changes in the turbulent flow above fragmentation (Gestrich et al., 2020). We replace their point source model with Rayleigh wave Green's functions with full Green's functions and account for depth variation of input fields using conduit flow models. The latter self-consistently capture covariation of input fields like particle velocity, particle volume fraction, and density. Body wave contributions become significant above 2-3 Hz, bringing the power spectral density (PSD) closer to observations. Conditions at the vent are not representative of flow throughout the tremor source region and using these values overestimates tremor amplitude. Particle size and its depth distribution alter the PSD and where dominant source contributions arise within the conduit. Solutions with decreasing mass eruption rate, representing a waning eruption, reveal a shift in the dominant tremor contribution from turbulence to particle impacts. Our work demonstrates the ability to integrate conduit flow modeling with volcano seismology studies of eruption tremor, providing an opportunity to link observations to eruptive processes.27

1 Introduction

28 Volcanic eruption tremor is a universally observed seismic signal from explosive eruptions within the 0.5-10 Hz frequency band. It is characterized by its coincidence with explosive eruptions and its incoherence, distinguishing itself from harmonic and pre-eruptive tremor (Chouet and Matoza, 2013; Matoza and Roman, 2022). Hereafter, we use the term "tremor" to refer to eruption tremor, which is the focus of our study. McNutt and Nishimura (2008) compiled

*Corresponding author: edunham@stanford.edu

examples of tremor from several different eruptions and found that the temporal evolution of the tremor amplitude during the course of an eruption followed similar trends: an initial stage of exponential increase, followed by a period of maintaining maximum amplitude, ending with an exponential decrease in amplitude. There have also been a number of empirical relationships observed between tremor amplitude and eruption parameters, such as vent cross-sectional area, volcanic explosivity index (VEI), and ash plume height (McNutt and Nishimura, 2008; McNutt, 1994). These commonalities across different events could indicate common physical processes occurring during sustained eruptions. Leveraging the apparent connection between eruption tremor source and other eruption parameters (e.g., plume height) has motivated the use of tremor to make real-time assessments of eruption size and intensity (Haney et al., 2018; McNutt, 1994; McNutt and Nishimura, 2008; Ichihara, 2016; Caplan-Auerbach et al., 2010; Prejean and Brodsky, 2011). This is important for evaluating aviation hazard from eruption plumes.

However, there are several examples of tremor deviating from the average behavior. During the 2016 eruption of Pavlof Volcano, Alaska, tremor amplitude and plume height evolved proportionally in the early stages of the eruption; but during the final stage, tremor amplitude decreased while the plume height remained high, deviating from what the empirical relation between the two would suggest (Fee et al., 2017). Clearly, there is a need to gain a better understanding of the tremor source to improve the utility of tremor in hazard assessments. Tremor is also often observed in infrasound (acoustic) data, as studied for the 2016 Pavlof eruption. Similarity between acoustic and seismic tremor amplitudes throughout the event suggests they share the same source, which would require coupling to both the atmosphere and the earth (Gestrich et al., 2020).

Gestrich et al. (2020) propose a tremor source mechanism arising from particle impacts and turbulence within the conduit above the fragmentation depth. The authors aim to reproduce the spectral content of seismic tremor generated during sustained explosive eruptions by adapting power spectral density (PSD) models of riverbed seismicity. A hysteresis between tremor amplitude and water level – similar to the one observed at Pavlof between tremor amplitude and plume height – was observed in fluvial systems, which Tsai et al. (2012) found could be explained by dynamic pressure changes arising from turbulent flow and impacts along the river-bottom of particles eroded from the riverbed. As the flow increases, erosion of the bed leads to large particles being carried along in the turbulent flow and colliding with the interface; eventually, the high particle load is cleared, leading to reduction in impacts even though the water level remains high. Eruptive flow in volcanic conduits above fragmentation exhibits similar characteristics: it is a particle-laden fluid comprised of magma clasts and eroded lithics carried by turbulent gas, which flows along a rough surface (the conduit walls) in response to a pressure gradient (the driving overpressure gradient countering gravity). Some notable differences between the two systems include the suspension fluid and geometry/orientation with respect to gravity.

Adapting this fluvial model, Gestrich et al. (2020) present one of the few theoretical studies of the eruption tremor source. The authors develop a point-source PSD model taking into account the different geometry and flow parameters for the eruption, and then convolving forces arising from particle-impacts and turbulence with Rayleigh-wave Green's functions to obtain the seismic response. As a simplifying approximation, they assume spatially uniform values for eruption parameters such as the particle velocity and particle volume fraction, whereas these may vary considerably in the conduit above fragmentation. They performed a sensitivity analysis of the input parameters,

69 finding that the representative grain size of the particles and the seismic wave propagation properties had the largest
 70 impact on the PSD. However, when comparing the model with observations at Pavlof, extreme parameter values (in
 71 particular, large grain sizes ≈ 0.5 m) were required to match the observed seismic PSD. The proposed explanation
 72 for the observed hysteresis is a reduction in grain size as the eruption progressed. The extreme parameter value re-
 73 quirements indicates this model may not be generally applicable, or that certain simplifying approximations in the
 74 model formulation need to be relaxed.

75 We expand on this work by generalizing components of the particle impacts and turbulence (referred to in this
 76 work as PIT) tremor model to utilize more realistic descriptions of the conditions in which tremor occurs. First,
 77 we use full Green's functions to describe seismic wave propagation, instead of Rayleigh-wave only. We find that
 78 accounting for body wave contributions in addition to surface waves increases the PSD amplitude by up to 70 dB
 79 in the >2.5 Hz band. We also adapt the PIT model to allow for depth variations of the tremor source properties.
 80 This allows us to use a conduit flow model to provide the depth-dependent density, velocity, and particle volume
 81 fraction throughout the conduit. We apply the modified particle impacts and turbulence (referred to as mPIT) model
 82 to solutions from a steady-state conduit flow model, but note that the formulation could be equally well applied to an
 83 unsteady conduit flow model to capture the time evolution of tremor over the course of an eruption. We leave this
 84 for future work. Instead, we explore the influence of spatially variable velocity, particle volume fraction, and grain
 85 size throughout the conduit on predicted tremor. In addition, we use a sequence of steady state models with different
 86 mass eruption rates (obtained by varying chamber pressure) to explore the evolution of tremor over the course of a
 87 waning eruption.

88 2 Summary of particle impacts and turbulence tremor source models

89 Here we present an overview of the model components; for more specifics, we refer the reader to [Gestrich et al.](#)
 90 ([2020](#)). Focus is restricted to the region above fragmentation, where flow is turbulent. This is also consistent with
 91 the hypothesis that the similarity in acoustic and seismic signal indicates source coupling to both the earth and the
 92 atmosphere. The authors also focus on vertical component velocity seismograms. The authors build up one-sided
 93 velocity PSD models for particle impacts and turbulence separately, assuming that particle impacts and dynamic
 94 pressure changes from turbulence are random and uncorrelated. The total PSD model is the superposition of the two.
 95 There are three components needed to calculate the PSD: a description of seismic wave propagation (i.e., Green's
 96 functions), how much momentum gets imparted to the surrounding earth, and how frequently does momentum
 97 transfer occur. Below we summarize the decisions and assumptions made by [Gestrich et al.](#) ([2020](#)) to define each of
 98 these components for the two source models.

99 For sufficiently shallow sources (e.g., depths much less than the wavelength of the target frequency $\lambda = v/f =$
 100 2000 m/s / 1 Hz = 2 km), the authors approximate the Green's function using surface-to-surface Green's functions,
 101 as well as treating the forces on the conduit walls as point sources acting in different directions. In addition, by
 102 considering only the vertical component of the seismograms, the authors make the simplifying assumption that
 103 Rayleigh waves will likely dominate the signal. The vertical component of the Green's function used for a force acting

104 in direction i takes the following form:

$$G_{zi} \approx \frac{k}{8\rho_s v_c v_u} N_i \sqrt{\frac{2}{\pi k r}} e^{-\pi f r / (v_u Q)}, \quad (1)$$

105 where $k = 2\pi f / v_c$ is wave number, ρ_s is solid density, Q is the Rayleigh-wave quality factor, r is source-receiver
106 distance, v_c and v_u are the Rayleigh-wave phase and group velocity, and $N = (0.8, 0, 0.6)$ for radial, tangential, and
107 vertical forces captures the horizontal/vertical ratio of Rayleigh wave eigenfunctions associated with the density and
108 velocity profile of a generic rock site (Boore and Joyner, 1997; Gimbert et al., 2014). The Rayleigh wave phase and
109 group velocities were calculated using a generic volcano velocity model from Lesage et al. (2018).

