

1 Seismic signatures of fluctuating fragmentation in 2 volcanic eruptions

3 **Katherine R. Coppess¹, Fredric Y. K. Lam², Eric M. Dunham^{2,3}**

4 ¹Department of Physics, Stanford University, CA, USA

5 ²Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA

6 ³Department of Geophysics, Stanford University, CA, USA

7 **Key Points:**

- 8 • Fluctuations in magma fragmentation during explosive volcanic eruptions change
9 forces exerted on solid Earth and generate seismic waves
- 10 • We compute synthetic seismograms from unsteady conduit flow models of high
11 viscosity magma parcels passing through fragmentation
- 12 • Stochastic fluctuations in fragmentation might explain eruption tremor that is ubiqui-
13 tously observed during explosive volcanic eruptions

14 **Abstract**

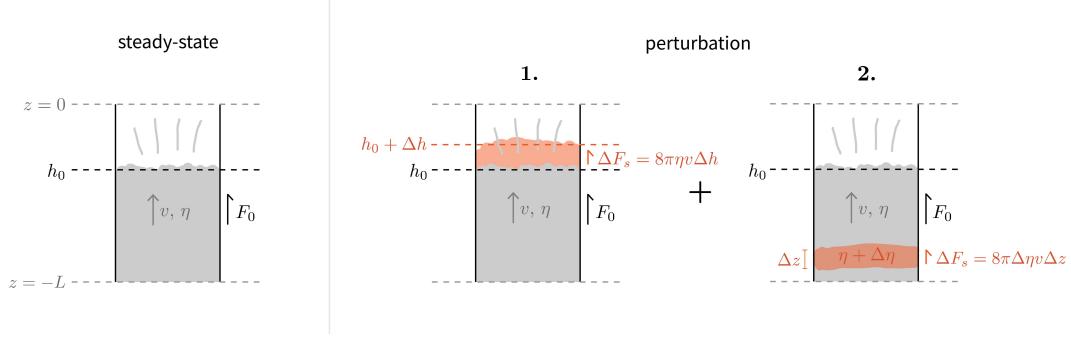
15 Fragmentation plays a critical role in eruption explosivity by influencing the eruptive jet
 16 and plume dynamics that may initiate hazards such as pyroclastic flows. The mechanics
 17 and progression of fragmentation during an eruption are challenging to constrain ob-
 18 servationally, limiting our understanding of this important process. In this work, we ex-
 19 plore seismic radiation associated with unsteady fragmentation. Seismic force and mo-
 20 ment tensor fluctuations from unsteady fragmentation arise from fluctuations in frag-
 21 mentation depth and wall shear stress (e.g., from viscosity variations). We use unsteady
 22 conduit flow models to simulate perturbations to a steady-state eruption from injections
 23 of heterogeneous magma (specifically, variable magma viscosity due to crystal volume
 24 fraction variations). Changes in wall shear stress and pressure determine the seismic force
 25 and moment histories, which are used to calculate synthetic seismograms. We consider
 26 three heterogeneity profiles: Gaussian pulse, sinusoidal, and stochastic. Fragmentation
 27 of a high-crystallinity Gaussian pulse produces a distinct very-long-period (VLP) seis-
 28 mic signature and associated reduction in mass eruption rate, suggesting joint use of seis-
 29 mic, infrasound, and plume monitoring data to identify this process. Simulations of si-
 30 nusoidal injections quantify the relation between the frequency or length scale of het-
 31 erogeneities passing through fragmentation and spectral peaks in seismograms, with ve-
 32 locity seismogram amplitudes increasing with frequency. Stochastic composition vari-
 33 ations produce stochastic seismic signals similar to observed eruption tremor, though com-
 34 putational limitations restrict our study to frequencies less than 0.25 Hz. We suggest that
 35 stochastic fragmentation fluctuations could be a plausible eruption tremor source.

36 **Plain Language Summary**

37 Explosive volcanic eruptions can be monitored and studied using seismic record-
 38 ings of ground shaking produced by the eruption. This study explores the seismic ex-
 39 pression of magma fragmentation. Fragmentation refers to magma breaking apart, a pro-
 40 cess that occurs in the upper part of volcanic conduits. Fragmentation reduces drag on
 41 the conduit walls and allows magma to erupt explosively. When fragmentation occurs
 42 in an unsteady manner, the forces exerted by the magma on the solid Earth change, pro-
 43 ducing seismic wave radiation. We use computer simulations of explosive eruptions and
 44 the accompanying seismic radiation to identify seismic signatures of fragmentation. Our
 45 results can help guide interpretation of seismic data from real eruptions, providing in-
 46 sight into controls on eruption explosivity.

47 **1 Introduction**

48 One of the primary controls on the explosivity of an eruption is fragmentation: the
 49 process by which magma breaks apart, leaving imbalanced forces that produce huge up-
 50 ward acceleration of the magma. However, there are still open questions about this pro-
 51 cess in regards to the mechanics and progression of fragmentation over the course of an
 52 explosive eruption. Unsteady fragmentation may lead to unsteady discharge, influenc-
 53 ing eruption jet and plume dynamics which in turn affect aviation hazards from ash de-
 54 livery to the atmosphere. In addition, it is possible that these variations could initiate
 55 column collapse and pyroclastic flows, posing significant hazards to surrounding com-
 56 munities.


57 Fragmentation marks the transition from a melt-continuous regime – with high drag
 58 along the conduit walls – to a gas-continuous regime – with drag becoming negligible.
 59 Seismology offers a potential way to provide quantitative constraints on this eruptive pro-
 60 cess, as the sudden changes in drag associated with fragmentation may excite seismic
 61 waves in the surrounding earth. As we will discuss in more detail later, it is arguable that
 62 unsteady fragmentation contributes to seismic radiation ranging from very long period
 63 (VLP, 0.01 to 0.5 Hz) frequencies to >1 Hz eruption tremor, depending on the timescales

64 of unsteadiness. Coherent VLP signals and stochastic tremor are universally observed
 65 during explosive eruptions but it is still not clear how to quantitatively interpret them.
 66 Eruption tremor in particular has been related empirically to plume height (McNutt, 1994;
 67 Prejean & Brodsky, 2011; Caplan-Auerbach et al., 2010) but the relation appears to be
 68 complex (Fee, Izbekov, et al., 2017). Numerical modeling provides a useful tool to ex-
 69 plore these complex dynamics.

70 Evidence indicating that unsteady fragmentation could yield observable seismic sig-
 71 nals is seen in Section 6 of Coppess et al. (2022). In that study, synthetic seismograms
 72 were calculated from unsteady conduit flow models. Simulations with insufficient spa-
 73 tial resolution in the finite difference discretization led to the halting descent of the frag-
 74 mentation front (shown in their Figure 14). With insufficient resolution of the charac-
 75 teristic length scale of fragmentation, parcels of magma do not continuously fragment
 76 because conditions required for fragmentation have not yet been met. This means that
 77 drag between the parcel and the conduit walls remains high. As a result, the high drag
 78 reduces the flow speed and overpressure develops below the fragmentation front. Frag-
 79 mentation then occurs at one grid point, releasing a high frequency seismic wave. The
 80 process repeats at subsequent grid points. While the source of the halting fragmenta-
 81 tion front was numerical, the system responded in a realistic fluid dynamical way with
 82 high acceleration of melt due to the driving pressure gradient left behind when the re-
 83 straining drag force was suddenly reduced. This response is captured in variations in shear
 84 stress on the conduit walls that lead to high frequency seismic wave radiation (see their
 85 Figure 15). In this current study, we revisit the problem of fluctuating fragmentation with
 86 well-resolved simulations and realistic causes of fluctuations.

87 One physically motivated source of unsteady fragmentation is heterogeneity in magma
 88 composition. Magma composition plays an important role in fluid dynamics through the
 89 magma viscosity, which determines how magma behaves in response to applied stresses.
 90 Magma viscosity depends on its bulk chemical composition, volatile content, and crys-
 91 tal content (e.g., Hess & Dingwell, 1996; Costa, 2005; Gonnermann, 2015). This enters
 92 our conduit flow modeling through the shear stress between the magma and the conduit
 93 walls, which increases with increasing magma viscosity for the same ascent rate. There-
 94 fore, variations in magma composition yield (potentially sudden) changes in wall shear
 95 tractions, as well as fluctuations in the fragmentation depth as the compositional het-
 96 erogeneities are advected through fragmentation front. We refer to these processes as un-
 97 steady fragmentation. We also demonstrate that fluctuations in the seismic force from
 98 these variations in magma composition could be a potential source of volcanic eruption
 99 tremor.

100 Petrological evidence suggests that compositional heterogeneities exist and evolve
 101 over the course of an eruption. A notable example is the Bishop Tuff in Long Valley, Cal-
 102 ifornia. The Bishop Tuff formed from one of the world's largest eruptions, erupting from
 103 the Long Valley caldera over the course of 6 days at 750 ka (Hildreth & Wilson, 2007).
 104 Analysis of compositional data suggests a gradual increase in the crystal content of erupted
 105 magma as the eruption progressed, ranging from 1 to 25 wt% (Hildreth & Wilson, 2007;
 106 Gualda et al., 2004). Within a unit (i.e., eruption stage), samples exhibit fairly large ranges
 107 of crystal contents and crystal size distributions, suggesting small-scale (cm to m) het-
 108 erogeneities within the same bulk composition (Pamukcu & Gualda, 2010; Pamukcu et
 109 al., 2012; Gualda & Rivers, 2006). However, compositional analysis also suggests that
 110 there were multiple bulk magma compositions due to the presence of banding and clasts
 111 of differing compositions throughout the eruption, either from pre-eruptive mixing of a
 112 vertically stratified magma body or the presence of multiple horizontally-distributed magma
 113 bodies (Hildreth & Wilson, 2007; Gualda et al., 2004; Gualda & Ghiorso, 2013). Evi-
 114 dence of multiple crystal populations and size distributions has been observed elsewhere,
 115 such as at Lassen Peak, California (Salisbury et al., 2008; Tepley III et al., 1999). Other
 116 proposed mechanisms of variations in crystal content throughout a magma body include

Figure 1. Schematic breaking down contributions to the seismic force from fluctuating fragmentation. Left panel shows the reference solution for a steady state eruption of magma with viscosity η flowing with constant velocity v and fragmenting at depth h_0 . Second panel shows solution some short time later with changes relative to reference state indicated in red. Changes indicated represent contributions to seismic force variations arising from 1) variations in fragmentation depth and 2) variations in shear stress.

processes by which denser crystals settle toward the bottom of the magma chamber, leaving eruptable melt near the top (Hildreth & Wilson, 2007; Bachmann & Huber, 2019), e.g., melt segregation, fractional crystallization, and distillation. This could then be complexified by convective mixing of the stratified magma.

In this work, we explore how different types of compositional heterogeneity are expressed in observable seismic wave radiation. We calculate synthetic seismograms using simulation results from conduit flow modeling that captures the advection of heterogeneous magma through the conduit. We use an unsteady conduit flow model to simulate a sustained eruption with injection of heterogeneous magma through the bottom of the conduit. To simulate the viscosity variations associated with heterogeneous magma, we vary the crystal volume fraction. We investigate various injection profiles using the workflow from Coppess et al. (2022) to quantify the relation between the injection process (i.e., the timescales and amplitude of the compositional variations) and seismic wave radiation.

2 Force breakdown of unsteady fragmentation

We are interested in quantifying the seismic force fluctuations arising from unsteady fragmentation. Both quasi-static and far-field particle velocities in an elastic solid are proportional to force rate and decay as the inverse of distance, which means that unsteady fragmentation is potentially observable at both near-source and far-field stations. There may also be fluctuations in seismic moment from changes in conduit pressure, but as we will later demonstrate, the force fluctuations are almost always dominant. To start, we consider the seismic force for a general case and then take the time derivative to derive two contributions to the force fluctuations.

According to the traction-based representation presented in Coppess et al. (2022) (their Section 3), the seismic force depends on changes in shear traction acting along the conduit and chamber walls. The largest contribution to the seismic force arises from just below the fragmentation depth for several reasons. First, fragmentation is the transition from a liquid-continuous regime with high viscosity and drag to a gas-continuous regime with negligible drag. This creates an imbalance of forces as melt breaks apart and leads to a driving force that accelerates the melt upward, around and above the fragmenta-

147 tion depth. The velocity of the liquid-continuous, high viscosity magma is greatest at
 148 this transition point, leading to high upward shear stress. The second reason is due to
 149 the melt viscosity increasing as the dissolved volatile concentration decreases. As magma
 150 moves up the conduit, it depressurizes and volatiles exsolve from the melt, forming bub-
 151 bles and increasing the melt viscosity (Hess & Dingwell, 1996). Fragmentation occurs
 152 as the increasing strain rates in the magma drive it from viscous to brittle deformation,
 153 ultimately leading to fracture of the bubble walls and linkage of the gas bubbles. The
 154 highest viscosities therefore occur just below fragmentation.

155 Consider the schematic of an eruption shown in Figure 1. The top of the cylindri-
 156 cal, vertical conduit is at $z = 0$, with the depth z being positive upward, and the frag-
 157 mentation depth is $z = h(t) < 0$, which may vary in time. Below fragmentation, the
 158 wall shear stress (or drag) τ is given by the laminar flow expression

$$159 \quad \tau = \frac{4\eta v}{R}, \quad (1)$$

160 where η is the magma viscosity, v is the cross-sectionally averaged vertical particle ve-
 161 locity, and R is the conduit radius. When vertically integrating the seismic force con-
 162 tributions over depth, we assume that contributions from drag above fragmentation are
 163 negligible, so the seismic force is

$$164 \quad F_s(t) = \int_{-L}^{h(t)} 2\pi R \tau(z, t) dz, \quad (2)$$

165 where $-L$ is the position of the bottom boundary of the integrated region which does
 166 not vary in time. We take the time derivative of (2) and apply Leibniz's rule:

$$167 \quad \dot{F}_s(t) = 2\pi R \left[\tau(h(t), t) \dot{h}(t) + \int_{-L}^{h(t)} \dot{\tau}(z, t) dz \right]. \quad (3)$$

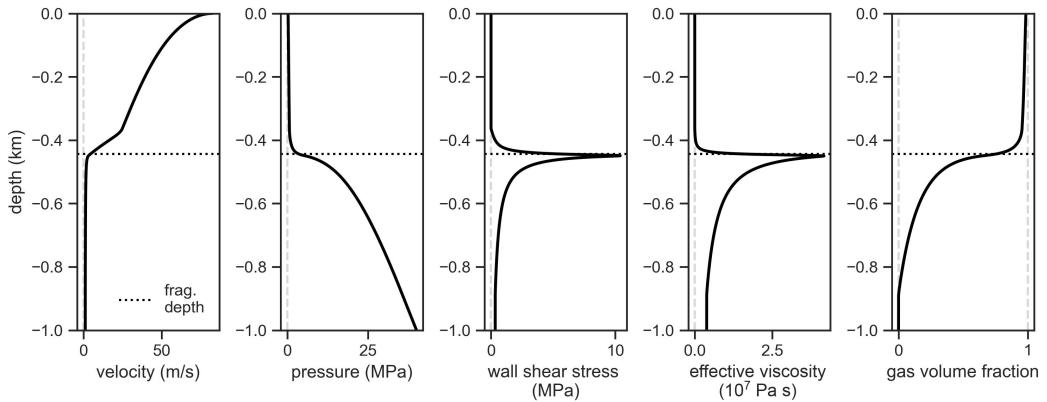
168 Each term in (3) highlights one contribution to force fluctuations: the first corresponds
 169 to the fluctuating fragmentation depth with fixed shear stress and the second to vari-
 170 ations in shear stress with fixed fragmentation depth.

171 We can further understand how these might change the seismic force by consid-
 172 ering each individually and looking at perturbations around some initial state. A fluc-
 173 tuating fragmentation depth changes the contact area between the highly viscous magma
 174 and the conduit walls, as shown in Figure 1. If the fragmentation depth varies by some
 175 amount Δh , then the force fluctuation will be proportional to the depth change: $\Delta F_s =$
 176 $8\pi\eta v \Delta h$. This is consistent with what was observed with the numerical effect in Coppess
 177 et al. (2022): the fragmentation depth dropped suddenly, leading to a downward impulse
 178 in the seismic force. Next consider the other source of force fluctuations arising from vari-
 179 ations in shear stress. Assume that the particle velocity is spatially uniform, such that
 180 any changes in shear stress arise from changes in viscosity. Suppose that a parcel of magma
 181 with viscosity $\eta + \Delta\eta$ and depth extent Δz is injected into the conduit (and is advected
 182 upward at the constant velocity). The additional force contribution from this parcel is
 183 $\Delta F_s = 8\pi\Delta\eta v \Delta z$, which depends on both the extent of the parcel and the difference
 184 in viscosity. This additional force will exist from the time the parcel enters the conduit
 185 until it passes through fragmentation, when it will abruptly vanish. Seismic force fluc-
 186 tuations in an eruption will be a combination of both of these effects, due to the rela-
 187 tion between viscosity perturbations and fragmentation depth fluctuation dynamics. There
 188 may also be changes in velocity that arise from magma compressibility and interaction
 189 with a magma chamber held at relatively constant pressure through this process.

190 Breaking down the unsteady fragmentation force mechanism in this way allows us
 191 to make estimates of force fluctuations that cause seismic wave radiation. Consider rep-
 192 resentative values for magma viscosity $\eta = 5 \times 10^6$ Pa s and velocity $v = 2$ m/s below

193 fragmentation, which are consistent with the example simulation in Coppess et al. (2022)
 194 (their section 6). This magma viscosity is representative of intermediate magma com-
 195 positions, like andesites and dacites that commonly occur in arc volcanoes. This is con-
 196 sistent with our focus on sub-Plinian style eruptions, which have been observed at arc
 197 volcanoes. In the example simulation, the fragmentation depth drops about 4 m at a time.
 198 According to the fluctuating fragmentation depth contribution estimate, this yields a down-
 199 ward force change of $\sim 10^9$ N, which is consistent with the amplitude of the sharp force
 200 change in Coppess et al. (2022). The duration of the force change is determined by the
 201 rate of fragmentation depth variations. In the numerical intermittent descent example,
 202 the depth drops instantaneously and leads to the very sharp feature observed. Force changes
 203 of 10^9 N yield seismic amplitudes on the order of $\sim 10 \mu\text{m/s}$ for stations located a few
 204 kilometers from the vent (Coppess et al., 2022). These amplitudes are generally observ-
 205 able.

206 Next we construct an example case for the viscosity variation contribution, using
 207 the same representative values for magma viscosity and velocity just below fragmenta-
 208 tion. Consider a parcel of magma with thickness $\Delta z = 10$ m and higher viscosity $\Delta\eta =$
 209 10^6 Pa s . The associated force change is 5×10^8 N, which yields comparable seismic am-
 210 plitudes to the intermittent descent contribution. Since the largest force fluctuations arise
 211 just below fragmentation, the duration of the signal will be determined by how quickly
 212 the parcel is advected through the fragmentation front, which is approximately $\Delta z/v =$
 213 $5 \text{ s} (\sim 0.2 \text{ Hz})$. If the parcel were smaller, then the force change would be of smaller am-
 214 plitude and higher frequency.


215 Overall these estimates establish the feasibility of observable seismic wave radia-
 216 tion from fluctuations in the fragmentation process. Next we utilize unsteady conduit
 217 flow simulations to investigate this problem in more detail.

218 3 Methodology

219 To simulate the conduit flow response to heterogeneities in magma composition,
 220 we investigate the conduit flow dynamics that arise from perturbations around steady-
 221 state eruption conditions. Starting with initial conditions representing an ongoing steady
 222 eruption, we vary the magma composition flowing into the conduit and simulate the sys-
 223 tem response using an unsteady conduit flow model. We use the simulation results to
 224 calculate synthetic seismograms using the workflow presented in Coppess et al. (2022)
 225 (summarized in their Section 2) to demonstrate how the seismic signal connects to the
 226 internal fluid dynamics.

