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Key Points:

¢ Fluctuations in magma fragmentation during explosive volcanic eruptions change
forces exerted on solid Earth and generate seismic waves

« We compute synthetic seismograms from unsteady conduit flow models of high
viscosity magma parcels passing through fragmentation

 Stochastic fluctuations in fragmentation might explain eruption tremor that is ubig-
uitously observed during explosive volcanic eruptions
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Abstract

Fragmentation plays a critical role in eruption explosivity by influencing the eruptive jet
and plume dynamics that may initiate hazards such as pyroclastic flows. The mechan-

ics and progression of fragmentation during an eruption are challenging to constrain ob-
servationally, limiting our understanding of this important process. In this work, we ex-
plore seismic radiation associated with unsteady fragmentation. Seismic force and mo-
ment tensor fluctuations from unsteady fragmentation arise from fluctuations in frag-
mentation depth and wall shear stress (e.g., from viscosity variations). We use unsteady
conduit flow models to simulate perturbations to a steady-state eruption from injections
of heterogeneous magma (specifically, variable magma viscosity due to crystal volume
fraction variations). Changes in wall shear stress and pressure determine the seismic force
and moment histories, which are used to calculate synthetic seismograms. We consider
three heterogeneity profiles: Gaussian pulse, sinusoidal, and stochastic. Fragmentation

of a high-crystallinity Gaussian pulse produces a distinct very-long-period (VLP) seis-
mic signature and associated reduction in mass eruption rate, suggesting joint use of seis-
mic, infrasound, and plume monitoring data to identify this process. Simulations of si-
nusoidal injections quantify the relation between the frequency or length scale of het-
erogeneities passing through fragmentation and spectral peaks in seismograms, with ve-
locity seismogram amplitudes increasing with frequency. Stochastic composition vari-
ations produce stochastic seismic signals similar to observed eruption tremor, though com-
putational limitations restrict our study to frequencies less than 0.25 Hz. We suggest that
stochastic fragmentation fluctuations could be a plausible eruption tremor source.

Plain Language Summary

Explosive volcanic eruptions can be monitored and studied using seismic record-
ings of ground shaking produced by the eruption. This study explores the seismic ex-
pression of magma fragmentation. Fragmentation refers to magma breaking apart, a pro-
cess that occurs in the upper part of volcanic conduits. Fragmentation reduces drag on
the conduit walls and allows magma to erupt explosively. When fragmentation occurs
in an unsteady manner, the forces exerted by the magma on the solid Earth change, pro-
ducing seismic wave radiation. We use computer simulations of explosive eruptions and
the accompanying seismic radiation to identify seismic signatures of fragmentation. Our
results can help guide interpretation of seismic data from real eruptions, providing in-
sight into controls on eruption explosivity.

1 Introduction

One of the primary controls on the explosivity of an eruption is fragmentation: the
process by which magma breaks apart, leaving imbalanced forces that produce huge up-
ward acceleration of the magma. However, there are still open questions about this pro-
cess in regards to the mechanics and progression of fragmentation over the course of an
explosive eruption. Unsteady fragmentation may lead to unsteady discharge, influenc-
ing eruption jet and plume dynamics which in turn affect aviation hazards from ash de-
livery to the atmosphere. In addition, it is possible that these variations could initiate
column collapse and pyroclastic flows, posing significant hazards to surrounding com-
munities.

Fragmentation marks the transition from a melt-continuous regime — with high drag
along the conduit walls — to a gas-continuous regime — with drag becoming negligible.
Seismology offers a potential way to provide quantitative constraints on this eruptive pro-
cess, as the sudden changes in drag associated with fragmentation may excite seismic
waves in the surrounding earth. As we will discuss in more detail later, it is arguable that
unsteady fragmentation contributes to seismic radiation ranging from very long period
(VLP, 0.01 to 0.5 Hz) frequencies to >1 Hz eruption tremor, depending on the timescales
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of unsteadiness. Coherent VLP signals and stochastic tremor are universally observed
during explosive eruptions but it is still not clear how to quantitatively interpret them.
Eruption tremor in particular has been related empirically to plume height (McNutt, 1994;
Prejean & Brodsky, 2011; Caplan-Auerbach et al., 2010) but the relation appears to be
complex (Fee, Izbekov, et al., 2017). Numerical modeling provides a useful tool to ex-
plore these complex dynamics.