110 The volcanic conduit is assumed to be a vertically oriented cylinder with rough walls modeled with roughness
111 half-spheres of varying diameters (see Figure 2 in Gestrich et al. (2020)). Particles are assumed to preferentially
112 interact with roughness spheres of the same size, leading to an impact rate defined as

$$R_{\text{impact}} = \frac{\delta u}{D^3} \phi_p p(D), \quad \delta u = 0.1 u_0, \quad (2)$$

113 where δu is the magnitude of velocity fluctuations, ϕ_p is the particle volume fraction, u_0 is the mean flow velocity, D is
114 particle grain size, and $p(D)$ is the grain size distribution. This means that larger particles impact less often because
115 fewer large roughness spheres can fit between the fragmentation depth and the vent. The impact force from the
116 particle collisions along the walls is treated as an impulse force. It is assumed that only the component of the force
117 normal to a roughness sphere (not necessarily normal to the conduit) imparts momentum to the earth. The particle
118 velocity at impact is composed of two contributions: the mean flow velocity and fluctuations about the mean flow
119 due to turbulence. The mean flow velocity is assumed to be only in the vertical direction and varying only radially
120 (i.e., independent of depth). The radial velocity profile is chosen to follow a logarithmic profile for turbulent flows in
121 rough pipes. The flow velocity at the maximum roughness height sets the mean flow velocity. The authors assume
122 that the turbulence in the flow is isotropic, which means that fluctuations around the mean flow velocity are equal
123 in all directions. Therefore, they define random directions and unit impulses associated with these fluctuations and
124 integrate over all impact angles, assuming that roughness is statistically symmetric around the conduit:

$$F_{x,y} \approx 0.36(1 + e_b)mu_0, \quad F_z \approx 0.29(1 + e_b)mu_0, \quad (3)$$

125 where e_b is the coefficient of restitution and m is the particle density (assumed to be same as average rock density).
126 These can then be combined to calculate the particle impacts PSD, after performing a surface integral over the con-
127 duit walls above fragmentation:

$$PSD_{\text{impact}} = \int_D 2\pi \hat{R} d_f R_{\text{impact}} \left(2\pi f \sum_j F_j G_{zj} \right)^2 dD, \quad (4)$$

128 where \hat{R} is the conduit radius and d_f is fragmentation depth. The full expression for the particle impacts PSD for the

129 PIT model is as follows:

$$PSD_{\text{impact}} \approx 5.8 \bar{u}_0^3 f^3 (1 + e_b)^2 \phi_p D_r^3 \frac{\hat{R} d_f}{r v_c^3 v_u^2} e^{-2\pi f r / (v_u Q)}, \quad (5)$$

130 where $D_r = (\int_D D^3 p(D) dD)^{1/3}$ is the representative grain size.

131 The random eddies in the turbulent flow lead to velocity fluctuations that cause dynamic pressure changes along
 132 the conduit wall, exciting elastic waves. Therefore for the turbulence model, the authors define a force spectrum \tilde{F}
 133 – instead of defining impact rate and force separately – using the velocity spectrum associated with turbulent flow.
 134 Assuming that forces in different directions are independent, the turbulence PSD can be formulated as follows:

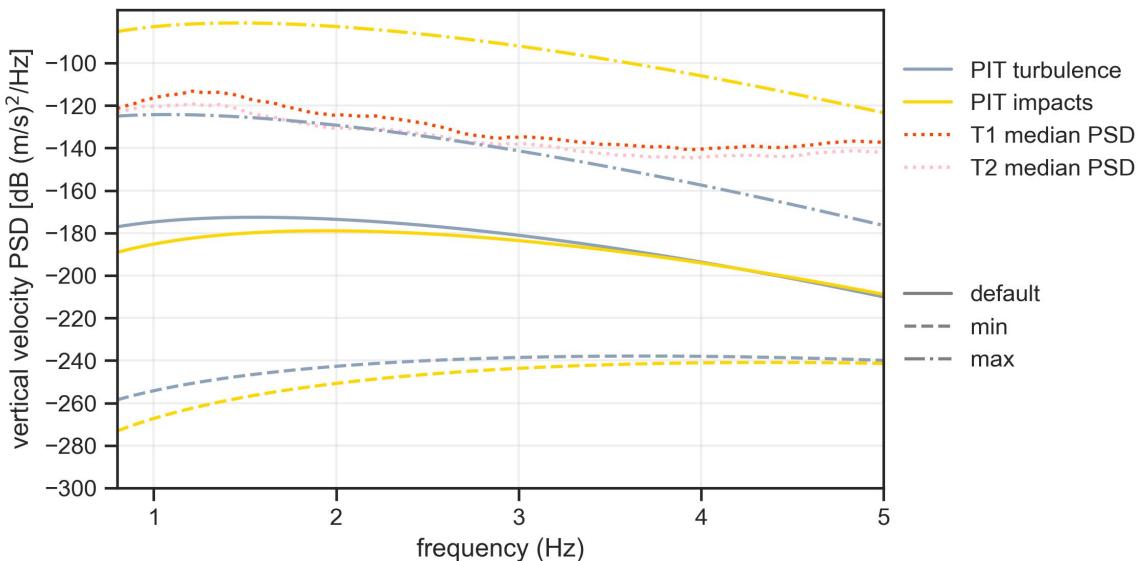
$$PSD_{\text{turbulence}} = 8\pi^3 \hat{R} d_f f^2 \sum_j \tilde{F} G_{zj}^2, \quad (6)$$

135 where \tilde{F} is the force spectrum on the walls per unit length of the conduit (units of $\text{N}^2 \text{m}^{-1} \text{Hz}^{-1}$). To calculate the
 136 velocity spectrum, the authors follow [Gimbert et al. \(2014\)](#) and assume that the turbulence at the point of maximum
 137 roughness of the conduit walls is in the inertial subrange (i.e., the boundary layer is very thin and approximated by
 138 wall roughness height D_b), where the Kolmogorov velocity spectrum can be used:

$$E_K = K \epsilon^{2/3} k_t^{-5/3}, \quad (7)$$

139 where $K = 0.5$ is the Kolmogorov universal constant, $k_t = 2\pi f / \bar{u}_z(r)|_{r=\hat{R}-D_b/4}$ is the wave number of velocity
 140 fluctuations, and ϵ is the dissipation rate. This holds for very large Reynolds numbers, like those observed in explosive
 141 volcanic jets. In this subrange, energy dissipation and production associated with the break-up of turbulent eddies
 142 are assumed to be equal. Therefore, the dissipation rate is defined using the energy production rate from breaking
 143 up of larger eddies:

$$\epsilon(r)|_{r=\hat{R}-D_b/4} = \frac{1}{\kappa} \frac{u_*^3}{D_b/4}, \quad (8)$$


144 where $\kappa = 0.4$ is the Von Karman constant and $u_* = 0.06 \bar{u}_0$ is the shear velocity. The authors then use Taylor's
 145 frozen-turbulence hypothesis to define the velocity spectrum in frequency domain:

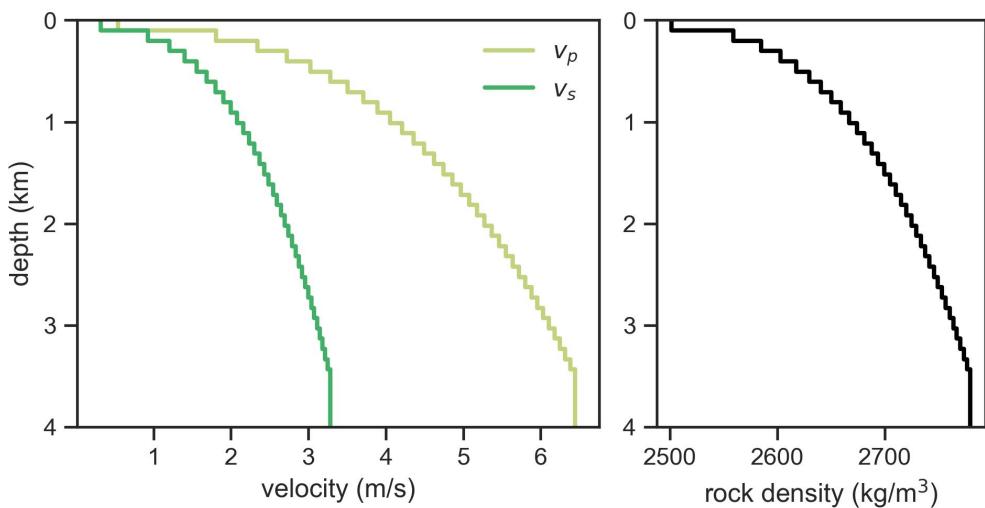
$$\tilde{E}_K = \frac{2\pi}{\bar{u}_z(r)|_{r=\hat{R}-D_b/4}} E_K. \quad (9)$$

146 The force spectrum is calculated by finding the drag force on a roughness half sphere from the velocity fluctua-
 147 tions described by the velocity spectrum:

$$\tilde{F}_p \approx (C \rho_g \bar{u}_z(r)|_{r=\hat{R}-D_b/4} A)^2 \tilde{E}_K \chi_{\text{fl}}^2, \quad (10)$$

148 where $C = 0.5$ is the drag coefficient, ρ_g is the gas density, $A = \pi D_b^2 / 4$ is the area the force is applied over, and
 149 $\chi_{\text{fl}} = 1$ is the fluid-dynamic admittance. Note that they assume a fixed roughness height and that force time series for
 150 different roughness patches are uncorrelated. Thus, superposition of the force contributions from all roughnesses

Figure 1 Recreation of Figure 10 from Gestrich et al. (2020), but using the corrected expressions and the stated parameter ranges. Observed seismic PSDs from 2016 Pavlof eruption are plotted with dotted lines: T1 (red) is the period of sustained maximum seismic amplitude and T2 (pink) is the period of seismic amplitude decrease.