227 Our unsteady conduit flow model solves for quasi-1D adiabatic flow of multiphase
 228 fluid (exsolved water, liquid melt, dissolved water, and crystals). For the rest of this study,
 229 we use the term “magma” to refer to the combination of the following phases: liquid melt,
 230 dissolved water, and crystals. All phases are assumed to share a common temperature,
 231 pressure and particle velocity. Gas exsolution from the melt occurs over a specified timescale,
 232 and we account for the dependence of magma viscosity on temperature, dissolved volatile
 233 content and crystal content using experimentally constrained empirical relations. We as-
 234 sume a linear viscous rheology for the magma for simplicity. Fragmentation is captured
 235 through a smoothed drop of the wall shear stress to zero, marking the transition to a low-
 236 viscosity and turbulent gas-continuous regime in the upper conduit above fragmentation.
 237 Since turbulent drag is many orders of magnitude smaller than the drag below fragmen-
 238 tation, we neglect its contribution to the wall shear stress and seismic force.

239 To help visualize fragmentation, we define an effective viscosity as the product of
 240 the magma viscosity and the volume fraction of unfragmented magma. Therefore the
 241 effective viscosity is identical to the magma viscosity below fragmentation and drops to
 242 zero as the magma fragments. We use this effective viscosity in the plots to follow. The

Figure 2. Initial steady state solution. Parameter values are given in Table 1. Fragmentation occurs when the gas volume fraction exceeds 0.75. Effective viscosity is the product of the magma viscosity and the volume fraction of unfragmented magma (see text).

smoothed transition in wall shear stress represents the finite timescale of the fragmentation process. This timescale is a model parameter that can be chosen to correspond with the relevant timescale of a proposed fragmentation mechanism. It also serves to introduce (together with the magma ascent velocity) a length scale that must be resolved in the spatial discretization of the governing equations. In this model, we adopt a critical gas volume fraction fragmentation condition for simplicity: when the exsolved gas volume fraction exceeds this threshold, the magma is considered fragmented and the wall shear stress is reduced toward zero. Utilizing a fragmentation criterion based on a critical gas overpressure or strain rate would be more realistic (Papale, 1999; Gonnermann & Manga, 2003; Melnik & Sparks, 2002; Scheu & Dingwell, 2022), but is left for future work. For more specifics of the conduit flow model used in this study, we refer the reader to Appendix A.

3.1 Steady-state solution

To initialize the simulation, we choose a steady-state solution defined by a bottom pressure boundary condition and choked flow through the vent. While we do not model the eruptive jet and plume, the model provides the time-dependent mass eruption rate, which can be used in a model of the eruptive jet and plume to allow comparison with observations. The crystal volume fraction ϕ_c (volume of crystals / volume of magma) is constant with depth. See Appendix B for details on the relevant considerations that went into choosing the solution used to initialize the simulations.

The chosen solution is shown in Figure 2. Magma is injected at the bottom boundary at a pressure of 40 MPa, corresponding to an inlet velocity of ~ 1 m/s. As the magma moves up through the conduit, drag and the reduced weight of the overlying magma column leads to depressurization of magma. Eventually, the melt becomes supersaturated with volatiles and exsolution starts when it reaches a depth of 900 m. As exsolution progresses and the gas volume fraction increases, the viscosity of the melt begins to increase as the dissolved volatile content drops. This leads to progressively increasing drag along the conduit walls (as velocity is not changing significantly), which leads to an increased pressure gradient. At around a depth of 450 m, the gas volume fraction reaches the critical threshold for fragmentation to occur; the magma viscosity reaches its peak just below this depth. Fragmentation is accompanied by a reduction in drag. Above the frag-

Table 1. Parameter values used in steady-state solution in Section 3.1.

Symbol	Description	Numerical value
g	gravitational acceleration	9.8 m/s ²
ϕ_0	critical gas volume fraction	0.75
t_{ex}	exsolution timescale	10 s
t_f	fragmentation timescale	1 s
ζ	fragmentation smoothing scale	0.15
S_m	solubility constant	5×10^{-6} Pa ^{1/2}
χ_0	water mass concentration at base of conduit	0.03
ϕ_{c0}	bulk crystal volume fraction	0.4
R_G	specific gas constant	461 J/(kg K)
T_{ch}	chamber temperature	1050 K
p_{ch}	chamber pressure	40 MPa
K	magma bulk modulus	10^9 Pa
$\rho_{\text{mag},0}$	reference magma density	2600 kg/m ³
p_0	reference pressure	χ_0^2/S_m^2
$C_{v,\text{ex}}$	exsolved water heat capacity	1827 J/(kg K)
$C_{v,\text{mag}}$	magma heat capacity	3000 J/(kg K)
R	conduit radius	50 m
L	conduit length	1 km
ρ_r	rock density	2700 kg/m ³
c_p	P-wave speed	3.464 km/s
c_s	S-wave speed	2 km/s

mentation depth, the wall shear stress drops toward zero and the magma is accelerated upward.

3.2 Injection profiles of heterogeneous magma

In this section we explain how heterogeneities in magma are introduced through the bottom boundary of the conduit flow model. These heterogeneities are then advected upward through the conduit and lead to unsteady perturbations of the fragmentation front. In concept, the steady state solution could be unstable to perturbations. However, we see no evidence for this for the parameter space explored in this study. We also explain how we parametrize the magma heterogeneities by specifying variations in crystal content and how this affects magma viscosity.

The inlet pressure at the bottom boundary remains constant throughout the simulation. We specify the composition of magma by setting the partial densities of each phase at the boundary (i.e., the mass of some phase relative to the total volume, denoted as $\bar{\rho}$ with a subscript identifying the phase: *ex* for exsolved water, *dis* for dissolved water, *w* for total water, *c* for crystals, *melt* for melt, and *mag* for magma). For our selected parameters, the exsolution depth is contained within the simulated domain, so no exsolved water enters the conduit (i.e., $\bar{\rho}_{\text{ex}} = 0$). This means that magma partial density is the same as magma phasic density and total mixture density ($\bar{\rho}_{\text{mag}} = \rho$), which allows us to use the magma equation of state with the inlet pressure to define the magma partial density. It also means that the total water partial density is equal to the dissolved water partial density: $\bar{\rho}_w = \bar{\rho}_{\text{dis}}$.

To clarify the relation between magma composition variations and viscosity variations, we assume that the injected dissolved water mass concentration χ_0 (mass of dissolved water / mass of melt) remains constant. This means that only variations in crys-

298 tal volume fraction ϕ_c (volume of crystals / volume of magma) contribute to viscosity
 299 perturbations. This is done to simplify specification of the boundary conditions. To sum-
 300 marize, the conditions used to specify the magma composition at the bottom boundary
 301 are as follows:

$$302 \bar{\rho}_{\text{ex}} = 0, \quad (4)$$

$$303 \bar{\rho}_{\text{dis}}/\bar{\rho}_{\text{melt}} = \chi_0, \quad (5)$$

$$304 \bar{\rho}_c/\bar{\rho}_{\text{mag}} = \phi_c(t), \quad (6)$$

$$305 \bar{\rho}_{\text{mag}} = \bar{\rho}_{\text{melt}} + \bar{\rho}_{\text{dis}} + \bar{\rho}_c = \rho(p_{\text{bot}}) \quad (7)$$

306 where p_{bot} is the chamber pressure and $\phi_c(t)$ defines some time-dependent variation in
 307 crystal volume fraction, which we will specify later to represent different injection pro-
 308 files. In addition, since there is no exsolved water at the bottom boundary, the mixture
 309 density $\rho(p)$ is defined using a linearized equation of state for magma:

$$310 \rho(p) = \rho_{\text{mag}} = \rho_{\text{mag},0} \left(1 + \frac{p - p_0}{K} \right), \quad (8)$$

311 where $\rho_{\text{mag},0}$, p_0 , and K are the reference density, reference pressure, and bulk modu-
 312 lus for magma. We rearrange these expressions to find an equivalent definition of the par-
 313 tial densities of the different components, representing what is actually specified in the
 314 code:

$$315 \bar{\rho}_{\text{ex}} = 0, \quad (9)$$

$$316 \bar{\rho}_{\text{mag}} = \rho(p_{\text{bot}}), \quad (10)$$

$$317 \bar{\rho}_c = \phi_c(t) \rho(p_{\text{bot}}), \quad (11)$$

$$318 \bar{\rho}_w = \chi_0 \left(\frac{\bar{\rho}_{\text{mag}} - \bar{\rho}_c}{1 + \chi_0} \right) = \frac{\chi_0(1 - \phi_c(t))}{1 + \chi_0} \rho(p_{\text{bot}}). \quad (12)$$

319 To systematically understand the relation between magma heterogeneity profiles
 320 and the resulting seismic radiation, we consider a sequence of increasingly complex in-
 321 jection profiles. At the bottom boundary, the injected crystal volume fraction is defined
 322 as:

$$323 \phi_c(t) = \phi_{c0} + \delta\phi_c(t) \quad (13)$$

324 where ϕ_{c0} is the reference bulk crystal volume fraction and $\delta\phi_c(t)$ is the fluctuation about
 325 that reference value.

326 The first injection profile we consider is that of a Gaussian pulse of higher crystal
 327 volume fraction:

$$328 \delta\phi_c(t) = Ae^{-(t-t_p)^2/(2\sigma^2)}, \quad (14)$$

329 where A is the amplitude of the pulse, t_p is the time where the peak occurs, and σ is the
 330 width of the pulse. This represents the advection of a magma parcel of differing com-
 331 position. This also serves as a simple case to understand the feedback mechanisms and
 332 forces at play and how those translate into the seismic radiation. We consider two ex-
 333 ample pulses of same amplitude ($A = 0.1$) but different widths ($\sigma = 16$ s, $t_p = 60$ s;
 334 and $\sigma = 8$ s, $t_p = 40$ s).

335 We build upon this example to increasingly complex and ultimately stochastic het-
 336 erogeneity injections. It is reasonable to presume that stochastic variations in magma
 337 composition would yield stochastic variations in the fragmentation depth, which would
 338 be reflected in the associated, incoherent seismic radiation. Before jumping to a fully stochas-
 tic injection scheme, we first inject sinusoidal profiles of different frequencies:

$$339 \delta\phi_c(t) = A \sin(2\pi ft), \quad (15)$$

339 where f is the frequency of crystal content oscillations. Due to numerical limits on spa-
 340 tial resolution, the maximum frequency of injection that we can simulate is ~ 0.25 Hz.
 341 We consider three different frequencies (all with $A = 0.1\phi_{c0}$): 0.0625 Hz, 0.125 Hz, and
 342 0.25 Hz.

343 For modeling stochastic heterogeneity, $\delta\phi_c(t)$ is a stationary Gaussian random func-
 344 tion with zero mean and exponential autocorrelation. The autocorrelation function is

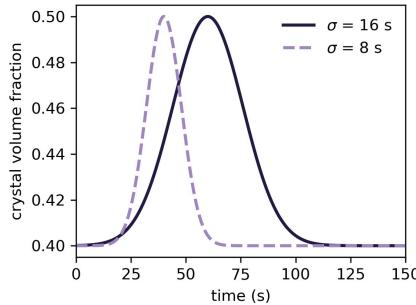
$$345 \quad R_c(t) = \langle \delta\phi_c(\gamma)\delta\phi_c(\gamma + t) \rangle = \varepsilon^2 e^{-|t|/t_{\text{cor}}} \quad (16)$$

346 where $\langle \cdot \rangle$ denotes an ensemble average, ε is the standard deviation of the fluctuations,
 347 and t_{cor} is the correlation timescale. This correlation timescale can be connected to a
 348 correlation length scale within the magma body supplying the conduit by multiplying
 349 t_{cor} by the inlet velocity v_{in} . Taking the Fourier transform of the autocorrelation func-
 350 tion gives us the two-sided power spectral density (PSD) function:

$$351 \quad P_c(\omega) = \frac{2\varepsilon^2 t_{\text{cor}}}{1 + \omega^2 t_{\text{cor}}^2}, \quad (17)$$

352 where ω is angular frequency. We respect the spatial resolution constraints of the nu-
 353 matical method by bounding the allowed wavelengths in the power spectral density of
 354 the crystal volume fraction variation (by setting the spectral amplitudes to zero above
 355 the maximum resolvable frequency, 0.25 Hz). We consider two stochastic profiles with
 356 the same standard deviation ($\varepsilon = 0.03$) but different correlation timescales ($t_{\text{cor}} = 1$ s,
 357 10 s).

358 3.3 Seismic force and moment and synthetic seismograms


359 We calculate synthetic seismograms using the point source workflow in Coppess et
 360 al. (2022) for a cylindrical conduit oriented along the z -axis. First, the results from the
 361 conduit flow simulations are translated into equivalent force and moment histories by
 362 calculating changes in tractions and pressure relative to the initial pre-stressed state (in
 363 this case the steady-state eruption solution used to initialize all simulations). Changes
 364 in shear traction $\Delta\tau(z, t)$ are integrated over the walls of the conduit, defining the seis-
 365 mic force as follows:

$$366 \quad F_i(t) = \delta_{iz} 2\pi R \int_{z_{\text{bot}}}^0 \Delta\tau(z, t) dz, \quad (18)$$

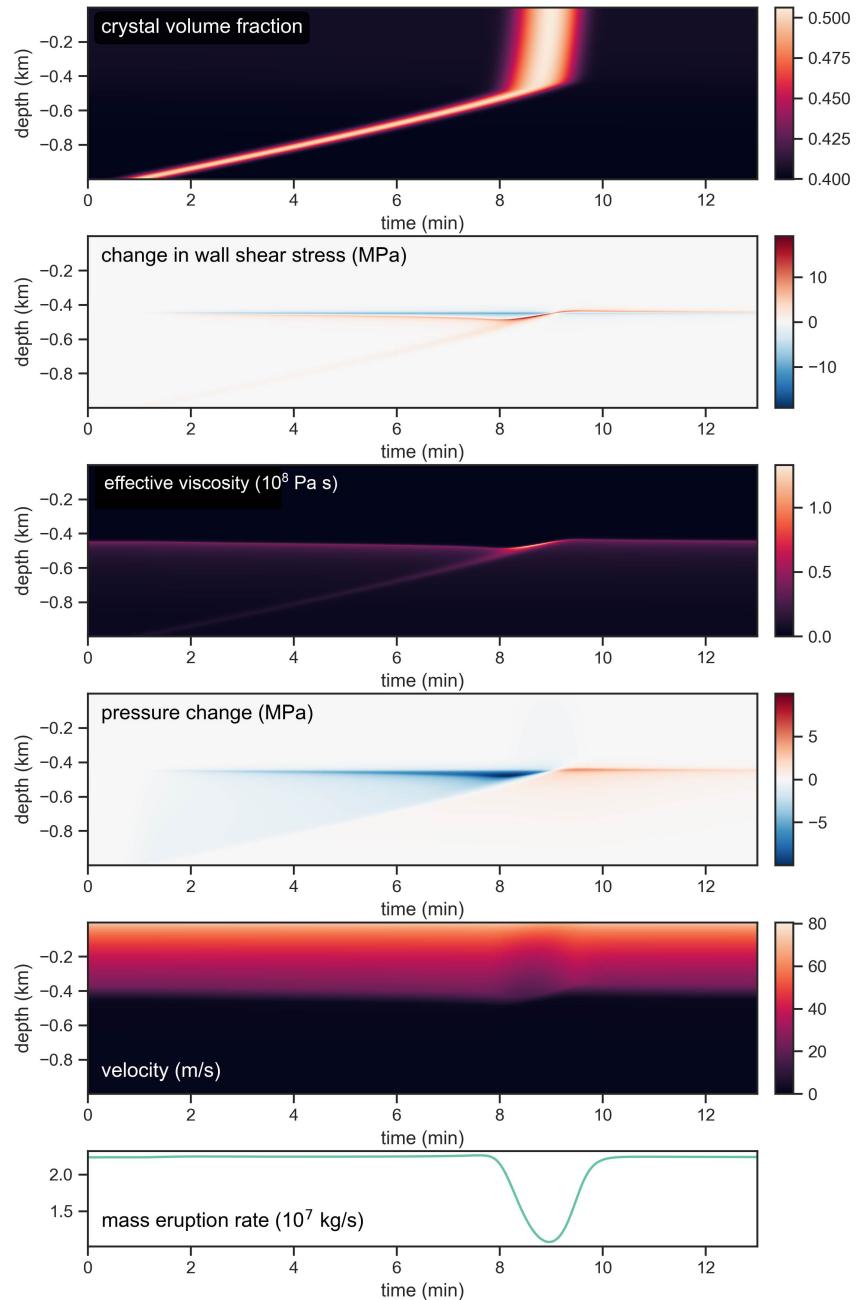
367 where z_{bot} is the depth of the bottom conduit boundary and the conduit vent is at $z =$
 368 0. Similarly, we depth-integrate pressure changes $\Delta p(z, t)$ to define the associated mo-
 369 ment tensor history for a cylindrical pipe geometry:

$$370 \quad M_{ij}(t) = [(\lambda + 2\mu)\delta_{ij} - 2\mu\delta_{iz}\delta_{jz}] \frac{A}{\mu} \int_{z_{\text{bot}}}^0 \Delta p(z, t) dz, \quad (19)$$

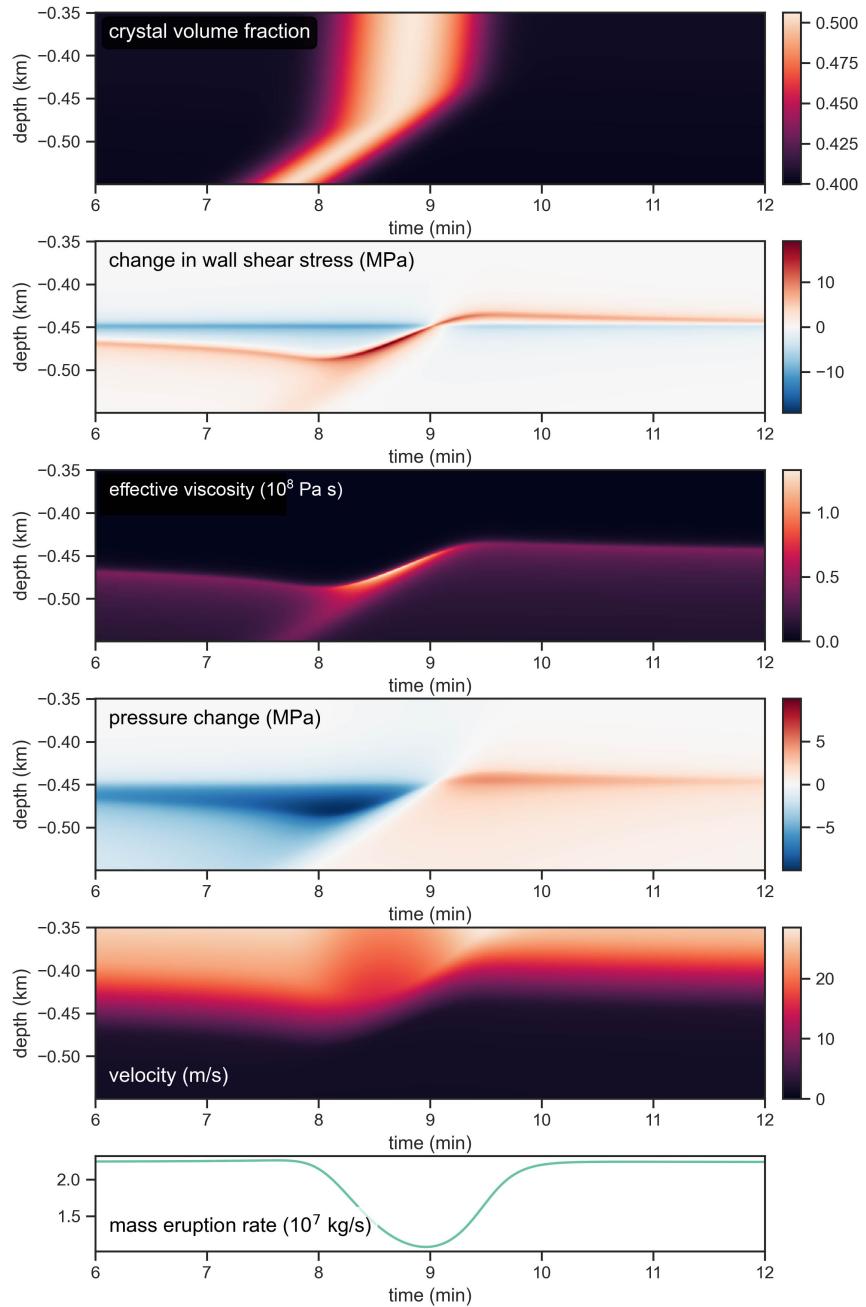
371 where λ is the first Lamé parameter and μ is shear modulus. Force and moment histo-
 372 ries are then convolved with the Green's function of the elastic wave equation to calcu-
 373 lated the synthetic seismograms. We compute the Green's functions using the FK method
 374 implemented by Zhu and Rivera (2002) for a homogeneous half-space with density 2700
 375 kg/m³, P-wave speed 3.464 km/s, and S-wave speed 2 km/s. The Green's functions are
 376 calculated for a source depth of 500 m (i.e., mid-way through the conduit) and a station
 377 placed on the surface, 10 km from the vent. The relative dimensions of the conduit and
 378 station distance justifies the use of the point source representation to calculate the as-
 379 sociated seismic radiation. Finally, we do not include tilt contributions to the radial seis-
 380 mograms, which are likely to be important in the ULP and possibly VLP frequency bands.