Evidence indicating that unsteady fragmentation could yield observable seismic sig-
nals is seen in Section 6 of Coppess et al. (2022). In that study, synthetic seismograms
were calculated from unsteady conduit flow models. Simulations with insufficient spa-
tial resolution in the finite difference discretization led to the halting descent of the frag-
mentation front (shown in their Figure 14). With insufficient resolution of the charac-
teristic length scale of fragmentation, parcels of magma do not continuously fragment
because conditions required for fragmentation have not yet been met. This means that
drag between the parcel and the conduit walls remains high. As a result, the high drag
reduces the flow speed and overpressure develops below the fragmentation front. Frag-
mentation then occurs at one grid point, releasing a high frequency seismic wave. The
process repeats at subsequent grid points. While the source of the halting fragmenta-
tion front was numerical, the system responded in a realistic fluid dynamical way with
high acceleration of melt due to the driving pressure gradient left behind when the re-
straining drag force was suddenly reduced. This response is captured in variations in shear
stress on the conduit walls that lead to high frequency seismic wave radiation (see their
Figure 15). In this current study, we revisit the problem of fluctuating fragmentation with
well-resolved simulations and realistic causes of fluctuations.

One physically motivated source of unsteady fragmentation is heterogeneity in magma

composition. Magma composition plays an important role in fluid dynamics through the
magma viscosity, which determines how magma behaves in response to applied stresses.
Magma viscosity depends on its bulk chemical composition, volatile content, and crys-
tal content (e.g., Hess & Dingwell, 1996; Costa, 2005; Gonnermann, 2015). This enters
our conduit flow modeling through the shear stress between the magma and the conduit
walls, which increases with increasing magma viscosity for the same ascent rate. There-
fore, variations in magma composition yield (potentially sudden) changes in wall shear
tractions, as well as fluctuations in the fragmentation depth as the compositional het-
erogeneities are advected through fragmentation front. We refer to these processes as un-
steady fragmentation. We also demonstrate that fluctuations in the seismic force from
these variations in magma composition could be a potential source of volcanic eruption
tremor.

Petrological evidence suggests that compositional heterogeneities exist and evolve
over the course of an eruption. A notable example is the Bishop Tuff in Long Valley, Cal-
ifornia. The Bishop Tuff formed from one of the world’s largest eruptions, erupting from
the Long Valley caldera over the course of 6 days at 750 ka (Hildreth & Wilson, 2007).
Analysis of compositional data suggests a gradual increase in the crystal content of erupted
magma as the eruption progressed, ranging from 1 to 25 wt% (Hildreth & Wilson, 2007;
Gualda et al., 2004). Within a unit (i.e., eruption stage), samples exhibit fairly large ranges
of crystal contents and crystal size distributions, suggesting small-scale (cm to m) het-
erogeneities within the same bulk composition (Pamukcu & Gualda, 2010; Pamukcu et
al., 2012; Gualda & Rivers, 2006). However, compositional analysis also suggests that
there were multiple bulk magma compositions due to the presence of banding and clasts
of differing compositions throughout the eruption, either from pre-eruptive mixing of a

vertically stratified magma body or the presence of multiple horizontally-distributed magma

bodies (Hildreth & Wilson, 2007; Gualda et al., 2004; Gualda & Ghiorso, 2013). Evi-

dence of multiple crystal populations and size distributions has been observed elsewhere,
such as at Lassen Peak, California (Salisbury et al., 2008; Tepley III et al., 1999). Other
proposed mechanisms of variations in crystal content throughout a magma body include
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Figure 1. Schematic breaking down contributions to the seismic force from fluctuating frag-
mentation. Left panel shows the reference solution for a steady state eruption of magma with
viscosity n flowing with constant velocity v and fragmenting at depth ho. Second panel shows
solution some short time later with changes relative to reference state indicated in red. Changes
indicated represent contributions to seismic force variations arising from 1) variations in fragmen-

tation depth and 2) variations in shear stress.