151 is given by

$$\tilde{F} = N_p \tilde{F}_p = \frac{\tilde{F}_p}{D_b^2}, \quad (11)$$

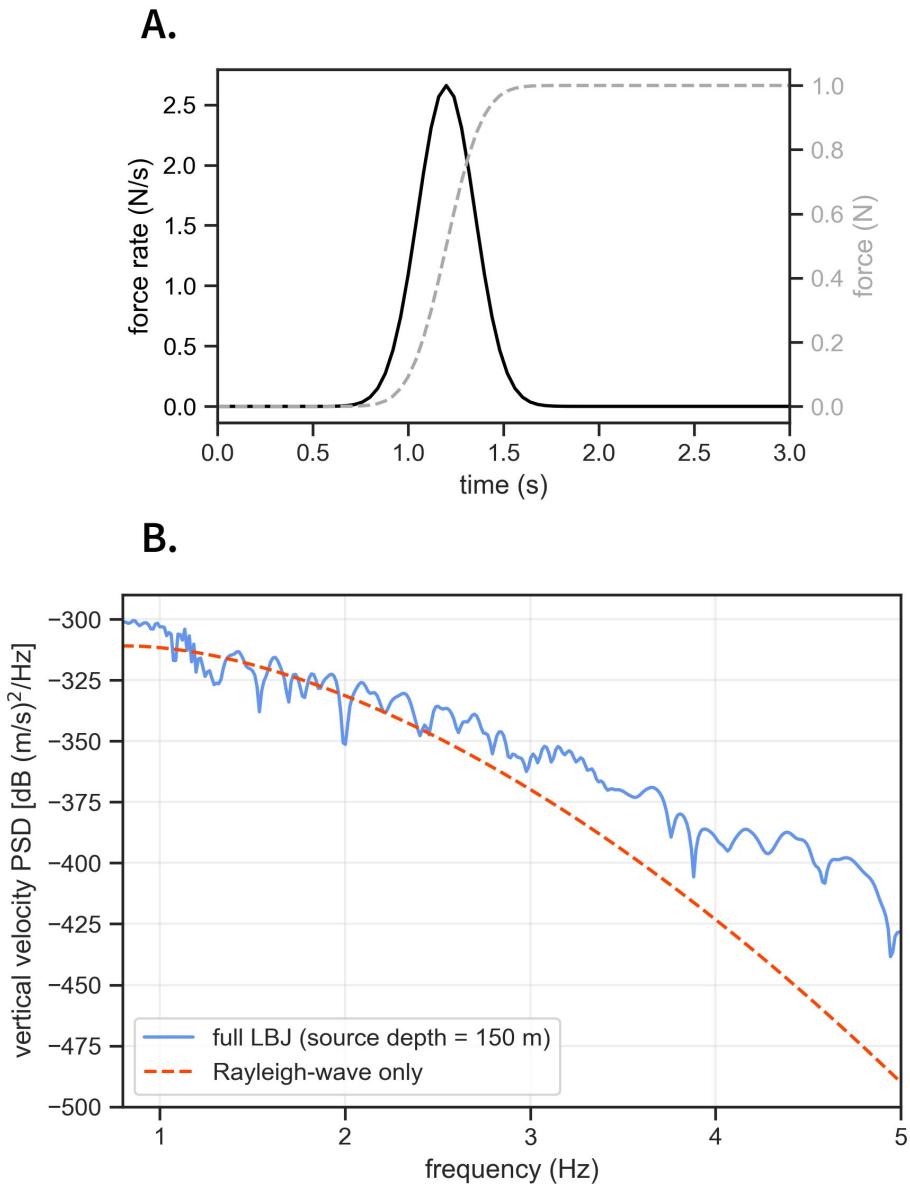
152 where N_p is the number of roughness half spheres per unit area of the conduit walls. Putting this all together, the
153 final expression for the turbulence PSD for the PIT model is

$$PSD_{\text{turbulence}} \approx 0.0011 \bar{u}_0^{14/3} f^{4/3} D_b^{4/3} \frac{\rho_g^2}{\rho_s^2} \frac{\dot{R} d_f}{r v_c^3 v_u^2} e^{-2\pi f r / (v_u Q)}. \quad (12)$$

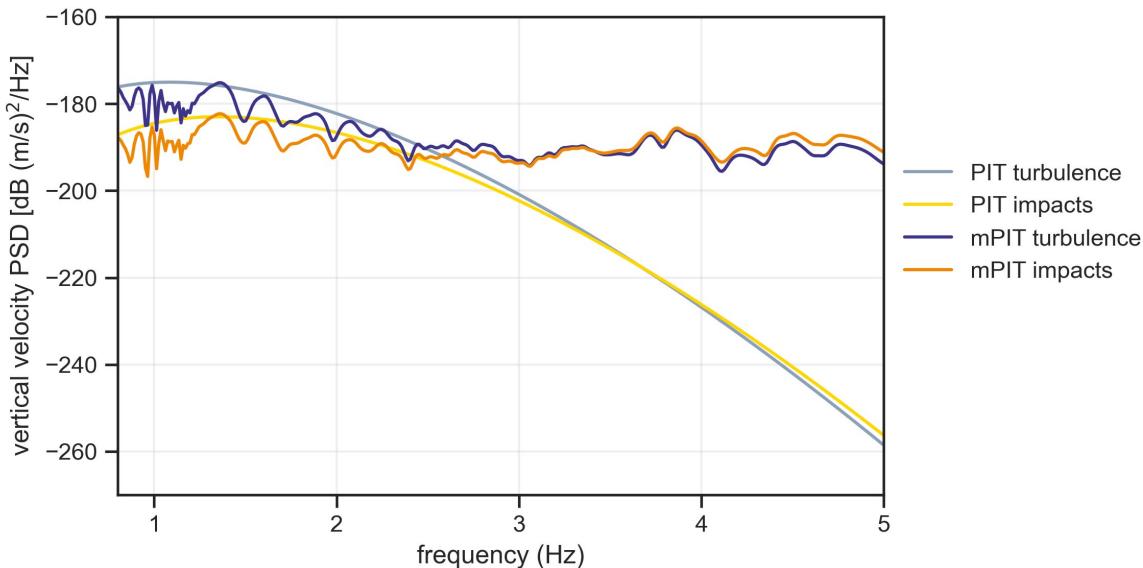
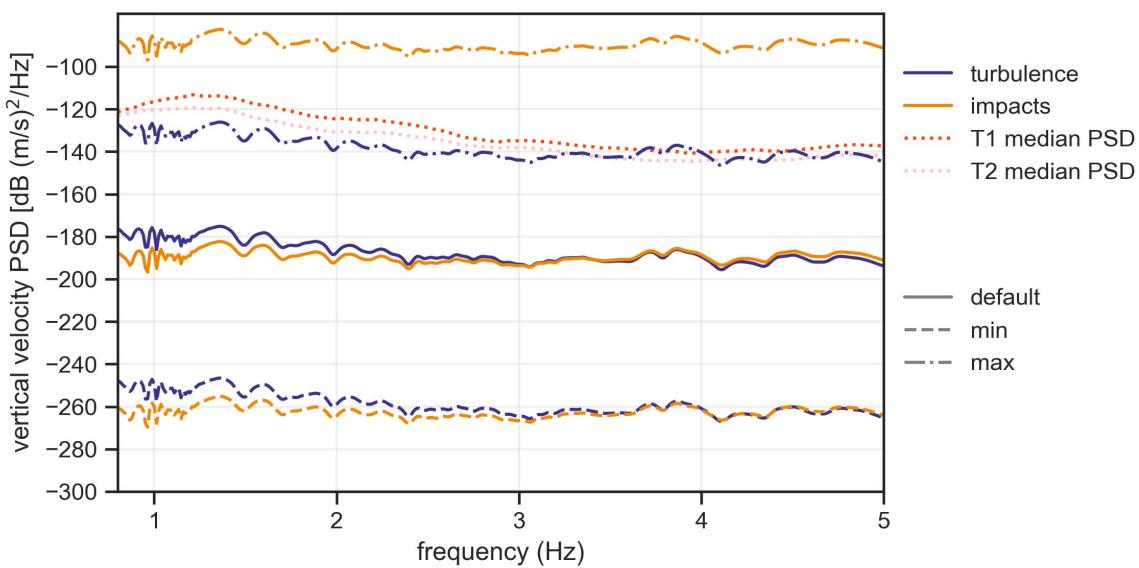
154 It is important to note that the final expressions stated in equations (28) and (29) of Gestrich et al. (2020) have
155 incorrect values for the numerical prefactors, likely due to algebra errors. It also seems that the min-max parameter
156 values used in Figure 10 in Gestrich et al. (2020) are inconsistent with the stated parameter ranges and figures demon-
157 strating parameter sensitivity. Figure 1 is a recreation of this figure from Gestrich et al. (2020) using the corrected
158 expressions and the stated parameter ranges. When looking at the default values used by Gestrich et al. (2020), this
159 correction highlights the comparable contributions of particle impacts and turbulence to the seismic spectrum at
160 higher frequencies (>2.5 Hz), with turbulence yielding a larger contribution at low frequencies. Both contributions
161 experience the same level of attenuation at high frequencies but the impacts model has a stronger dependence on fre-
162 quency, which counteracts the attenuation more strongly. Therefore, the impacts PSD model experiences a smaller
163 reduction in power as frequency increases, leading to similar power compared with the turbulence PSD. Also plotted
164 in Figure 1 are the observed seismic PSD data taken during two periods of the 2016 Pavlof eruption: the period dur-
165 ing sustained maximal seismic amplitude (T1) and when seismic amplitude decreased while plume height remained
166 high (T2). We refer readers to Figure 1 in Gestrich et al. (2020) for more context with acoustic and plume height data.
167 We follow the same data processing scheme as Gestrich et al. (2020): data taken from Station PS1A (about 9.5 km
168 from the vent) is band-pass filtered between 0.5 and 8 Hz and the PSD is smoothed using a sliding median window