Figure 3. Gaussian pulse crystal volume fraction injection profiles.

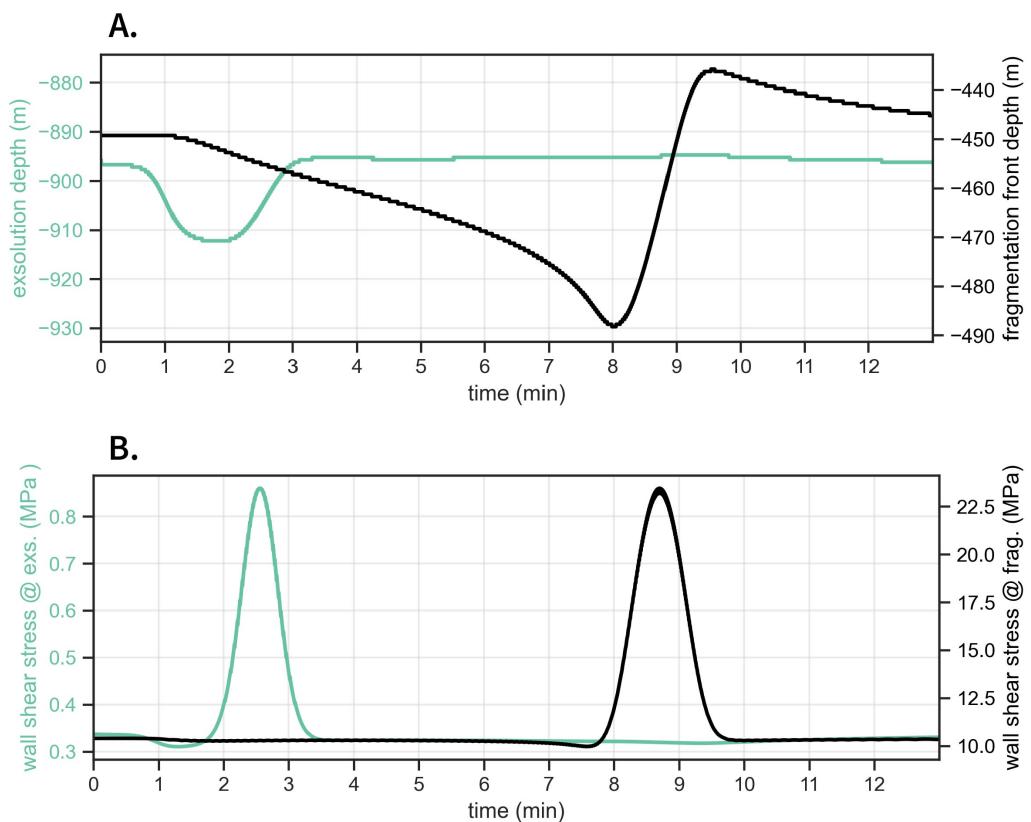
381 4 Results

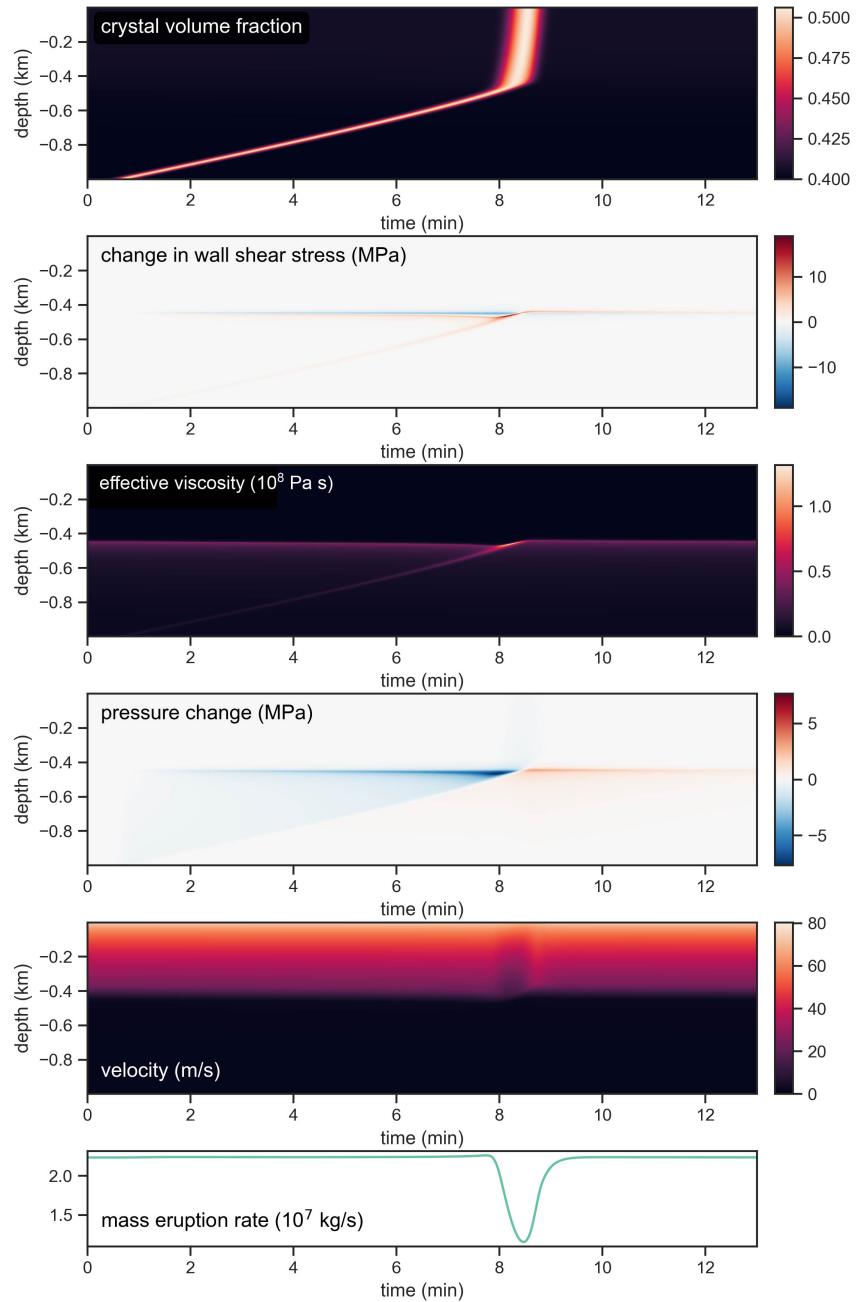

382 4.1 Gaussian pulse

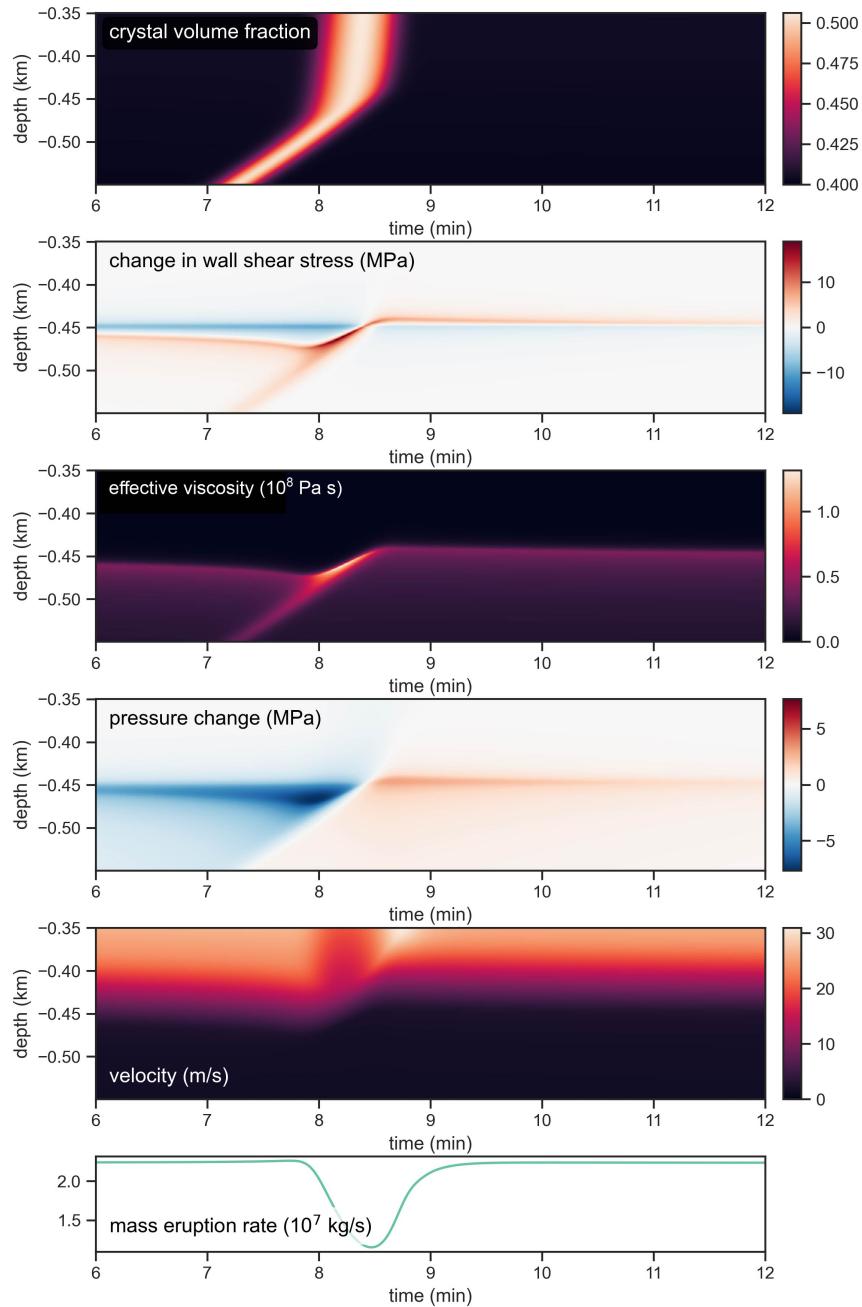
383 Magma enters the conduit at constant pressure and initially ascends as a relatively
 384 incompressible fluid at nearly constant velocity. The Gaussian pulse (Figure 3) is a par-
 385 cel of magma with higher crystallinity, higher viscosity, and higher drag than the rest
 386 of the magma. Therefore, a larger pressure gradient is required to push the parcel through
 387 the conduit. This reduces the pressure in the conduit at and above the parcel (Figures
 388 4 and 5), enhances gas exsolution, and causes the exsolution and fragmentation depths
 389 to descend (Figure 6). They eventually return to their initial depths after the parcel is
 390 fully fragmented.

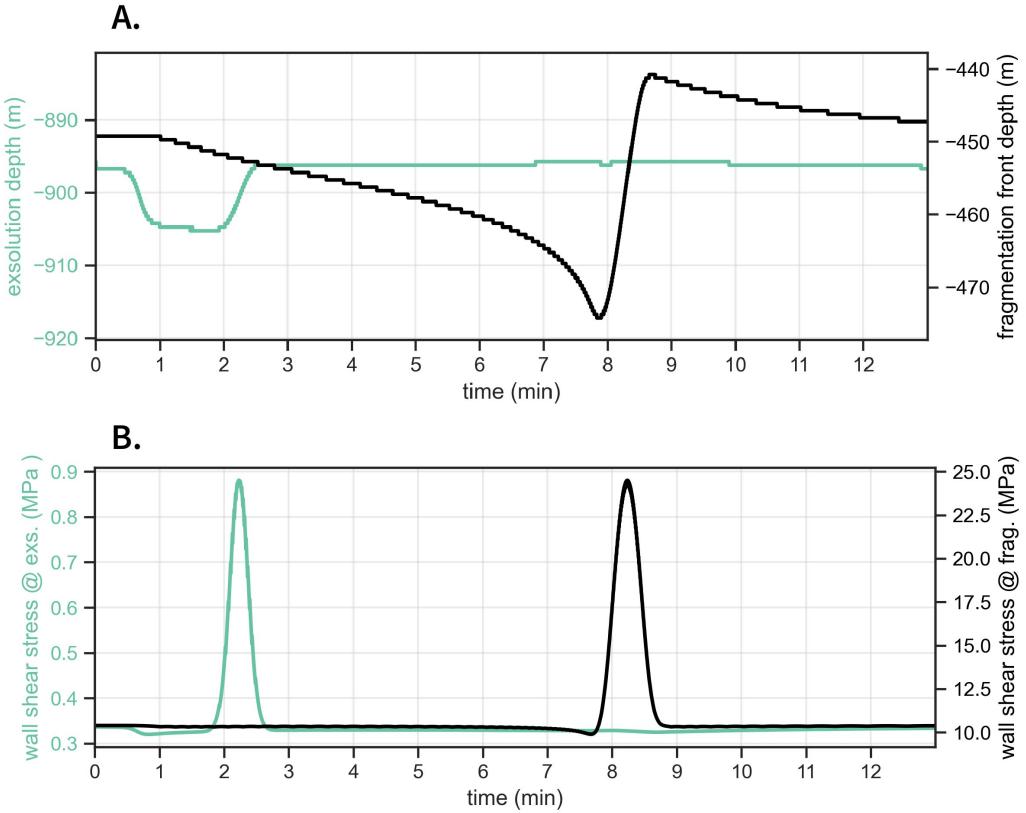

391 The region of highest viscosity and wall shear stress just below the fragmentation
 392 depth descends as fragmentation descends in the conduit. Therefore, the wall shear stress
 393 decreases around the initial fragmentation depth and increases below it, explaining the
 394 pattern in wall shear stress change seen in Figures 4 and 5. The depth integral of this
 395 change is proportional to the seismic force. We note that despite a partial cancellation
 396 of the positive and negative changes in wall shear stress, the net force increases as the
 397 parcel ascends through the conduit and passes through fragmentation because of the higher
 398 drag associated with the crystal-rich parcel.

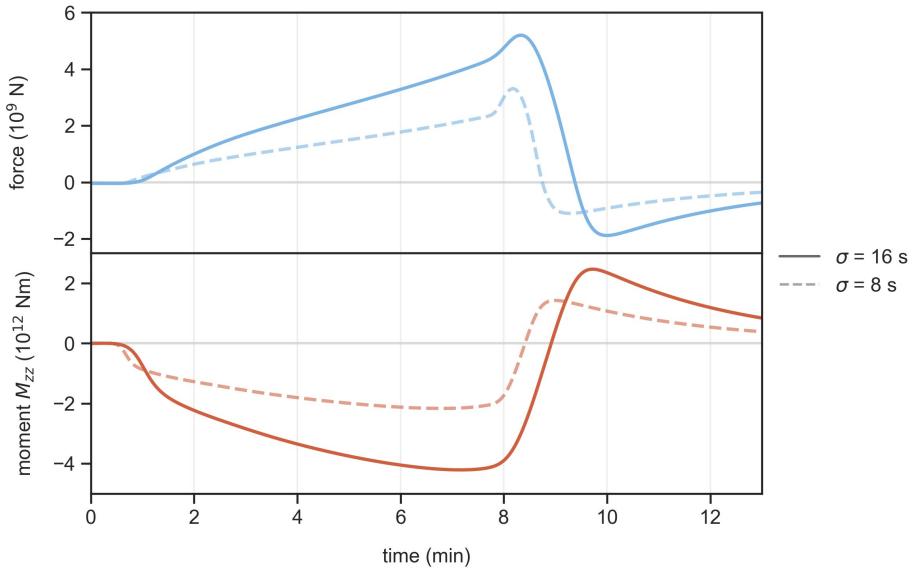
399 As the parcel passes through fragmentation, the velocity decreases, not only around
 400 fragmentation but also in the upper section of the conduit. The mass eruption rate drops
 401 by about 50%. Interestingly, despite the Gaussian pulse width being only about $2\sigma =$
 402 32 s, the reduction in mass eruption rate lasts for more than one minute. A similar in-
 403 crease in duration is seen for the crystal volume fraction. This is explained by the time-
 404 varying fragmentation depth, which alters the particle velocity distribution and hence
 405 particle paths within the conduit. Magma at the leading edge of the Gaussian pulse frag-
 406 ments lower in the conduit and then quickly ascends to the vent. In contrast, magma
 407 at the trailing edge of the pulse fragments higher in the conduit, and thus spends more
 408 time at the slower velocities characteristic of the unfragmented magma. This broadens
 409 the pulse duration and its expression in the time history of crystal content through the
 410 vent and the mass eruption rate.


411 Many of these processes are reflected in the seismic force and moment histories (Fig-
 412 ure 10). When the pulse enters the conduit and ascends, the associated depressurization
 413 of the upper conduit is captured in the progressive decrease in the seismic moment. The
 414 seismic force also progressively increases (in the upward direction) due to the higher vis-
 415 cosity and drag of the parcel, which increase as gas exsolves. The fragmentation front
 416 is descending through the conduit during this period (Figure 6), dropping about 20 m


Figure 4. Gaussian pulse simulation results for $\sigma = 16$ s.


Figure 5. Zoomed in version of Figure 4 for Gaussian pulse with $\sigma = 16$ s.


Figure 6. Fragmentation and exsolution depth evolution with time for injection of Gaussian pulse with $\sigma = 16$ s: **A.** Fragmentation and exsolution depths. **B.** Wall shear stress at fragmentation and exsolution depths.


Figure 7. Gaussian pulse simulation results for $\sigma = 8$ s.