processes by which denser crystals settle toward the bottom of the magma chamber, leav-
ing eruptable melt near the top (Hildreth & Wilson, 2007; Bachmann & Huber, 2019),
e.g., melt segregation, fractional crystallization, and distillation. This could then be com-
plexified by convective mixing of the stratified magma.

In this work, we explore how different types of compositional heterogeneity are ex-
pressed in observable seismic wave radiation. We calculate synthetic seismograms using
simulation results from conduit flow modeling that captures the advection of heteroge-
neous magma through the conduit. We use an unsteady conduit flow model to simulate
a sustained eruption with injection of heterogeneous magma through the bottom of the
conduit. To simulate the viscosity variations associated with heterogeneous magma, we
vary the crystal volume fraction. We investigate various injection profiles using the work-
flow from Coppess et al. (2022) to quantify the relation between the injection process
(i.e., the timescales and amplitude of the compositional variations) and seismic wave ra-
diation.

2 Force breakdown of unsteady fragmentation

We are interested in quantifying the seismic force fluctuations arising from unsteady
fragmentation. Both quasi-static and far-field particle velocities in an elastic solid are
proportional to force rate and decay as the inverse of distance, which means that unsteady
fragmentation is potentially observable at both near-source and far-field stations. There
may also be fluctuations in seismic moment from changes in conduit pressure, but as we
will later demonstrate, the force fluctuations are almost always dominant. To start, we
consider the seismic force for a general case and then take the time derivative to derive
two contributions to the force fluctuations.

According to the traction-based representation presented in Coppess et al. (2022)
(their Section 3), the seismic force depends on changes in shear traction acting along the
conduit and chamber walls. The largest contribution to the seismic force arises from just
below the fragmentation depth for several reasons. First, fragmentation is the transition
from a liquid-continuous regime with high viscosity and drag to a gas-continuous regime
with negligible drag. This creates an imbalance of forces as melt breaks apart and leads
to a driving force that accelerates the melt upward, around and above the fragmenta-
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tion depth. The velocity of the liquid-continuous, high viscosity magma is greatest at
this transition point, leading to high upward shear stress. The second reason is due to
the melt viscosity increasing as the dissolved volatile concentration decreases. As magma
moves up the conduit, it depressurizes and volatiles exsolve from the melt, forming bub-
bles and increasing the melt viscosity (Hess & Dingwell, 1996). Fragmentation occurs

as the increasing strain rates in the magma drive it from viscous to brittle deformation,
ultimately leading to fracture of the bubble walls and linkage of the gas bubbles. The
highest viscosities therefore occur just below fragmentation.

Consider the schematic of an eruption shown in Figure 1. The top of the cylindri-
cal, vertical conduit is at z = 0, with the depth z being positive upward, and the frag-
mentation depth is z = h(t) < 0, which may vary in time. Below fragmentation, the
wall shear stress (or drag) 7 is given by the laminar flow expression

dnv
- 1
4 R’ (1)

where 7 is the magma viscosity, v is the cross-sectionally averaged vertical particle ve-
locity, and R is the conduit radius. When vertically integrating the seismic force con-
tributions over depth, we assume that contributions from drag above fragmentation are
negligible, so the seismic force is

h(t)
F,(t) =/7L 27 R7(z,t)dz, (2)

where —L is the position of the bottom boundary of the integrated region which does
not vary in time. We take the time derivative of (2) and apply Leibniz’s rule:

h(t)

Fy(t) =27R

7(h(t), t)h(t) + /

7(z,t)dz| . (3)
-L
Each term in (3) highlights one contribution to force fluctuations: the first corresponds
to the fluctuating fragmentation depth with fixed shear stress and the second to vari-
ations in shear stress with fixed fragmentation depth.