Figure 2 P-wave and S-wave velocity (v_p and v_s) and density profiles used to calculate full numerical Green's functions. Velocity profiles are from the generic volcano model in (13). Density is obtained using empirical correlations in (14).

of 0.33 Hz length. When comparing the model outputs to the observed PSDs, Gestrich et al. (2020) found that only the maximum particle impacts PSD of the PIT model could recreate the observed power. Given the corrections, it appears that inputs solidly within the considered range for impact PSDs and the maximum possible turbulence PSD may be able to reproduce the observed power. However, we find with the mPIT model (presented in the next section) that very extreme parameter values will still be required to reach observed power.


3 Model modifications

In this study, we modify the particle impacts and turbulence (PIT) tremor model developed by Gestrich et al. (2020) in two ways: 1) replacing the Rayleigh-wave-only Green's functions with full Green's functions, and 2) extending it to allow for depth variation of input fields. We then apply the modified PIT (mPIT) model to results from conduit flow simulations.



The full Green's functions are numerically calculated using the frequency-wavenumber method (Zhu and Rivera, 2002). Figure 2 shows the velocity and density profiles with depth used to capture the surrounding earth's material structure. For consistency with choices made in Gestrich et al. (2020), we use the generic volcano model from Lesage et al. (2018) for the velocity profile $v(z)$:

$$v(z) = v_0 \left[\left(\frac{z + a}{1 \text{ m}} \right)^\alpha - \left(\frac{a}{1 \text{ m}} \right)^\alpha + 1 \right], \quad (13)$$

where z is depth in meters and the fit parameters for P and S waves are: [$v_{p0} = 540 \text{ m/s}$, $\alpha_p = 0.315$, $a_p = 10 \text{ m}$] and [$v_{s0} = 320 \text{ m/s}$, $\alpha_s = 0.3$, $a_s = 15 \text{ m}$]. These parameters were empirically determined in Lesage et al. (2018) by fitting (13) up to 500 m depths of velocity structure data from different volcanoes. We extend this profile to 3.5 km, at which point the P- and S-wave velocities become unrealistically high; below that, the velocity structure is for a homogeneous half-space. For the rock density profile, we follow Gimbert et al. (2014) and use the empirical relationship between

Figure 3 **A.** Force and force rate history convolved with Green's functions. **B.** Comparison of full LBJ Green's functions (source depth at 150 m) with Rayleigh-wave only Green's functions at a station located 10 km away, both convolved with the force rate history shown in **A**. Results are for the vertical component of velocity seismograms from a vertical force: $\dot{F}G_{zz}$.

A.**B.**

Figure 4 Recreation of Figure 10 from Gestrich et al. (2020) comparing the PIT and mPIT models. In this calculation, the input fields are assumed to be depth independent. **A.** Default values used in Gestrich et al. (2020). **B.** Min-max inputs as used in Figure 1 in mPIT model. Observed seismic PSDs from 2016 Pavlof eruption are plotted with dotted lines: T1 (red) is the period of sustained maximum seismic amplitude and T2 (pink) is the period of seismic amplitude decrease.

188 rock density and S-wave velocity developed by [Boore and Joyner \(1997\)](#):

$$\rho_s = 2500 + 93.75 \left[\frac{v_s}{1 \text{ km/s}} - 0.3 \right], \quad (14)$$

189 where density is in units of kg/m^3 . To account for attenuation, [Zhu and Rivera \(2002\)](#) assume that the P-wave quality
 190 factor is twice the S-wave quality factor, which we set to 30. Figure 3 (b) shows a comparison between PSDs when
 191 convolving a Gaussian (i.e. approximated delta) force-rate history (Figure 3 (a)) with the Rayleigh wave Green's func-
 192 tion (with quality factor of 30) and the full Lesage-Boore-Joyner (LBJ) Green's functions. At lower frequencies, the
 193 signal PSD is dominated by Rayleigh waves, consistent with the assumptions of [Gestrich et al. \(2020\)](#). However, at the
 194 higher end of the tremor frequency range (>2.5 Hz), considering only the Rayleigh waves underestimates the power.
 195 The difference reaches around 70 dB at 5 Hz, which corresponds to 7 orders of magnitude.

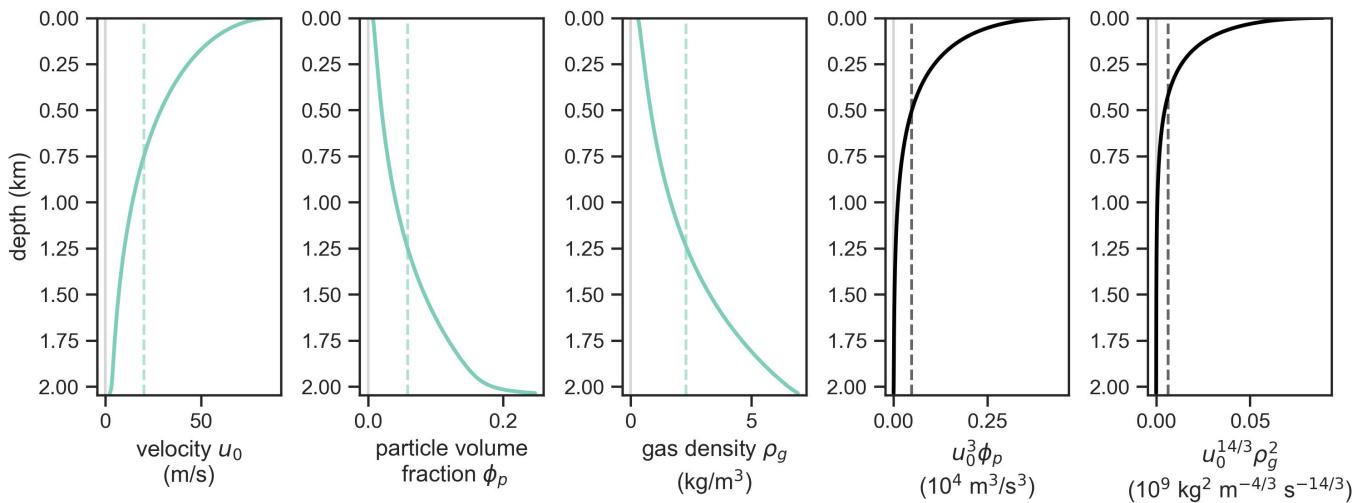
196 Extending the model to allow depth variation of input parameters is straightforward. We treat the conduit as a
 197 distribution of point sources, as described in [Coppess et al. \(2022\)](#). We apply the PIT model with full Green's functions
 198 to each point source, replacing the dependence on fragmentation depth d_f with grid spacing dz (which comes from
 199 the surface integral along the conduit walls). The source-receiver distance and orientation are already accounted for
 200 in the numerical Green's functions. Then all the PSD contributions are summed together to get the total PSD.

201 In addition to the use of different Green's functions in the PIT vs mPIT models, there is an additional difference
 202 arising from assuming a point-source (PIT) vs extended-source (mPIT). The extended source calculation involves
 203 different radiation patterns and different source-receiver distances for different depth source contributions. Given
 204 the shallow depths and the station distances considered here, this effect is not as pronounced as that from using
 205 different Green's functions. Figure 4 shows a comparison of the PIT and mPIT models, assuming the same spatially
 206 uniform default parameter values used in Figure 1 and in [Gestrich et al. \(2020\)](#) (this will not be the case for the
 207 remaining examples in this work). The frequency of maximum power (approximately 1.5 Hz) is consistent between
 208 the two models. However, the PSD shape is altered by using LBJ Green's functions, yielding a flatter spectrum across
 209 the 1-5 Hz frequency band. The discrepancy between the two sets of Green's function widens as frequency increases
 210 beyond 2.5 Hz and reaches around a 70 dB difference, consistent with what we observed in the simpler delta force-
 211 rate point source example (Figure 3). As shown in Figure 4, this flat spectrum is more consistent with the observed
 212 spectrum in the 2016 Pavlof eruption.

213 4 Applying tremor model to steady-state conduit flow

214 In this section, we apply the mPIT model to steady-state conduit flow solutions. We use an adiabatic quasi-1D mul-
 215 tiphase steady-state conduit flow model that solves governing equations for mass, momentum, and energy balance.
 216 All phases (melt, water, and crystals) are assumed to be co-moving and share the same temperature and pressure
 217 at a given depth. Modeled processes include exsolution of volatiles from the melt and magma fragmentation. Frag-
 218 mentation is modeled using a critical volume fraction criterion, where drag is reduced to zero when the exsolved gas
 219 volume fraction exceeds some threshold. Magma viscosity depends on dissolved volatile and crystal content, calcu-
 220 lated using the empirical expressions in [Hess and Dingwell \(1996\)](#) (their equation 7) and [Costa \(2005\)](#) (their equation
 221 2 in Comments). For specifics on the conduit flow model, we refer the reader to Appendix A in [Coppess et al. \(2024\)](#).