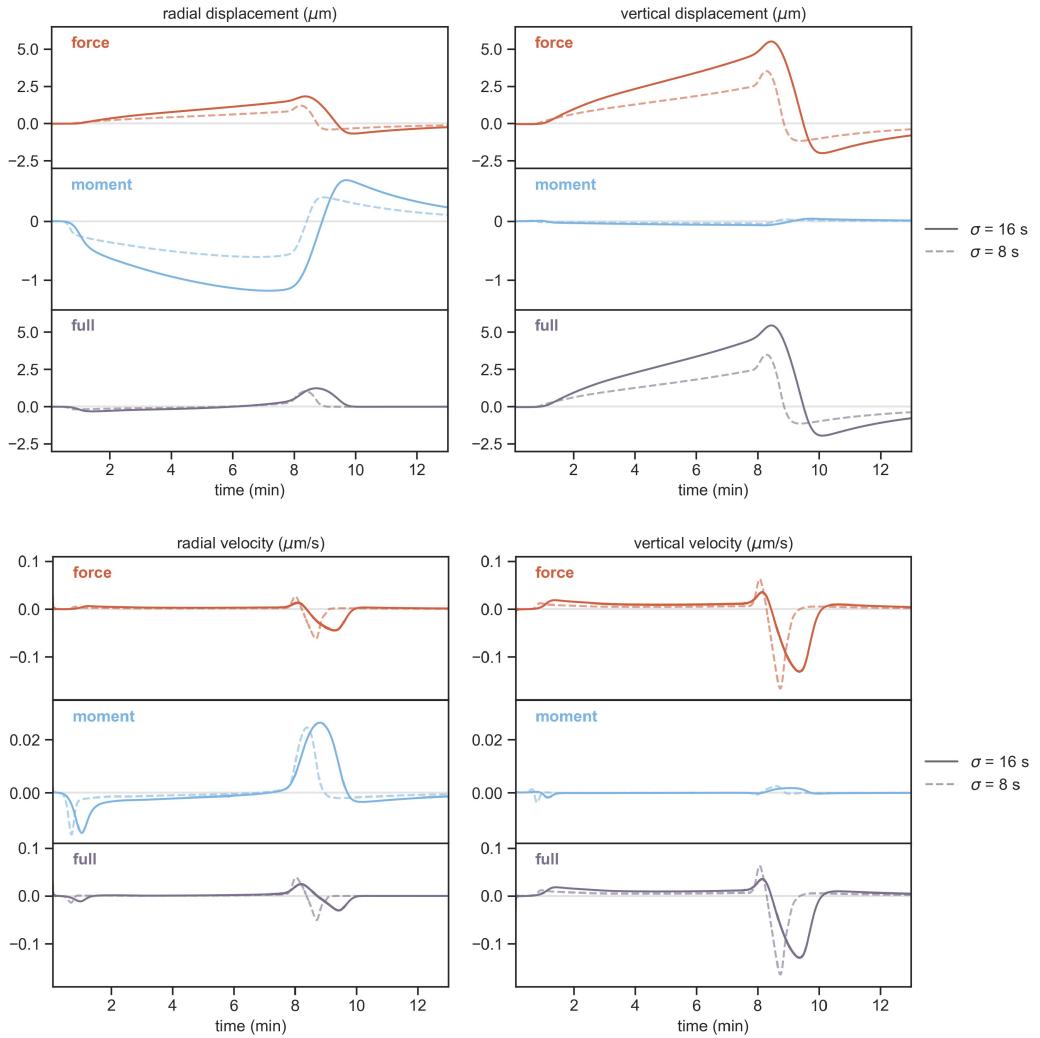
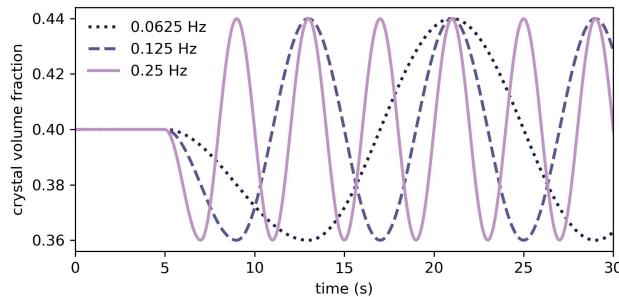

Figure 8. Zoomed in version of Figure 7 for Gaussian pulse with $\sigma = 8 \text{ s}$.

Figure 9. Fragmentation and exsolution depth evolution with time for injection of Gaussian pulse with $\sigma = 8$ s: **A.** Fragmentation and exsolution depths. **B.** Wall shear stress at fragmentation and exsolution depths.

Figure 10. Seismic force and moment histories for Gaussian pulse injections. The other nonzero moment tensor components, $M_{xx} = M_{yy}$, are proportional to M_{zz} .

Figure 11. Synthetic displacement and velocity seismograms for Gaussian pulse injections at a receiver 10 km from vent.


417 over the course of 7 minutes. During this ramp-up period, the two contributions to the
 418 seismic force, introduced in Section 2, are as follows: 1) The fragmentation depth drops
 419 about 20 m with a viscosity $\sim 10^7$ Pa s, corresponding to a force fluctuation $\Delta F_s \sim -5 \times$
 420 10^9 N. 2) The width of the pulse is about 40 m with a viscosity difference on the order
 421 of 10^7 Pa s, corresponding to expected $\Delta F_s \sim 10^{10}$ N. These two combinations are the
 422 same order of magnitude but have opposite sign. This is confirmed by the smaller force
 423 change of $\sim 10^9$ N calculated from integration over the conduit walls, indicating that the
 424 contribution from the viscosity variation is larger than that from the change in fragmen-
 425 tation depth.

426 As the parcel is being pushed through the fragmentation depth, the seismic mo-
 427 ment increases and switches from negative to positive as overpressure develops below the
 428 parcel (Figure 10). The upward seismic force decreases and eventually switches direc-
 429 tion. The higher pressures below the parcel slow exsolution. This leads to more water
 430 being dissolved in the melt, which decreases the viscosity. Therefore, once the parcel frag-
 431 ments, the viscosity over the whole conduit is less than for the initial steady-state. So
 432 even though the fragmentation front has moved upward, it has not moved a sufficient
 433 amount to counteract the decrease in force from the reduction in viscosity.

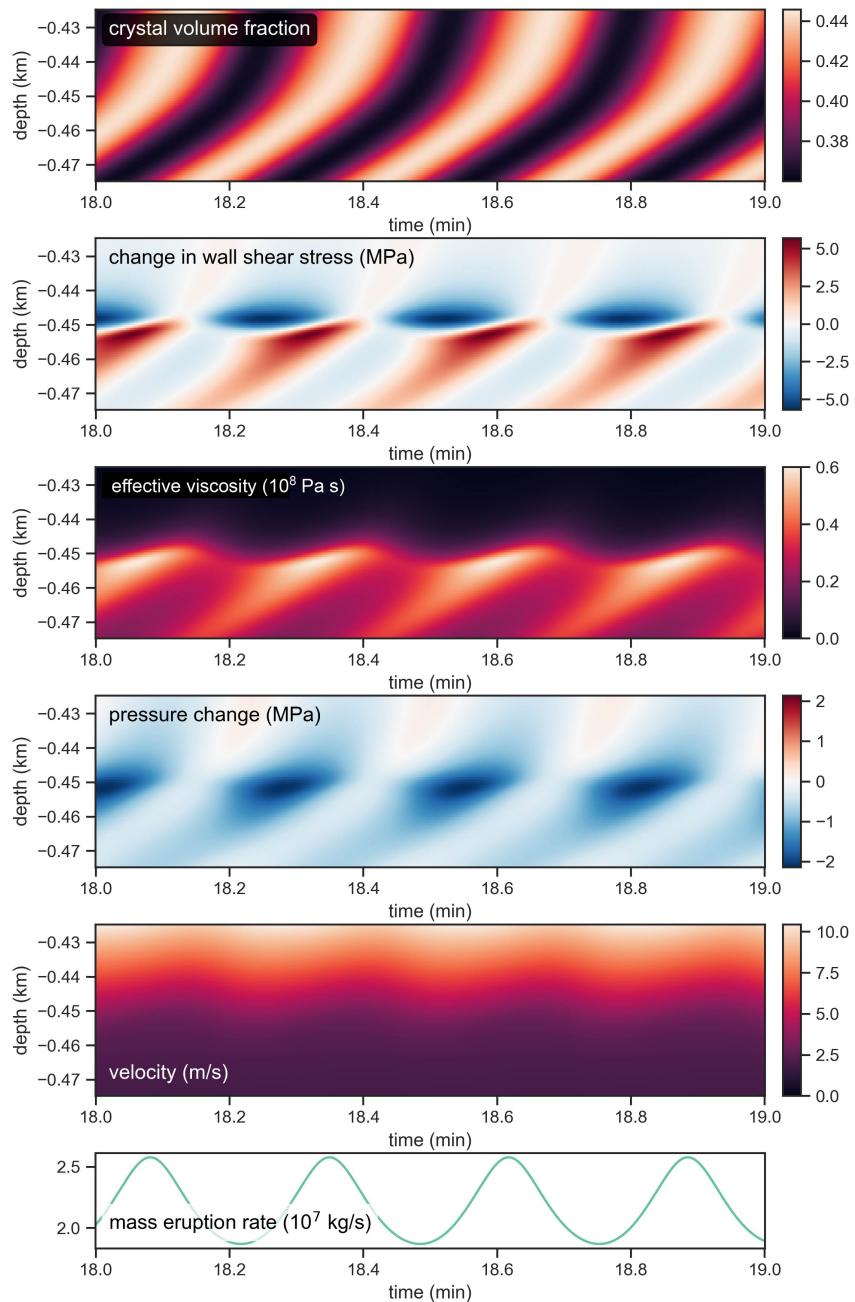
434 Figure 11 shows the associated synthetic displacement and velocity seismograms.
 435 The receiver is $r = 10$ km from the vent. The solid response becomes quasi-static at
 436 periods greater than ~ 30 s, for which $\omega r/c_s < 1$ (for angular frequency ω and shear
 437 wave speed c_s). Displacements are proportional to force and moment in this limit, and
 438 particle velocities are proportional to their time derivatives. Thus displacement seismo-
 439 grams at these long periods are effectively a linear combination of the seismic force and
 440 moment histories, and thus capture the progression of the parcel through the conduit
 441 and eventually the fragmentation front. Force and moment contributions are compara-
 442 ble in the radial component of displacement but with competing effects. The vertical com-
 443 ponent is dominated by the force contribution. In the velocity seismograms – which are
 444 dominated by force contributions in all components – there is an initial signature asso-
 445 ciated with the parcel entering the conduit, followed later by a distinct VLP feature as-
 446 sociated with the parcel passing through fragmentation and the associated reduction in
 447 upward force. The force change is therefore downward and is reflected in the downward
 448 pulse in the vertical velocity seismogram. The combination of this seismic signal with
 449 the approximately coincident reduction in mass eruption rate provides an observation-
 450 ally testable prediction of what occurs when high crystal content magma is fragmented.
 451 Such a significant drop in mass eruption rate would likely disrupt the eruption column,
 452 yielding observable signal in infrared or visual data, gas emission data, and possibly also
 453 in infrasound data, depending on how impulsive the process is.

454 The smaller width Gaussian pulse ($\sigma = 8$ s instead of 16 s in the previous exam-
 455 ple) exhibits a similar sequence of events as the wider pulse, with differences arising in
 456 the timing and amplitude of force and pressure changes (Figures 7 and 8). The smaller
 457 width means that there is less total drag provided by the parcel because the contact area
 458 between the parcel and the conduit walls is smaller. Therefore, the parcel requires less
 459 overpressure to push it through the conduit. The parcel also moves up the conduit faster,
 460 so the differential flow between the parcel and the magma above it is less than for the
 461 wider pulse. As a result, the magma above depressurizes at a slower rate in this case.
 462 This is confirmed by the reduced descent of the fragmentation front (Figure 9). The smaller
 463 parcel is also advected through fragmentation more quickly, which leads to a sharper re-
 464 duction in the mass eruption rate (Figure 8) and the seismic force (Figure 10).

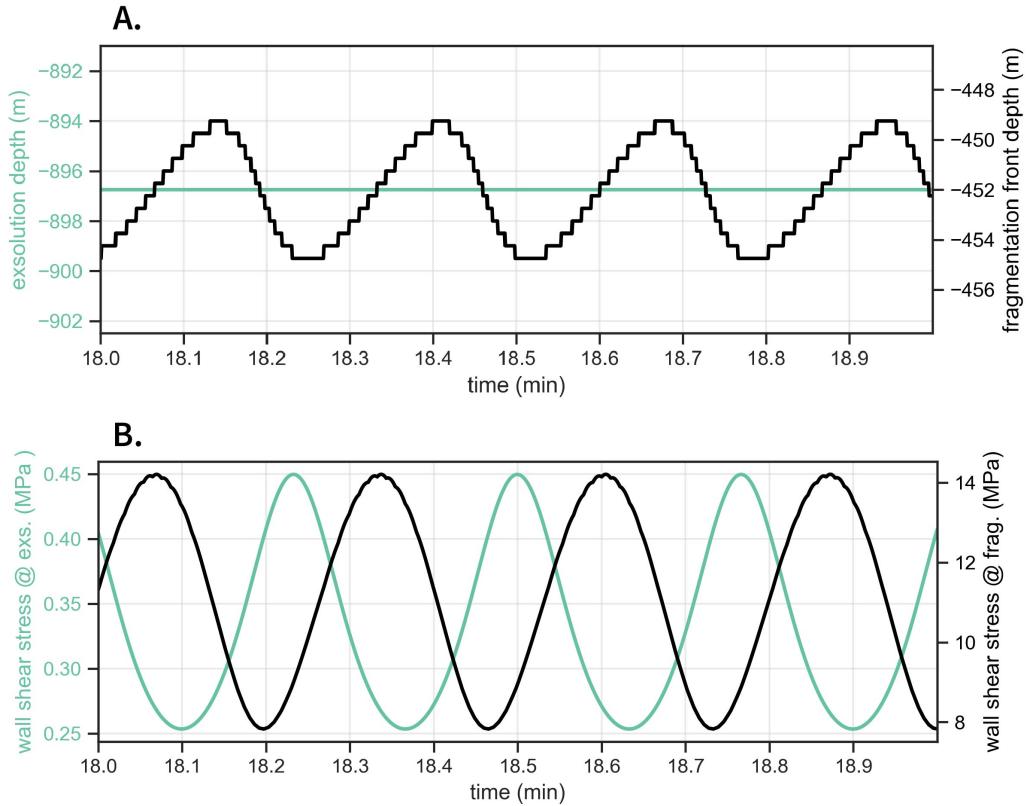
465 The associated displacement seismograms have smaller amplitude than for the wider
 466 pulse, but the velocity seismograms exhibit a higher amplitude but shorter duration fea-
 467 ture as the parcel passes through fragmentation (Figure 11). The duration of both the
 468 mass eruption rate reduction and the VLP signatures may indicate the size of the par-
 469 cel being advected through the conduit. The amplitude of the VLP feature depends on

Figure 12. Sinusoidal crystal volume fraction injection profiles.

470 both the relative crystal content or viscosity of the parcel as well as its size. Therefore,
 471 seismic amplitude on its own may not be sufficient to make an estimation of the crys-
 472 tal content of the parcel. However, the amplitude of reduction in mass eruption rate is
 473 about the same for the two parcel sizes, indicating that it might serve as a diagnostic
 474 for the composition of the parcel.


475 4.2 Sinusoid

476 Next we examine simulations of the injection of a sinusoidal crystal volume frac-
 477 tion profile. The injection profiles are shown in Figure 12. The initial adjustment phase
 478 of the simulation, when heterogeneities ascend through the conduit and displace the ho-
 479 mogeneous magma, is similar to the Gaussian pulse. Specifically, the net drag and vis-
 480 ous pressure drop increase and there is an overall increasing trend in seismic force and
 481 moment. This phase is not shown in the figures as we choose to focus instead on the fully
 482 “spun-up” state (i.e., when the solution reaches a periodic limit cycle) to highlight the
 483 higher frequency signatures associated with the advection of the composition variations
 484 through fragmentation.

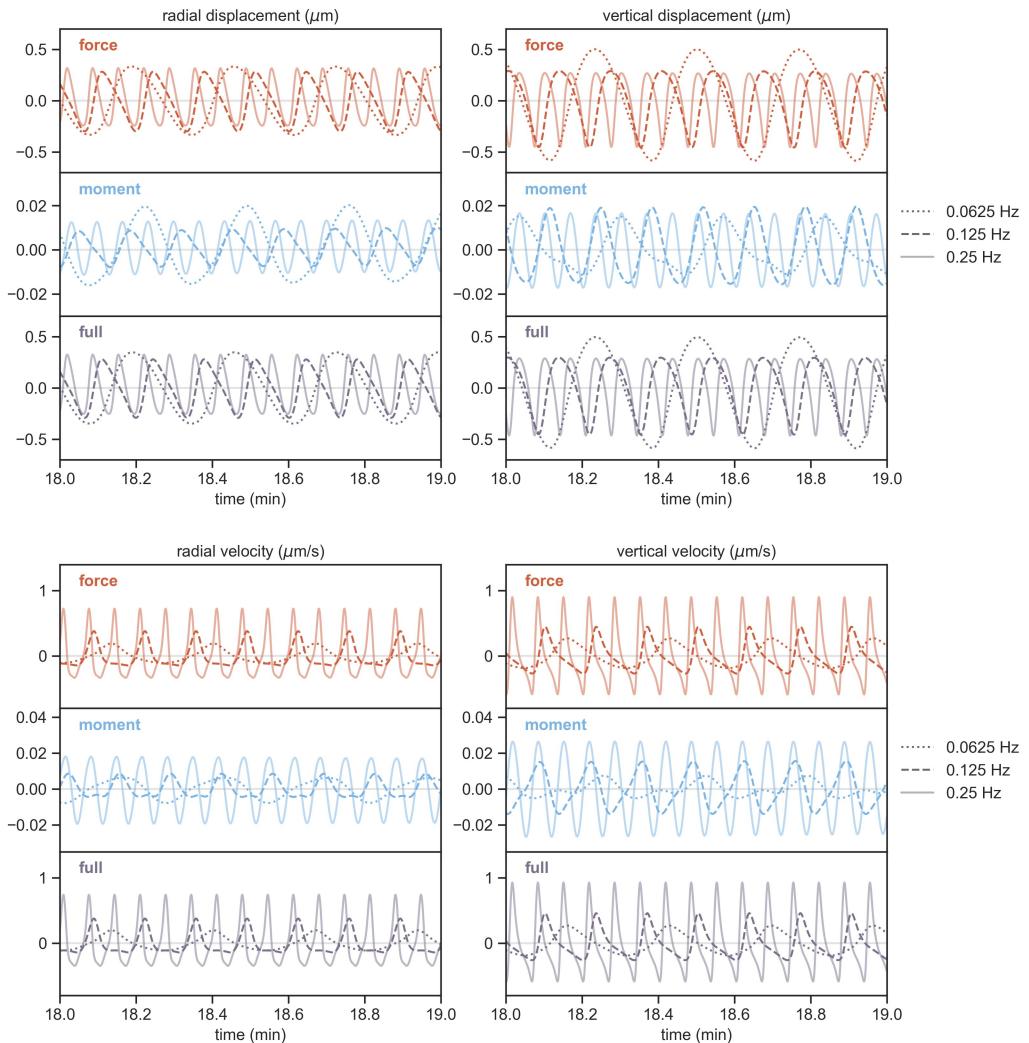

485 We can think of the sinusoidal variations as a series of parcels with alternating higher
 486 and lower crystal content. Even though the injected crystal content varies sinusoidally,
 487 the nonlinear dependence of viscosity on crystal volume fraction leads to nonsinusoidal
 488 but periodic variations in viscosity, fragmentation depth, and other features in the so-
 489 lution (Figure 13). The general behavior is similar to what was seen for the Gaussian
 490 pulse simulations. The fragmentation depth decreases as high crystallinity parcels ap-
 491 proach fragmentation. This is because the viscous pressure drop is higher, due to the higher
 492 viscosity from both the higher crystallinity and the additional exsolution that accom-
 493 panies the pressure drop. As the high crystallinity parcels fragment, the fragmentation
 494 depth rises. This process is accentuated by the passage of a low crystallinity parcel through
 495 fragmentation. The oscillations in the fragmentation depth are nonsinusoidal, with rapid
 496 descent followed by more gradual rise (Figure 14).