We can further understand how these might change the seismic force by consid-
ering each individually and looking at perturbations around some initial state. A fluc-
tuating fragmentation depth changes the contact area between the highly viscous magma
and the conduit walls, as shown in Figure 1. If the fragmentation depth varies by some
amount Ah, then the force fluctuation will be proportional to the depth change: AF, =
8mnuAh. This is consistent with what was observed with the numerical effect in Coppess
et al. (2022): the fragmentation depth dropped suddenly, leading to a downward impulse
in the seismic force. Next consider the other source of force fluctations arising from vari-
ations in shear stress. Assume that the particle velocity is spatially uniform, such that
any changes in shear stress arise from changes in viscosity. Suppose that a parcel of magma
with viscosity n+An and depth extent Az is injected into the conduit (and is advected
upward at the constant velocity). The additional force contribution from this parcel is
AF; = 8mrAnvAz, which depends on both the extent of the parcel and the difference
in viscosity. This additional force will exist from the time the parcel enters the conduit
until it passes through fragmentation, when it will abruptly vanish. Seismic force fluc-
tuations in an eruption will be a combination of both of these effects, due to the rela-
tion between viscosity perturbations and fragmentation depth fluctuation dynamics. There
may also be changes in velocity that arise from magma compressibility and interaction
with a magma chamber held at relatively constant pressure through this process.

Breaking down the unsteady fragmentation force mechanism in this way allows us
to make estimates of force fluctuations that cause seismic wave radiation. Consider rep-
resentative values for magma viscosity 7 = 5 x 10° Pa s and velocity v = 2 m/s below
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fragmentation, which are consistent with the example simulation in Coppess et al. (2022)
(their section 6). This magma viscosity is representative of intermediate magma com-
positions, like andesites and dacites that commonly occur in arc volcanoes. This is con-
sistent with our focus on sub-Plinian style eruptions, which have been observed at arc
volcanoes. In the example simulation, the fragmentation depth drops about 4 m at a time.
According to the fluctuating fragmentation depth contribution estimate, this yields a down-
ward force change of ~10° N, which is consistent with the amplitude of the sharp force
change in Coppess et al. (2022). The duration of the force change is determined by the
rate of fragmentation depth variations. In the numerical intermittent descent example,

the depth drops instantaneously and leads to the very sharp feature observed. Force changes
of 10 N yield seismic amplitudes on the order of ~10 um/s for stations located a few
kilometers from the vent (Coppess et al., 2022). These amplitudes are generally observ-
able.

Next we construct an example case for the viscosity variation contribution, using
the same representative values for magma viscosity and velocity just below fragmenta-
tion. Consider a parcel of magma with thickness Az = 10 m and higher viscosity An =
10 Pa s. The associated force change is 5x10% N, which yields comparable seismic am-
plitudes to the intermittent descent contribution. Since the largest force fluctuations arise
just below fragmentation, the duration of the signal will be determined by how quickly
the parcel is advected through the fragmentation front, which is approximately Az/v =
5 s (~0.2 Hz). If the parcel were smaller, then the force change would be of smaller am-
plitude and higher frequency.

Overall these estimates establish the feasibility of observable seismic wave radia-
tion from fluctuations in the fragmentation process. Next we utilize unsteady conduit
flow simulations to investigate this problem in more detail.

3 Methodology

To simulate the conduit flow response to heterogeneities in magma composition,
we investigate the conduit flow dynamics that arise from perturbations around steady-
state eruption conditions. Starting with initial conditions representing an ongoing steady
eruption, we vary the magma composition flowing into the conduit and simulate the sys-
tem response using an unsteady conduit flow model. We use the simulation results to
calculate synthetic seismograms using the workflow presented in Coppess et al. (2022)
(summarized in their Section 2) to demonstrate how the seismic signal connects to the
internal fluid dynamics.