Table 1 Parameter values used in steady-state solution in Section 4.1. **Bold** indicates parameters that are changed in later sections.


Symbol	Description	Numerical value
g	gravitational acceleration	9.8 m/s ²
ϕ_0	critical gas volume fraction (with respect to total volume)	0.75
t_{ex}	exsolution timescale	10 s
S_m	solubility constant	5×10^{-6} Pa ^{1/2}
χ_0	water mass concentration at chamber	0.03
ϕ_c	bulk crystal volume fraction (with respect to magma volume)	0.4
R_G	specific gas constant	461 J/(kg K)
T_{ch}	chamber temperature	1050 K
p_{ch}	chamber pressure	90 MPa
K	magma bulk modulus	10 ⁹ Pa
$\rho_{\text{mag},0}$	reference magma density	2600 kg/m ³
p_0	exsolution pressure	n_0^2/S_m^2
$C_{v,\text{ex}}$	exsolved water heat capacity	1827 J/(kg K)
$C_{v,\text{mag}}$	magma heat capacity	3000 J/(kg K)
R	conduit radius	20 m
L	conduit length	3 km

222 [Reviewers: [Coppess et al. \(2024\)](#) is under review. A pdf version has been provided along with this submission
 223 so that you can read more about the conduit flow model.] Only the relevant field values above the fragmentation
 224 depth are used for tremor model input. Since particles are not explicitly modeled, we define the particle volume
 225 fraction as the fraction of the mixture volume excluding exsolved gas. Table 1 provides model parameter values used
 226 to calculate solutions used in the following sections.

227 We perform a parameter study to learn how different characteristics of the steady-state solution and input field
 228 depth profiles influence the seismic PSD. In the final section, we use the steady-state model to represent time snap-
 229 shots of a waning eruption with decreasing mass eruption rate (obtained by decreasing chamber pressure).

230 4.1 Comparison of PIT and mPIT results

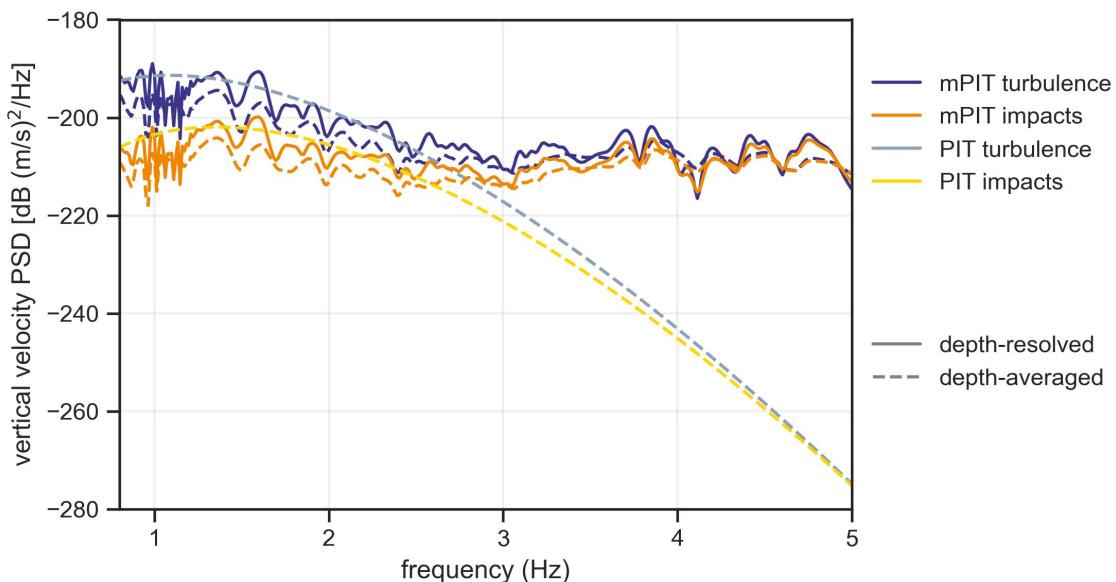

231 The steady state solutions are calculated for a 3 km-long conduit, with fragmentation occurring around 2 km depth
 232 in the reference case. The total volatile content is 3 wt% and crystal volume fraction (volume of crystal phase /
 233 volume of magma, where magma refers to the mixture of melt and dissolved gas) is depth-invariant at a value of
 234 0.4. Magma is injected through the bottom boundary at a pressure of 90 MPa (in the reference case). As the magma
 235 rises through the conduit, it depressurizes due to drag along the conduit walls and relief of the overlying weight.
 236 Depressurization of the magma leads to volatile exsolution (i.e., formation and growth of bubbles). Eventually, the
 237 mixture will become so bubbly that the liquid matrix containing the bubbles will no longer be stable or strong enough
 238 to sustain the bubbly mixture. At this point, the mixture undergoes fragmentation, whereby the mixture suddenly
 239 breaks apart and accelerates gas and magma fragments upward toward the vent. Figure 5 shows the mPIT input fields
 240 above fragmentation. The reduction in drag that accompanies fragmentation leaves unbalanced forces, accelerating
 241 the mixture upward. This is accompanied by depressurization and expansion of the gas (i.e., reduction of particle
 242 volume fraction). The mixture continues to accelerate as it approaches the vent. In the reference case simulation,
 243 the bottom pressure is sufficiently high that flow chokes at the vent (i.e., magma is erupted out at the mixture sound
 244 speed). Other simulations used later to illustrate changes in eruption tremor as mass eruption rate decreases feature
 245 subsonic outflow, and for those simulations we set pressure at the vent to atmospheric.

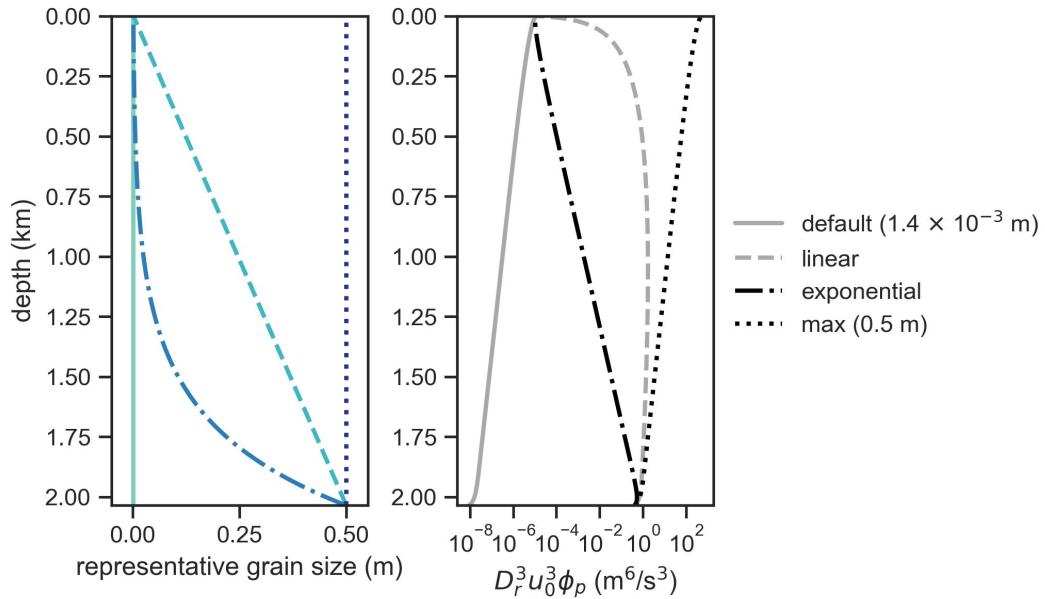
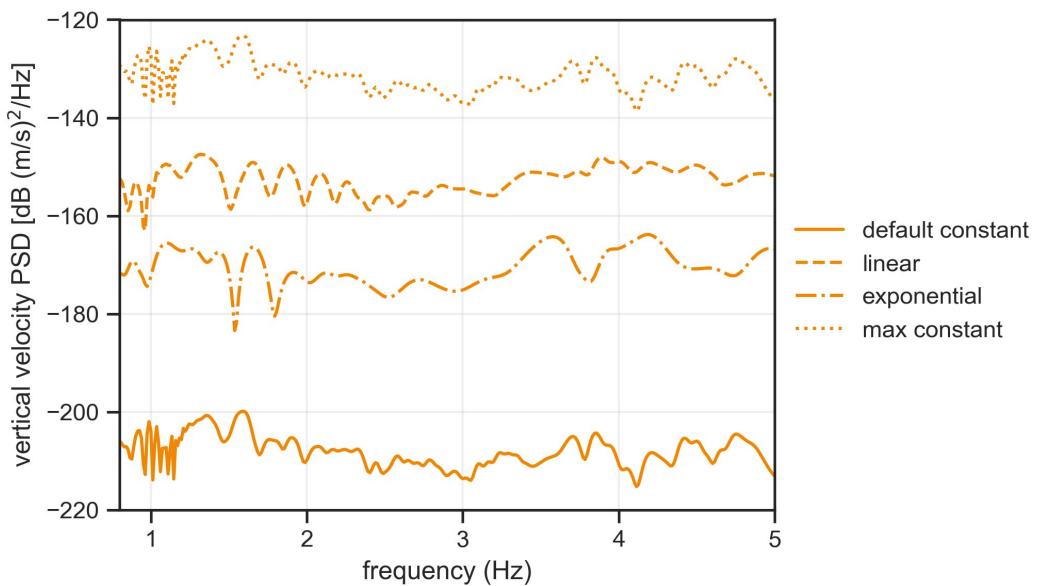
Figure 5 Fields above fragmentation depth from steady-state conduit flow model. Parameter values are listed in Table 1. In the left three panels, vertical dashed lines mark the depth-averaged values of the field plotted: $\langle u_0 \rangle = 20.2$ m/s, $\langle \phi_p \rangle = 0.059$, $\langle \rho_g \rangle = 2.29$ kg/m³. The dashed lines in the right two panels correspond to $\langle u_0 \rangle^3 \langle \phi_p \rangle$ and $\langle u_0 \rangle^{14/3} \langle \rho_g \rangle^2$, respectively (i.e. the value calculated from inputting the averaged field values into the expression indicated on the x-axes).