497 The mass eruption rate also varies periodically. Interestingly, the maximum mass
 498 eruption rate occurs as high crystallinity magma passes through fragmentation and ex-
 499 its the vent. This is different from the Gaussian pulse. We suspect that the phase re-
 500 lations between different solution components, such as crystal content and mass erup-
 501 tion rate, may change as a function of frequency due to the nonlinear dynamics of the
 502 system response. A more thorough investigation may be warranted, but this is beyond
 503 the scope of our study.

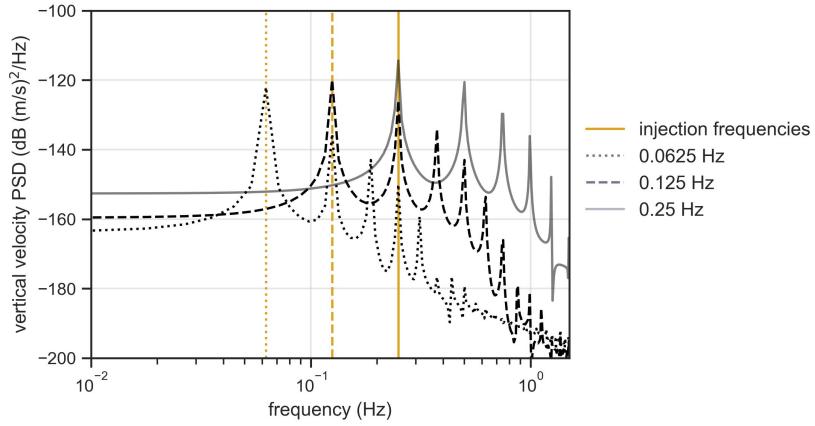

504 The magnitude of the force fluctuations are smaller than for the Gaussian case be-
 505 cause of the smaller amplitude of crystal content variation used – leading to lower peak

Figure 13. 0.0625 Hz sinusoidal injection simulation results.

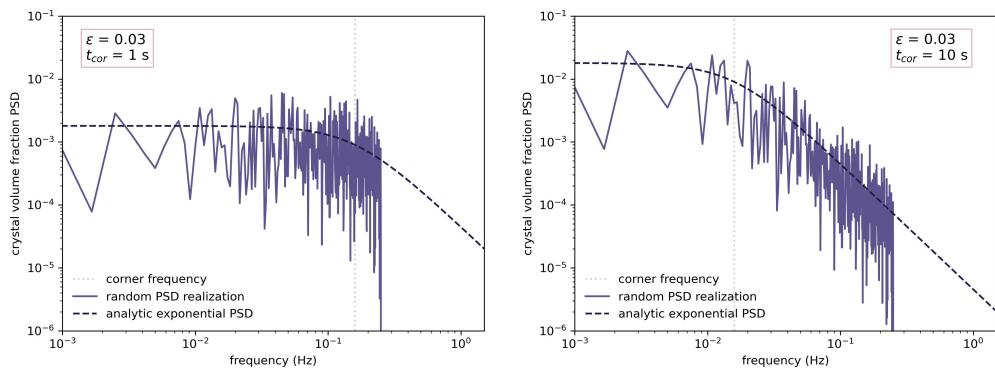
Figure 14. Fragmentation and exsolution depth evolution with time for injection of 0.0625 Hz sinusoid: **A.** Fragmentation and exsolution depths. **B.** Wall shear stress at fragmentation and exsolution depths.


Figure 15. Seismic force and moment histories for different frequency sinusoidal injections. Force and moment histories have been de-meaned. The other nonzero moment tensor components, $M_{xx} = M_{yy}$, are proportional to M_{zz} .

506 viscosities – and the fragmentation depth fluctuates over a smaller range (Figure 14).
 507 The peaks of the force fluctuations correspond to the passage of a high crystallinity par-
 508 cel through fragmentation, as this parcel has the largest peak viscosity and the fragmen-
 509 tation front moves upward. The troughs in force correspond to low crystallinity parcels
 510 passing through fragmentation, due to the lower viscosities and the fragmentation front
 511 moving back down. For the low frequency injection, the parcels are larger and take longer
 512 to fragment, which determines the frequency of the force fluctuations. Thus, the force
 513 fluctuation frequency increases with increasing injection frequency. On the other hand,
 514 the force fluctuation amplitude decreases with increasing frequency, though the relation-
 515 ship is nonlinear and appears to saturate (Figure 15). The largest viscosities occur within
 516 high crystallinity parcels that have just reached fragmentation. The value of the peak
 517 viscosity is the same across all frequency injections because that is determined by the
 518 peak crystal volume fraction (which is the same) and the amount of dissolved gas (which
 519 is also approximately the same). However, the contact area between the high crystallinity
 520 parcels and the conduit walls is different, as the different frequencies yield different spa-
 521 tial extents of the parcels within the conduit. Parcel width decreases with increasing fre-
 522 quency; it is around 16 m, 8 m, and 4 m for 0.0625 Hz, 0.125 Hz, and 0.25 Hz, respec-
 523 tively. Therefore, the high crystallinity parcels in the lower frequency profiles make larger
 524 contributions to the seismic force. Similar reasoning explains why the low crystallinity
 525 parcels in lower frequency injections lead to greater reduction in the upward seismic force
 526 than for the higher frequency injections.


527 Radial and vertical seismograms, shown in Figure 16, are dominated by force con-
 528 tributions. Displacement seismograms display a similar trend to the seismic force with
 529 amplitude decreasing with increasing injection frequency. The nonlinear system response
 530 to the sinusoidal input is reflected in the displacement seismograms (becoming more ap-
 531 parent at higher frequencies) and it is even more pronounced in the velocity seismograms.
 532 Looking in particular at the vertical velocity seismograms, the waveforms exhibit peri-
 533 odic cycles beginning with a rapid upward increase to peak velocity, followed by a trail-
 534 ing fall off in amplitude. With increasing injection frequency, these features sharpen and
 535 the peak particle velocity increases. For the 0.25 Hz injection profile, velocity amplitudes
 536 reach $\sim 1 \mu\text{m/s}$, which are comparable with observed eruption tremor amplitudes (Fee,
 537 Haney, et al., 2017). The peaks correspond to the rupture of high crystallinity parcels
 538 passing through fragmentation, when the fragmentation front rapidly descends as the
 539 low crystallinity parcel approaches. The tails of the velocity peaks are produced when
 540 high crystallinity parcels approach fragmentation, creating resistance to flow as viscos-
 541 ity increases before fragmenting. The seismic velocity PSD (Figure 17) confirms the pe-
 542 riodic nature of the system output, with sharply defined peaks at the same frequency
 543 as the injection. Overtone peaks are due to the Dirac comb effect, when a signal is pe-
 544 riódically repeated a finite number of times (Hotovec et al., 2013; Dmitrieva et al., 2013).

545 4.3 Stochastic profile


546 Now that we have an understanding of how heterogeneities at different frequencies
 547 affect the fragmentation dynamics and their expression in the seismic response, we move
 548 on to a stochastic injection profile. For the exponential autocorrelation model, we choose
 549 the standard deviation ε so that crystal volume fraction variations are of comparable am-
 550 plitude as in the sinusoidal examples. We investigate how the correlation timescale t_{cor}
 551 affects the seismic signal by considering two simulations with $t_{\text{cor}} = 1 \text{ s}$ and 10 s . Fig-
 552 ures 18 and 19 show the PSD and time series, respectively, of the particular realization
 553 of the stochastic profile used in this study. In our simulations, the inlet velocity is ap-
 554 proximately 1 m/s ; therefore, these correlation timescales can be thought of as corre-
 555 lation length scales of 1 m and 10 m , respectively. The particular realizations of the ran-
 556 dom signal used in our simulations are shown in Figures 18 and 19. To reduce compu-
 557 tational expense, we have chosen a cutoff frequency of 0.25 Hz in order to ensure that
 558 no numerical artifacts are introduced due to insufficient spatial resolution. The 10 s cor-

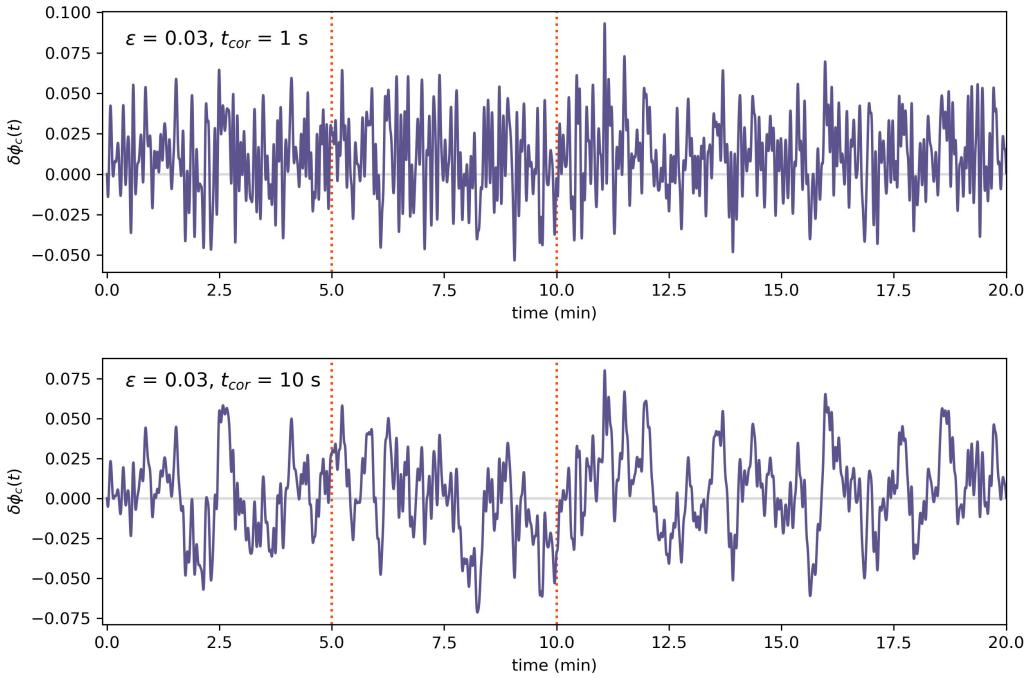
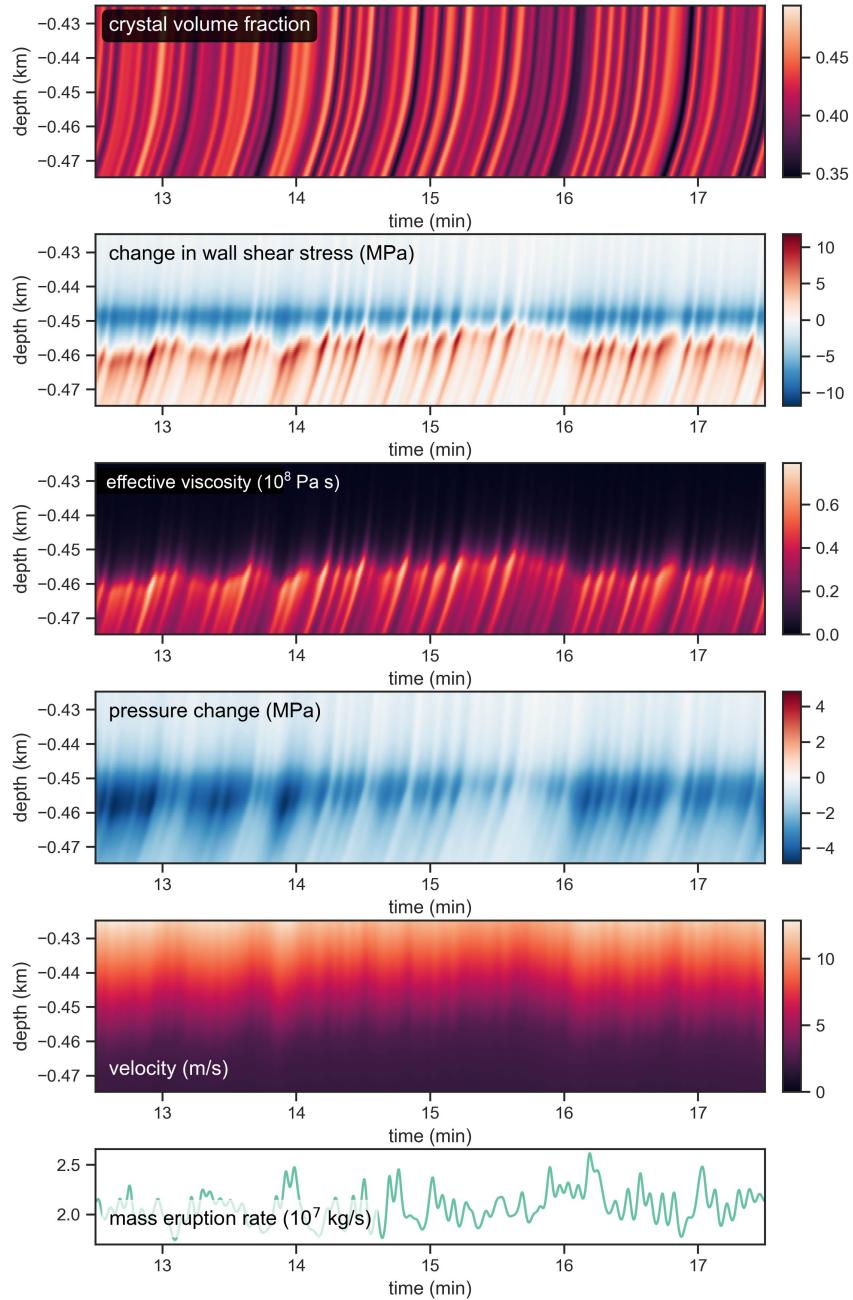
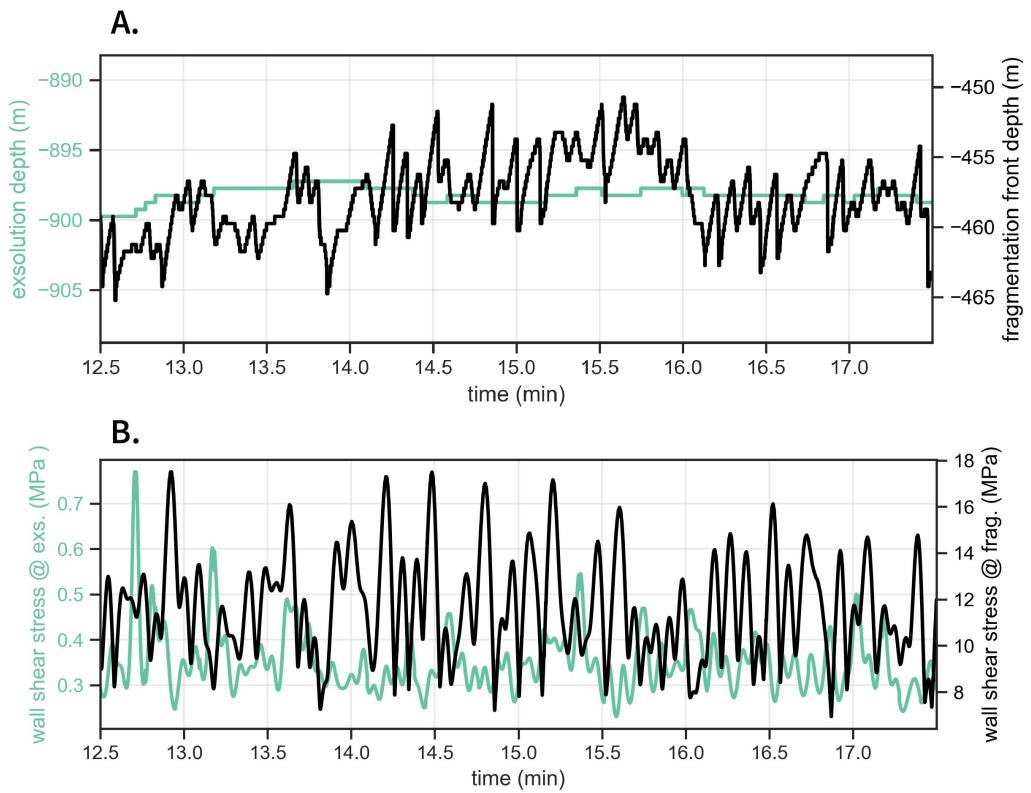
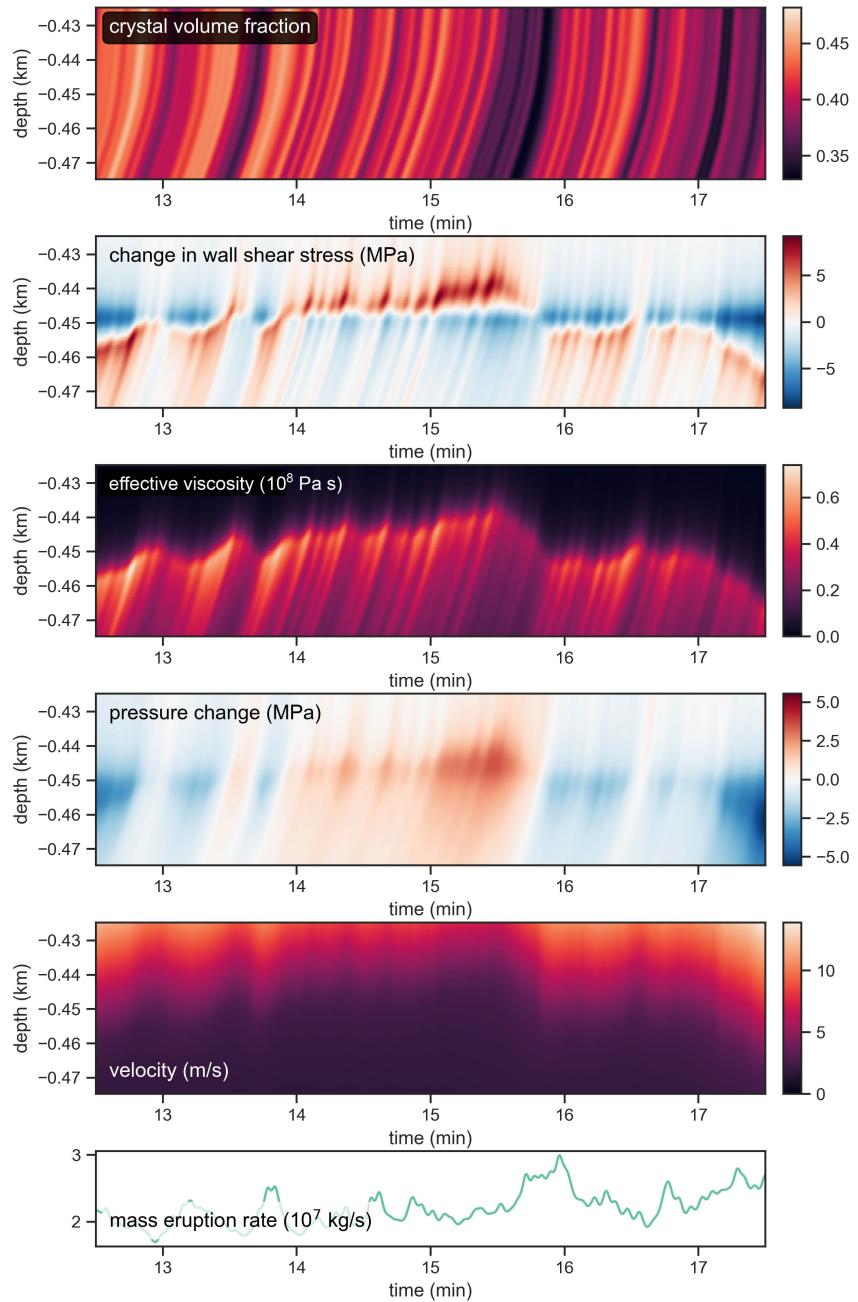

Figure 16. Synthetic displacement and velocity seismograms for different frequency sinusoidal injections at a receiver 10 km from vent. Static offsets in displacement seismograms have been removed (i.e., de-meaned).