Our unsteady conduit flow model solves for quasi-1D adiabatic flow of multiphase
fluid (exsolved water, liquid melt, dissolved water, and crystals). For the rest of this study,
we use the term “magma’ to refer to the combination of the following phases: liquid melt,
dissolved water, and crystals. All phases are assumed to share a common temperature,
pressure and particle velocity. Gas exsolution from the melt occurs over a specified timescale,
and we account for the dependence of magma viscosity on temperature, dissolved volatile
content and crystal content using experimentally constrained empirical relations. We as-
sume a linear viscous rheology for the magma for simplicity. Fragmentation is captured
through a smoothed drop of the wall shear stress to zero, marking the transition to a low-
viscosity and turbulent gas-continuous regime in the upper conduit above fragmentation.
Since turbulent drag is many orders of magnitude smaller than the drag below fragmen-
tation, we neglect its contribution to the wall shear stress and seismic force.

To help visualize fragmentation, we define an effective viscosity as the product of
the magma viscosity and the volume fraction of unfragmented magma. Therefore the
effective viscosity is identical to the magma viscosity below fragmentation and drops to
zero as the magma fragments. We use this effective viscosity in the plots to follow. The
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Figure 2. Initial steady state solution. Parameter values are given in Table 1. Fragmenta-
tion occurs when the gas volume fraction exceeds 0.75. Effective viscosity is the product of the

magma viscosity and the volume fraction of unfragmented magma (see text).

smoothed transition in wall shear stress represents the finite timescale of the fragmen-
tation process. This timescale is a model parameter that can be chosen to correspond
with the relevant timescale of a proposed fragmentation mechanism. It also serves to in-
troduce (together with the magma ascent velocity) a length scale that must be resolved
in the spatial discretization of the governing equations. In this model, we adopt a crit-
ical gas volume fraction fragmentation condition for simplicity: when the exsolved gas
volume fraction exceeds this threshold, the magma is considered fragmented and the wall
shear stress is reduced toward zero. Utilizing a fragmentation criterion based on a crit-
ical gas overpressure or strain rate would be more realistic (Papale, 1999; Gonnermann
& Manga, 2003; Melnik & Sparks, 2002; Scheu & Dingwell, 2022), but is left for future
work. For more specifics of the conduit flow model used in this study, we refer the reader
to Appendix A.

3.1 Steady-state solution

To initialize the simulation, we choose a steady-state solution defined by a bottom
pressure boundary condition and choked flow through the vent. While we do not model
the eruptive jet and plume, the model provides the time-dependent mass eruption rate,
which can be used in a model of the eruptive jet and plume to allow comparison with
observations. The crystal volume fraction ¢, (volume of crystals / volume of magma)
is constant with depth. See Appendix B for details on the relevant considerations that
went into choosing the solution used to initialize the simulations.

The chosen solution is shown in Figure 2. Magma is injected at the bottom bound-
ary at a pressure of 40 MPa, corresponding to an inlet velocity of ~1 m/s. As the magma
moves up through the conduit, drag and the reduced weight of the overlying magma col-
umn leads to depressurization of magma. Eventually, the melt becomes supersaturated
with volatiles and exsolution starts when it reaches a depth of 900 m. As exsolution pro-
gresses and the gas volume fraction increases, the viscosity of the melt begins to increase
as the dissolved volatile content drops. This leads to progressively increasing drag along
the conduit walls (as velocity is not changing significantly), which leads to an increased
pressure gradient. At around a depth of 450 m, the gas volume fraction reaches the crit-
ical threshold for fragmentation to occur; the magma viscosity reaches its peak just be-
low this depth. Fragmentation is accompanied by a reduction in drag. Above the frag-
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Table 1. Parameter values used in steady-state solution in Section 3.1.
Symbol Description Numerical value
g gravitational acceleration 9.8 m/s?