246 The final two panels in Figure 5 show how the input fields taken from the steady-state solution translate into the
 247 depth profiles of parameter combinations appearing in the integrand of the particle impacts ($u_0^3 \phi_p$) and turbulence
 248 ($u_0^{14/3} \rho_g^2$) force spectra. The velocity field has the most significant impact on the depth profiles, as both models depend
 249 strongly on the mean flow speed. Both models' profiles increase with decreasing depth, with the largest contribution
 250 at the vent, despite the much reduced particle volume fraction and gas density. Even though the fragmentation depth
 251 is around 2 km, the largest contributions are contained within the top 500 m of the conduit. The associated tremor
 252 PSDs using mPIT are shown in Figure 6 (solid lines). For the remaining inputs not modelled in our conduit flow
 253 model, we assume a constant depth profile with the same default values used in Gestrich et al. (2020): representative
 254 grain size $D_r = 1.4 \times 10^{-3}$ m and roughness size $D_b = 0.5$ m.

255 We investigate the role of depth variation of the input fields by assuming a constant profile of the depth-averaged
 256 field values (i.e., averaging over the region above fragmentation), which are shown with dashed lines in Figure 5.
 257 These results are represented by the dashed lines in Figure 6. Comparing the two mPIT results, using the depth-
 258 averaged values underestimates the spectral power by a few dB, with greater impact at lower frequencies. The spec-
 259 tral shape seems to be reasonably captured by the averaged inputs, indicating that the modeling of wave propagation
 260 has the larger influence on the calculated PSD than accounting for the depth variation of the input fields. This pro-
 261 vides further justification for neglecting depth variation above fragmentation, as was done in Gestrich et al. (2020).
 262 However, it is still important to take depth variation into account when choosing what value to use to represent the
 263 input field. Consider the velocity profile, for instance (Figure 5). Flow velocity varies significantly over the whole
 264 region above fragmentation; the depth-averaged flow velocity is significantly less than the peak velocity reached at
 265 the vent. Even though high exit velocities can be achieved, that does not mean that they are representative of flow
 266 throughout the upper conduit. Thus, conditions at the vent are likely not representative of the whole region above
 267 fragmentation. This places even more stringent restrictions on the range of input values that would be reasonable to
 268 consider, which will limit the possible range of seismic PSD amplitudes.

Figure 6 Comparison of mPIT PSDs for depth-resolved vs. depth-averaged steady-state solution. Depth-averaged steady-state inputs are also used for comparison between PIT and mPIT models, which are marked by the dashed lines in Figure 5. Differences between the PIT and mPIT models mainly come from the different Green's functions.

269 4.2 Effect of particle grain-size depth profile



270 Gestrich et al. (2020) found that one of the input fields that had the greatest impact on the tremor PSDs through the
 271 particle impacts force spectra was representative grain size. Not much is known about the distribution of grain size
 272 throughout the conduit, as well as how it varies over the course of the eruption. Lithics have been observed in erupted
 273 materials – likely due to erosion of the conduit walls during eruption – which would then introduce differently sized
 274 particles into the flow (e.g., Fee et al., 2017; Macedonio et al., 1994). Also, there has been some evidence of processes
 275 like secondary fragmentation, whereby fragmented particles collide with each other and the conduit walls, leading
 276 to further grain size reduction (Dufek et al., 2012; Bindeman, 2005). Therefore, we consider a few different grain size
 277 depth profiles in order to investigate the influence on the particle impacts PSD using the mPIT model.

278 The chosen grain-size profiles are shown in Figure 7. We use the same steady-state solution presented in the
 279 previous section. Therefore, the default-constant profile is the same and serves as our reference case. Gestrich et al.
 280 (2020) found that large grain sizes were needed to match observations, so the max-constant profile serves as the
 281 uppermost bound on reasonable grain size – and hence, the maximum possible PSD amplitude. The remaining two
 282 example profiles vary from the maximum grain size at fragmentation to the default grain size at the vent, capturing
 283 possible descriptions of secondary fragmentation. Since it is not well understood how grain size varies, we investigate
 284 how the functional form of this grain-size variation influences the resulting seismic PSD. We explore a linear decrease
 285 with decreasing depth (i.e., approaching vent):

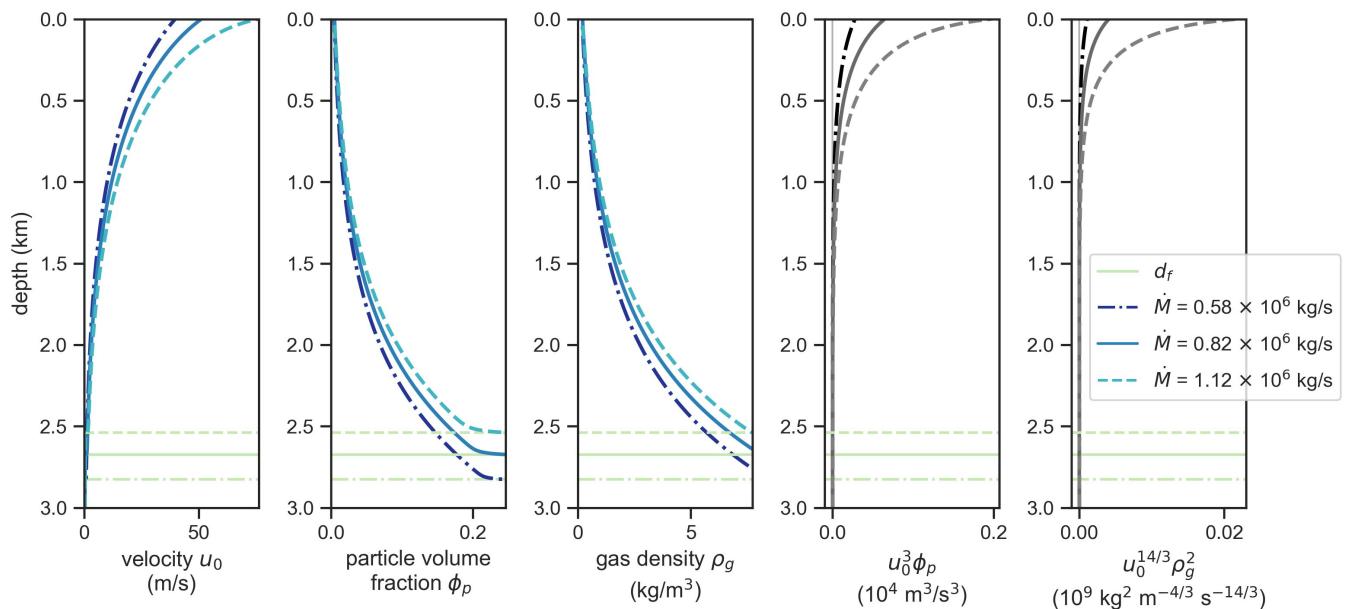
$$D_r(z)|_{\text{linear}} = 1.4 \times 10^{-3} - \left(\frac{0.5 - 1.4 \times 10^{-3}}{d_f} \right) z, \quad (15)$$

286 and an exponential decrease:

$$D_r(z)|_{\text{exponential}} = \frac{0.5^{d_f/z}}{(1.4 \times 10^{-3})^{(1-d_f/z)}}. \quad (16)$$

A.**B.**

Figure 7 Effect of grain size variation with depth on impacts PSD using the steady-state solution shown in Figure 5. Note that the x-axis of the second panel in (a) is a log-scale. **A.** Grain size depth profiles. **B.** Impacts PSD for different profiles.