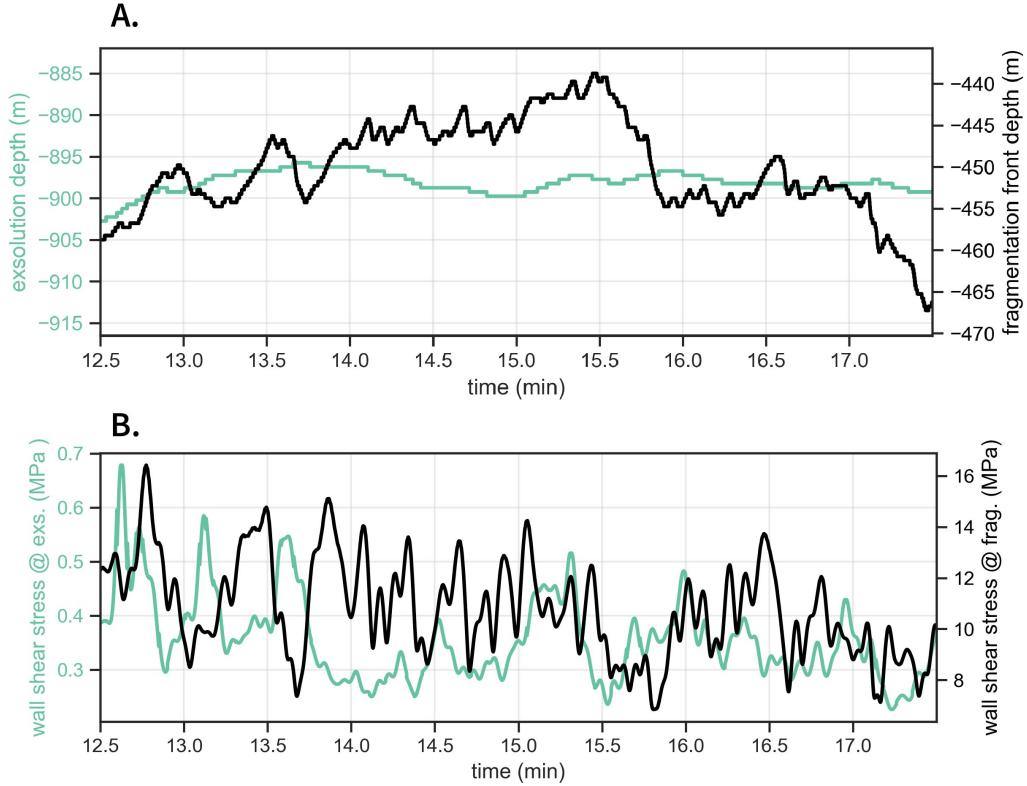
Figure 17. Power spectral densities of vertical velocity seismograms for different frequency sinusoidal injections. Yellow lines mark the injection frequencies.


Figure 18. Power spectral densities of stochastic crystal volume fraction fluctuation profiles with different correlation timescales.


Figure 19. Time-domain realization of stochastic crystal volume fraction fluctuation profile with different correlation timescales. Red dotted lines mark the heterogeneities that are passing through fragmentation during the time windows shown in subsequent plots.

relation timescale yields greater power in the lower frequency range, with steeper fall-off in power at higher frequencies. The shorter correlation timescale of 1 s yields a relatively flat spectrum within the resolvable frequency band. The greater power at low frequencies for the 10 s correlation timescale is also apparent when comparing the time domain realizations of the injection profiles (Figure 19).


As in the sinusoid case, we restrict attention to a time window after an initial “spin-up” period during which heterogeneities ascend and fully fill the conduit. The fragmentation front moves up and down in a stochastic manner, reflecting the range of frequencies contained in the heterogeneous profile. The higher power in the lower frequencies in the $t_{\text{cor}} = 10$ s simulation leads to longer length-scale variations in crystal content. This leads to longer period motion of the fragmentation front (Figures 22 and 23), which oscillates over a depth range of 25 m over the course of 5 minutes. In the $t_{\text{cor}} = 1$ s simulation, the fragmentation motion is reflective of the flatter injection spectrum with higher frequency motion providing a comparable contribution as the longer periods (Figures 20 and 21). The fragmentation front moves over a depth range of 15 m over the course of 5 minutes. The range of peak wall shear stress at fragmentation is comparable between the two cases, but the rate of change is greater for the shorter correlation timescale (Figures 21 and 23). In both cases, there is a lot of unsteadiness exhibited in the mass eruption rate as the stochastic heterogeneities pass through fragmentation. There are longer period trends in mass eruption rate for the 10 s correlation timescale associated with the long period crystal content variations. Also, in the particular time window selected for analysis, there is enhanced mass eruption rate as a lower crystal content region passes through fragmentation (Figure 22).


Figure 20. Stochastic injection simulation results for $t_{\text{cor}} = 1$ s.

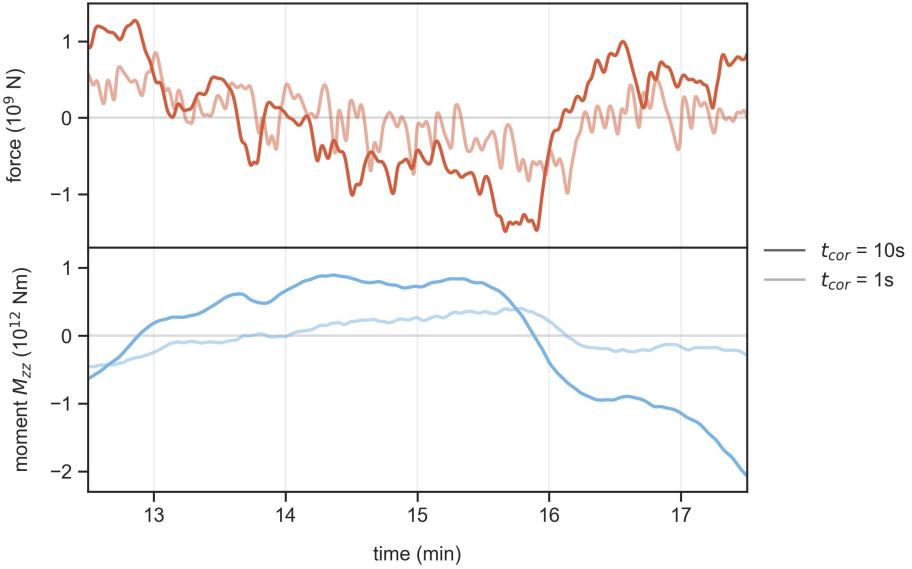
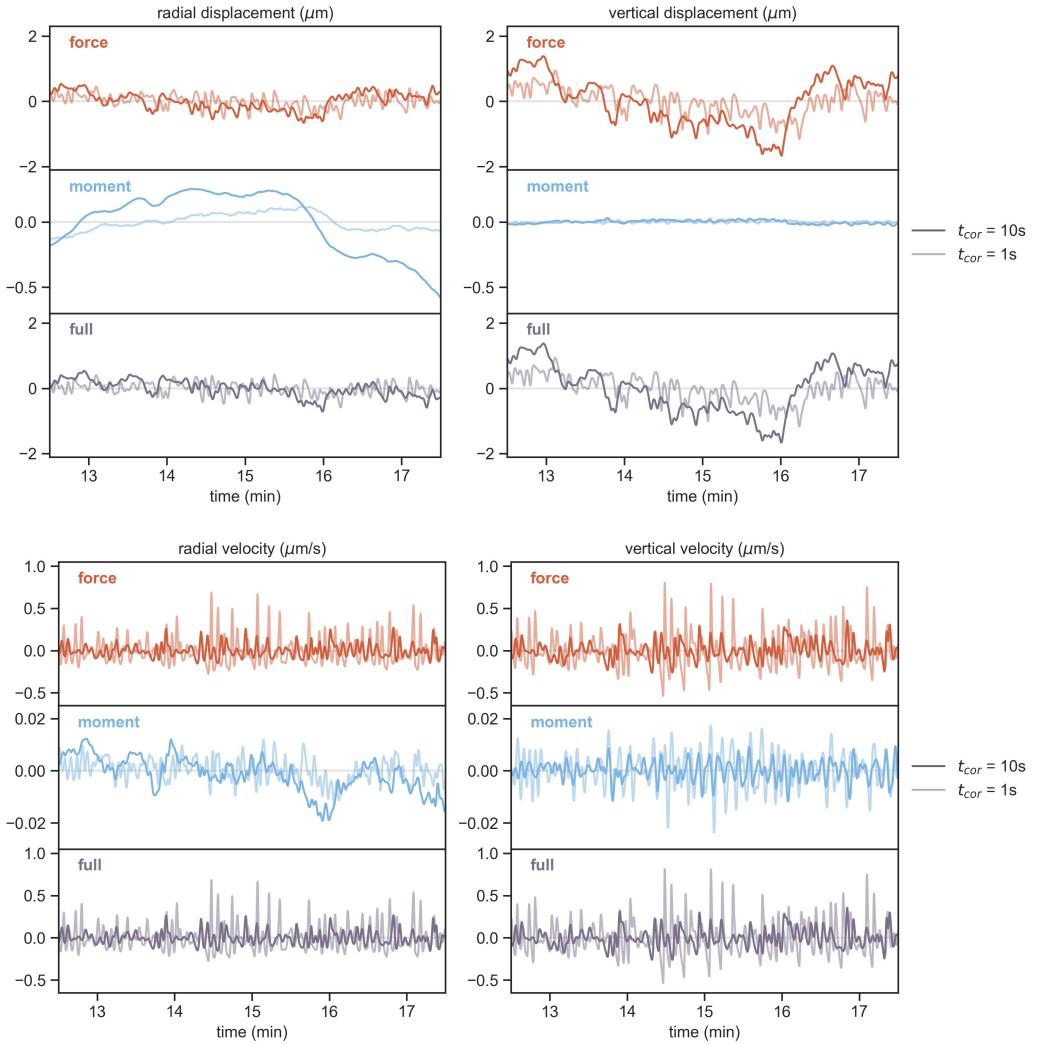

Figure 21. Fragmentation and exsolution depth evolution with time for stochastic injection simulation with $t_{\text{cor}} = 1$ s: **A.** Fragmentation and exsolution depths. **B.** Wall shear stress at fragmentation and exsolution depths.

Figure 22. Stochastic injection simulation for $t_{\text{cor}} = 10$ s.

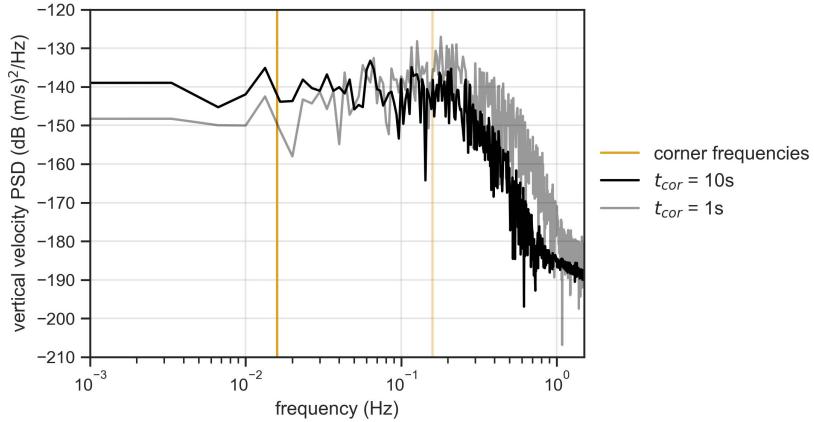
Figure 23. Fragmentation and exsolution depth evolution with time for stochastic injection simulation with $t_{cor} = 10$ s: **A.** Fragmentation and exsolution depths. **B.** Wall shear stress at fragmentation and exsolution depths.

Figure 24. Seismic force and moment histories for stochastic injections with different correlation timescales. Force and moment histories have been de-meaned. The other nonzero moment tensor components, $M_{xx} = M_{yy}$, are proportional to M_{zz} .

582 The seismic force and moment histories (Figure 24) exhibit fluctuations over a larger
 583 range of values, as compared to the sinusoidal cases. The force ranges are comparable
 584 between the two correlation timescales, with $t_{\text{cor}} = 10$ s exhibiting a slightly larger range.
 585 Even though the fragmentation depth moves over a greater range for $t_{\text{cor}} = 10$ s, the
 586 peak wall shear stress (i.e., peak viscosities) are more frequently reached for $t_{\text{cor}} = 1$
 587 s. This is reflected in the force histories, where the shorter correlation timescale exhibits
 588 larger amplitude high frequency features. There is an overall reduction in upward force
 589 accompanied by an increase in moment in the first 3.5 minutes as the region of higher
 590 crystal content passes through fragmentation, reducing the total drag along the whole
 591 length of the conduit. While this is seen in both cases, it is particularly apparent for the
 592 longer correlation timescale case. This is similar to the Gaussian pulse simulations. We
 593 can draw an analogy to a wider pulse with small scale variations around that longer pe-
 594 riod feature. Immediately following the time window shown here, a region of higher crys-
 595 tal content follows (Figure 19). The precursor features associated with the approach to
 596 fragmentation of a high crystal content region are seen in the force and moment histo-
 597 ries (Figure 24): The seismic force increases as the high crystal content region approaches
 598 fragmentation and viscosity increases, which is accompanied by depressurization of the
 599 conduit above the region.


600 The vertical component of the displacement seismograms is dominated by the force
 601 contribution, capturing the full spectrum of the progression of the heterogeneities through
 602 fragmentation (Figure 25). The radial displacement has comparable contributions from
 603 the force and moment. Radial displacements associated with the pressurization/depressurization
 604 of the conduit are dominated by low frequencies, leading to preservation of high frequency
 605 features from force changes along the conduit walls in the full waveform. The displace-
 606 ment amplitudes are comparable for the two correlation timescale simulations, with the
 607 shorter timescale simulation exhibiting more prominent high frequency features. Veloc-
 608 ity seismograms highlight these high frequency features.

609 The vertical velocity power spectral densities (PSDs) (Figure 26) confirm the boost-
 610 ing of higher frequencies for the shorter correlation timescale simulation. The crystal in-
 611 jection PSDs (Figure 18) have a flat spectrum at frequencies below the corner frequency,
 612 above which the spectrum follows a power-law decrease. However, the seismic spectra
 613 are either flat ($t_{\text{cor}} = 10$ s) or slightly increasing ($t_{\text{cor}} = 1$ s) beyond the injection cor-
 614 ner frequency, until they roll over at the injection cut-off frequency (0.25 Hz). Power at
 615 low frequencies is comparable between the two correlation timescales but slightly higher
 616 for $t_{\text{cor}} = 10$ s. For higher frequencies (> 0.1 Hz), $t_{\text{cor}} = 1$ s has greater power that
 617 peaks around the injection corner frequency. The shorter correlation timescale yields a
 618 somewhat broader spectrum that is pushed further out beyond the injection cut-off fre-
 619 quency.


620 5 Discussion

621 5.1 Model validation and relation to other observables

622 Because our modeling framework couples conduit flow dynamics to seismic wave
 623 generation, we are able to draw connections between seismic signals and other observ-
 624 ables, providing observationally testable predictions. In addition to predictions of dis-
 625 tinct seismic signatures in the VLP and ULP bands, our work makes predictions of co-
 626 incident mass eruption rate fluctuations associated with fluctuations in fragmentation.
 627 Estimates of mass eruption rate can be made using visual and thermal monitoring of erup-
 628 tion plumes (e.g., Vulpiani et al., 2016; Freret-Lorgeril et al., 2021) or through gas emis-
 629 sions measurements (Hobbs et al., 1991; Mori & Burton, 2009; Fee, Izbekov, et al., 2017;
 630 Reath et al., 2021; Raponi et al., 2021). Correlations between VLP signals and varia-
 631 tions of volcanic gas emissions have been observed at Mt. Asama, Japan (Kazahaya et
 632 al., 2011). The observed VLP velocity waveforms – similar in duration and shape to those

Figure 25. Synthetic displacement and velocity seismograms for stochastic injections with different correlation timescales at a receiver 10 km from vent. Static offsets in displacement seismograms have been removed (i.e., de-meaned).

Figure 26. Power spectral densities of vertical velocity seismograms for stochastic injections with different correlation timescales. Yellow lines mark the corner frequencies for the injection spectra.

predicted in this work – were followed by enhanced SO_2 flux through the vent, which might be explained by unsteady fragmentation in response to the development of overpressure from magma degassing. The scale of variations in mass eruption rate predicted in this work ($\sim 10^7 \text{ kg/s}$) would yield significant features in these additional measurements. Therefore, observations of VLP/ULP seismic signatures cross-checked with additional monitoring data for the eruption plume can be used to provide evidence for fluctuating fragmentation as a source of eruption unsteadiness. Extending our modeling above the vent, or coupling with a plume and atmospheric response model (Liu et al., 1982; Kanamori et al., 1994; Ripepe et al., 2010; Nakashima et al., 2016), would yield further quantitative predictions for validation. Our modeling outputs include time-series for relevant fluid dynamic properties at the conduit vent (e.g., mass eruption rate, pressure) that define source processes through direct connection to modeled eruptive processes. This allows for predictions of any instabilities in the eruptive jet that might be triggered or caused by fluctuating fragmentation. In addition, it is possible that variations in mass eruption rate will also generate infrasonic signatures, which can then be used to further constrain characteristics of fluctuating fragmentation.

5.2 Coherent fluctuations in fragmentation

Our work predicts that coherent fluctuations in the fragmentation depth, as can be caused by coherent heterogeneities of magma properties such as the crystal content, are expressed seismically in the VLP and ULP frequency bands. In particular, fragmentation of a parcel of high crystal content magma produces a distinct VLP signature consisting of a downward pulse in vertical velocity seismograms. This is caused by a drop in the upward seismic force when the high viscosity parcel fragments. The duration of the seismic signal correlates with the width of the parcel, reflecting the time it takes for the parcel to fully pass through fragmentation. The particle velocity amplitudes are controlled by a combination of viscosity variation and parcel width (and seismic wave propagation parameters like source-receiver distance). Our simulations showed that parcels of the same relative viscosity but different widths will generate different peak amplitudes, with the smaller width yielding higher amplitude. However, it does not appear to be straightforward to disentangle these two contributions to seismic amplitude. Reductions in mass eruption rate associated with fragmentation of high crystal content parcels provide another means to help constrain viscosity variations. The same reduction in mass eruption

665 rate is predicted for different parcel widths having the same relative viscosity. Similarly
 666 to the seismic signatures, the duration of the mass eruption rate reduction is correlated
 667 with parcel width. Therefore, coincident VLP/ULP signatures and mass eruption rate
 668 variations provide potential diagnostics to characterize coherent magma heterogeneities.

669 As discussed in the previous section, validation of this source mechanism will in-
 670 volve looking for coincident signatures in seismic, visual/thermal, infrasound, and gas
 671 emissions data. Advection and fragmentation of heterogeneous magma could occur at
 672 any point during an eruption. Thus, observations of VLP signatures during a sustained
 673 eruption (in contrast to VLP signatures produced by the eruption onset) – along with
 674 observed changes in mass eruption rate – could potentially be generated by this source
 675 mechanism. Further potential validation could come from petrological study of eruption
 676 deposits. This would be done by checking the composition (Pankhurst et al., 2014) for
 677 variations in crystal content or other differences in erupted products from the specific
 678 time interval marked by the VLP and mass eruption rate signals. This also points to the
 679 potential utility of combining petrological study with these geophysical signals. The am-
 680 plitude and duration of geophysical signals could help to constrain estimates of volumes
 681 of different erupted products. The timing of coincident signatures within the eruption
 682 sequence – along with visual observations of erupted materials – can be used when re-
 683 constructing the compositional evolution of the volcanic deposits. The reconstructed erupted
 684 materials sequence could then be used to make inferences about the sourcing magma body,
 685 such as the magma storage conditions (Bachmann & Huber, 2019; Popa et al., 2021).
 686 The spectral content of the geophysical signatures could potentially be used to infer length
 687 scales of heterogeneities present in the sourcing magma body, which may give valuable
 688 information on magma mixing processes (Perugini & Poli, 2012; Morgavi et al., 2022).