b0 critical gas volume fraction 0.75
tex exsolution timescale 10 s
ty fragmentation timescale 1s
¢ fragmentation smoothing scale 0.15
Sim solubility constant 5 x 1076 Pal/?
X0 water mass concentration at base of conduit 0.03
beo bulk crystal volume fraction 0.4
Ra specific gas constant 461 J/(kg K)
Ten chamber temperature 1050 K
Pch chamber pressure 40 MPa
K magma bulk modulus 10° Pa
Pmag,0 reference magma density 2600 kg/m?
Do reference pressure x8/S2,
Cy ex exsolved water heat capacity 1827 J/ (kg K)
C\ mag magma heat capacity 3000 J/(kg K)
R conduit radius 50 m
L conduit length 1 km
Pr rock density 2700 kg/m?
¢p P-wave speed 3.464 km/s
Cs S-wave speed 2 km/s

mentation depth, the wall shear stress drops toward zero and the magma is accelerated

upward.

3.2 Injection profiles of heterogeneous magma

In this section we explain how heterogeneities in magma are introduced through
the bottom boundary of the conduit flow model. These heterogeneities are then advected
upward through the conduit and lead to unsteady perturbations of the fragmentation
front. In concept, the steady state solution could be unstable to perturbations. However,
we see no evidence for this for the parameter space explored in this study. We also ex-
plain how we parametrize the magma heterogeneities by specifying variations in crys-
tal content and how this affects magma viscosity.

The inlet pressure at the bottom boundary remains constant throughout the sim-
ulation. We specify the composition of magma by setting the partial densities of each
phase at the boundary (i.e., the mass of some phase relative to the total volume, denoted
as p with a subscript identifying the phase: ex for exsolved water, dis for dissolved wa-
ter, w for total water, ¢ for crystals, melt for melt, and mag for magma). For our selected
parameters, the exsolution depth is contained within the simulated domain, so no ex-
solved water enters the conduit (i.e., g, = 0). This means that magma partial den-
sity is the same as magma phasic density and total mixture density (py,,, = p), which
allows us to use the magma equation of state with the inlet pressure to define the magma
partial density. It also means that the total water partial density is equal to the dissolved
water partial density: py, = Pqis-

To clarify the relation between magma composition variations and viscosity vari-
ations, we assume that the injected dissolved water mass concentration yo (mass of dis-
solved water / mass of melt) remains constant. This means that only variations in crys-
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tal volume fraction ¢, (volume of crystals / volume of magma) contribute to viscosity
perturbations. This is done to simplify specification of the boundary conditions. To sum-
marize, the conditions used to specify the magma composition at the bottom boundary
are as follows:

W

Pex =0,

Padis/ Prelt = X0

Pe/Pmag = Pe(l),

Prmag = Pmelt + Pdis T Pe = P(Pbot)

~ o~ o~
(=23
—_ D D

EN|

where ppot is the chamber pressure and ¢.(t) defines some time-dependent variation in

crystal volume fraction, which we will specify later to represent different injection pro-

files. In addition, since there is no exsolved water at the bottom boundary, the mixture
density p(p) is defined using a linearized equation of state for magma:

P — P
p(p) = Pmag = Pmag,0 <1 + K 0) , (8)

where pmag,0, Po, and K are the reference density, reference pressure, and bulk modu-

lus for magma. We rearrange these expressions to find an equivalent definition of the par-
tial densities of the different components, representing what is actually specified in the
code:

Pex = 0, (9)
pmag = p(pbot>7 (10)
Pe = ¢c(t)p(Pvot), (11)
- ﬁmag - ﬁc X (]. — (bc(t))
P —X0< 1+ o ) == T+ vo P(Poot)- (12)

To systematically understand the relation between magma heterogeneity profiles
and the resulting seismic radiation, we consider a sequence of increasingly complex in-
jection profiles. At the bottom boundary, the injected crystal volume fraction is defined
as:

Ge(t) = Peo + 0 (1) (13)

where ¢, is the reference bulk crystal volume fraction and d¢.(¢) is the fluctuation about
that reference value.