287 Consistent with [Gestrich et al. \(2020\)](#), we find that the representative grain-size profile has significant impact on
 288 the particle impacts seismic PSD (Figure 7). Comparing the two constant profiles, ~ 3 orders of magnitude difference
 289 in grain-size leads to 9 orders of magnitude difference in PSD amplitude. While the impact rate decreases for in-
 290 creasing grain size, more momentum will be imparted to the surrounding earth by the larger particles, all other flow
 291 properties being equal. The particle impacts' integrand depth profiles for the two constant profiles follow the same
 292 trend, with the largest contributions to the signal arising from the upper conduit where the flow velocity is greatest.
 293 However, how grain size varies with depth can potentially change where the largest contributions arise within the
 294 conduit. For the linear and exponential examples, the largest contributions come from just above fragmentation
 295 (Figure 7), indicating that the grain size depth profile has the most influence on the resulting integrand depth pro-
 296 file for these particular examples. The linear profile yields a higher PSD amplitude than the exponential one, as the
 297 grain size is larger at a given depth. Understanding the grain-size distribution proves to be critical in determining
 298 the predicted seismic PSD from this tremor source model.

299 During the high amplitude tremor phase of the 2016 Pavlof eruption (T1), the observed PSD amplitude ranges be-
 300 tween approximately -110 dB and -140 dB. The max-constant profile comes closest to achieving these levels. While it
 301 exceeds the observed power in the higher frequencies (> 2.5 Hz), it is not able to reach the peak power observed at
 302 lower frequencies. A uniform distribution of particles with radii on the order of 0.5 m throughout the upper conduit
 303 seems very unlikely to be present in real eruptions. [Dufek et al. \(2012\)](#) combine experimental results with numerical
 304 simulations to model volcanic particle break-up during an explosive eruption as a function of height above frag-
 305 mentation depth. They found that the number of disruptive collisions (i.e., ones that would cause particle break-up)
 306 increased with increased initial particle diameter and increased fragmentation depth. For a particle with diameter
 307 of 0.1 m and fragmentation depth of 1 km, the expected number of collisions is on the order of 10^2 ([Dufek et al., 2012](#)).
 308 Given the maximum size of particles considered here (~ 1 m), one would expect an even higher number of disrup-
 309 tive collisions. This post-fragmentation break-up would lead to a decreasing grain-size profile as flow progresses up
 310 the conduit. As demonstrated here, decreasing grain-size profiles are likely to produce even smaller seismic PSD
 311 amplitudes.

312 **4.3 Evolution of tremor during a waning eruption**

313 While eruption tremor persists throughout an explosive eruption, its characteristics (e.g., amplitude) evolve as erup-
 314 tion dynamics change. Understanding this link is critical for developing more reliable methods for using eruption
 315 tremor monitoring to make real-time assessments of eruption explosivity. In this section, we explore how the evolv-
 316 ing dynamics of a waning eruption are expressed in predicted tremor from the mPIT model. To approximately rep-
 317 resent a waning eruption, we use solutions from our steady-state model with decreasing mass eruption rates to rep-
 318 resent time snapshots of the input fields. This assumes that eruption waning is a quasi-steady process and does not
 319 capture dynamics associated with sudden eruption cessation from catastrophic collapse, for instance. Decreases in
 320 discharge rate are obtained by reducing chamber pressure. Since we are focused on the waning period, we choose
 321 all solutions to have subsonic flow out of the vent, with the highest mass eruption rate chosen to be somewhat close
 322 to the reference solution with choked flow. Vent pressure for all solutions is set to atmospheric pressure (10^5 Pa).

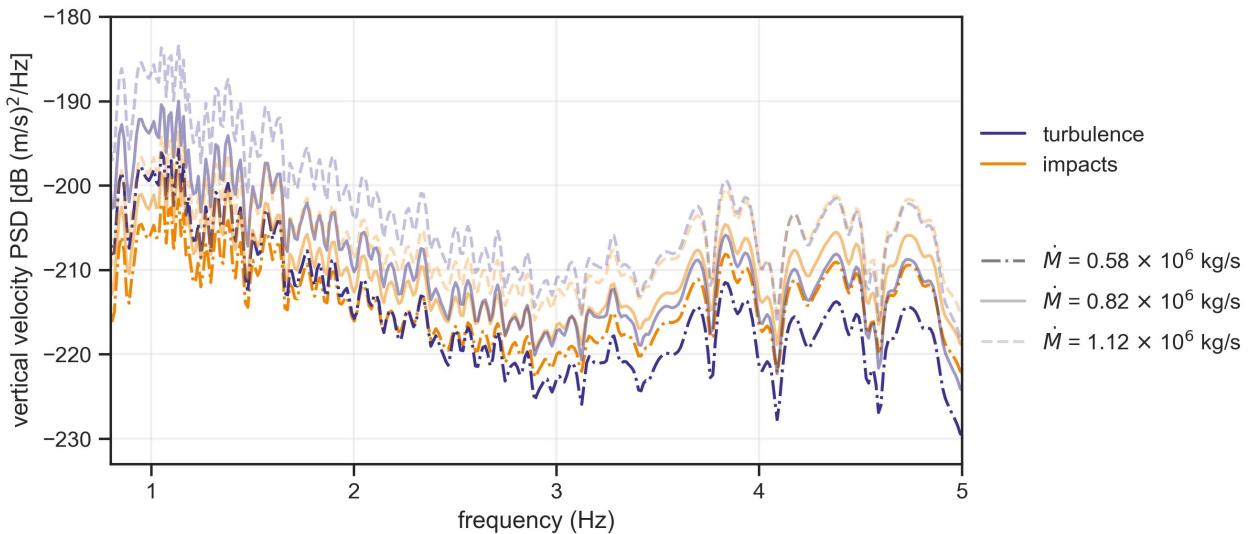

323 Figure 8 shows three “snapshots” of the waning eruption, where lower mass eruption rate indicates later time in

Figure 8 Input fields for steady-state solutions with different mass eruption rates \dot{M} , representing the waning of an eruption. Mach numbers at the vent are 0.45, 0.57, and 0.86 (with increasing mass eruption rate). Horizontal lines mark the fragmentation depth d_f .

324 the eruption. As magma is erupted, the chamber depressurizes and leads to the reduction of the driving pressure
 325 gradient. Flow slows as the driving pressure gradient decreases. For the particular fragmentation mechanism mod-
 326 eled here, depressurization throughout the conduit leads to descent of the fragmentation front through the conduit,
 327 and relief of the overlying weight leads to exsolution at greater depths (Figure 8). The final two panels in Figure 8
 328 highlight that differences in particle impacts and turbulence force contributions come from the upper 1 km of the
 329 conduit, once again demonstrating the strong influence of the velocity profile. The change in fragmentation depth
 330 of several hundred meters has little effect.

331 As the eruption wanes and the velocity decreases, the amplitude of the seismic PSD decreases (Figure 9). We
 332 assume that the choked flow solution presented in Section 4.1 represents the most explosive period of the eruption
 333 and serves as a reference case for considering the tremor evolution during the eruption’s waning. Note that mass
 334 eruption rate for this reference case is $1.92 \times 10^6 \text{ kg/s}$ with a Mach number of 1 at the vent. A 70% drop in mass eruption
 335 rate corresponds to a ~ 10 dB decrease in seismic power. Gestrich et al. (2020) aimed to develop an eruption tremor
 336 model that would be consistent with the hysteresis between tremor amplitude and plume height that was observed
 337 during the 2016 Pavlof eruption. To demonstrate that the PIT model was consistent with the observation of reducing
 338 tremor amplitude while plume height remained high – which the authors propose likely means that mass eruption
 339 rate remains high – they also considered the connection between eruption tremor and mass eruption rate. Their
 340 approach was to assume some constant mass eruption rate, select different combinations of values for input fields
 341 that would produce this mass eruption rate, and then look at the range of associated PSD amplitudes. They found a
 342 large range of amplitudes of tremor PSD that were consistent with a constant mass eruption rate. A downside of this
 343 approach is that input fields are tuned independently of one another without consideration for the common physical
 344 processes that cause covariation of the fields. However in this work, we take those processes into account through the
 345 conduit flow model and find that mass eruption rate is in fact correlated with the predicted tremor amplitude. High

Figure 9 mPIT PSDs for steady state solutions with different mass eruption rates \dot{M} shown in Figure 8. Note the smaller range of the y -axis compared with previous PSD plots.

346 mass eruption rate requires high flow velocity in the upper conduit, which is hugely influential on the predicted force
 347 spectra for this tremor model. Therefore, in order for tremor amplitude and mass eruption rate to become uncoupled
 348 to produce the observed hysteresis, evolution of particle size is required for the same mass eruption rate.

349 As mass eruption rate decreases, the relative importance of particle impacts vs turbulence contributions changes.
 350 For the example solution representing the most explosive phase, turbulence dominates the predicted tremor for fre-
 351 quencies less than 4 Hz (Figure 6) – almost an order of magnitude difference between the two contributions at peak
 352 frequency – with comparable contributions to particle impacts for higher end of the frequency band. This is consis-
 353 tent with the early stage of the waning period (i.e., solution with $\dot{M} = 1.12 \times 10^6 \text{ kg/s}$); however, the transition point
 354 where the dominant contribution switches from turbulence to particle impacts is now shifted to a lower frequency
 355 of about 3.5 Hz. As the eruption continues to wane, the difference in power from the two contributions decreases
 356 and the transition frequency continues to shift to lower frequencies: 2.5 Hz for $\dot{M} = 0.82 \times 10^6 \text{ kg/s}$ and 2 Hz for
 357 $\dot{M} = 0.58 \times 10^6 \text{ kg/s}$. However, rather than transitioning to comparable tremor contributions from turbulence and
 358 particle impacts in the higher frequencies, particle impacts increasingly become dominant. We can extrapolate that
 359 eventually the particle impacts will become dominant across the full frequency band as the eruption continues to
 360 wane. If alternative grain size distributions are considered, it could be possible that this transition point would occur
 361 earlier (or later) in the eruption. Therefore, understanding the evolution of grain-size distribution over the course of
 362 the eruption is critical for interpreting tremor source mechanisms using this model.