689 5.3 Eruption tremor

690 Eruption tremor is a seismic signal ubiquitously observed during explosive eruptions
 691 (McNutt & Nishimura, 2008; Konstantinou & Schlindwein, 2003). In addition to
 692 its coincidence with explosive eruptive activity, it is characterized by its stochastic na-
 693 ture within the 0.5-10 Hz frequency band. (We discuss another form of tremor, harmonic
 694 tremor, in the next section.) There have been very few theoretical studies on the source
 695 of eruption tremor (McNutt & Nishimura, 2008; Prejean & Brodsky, 2011; Gestrich et
 696 al., 2020). One of the only physical models proposed attempts to recreate seismic PSDs
 697 through defining force spectra from particle impacts and dynamic pressure changes due
 698 to turbulence along the conduit walls (Gestrich et al., 2020). Focus was restricted to the
 699 upper conduit above the fragmentation depth, where flow is turbulent. The authors found
 700 that the traction fluctuations required to explain observed tremor amplitudes required
 701 extreme parameter values, such as impacting particle sizes of ~ 1 m. While this hypoth-
 702 esized mechanism for eruption tremor is plausible, we feel that it is important to explore
 703 alternative hypotheses. Our work shifts focus to the fragmentation depth and just be-
 704 low it, where tractions are orders of magnitude higher and motion of the fragmentation
 705 front can produce requisite amplitudes of force fluctuations. We can no longer appeal
 706 to turbulence to explain stochasticity for this mechanism; therefore, stochastic motion
 707 of the fragmentation front is required.

708 Our modeling shows that stochastic fluctuations in fragmentation do in fact lead
 709 to stochastic seismic signals. For $\sim 7.5\%$ fluctuations in crystal content, seismic parti-
 710 cle velocities at a few to 10 km distance are on the order of $0.1\text{ }\mu\text{m/s}$, which is about an
 711 order of magnitude less than observed tremor amplitudes. However, our simulations were
 712 limited to frequencies below 0.25 Hz due to numerical resolution requirements and com-
 713 putational cost. Our sinusoidal injection study highlighted that shifting power to higher
 714 frequencies could yield seismic amplitudes that are relevant to observed tremor ($\sim 1\text{ }\mu\text{m/s}$)
 715 (Fee, Haney, et al., 2017; Konstantinou & Schlindwein, 2003). Given the limitations of
 716 our simulations, it is premature to falsify or validate our proposed mechanism for eru-

717 tremor. That said, our results do serve as proof-of-concept that fluctuating fragmentation
 718 could be a potential source of eruption tremor, especially if higher frequency fluctuations
 719 are included.

720 Extending to higher frequencies with observationally relevant power could be done
 721 in a couple of ways. Increasing the cutoff frequency of the crystal content fluctuations
 722 will broaden the seismic spectrum, which will likely increase seismic amplitudes with the
 723 introduction of higher frequency variations. In addition to that, one possibility is to con-
 724 sider smaller correlation timescales for heterogeneous injection. The associated corner
 725 frequency for a correlation timescale on the order of 10^{-2} s would reach the upper end
 726 of the characteristic tremor frequency range. For an inlet velocity of 1 m/s, this would
 727 correspond to a correlation length-scale on the order of centimeters for heterogeneity within
 728 the sourcing magma body. Of course, for heterogeneity length scales smaller than the
 729 conduit radius, the quasi-1D modeling assumption breaks down. The fragmentation sur-
 730 face will have more complex geometry than can be captured in our quasi-1D conduit flow
 731 model, and the distribution of wall shear stress will no longer be axisymmetric. These
 732 additional complexities become relevant at frequencies ≥ 1 Hz. Modeling these fluctua-
 733 tions will require moving to a 3D framework that is able to capture the cross-sectional
 734 variations that may be present during the fragmentation process.

735 5.4 Harmonic tremor

736 Harmonic tremor is another seismic signal occasionally observed at some volcanoes,
 737 characterized by sustained oscillations with distinct spectral peaks (Konstantinou & Schlindwein,
 738 2003; Chouet & Matoza, 2013). Our study of sinusoidal injection profiles hints at the
 739 possibility that periodic movement of the fragmentation front would yield harmonic tremor.
 740 While it is unlikely that magma heterogeneity would exhibit this regularity, there could
 741 be other self-excited instabilities or forced oscillations that emerge naturally from the
 742 system. For instance, oscillations or “wagging” of the rising magma column in response
 743 to spring-like motion of a compressible bubble-rich annulus along the conduit walls has
 744 been proposed as a possible harmonic tremor mechanism (Bercovici et al., 2013). Nat-
 745 urally emerging oscillatory dynamics have been observed in studies of detonation shock-
 746 wave propagation (Kasimov & Gonchar, 2021), a process that is somewhat analogous
 747 to fragmentation. Alternative fragmentation criteria to the critical volume fraction cri-
 748 terion used in this work (Melnik & Sparks, 2002; Jones et al., 2022; Alidibirov & Ding-
 749 well, 2000; Papale, 1999; Fowler et al., 2010; Scheu & Dingwell, 2022; Lavallée & Kendrick,
 750 2021; McGuinness et al., 2012; Koyaguchi et al., 2008; Gonnermann, 2015; Gonnermann
 751 & Manga, 2003, 2007) may lead to oscillatory behavior, though almost all of these cri-
 752 teria have only been investigated using steady-state models. One exception is the un-
 753 steady conduit flow modeling of Melnik and Sparks (2002) that was designed for vul-
 754 canian explosion events. They compared the critical volume fraction criterion to two al-
 755 ternatives, a critical bubble overpressure criterion and a critical elongation strain rate
 756 criterion. They found that while the volume fraction criterion produced smoothly vary-
 757 ing fragmentation, the other two criteria produced pulsatory solutions. Further study
 758 of fragmentation and associated seismic signals could be utilized to constrain character-
 759 istics of the particular mechanism, which is still an open science question.

760 6 Conclusion

761 In this study, we explored the seismic signatures of a fluctuating fragmentation in
 762 explosive volcanic eruptions. Fragmentation depth fluctuations are associated with changes
 763 in pressure and wall shear stresses, which are proportional to the seismic moment and
 764 force, respectively. Seismograms at a few to ~ 10 km distances are in most cases dom-
 765 inated by the seismic force, which has contributions arising from changes in fragmenta-
 766 tion depth and from variations in wall shear stress. Through simulations of advection

767 and fragmentation of heterogeneous magma using unsteady conduit flow models, we demon-
 768 strated that heterogeneous magma injections could be a source of fluctuating fragmen-
 769 tation. Our work predicts that distinct seismic VLP signatures and coincident variations
 770 in mass eruption rate accompany coherent fluctuations in the fragmentation depth, pro-
 771 viding useful observational diagnostics for validation. Our work also demonstrated that
 772 stochastic movement of fragmentation leads to stochastic seismic signals. This provides
 773 a plausible mechanism for eruption tremor. However, numerical resolution constraints
 774 prevented us from exploring frequencies greater than 0.25 Hz, which must be done to prop-
 775 erly test this hypothesis. Overall, we have demonstrated how unsteady conduit flow mod-
 776 eling can be integrated into volcano seismology studies. This dynamic source modeling
 777 approach complements kinematic source inversions, providing a more direct relation be-
 778 between eruptive processes of interest and seismograms.

779 **Appendix A Governing equations for unsteady multi-phase conduit
 780 flow model with variable viscosity**

781 This appendix lays out the governing equations for the conduit flow model used
 782 in this work. We model adiabatic multi-phase flow through a cylindrical conduit using
 783 a quasi one-dimensional unsteady conduit flow model solved using Quail, a discontin-
 784 uous Galerkin solver for hyperbolic partial differential equations (Ching et al., 2022). The
 785 mixture is composed of multiple phases: exsolved water, liquid melt, dissolved water, and
 786 crystals. We use “magma” to refer to the combination of liquid melt, dissolved water,
 787 and crystals. We assume that the exsolved water and magma share the same temper-
 788 ature and pressure at a given point.

789 The top pressure boundary condition is set to atmospheric pressure (10^5 Pa), when
 790 flow through the vent is subsonic. When exit velocity is sonic, the flow is choked. The
 791 bottom boundary conditions consist of an imposed constant pressure (i.e., chamber pres-
 792 sure) as well as specification of the mass fractions of each phase, which can be varied in
 793 time. See Section 3.2 for specifics on how magma composition is specified at the bottom
 794 boundary. Note that governing equations are formulated in terms of partial densities of
 795 each phase: the mass of the phase relative to the total volume.

796 **A1 Mass balance**

797 The governing equations include a mass balance for each of the phases in the mix-
 798 ture. We assume the same phasic density for liquid melt, dissolved water, and crystals.
 799 The magma mass balance captures the loss of mass through exsolution of water:

$$800 \frac{\partial \bar{\rho}_{\text{mag}}}{\partial t} + \frac{\partial(\bar{\rho}_{\text{mag}} v)}{\partial z} = -\bar{\rho}_{\text{melt}} \left(\frac{\chi_d - \chi_{\text{eq}}(p)}{t_{\text{ex}}} \right), \quad (\text{A1})$$

801 where $\bar{\rho}_{\text{mag}}$ is the partial density of magma, χ_d is the mass concentration of dissolved
 802 water (mass of dissolved water / mass of melt), $\bar{\rho}_{\text{melt}}$ is the partial density of liquid melt,
 803 $\chi_{\text{eq}}(p)$ is the equilibrium mass concentration of dissolved water at pressure p , v is the
 804 mixture particle velocity, and t_{ex} is the timescale of exsolution. The equilibrium mass
 805 concentration of dissolved water is described by Henry’s law of solubility:

$$806 \chi_{\text{eq}}(p) = \min(\chi_0, S_m p^{1/2}) \quad (\text{A2})$$

807 where χ_0 is the total water mass concentration and S_m is the solubility constant. Magma
 808 phasic density ρ_{mag} (i.e., mass of magma relative to magma volume) is determined by
 809 a linearized equation of state:

$$810 p = p_0 + \frac{K}{\rho_{\text{mag},0}} (\rho_{\text{mag}} - \rho_{\text{mag},0}), \quad (\text{A3})$$

811 where $\rho_{\text{mag},0}$, K , and p_0 are the reference magma density, bulk modulus, and reference
 812 pressure, respectively. Water is exchanged between the magma and the exsolved water

813 phases, which is also captured in the mass balance for exsolved water:

814

$$\frac{\partial(\bar{\rho}_{\text{ex}})}{\partial t} + \frac{\partial(\bar{\rho}_{\text{ex}}v)}{\partial z} = \bar{\rho}_{\text{melt}} \left(\frac{\chi_d - \chi_{\text{eq}}(p)}{t_{\text{ex}}} \right), \quad (\text{A4})$$

815 where $\bar{\rho}_{\text{ex}}$ is the partial density of exsolved water. The total water content (dissolved plus
816 exsolved) is governed by a source-free mass balance:

817

$$\frac{\partial(\bar{\rho}_w)}{\partial t} + \frac{\partial(\bar{\rho}_w v)}{\partial z} = 0, \quad (\text{A5})$$

818 where $\bar{\rho}_w$ is the partial density of total water. This assumes there is no gas escape or in-
819 troduction of other sources of water throughout the eruption. Exsolved water obeys an
820 ideal gas equation of state, despite being in a supercritical state in the lower portion of
821 the conduit:

822

$$p = \rho_{\text{ex}} R_G T, \quad (\text{A6})$$

823 where ρ_{ex} is the phasic density of exsolved water, R_G is the specific gas constant, and
824 T is temperature. We initialize the conduit magma with a specified crystal content, which
825 is advected through the conduit following a source-free mass balance:

826

$$\frac{\partial(\bar{\rho}_c)}{\partial t} + \frac{\partial(\bar{\rho}_c v)}{\partial z} = 0, \quad (\text{A7})$$

827 where $\bar{\rho}_c$ is the partial density of crystals. We do not simulate crystallization kinetics
828 during the eruption.

829

A2 Momentum and energy balance

830 The governing equations also include the momentum balance for the mixture, which
831 is sufficient due to the assumption that all phases are co-moving and share a common
832 pressure, temperature, and velocity. The momentum balance is

833

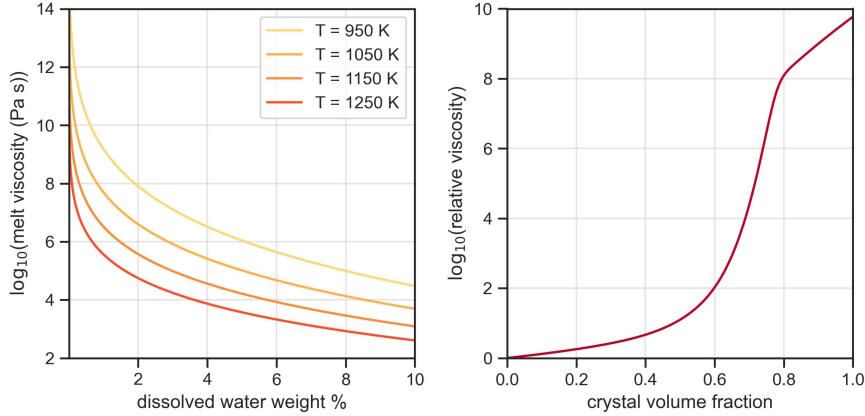
$$\rho \left(\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial z} \right) = - \frac{\partial p}{\partial z} - \rho g - \frac{2\tau}{R}, \quad (\text{A8})$$

834 where τ is wall shear stress, ρ is mixture density, v is mixture particle velocity, R is ra-
835 dius of conduit, and p is pressure. Fragmentation of the mixture is captured in the def-
836 inition of wall shear stress, which turns off when the mixture has met the critical gas vol-
837 ume fraction threshold.

838 Similarly, we use a single energy balance equation for the mixture:

839

$$\frac{\partial e}{\partial t} + \frac{\partial((e + p)v)}{\partial z} = -\rho g v - \frac{2\tau v}{R}, \quad (\text{A9})$$


840 where e is the total energy (internal plus kinetic) per unit volume for the mixture. In-
841 ternal energy per unit volume for the mixture is

842

$$e_{\text{internal}} = \bar{\rho}_{\text{ex}} C_{v,\text{ex}} T + \bar{\rho}_{\text{mag}} C_{v,\text{mag}} T, \quad (\text{A10})$$

843 where $C_{v,\text{ex}}$ and $C_{v,\text{mag}}$ are heat capacities for exsolved water and magma, respectively.

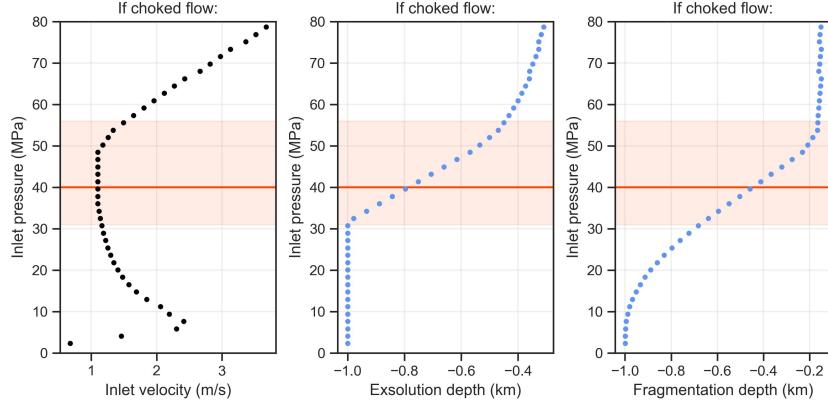
844 Fragmentation poses some numerical challenges, as it is a region with very sharp
845 spatial gradients as the flow transitions from laminar to turbulent and the wall shear stress
846 drops from its highest value to zero. We observed in the conduit flow model used in Coppess
847 et al. (2022), that when the spatial resolution insufficiently resolves the fragmentation
848 region, we see numerical features dominating the signal. Coppess et al. (2022) resolved
849 this with a smoothing function for the drag turn-off in the form of a logistic function.
850 However, this method did not lead to full turning off of the friction above fragmenta-
851 tion due to smearing never returning to zero. To remedy this and to introduce a tun-
852 ing parameter that is more physically intuitive, we introduce a new smoothing method

Figure A1. Viscosity dependence on magma composition. On left, melt viscosity (with no crystals) as a function of dissolved water content according to (A15) for different melt temperatures. On the right, relative viscosity as function of crystal volume fraction, according to (A16).

by introducing a new tracked quantity to record the progression of fragmentation, which we call the fragmented phase. This represents the partial density of fragmented magma and is passively advected through the conduit, only entering into the main governing equations through the wall shear stress. The evolution of this phase captures the dependence on gas volume fraction:

$$\frac{\partial \bar{\rho}_f}{\partial t} + \frac{\partial(\bar{\rho}_f v)}{\partial z} = h(\bar{\phi} - \bar{\phi}_0) \left(\frac{\bar{\rho}_{\text{mag}} - \bar{\rho}_f}{t_f} \right) \quad (\text{A11})$$

where $\bar{\rho}_f$ is the partial density of the fragmented phase, t_f is the fragmentation timescale, $\bar{\phi}$ is gas volume fraction (i.e. volume of exsolved water relative to total volume), $\bar{\phi}_0$ is the critical gas volume fraction, and $h(x)$ is a smoothing function of the following form:


$$h(x) = \frac{g(x/\zeta + 1)}{g(x/\zeta + 1) + g(-x/\zeta)}, \quad g(x) = \begin{cases} e^{-1/x} & x > 0 \\ 0 & x \leq 0 \end{cases} \quad (\text{A12})$$

This is basically a smoothed Heaviside function, where $h(x) = 0$ for $x < -\zeta$, $h(x) = 1$ for $x > 0$, and $h(x)$ is given by (A12) for $-\zeta < x < 0$. Therefore, when $\bar{\phi} > \bar{\phi}_0$, $h(\bar{\phi} - \bar{\phi}_0) = 1$. When the gas volume fraction is well below the threshold ($\bar{\phi} < \bar{\phi}_0 - \zeta$), the fragmented phase remains zero and does not evolve in time. Once the exsolved gas volume fraction is within range of the critical gas volume fraction that marks the fragmentation transition ($\bar{\phi} \geq \bar{\phi}_0 - \zeta$), the fragmented phase source term is gradually turned on and the fragmented phase partial density is pulled towards the magma partial density over some fragmentation timescale; this simulates a fragmentation process with some finite timescale. We then use the ratio of the fragmented phase to the magma phase to turn off the wall shear stress τ , marking a gradual transition between the two flow regimes:

$$\tau = \frac{4\eta v}{R} \left(1 - \frac{\bar{\rho}_f}{\bar{\rho}_m} \right). \quad (\text{A13})$$

The wall shear stress term also depends on the magma composition through viscosity. A common definition of viscosity used in conduit models takes the following form (Costa, 2005):

$$\eta = \eta_l(\chi_d, T)\eta_c(\phi_c), \quad (\text{A14})$$

Figure B1. Steady state solution space for choked flow at the vent for a 1 km conduit. Time to fragmentation depth is approximated by (bottom of conduit - fragmentation depth) / inlet velocity. Shaded region indicates where both exsolution and fragmentation depths are contained within the simulated domain. Red line marks the particular solution used in this work, which is shown in more detail in Figure 2.

where η_l is the viscosity of melt without crystals as a function of dissolved water mass concentration χ_d and temperature T , and η_c is the relative viscosity as a function of crystal volume fraction ϕ_c (i.e., volume of crystals relative to magma volume). Hess and Dingwell (1996) performed an experimental study on viscosity of silicate melts, developing an empirical function capturing the relation between melt viscosity and dissolved water content without the presence of crystals:

$$\log \eta_l(\chi_d, T) = (-3.545 + 0.8333 \ln W_d) + \frac{(9601 - 2368 \ln W_d)}{T - (195.7 + 32.25 \ln W_d)}, \quad W_d = 100\chi_d. \quad (\text{A15})$$

Similar experimental studies have been performed to investigate the effect of crystals on the mixture viscosity. Similarly, Costa (2005) designed a functional form for the relative viscosity from crystal content, which was then fit to experimental data:

$$\eta_c(\phi_c) = \frac{1 + \left(\frac{\phi_c}{\phi_*}\right)^\delta}{\left\{1 - \alpha \operatorname{erf}\left(\frac{\sqrt{\pi}}{2\alpha} \frac{\phi_c}{\phi_*} \left[1 + \left(\frac{\phi_c}{\phi_*}\right)^\gamma\right]\right)\right\}^{B/\phi_*}} \quad (\text{A16})$$

where B is the Einstein coefficient (2.5), ϕ_* is the critical transition fraction (0.673), and α, δ, γ are adjustable parameters (0.999916, 16.9386, 3.98937, respectively).

Appendix B Arriving at a steady-state solution for initialization

This section provides an overview of our approach to select a steady-state solution to initialize simulations. It is common for flow to be choked (i.e., fluid is traveling at sound speed) at the vent in explosive eruptions, which has the benefit of simplifying modeling by avoiding the need to model the eruptive jet and plume. We solve the steady-state version of the governing equations numerically, with choked flow at the top (or subsonic flow at atmospheric pressure at the top, if the choked flow pressure would be below atmospheric). Figure B1 shows characteristics of steady state solutions that satisfy the choked flow requirement. As part of the bottom boundary conditions, we can specify either the inlet velocity or pressure. Figure B1 shows that the steady state solution space is multi-valued in inlet velocity. Therefore, we define the steady state solution using an inlet pressure

902 condition. This also is a more natural formulation of the problem, as assuming constant
903 (or slowly varying) pressure is a more realistic approximation for a conduit coupled to
904 a magma chamber rather than constant velocity. Parameter values were chosen to bal-
905 ance being within observed ranges and reducing computation time. The bottom pres-
906 sure boundary condition was chosen to be within 10 MPa of lithostatic pressure. The
907 chosen solution is indicated by the red line in Fig. B1. To simplify defining the compo-
908 sition of magma injected through the bottom boundary, we require that the exsolution
909 depth is fully contained within the simulation domain, in addition to the fragmentation
910 depth (shaded region in Fig. B1). Crystal volume fraction $\bar{\phi}_c$ is constant with depth.

911 Acknowledgments

912 This work was funded by the National Science Foundation (DGE-1656518 to Katherine
913 Coppess, EAR-1930979 and EAR-2231849 to Eric M. Dunham). Computer simula-
914 tions were performed on Stanford's Sherlock cluster and we gratefully acknowledge the
915 support of staff at the Stanford Research Computing and funding from the Doerr School
916 of Sustainability for these computational resources.

917 Data Availability Statement

918 The conduit flow code, synthetic seismogram calculation code, and simulation data
919 for this work are hosted at the following (respectively): https://github.com/fredriclam/quail_volcano,
920 <https://github.com/kcoppess/synthetic-seismograms>, and <https://doi.org/10.25740/cp529tx2525>.

921 **References**

922 Alidibirov, M., & Dingwell, D. (2000). Three fragmentation mechanisms
 923 for highly viscous magma under rapid decompression. *Journal of Vol-*
 924 *canology and Geothermal Research*, 100(1-4), 413–421. doi: 10.1016/
 925 S0377-0273(00)00149-9

926 Bachmann, O., & Huber, C. (2019). The inner workings of crustal distilla-
 927 tion columns; the physical mechanisms and rates controlling phase separa-
 928 tion in silicic magma reservoirs. *Journal of Petrology*, 60(1), 3–18. doi:
 929 10.1093/petrology/egy103

930 Bercovici, D., Jellinek, A. M., Michaut, C., Roman, D. C., & Morse, R. (2013).
 931 Volcanic tremors and magma wagging: gas flux interactions and forcing
 932 mechanism. *Geophysical Journal International*, 195(2), 1001–1022. doi:
 933 10.1093/gji/ggt277

934 Caplan-Auerbach, J., Bellesiles, A., & Fernandes, J. K. (2010). Estimates of erup-
 935 tion velocity and plume height from infrasonic recordings of the 2006 eruption
 936 of Augustine Volcano, Alaska. *Journal of Volcanology and Geothermal Re-*
 937 *search*, 189(1-2), 12–18. doi: 10.1016/j.jvolgeores.2009.10.002

938 Ching, E. J., Bornhoft, B., Lasemi, A., & Ihme, M. (2022). Quail: A lightweight
 939 open-source discontinuous Galerkin code in Python for teaching and prototyp-
 940 ing. *SoftwareX*, 17, 100982. doi: 10.1016/j.softx.2022.100982

941 Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods for
 942 detecting precursors of magma movement and eruption. *Journal of Volcanol-*
 943 *ogy and Geothermal Research*, 252, 108–175. doi: 10.1016/j.jvolgeores.2012.11
 944 .013

945 Coppess, K. R., Dunham, E. M., & Almquist, M. (2022). Ultra and very long
 946 period seismic signatures of unsteady eruptions predicted from conduit flow
 947 models. *Journal of Geophysical Research: Solid Earth*, e2022JB024313. doi:
 948 10.1029/2022JB024313

949 Costa, A. (2005). Viscosity of high crystal content melts: Dependence on solid frac-
 950 tion. *Geophysical Research Letters*, 32(22). doi: 10.1029/2005GL024303

951 Dmitrieva, K., Hotovec-Ellis, A. J., Prejean, S., & Dunham, E. M. (2013).
 952 Frictional-faulting model for harmonic tremor before Redoubt Volcano erup-
 953 tions. *Nature Geoscience*, 6(8), 652–656. doi: 10.1038/ngeo1879

954 Fee, D., Haney, M. M., Matoza, R. S., Van Eaton, A. R., Cervelli, P., Schnei-
 955 der, D. J., & Iezzi, A. M. (2017). Volcanic tremor and plume height
 956 hysteresis from Pavlof Volcano, Alaska. *Science*, 355(6320), 45–48. doi:
 957 10.1126/science.aaah6108

958 Fee, D., Izbekov, P., Kim, K., Yokoo, A., Lopez, T., Prata, F., ... Iguchi, M. (2017).
 959 Eruption mass estimation using infrasound waveform inversion and ash and
 960 gas measurements: Evaluation at Sakurajima Volcano, Japan. *Earth and*
 961 *Planetary Science Letters*, 480, 42–52. doi: 10.1016/j.epsl.2017.09.043

962 Fowler, A., Scheu, B., Lee, W., & McGuinness, M. (2010). A theoretical model of
 963 the explosive fragmentation of vesicular magma. *Proceedings of the Royal Soci-
 964 ety A: Mathematical, Physical and Engineering Sciences*, 466(2115), 731–752.
 965 doi: 10.1098/rspa.2009.0382

966 Freret-Lorgeril, V., Bonadonna, C., Corradini, S., Donnadieu, F., Guerrieri, L.,
 967 Lacanna, G., ... others (2021). Examples of multi-sensor determination of
 968 eruptive source parameters of explosive events at Mount Etna. *Remote Sens-*
 969 *ing*, 13(11), 2097. doi: 10.3390/rs13112097

970 Gestrich, J. E., Fee, D., Tsai, V. C., Haney, M. M., & Van Eaton, A. R. (2020). A
 971 physical model for volcanic eruption tremor. *Journal of Geophysical Research:*
 972 *Solid Earth*, 125(10), e2019JB018980. doi: 10.1029/2019JB018980

973 Gonnermann, H. M. (2015). Magma fragmentation. *Annual Review of Earth*
 974 *and Planetary Sciences*, 43(1), 431–458. doi: 10.1146/annurev-earth-060614
 975 -105206

976 Gonnermann, H. M., & Manga, M. (2003). Explosive volcanism may not be an
 977 inevitable consequence of magma fragmentation. *Nature*, *426*(6965), 432–435.
 978 doi: 10.1038/nature02138

979 Gonnermann, H. M., & Manga, M. (2007). The fluid mechanics inside a volcano.
 980 *Annu. Rev. Fluid Mech.*, *39*, 321–356. doi: 10.1146/annurev.fluid.39.050905
 981 .110207

982 Gualda, G. A., Cook, D. L., Chopra, R., Qin, L., Anderson, A. T., & Rivers, M.
 983 (2004). Fragmentation, nucleation and migration of crystals and bubbles
 984 in the Bishop Tuff rhyolitic magma. *Earth and Environmental Science
 985 Transactions of The Royal Society of Edinburgh*, *95*(1-2), 375–390. doi:
 986 10.1017/S0263593300001139

987 Gualda, G. A., & Ghiorso, M. S. (2013). The bishop tuff giant magma body: an
 988 alternative to the standard model. *Contributions to Mineralogy and Petrology*,
 989 *166*, 755–775. doi: 10.1007/s00410-013-0901-6

990 Gualda, G. A., & Rivers, M. (2006). Quantitative 3D petrography using x-ray to-
 991 mography: Application to Bishop Tuff pumice clasts. *Journal of Volcanology
 992 and Geothermal Research*, *154*(1-2), 48–62. doi: 10.1016/j.jvolgeores.2005.09
 993 .019

994 Hess, K., & Dingwell, D. B. (1996). Viscosities of hydrous leucogranitic melts: A
 995 non-Arrhenian model. *American Mineralogist: Journal of Earth and Planetary
 996 Materials*, *81*(9-10), 1297–1300.

997 Hildreth, W., & Wilson, C. J. (2007). Compositional zoning of the Bishop Tuff.
 998 *Journal of Petrology*, *48*(5), 951–999. doi: 10.1093/petrology/egm007

999 Hobbs, P. V., Radke, L. F., Lyons, J. H., Ferek, R. J., Coffman, D. J., & Casadevall,
 1000 T. J. (1991). Airborne measurements of particle and gas emissions from the
 1001 1990 volcanic eruptions of Mount Redoubt. *Journal of Geophysical Research:
 1002 Atmospheres*, *96*(D10), 18735–18752. doi: 10.1029/91JD01635

1003 Hotovec, A. J., Prejean, S. G., Vidale, J. E., & Gomberg, J. (2013). Strongly glid-
 1004 ing harmonic tremor during the 2009 eruption of Redoubt Volcano. *Journal of
 1005 Volcanology and Geothermal Research*, *259*, 89–99. doi: 10.1016/j.jvolgeores
 1006 .2012.01.001

1007 Jones, T. J., Cashman, K. V., Liu, E. J., Rust, A. C., & Scheu, B. (2022). Magma
 1008 fragmentation: a perspective on emerging topics and future directions. *Bulletin
 1009 of Volcanology*, *84*(5), 45. doi: 10.1007/s00445-022-01555-7

1010 Kanamori, H., Mori, J., & Harkrider, D. G. (1994). Excitation of atmospheric os-
 1011 cillations by volcanic eruptions. *Journal of Geophysical Research: Solid Earth*,
 1012 *99*(B11), 21947–21961. doi: 10.1029/94JB01475

1013 Kasimov, A. R., & Gonchar, A. R. (2021). Reactive Burgers model for detonation
 1014 propagation in a non-uniform medium. *Proceedings of the Combustion Insti-
 1015 tute*, *38*(3), 3725–3732. doi: 10.1016/j.proci.2020.07.149

1016 Kazahaya, R., Mori, T., Takeo, M., Ohminato, T., Urabe, T., & Maeda, Y. (2011).
 1017 Relation between single very-long-period pulses and volcanic gas emis-
 1018 sions at Mt. Asama, Japan. *Geophysical research letters*, *38*(11). doi:
 1019 10.1029/2011GL047555

1020 Konstantinou, K. I., & Schlindwein, V. (2003). Nature, wavefield proper-
 1021 ties and source mechanism of volcanic tremor: a review. *Journal of Vol-
 1022 canology and Geothermal Research*, *119*(1-4), 161–187. doi: 10.1016/
 1023 S0377-0273(02)00311-6

1024 Koyaguchi, T., Scheu, B., Mitani, N. K., & Melnik, O. (2008). A fragmentation
 1025 criterion for highly viscous bubbly magmas estimated from shock tube exper-
 1026 iments. *Journal of volcanology and geothermal research*, *178*(1), 58–71. doi:
 1027 10.1016/j.jvolgeores.2008.02.008

1028 Lavallée, Y., & Kendrick, J. E. (2021). A review of the physical and mechanical
 1029 properties of volcanic rocks and magmas in the brittle and ductile regimes.
 1030 *Forecasting and planning for volcanic hazards, risks, and disasters*, 153–238.

1031 doi: 10.1016/B978-0-12-818082-2.00005-6

1032 Liu, C., Klostermeyer, J., Yeh, K., Jones, T., Robinson, T., Holt, O., ... others
 1033 (1982). Global dynamic responses of the atmosphere to the eruption of Mount
 1034 St. Helens on May 18, 1980. *Journal of Geophysical Research: Space Physics*,
 1035 87(A8), 6281–6290. doi: 10.1029/JA087iA08p06281

1036 McGuinness, M., Scheu, B., & Fowler, A. (2012). Explosive fragmentation criteria
 1037 and velocities for vesicular magma. *Journal of Volcanology and Geothermal re-*
 1038 *search*, 237, 81–96. doi: 10.1016/j.jvolgeores.2012.05.019

1039 McNutt, S. R. (1994). Volcanic tremor amplitude correlated with eruption explo-
 1040 sivity and its potential use in determining ash hazards to aviation. In *Volcanic*
 1041 *ash and aviation safety: Proceedings of the first international symposium on*
 1042 *volcanic ash and aviation safety* (pp. 377–385).

1043 McNutt, S. R., & Nishimura, T. (2008). Volcanic tremor during eruptions:
 1044 Temporal characteristics, scaling and constraints on conduit size and pro-
 1045 cesses. *Journal of Volcanology and Geothermal Research*, 178(1), 10–18. doi:
 1046 10.1016/j.jvolgeores.2008.03.010

1047 Melnik, O., & Sparks, R. (2002). Modelling of conduit flow dynamics during ex-
 1048 plosive activity at Soufrière Hills Volcano, Montserrat. *Geological Society, Lon-*
 1049 *don, Memoirs*, 21(1), 307–317. doi: 10.1144/GSL.MEM.2002.21.01.14

1050 Morgavi, D., Laumonier, M., Petrelli, M., & Dingwell, D. B. (2022). Decrypting
 1051 magma mixing in igneous systems. *Reviews in Mineralogy and Geochemistry*,
 1052 87(1), 607–638. doi: 10.2138/rmg.2022.87.13

1053 Mori, T., & Burton, M. (2009). Quantification of the gas mass emitted during single
 1054 explosions on Stromboli with the SO₂ imaging camera. *Journal of Volcanology*
 1055 *and Geothermal Research*, 188(4), 395–400. doi: 10.1016/j.jvolgeores.2009.10
 1056 .005

1057 Nakashima, Y., Heki, K., Takeo, A., Cahyadi, M. N., Aditiya, A., & Yoshizawa, K.
 1058 (2016). Atmospheric resonant oscillations by the 2014 eruption of the Ke-
 1059 lud Volcano, Indonesia, observed with the ionospheric total electron contents
 1060 and seismic signals. *Earth and Planetary Science Letters*, 434, 112–116. doi:
 1061 10.1016/j.epsl.2015.11.029

1062 Pamukcu, A. S., & Gualda, G. A. (2010). Quantitative 3D petrography using x-ray
 1063 tomography 2: Combining information at various resolutions. *Geosphere*, 6(6),
 1064 775–781. doi: 10.1130/GES00565.1

1065 Pamukcu, A. S., Gualda, G. A., & Anderson Jr, A. T. (2012). Crystallization stages
 1066 of the Bishop Tuff magma body recorded in crystal textures in pumice clasts.
 1067 *Journal of Petrology*, 53(3), 589–609. doi: 10.1093/petrology/egr072

1068 Pankhurst, M., Dobson, K., Morgan, D., Loughlin, S., Thordarson, T., Lee, P., &
 1069 Courtois, L. (2014). Monitoring the magmas fuelling volcanic eruptions in
 1070 near-real-time using X-ray micro-computed tomography. *Journal of Petrology*,
 1071 55(3), 671–684. doi: 10.1093/petrology/egt079

1072 Papale, P. (1999). Strain-induced magma fragmentation in explosive eruptions. *Na-*
 1073 *ture*, 397(6718), 425–428. doi: 10.1038/17109

1074 Perugini, D., & Poli, G. (2012). The mixing of magmas in plutonic and volcanic en-
 1075 vironments: analogies and differences. *Lithos*, 153, 261–277. doi: 10.1016/j
 1076 .lithos.2012.02.002

1077 Popa, R.-G., Bachmann, O., & Huber, C. (2021). Explosive or effusive style of vol-
 1078 canic eruption determined by magma storage conditions. *Nature Geoscience*,
 1079 14(10), 781–786. doi: 10.1038/s41561-021-00827-9

1080 Prejean, S. G., & Brodsky, E. E. (2011). Volcanic plume height measured by seismic
 1081 waves based on a mechanical model. *Journal of Geophysical Research: Solid*
 1082 *Earth*, 116(B1). doi: 10.1029/2010JB007620

1083 Raponi, M., Vilar, O., Arboleas, H., García, S., Otero, L., Pereyra, A., ... Gómez,
 1084 M. (2021). First portable scanning-DOAS system developed in Latin America
 1085 for volcanic SO₂ monitoring. *Journal of South American Earth Sciences*, 108,

1086 103177. doi: 10.1016/j.jsames.2021.103177

1087 Reath, K., Pritchard, M., Roman, D. C., Lopez, T., Carn, S., Fischer, T. P., ... others
1088 (2021). Quantifying eruptive and background seismicity, deformation, de-
1089 gassing, and thermal emissions at volcanoes in the United States during 1978–
1090 2020. *Journal of Geophysical Research: Solid Earth*, *126*(6), e2021JB021684.
1091 doi: 10.1029/2021JB021684

1092 Ripepe, M., De Angelis, S., Lacanna, G., & Voight, B. (2010). Observation of in-
1093 frasonic and gravity waves at Soufrière Hills Volcano, Montserrat. *Geophysical*
1094 *Research Letters*, *37*(19). doi: 10.1029/2010GL042557

1095 Salisbury, M. J., Bohrson, W. A., Clyne, M. A., Ramos, F. C., & Hoskin, P. (2008).
1096 Multiple plagioclase crystal populations identified by crystal size distribution
1097 and in situ chemical data: Implications for timescales of magma chamber
1098 processes associated with the 1915 eruption of Lassen Peak, CA. *Journal of*
1099 *Petrology*, *49*(10), 1755–1780. doi: 10.1093/petrology/egn045

1100 Scheu, B., & Dingwell, D. B. (2022). Magma fragmentation. *Reviews in mineralogy*
1101 and geochemistry

1102 Tpley III, F., Davidson, J., & Clyne, M. (1999). Magmatic interactions as
1103 recorded in plagioclase phenocrysts of Chaos Crags, Lassen Volcanic Cen-
1104 ter, California. *Journal of Petrology*, *40*(5), 787–806. doi: 10.1093/petroj/
1105 40.5.787

1106 Vulpiani, G., Ripepe, M., & Valade, S. (2016). Mass discharge rate retrieval com-
1107 bining weather radar and thermal camera observations. *Journal of Geophysical*
1108 *Research: Solid Earth*, *121*(8), 5679–5695. doi: 10.1002/2016JB013191

1109 Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements
1110 from a point source in multilayered media. *Geophysical Journal International*,
1111 *148*(3), 619–627. doi: 10.1046/j.1365-246X.2002.01610.x