363 5 Conclusion

364 In this work, we expanded the particle impacts and turbulence (PIT) source model of eruption tremor presented in
 365 Gestrich et al. (2020). We replaced surface-to-surface Rayleigh wave Green's functions with full numerical Green's
 366 functions for a generic volcanic velocity model. This had significant impact on the shape of the predicted seismic
 367 PSD, producing a flatter spectrum across the 1-5 Hz frequency band of interest and more closely matching the shape
 368 of the observed seismic PSDs at the 2016 Pavlof eruption. This is caused by the increasing importance of body waves,

369 relative to surface waves, above 2-3 Hz. We also expanded the model to account for depth variation of the input
370 fields – which we refer to as mPIT model – and applied this modified model to solutions from a steady-state conduit
371 flow model. Utilizing steady-state conduit flow solutions as tremor model input ensures that we are considering the
372 physical processes that relate the different input fields to one another and how those change with different erup-
373 tion conditions. We found that conditions at the vent are often not representative of input fields throughout the
374 region above fragmentation. The velocity profile had the greatest influence on the PSD amplitudes, meaning that
375 the largest contributions to tremor arise from the very top of the conduit (at least for the default parameters consid-
376 ered). Therefore, the ranges of representative input values are likely even more restricted than the ones considered
377 in [Gestrich et al. \(2020\)](#), limiting the possible range of predicted tremor PSD amplitudes. We also investigated the
378 effect of the grain size distribution throughout the upper conduit by considering various grain-size depth profiles.
379 As was found in [Gestrich et al. \(2020\)](#), grain size had significant effect on the predicted PSD. We also found that the
380 grain-size depth profile could even affect where within the conduit had the dominant influence on the force spectra,
381 potentially altering interpretation of the source of the seismic PSD. We still found that extreme parameter values are
382 required to match the observed amplitude of eruption tremor during the 2016 Pavlof eruption. When exploring how
383 the predicted tremor evolved over the course of a waning eruption, we found that the overall tremor PSD amplitude
384 decreased with decreasing mass eruption rate. Given the strong influence of the velocity profile, the decoupling of
385 tremor amplitude and mass eruption rate required to produce the hysteresis that was observed at Pavlof would have
386 to arise from changes in particle size, as [Gestrich et al. \(2020\)](#) concluded. More study is required to place constraints
387 on particle size and particle size distribution over the course of an eruption, in order to better evaluate the validity
388 of this tremor source model.

389 **Acknowledgements**

390 This work was funded by the National Science Foundation (DGE-1656518 to Katherine Coppess, EAR-1930979 and
391 EAR-2231849 to Eric M. Dunham). Computer simulations were performed on Stanford's Sherlock cluster and we
392 gratefully acknowledge the support of staff at the Stanford Research Computing and funding from the Doerr School
393 of Sustainability for these resources.

394 **Data and code availability**

395 The steady-state conduit flow code and analysis code for this work are hosted at the following (respectively):
396 <https://github.com/fredriclam/compressible-conduit-steady> and
397 <https://github.com/kcoppess/mPIT-tremor-model>. Seismic data from 2016 Pavlof eruption were downloaded from
398 <https://ds.iris.edu/AV/>.

399 **References**

400 Bindeman, I. N. Fragmentation phenomena in populations of magmatic crystals. *American Mineralogist*, 90(11-12):1801–1815, 2005.
401 doi: 10.2138/am.2005.1645.

402 Boore, D. M. and Joyner, W. B. Site amplifications for generic rock sites. *Bulletin of the seismological society of America*, 87(2):327–341, 1997.
403 doi: 10.1785/BSSA0870020327.

404 Caplan-Auerbach, J., Bellesiles, A., and Fernandes, J. K. Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine Volcano, Alaska. *Journal of Volcanology and Geothermal Research*, 189(1-2):12–18, 2010.
405 doi: 10.1016/j.jvolgeores.2009.10.002.

406 Chouet, B. A. and Matoza, R. S. A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption.
407 *Journal of Volcanology and Geothermal Research*, 252:108–175, 2013. doi: 10.1016/j.jvolgeores.2012.11.013.

408 Coppess, K., Lam, F. Y. K., and Dunham, E. M. Seismic signatures of fluctuating fragmentation in volcanic eruptions. 2024.

409 Coppess, K. R., Dunham, E. M., and Almquist, M. Ultra and very long period seismic signatures of unsteady eruptions predicted from conduit
410 flow models. *Journal of Geophysical Research: Solid Earth*, page e2022JB024313, 2022. doi: 10.1029/2022JB024313.

411 Costa, A. Viscosity of high crystal content melts: Dependence on solid fraction. *Geophysical Research Letters*, 32(22), 2005.
412 doi: 10.1029/2005GL024303.

413 Dufek, J., Manga, M., and Patel, A. Granular disruption during explosive volcanic eruptions. *Nature Geoscience*, 5(8):561–564, 2012.
414 doi: 10.1038/ngeo1524.

415 Fee, D., Haney, M. M., Matoza, R. S., Van Eaton, A. R., Cervelli, P., Schneider, D. J., and Iezzi, A. M. Volcanic tremor and plume height hysteresis
416 from Pavlof Volcano, Alaska. *Science*, 355(6320):45–48, 2017. doi: 10.1126/science.aah6108.

417 Gestrich, J. E., Fee, D., Tsai, V. C., Haney, M. M., and Van Eaton, A. R. A physical model for volcanic eruption tremor. *Journal of Geophysical
418 Research: Solid Earth*, 125(10):e2019JB018980, 2020. doi: 10.1029/2019JB018980.

419 Gimbert, F., Tsai, V. C., and Lamb, M. P. A physical model for seismic noise generation by turbulent flow in rivers. *Journal of Geophysical
420 Research: Earth Surface*, 119(10):2209–2238, 2014. doi: 10.1002/2014JF003201.

421 Haney, M. M., Matoza, R. S., Fee, D., and Aldridge, D. F. Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics. *Geo-
422 physical Journal International*, 213(1):623–636, 2018. doi: 10.1093/gji/ggx554.

423 Hess, K. and Dingwell, D. B. Viscosities of hydrous leucogranitic melts: A non-Arrhenian model. *American Mineralogist: Journal of Earth and
424 Planetary Materials*, 81(9-10):1297–1300, 1996.

425 Ichihara, M. Seismic and infrasonic eruption tremors and their relation to magma discharge rate: A case study for sub-Plinian
426 events in the 2011 eruption of Shinmoe-dake, Japan. *Journal of Geophysical Research: Solid Earth*, 121(10):7101–7118, 2016.
427 doi: 10.1002/2016JB013246.

428 Lesage, P., Heap, M. J., and Kushnir, A. A generic model for the shallow velocity structure of volcanoes. *Journal of Volcanology and Geothermal
429 Research*, 356:114–126, 2018. doi: 10.1016/j.jvolgeores.2018.03.003.

430 Macedonio, G., Dobran, F., and Neri, A. Erosion processes in volcanic conduits and application to the AD 79 eruption of Vesuvius. *Earth and
431 planetary science letters*, 121(1-2):137–152, 1994. doi: 10.1016/0012-821X(94)90037-X.

432 Matoza, R. S. and Roman, D. C. One hundred years of advances in volcano seismology and acoustics. *Bulletin of Volcanology*, 84(9):86, 2022.
433 doi: 10.1007/s00445-022-01586-0.

434 McNutt, S. R. Volcanic tremor amplitude correlated with eruption explosivity and its potential use in determining ash hazards to aviation.
435 In *Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety*, pages 377–385,
436 1994.

437 McNutt, S. R. and Nishimura, T. Volcanic tremor during eruptions: Temporal characteristics, scaling and constraints on conduit size and
438 processes. *Journal of Volcanology and Geothermal Research*, 178(1):10–18, 2008. doi: 10.1016/j.jvolgeores.2008.03.010.

440 Prejean, S. G. and Brodsky, E. E. Volcanic plume height measured by seismic waves based on a mechanical model. *Journal of Geophysical*
441 *Research: Solid Earth*, 116(B1), 2011. doi: 10.1029/2010JB007620.

442 Tsai, V. C., Minchew, B., Lamb, M. P., and Ampuero, J.-P. A physical model for seismic noise generation from sediment transport in rivers.
443 *Geophysical Research Letters*, 39(2), 2012. doi: 10.1029/2011GL050255.

444 Zhu, L. and Rivera, L. A. A note on the dynamic and static displacements from a point source in multilayered media. *Geophysical Journal*
445 *International*, 148(3):619–627, 2002. doi: 10.1046/j.1365-246X.2002.01610.x.