The first injection profile we consider is that of a Gaussian pulse of higher crystal
volume fraction:
5e(t) = Ae—(t—tp)z/(%z)’ (14)

where A is the amplitude of the pulse, ¢, is the time where the peak occurs, and o is the
width of the pulse. This represents the advection of a magma parcel of differing com-
position. This also serves as a simple case to understand the feedback mechanisms and
forces at play and how those translate into the seismic radiation. We consider two ex-
ample pulses of same amplitude (A = 0.1) but different widths (¢ = 16 s, t, = 60 s;
and 0 =8 s, t, =40 s).

We build upon this example to increasingly complex and ultimately stochastic het-
erogeneity injections. It is reasonable to presume that stochastic variations in magma
composition would yield stochastic variations in the fragmentation depth, which would
be reflected in the associated, incoherent seismic radiation. Before jumping to a fully stochas-
tic injection scheme, we first inject sinusoidal profiles of different frequencies:

0. (t) = Asin (27 ft), (15)
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where f is the frequency of crystal content oscillations. Due to numerical limits on spa-
tial resolution, the maximum frequency of injection that we can simulate is ~ 0.25 Hz.

We consider three different frequencies (all with A = 0.1¢0): 0.0625 Hz, 0.125 Hz, and
0.25 Hz.

For modeling stochastic heterogeneity, d¢.(t) is a stationary Gaussian random func-
tion with zero mean and exponential autocorrelation. The autocorrelation function is

Re(t) = (0c(7)0¢c(y + 1)) = 2 It/ teor (16)

where (-) denotes an ensemble average, ¢ is the standard deviation of the fluctuations,
and t.or is the correlation timescale. This correlation timescale can be connected to a

correlation length scale within the magma body supplying the conduit by multiplying

teor by the inlet velocity vi,. Taking the Fourier transform of the autocorrelation func-
tion gives us the two-sided power spectral density (PSD) function:

2%,
14 w?t2

cor

Pe(w) ; (17)

where w is angular frequency. We respect the spatial resolution constraints of the nu-

merical method by bounding the allowed wavelengths in the power spectral density of
the crystal volume fraction variation (by setting the spectral amplitudes to zero above
the maximum resolvable frequency, 0.25 Hz). We consider two stochastic profiles with
the same standard deviation (¢ = 0.03) but different correlation timescales (tcor = 1 s,
10 s).

3.3 Seismic force and moment and synthetic seismograms

We calculate synthetic seismograms using the point source workflow in Coppess et
al. (2022) for a cylindrical conduit oriented along the z-axis. First, the results from the
conduit flow simulations are translated into equivalent force and moment histories by
calculating changes in tractions and pressure relative to the initial pre-stressed state (in
this case the steady-state eruption solution used to initialize all simulations). Changes
in shear traction A7(z,t) are integrated over the walls of the conduit, defining the seis-
mic force as follows:

0
F;(t) = 0;,27R AT(z,t)dz, (18)

Zbot

where zpot is the depth of the bottom conduit boundary and the conduit vent is at z =
0. Similarly, we depth-integrate pressure changes Ap(z,t) to define the associated mo-
ment tensor history for a cylindrical pipe geometry:

A 0
M; (t) = [()\ + 2,&)61'3' — 2,U5iz5jz] — Ap(z, t)dZ7 (19)

Zbot

where A is the first Lamé parameter and p is shear modulus. Force and moment histo-
ries are then convolved with the Green’s function of the elastic wave equation to calcu-
lated the synthetic seismograms. We compute the Green’s functions using the FK method
implemented by Zhu and Rivera (2002) for a homogeneous half-space with density 2700
kg/m3, P-wave speed 3.464 km/s, and S-wave speed 2 km/s. The Green’s functions are
calculated for a source depth of 500 m (i.e., mid-way through the conduit) and a station
placed on the surface, 10 km from the vent. The relative dimensions of the conduit and
station distance justifies the use of the point source representation to calculate the as-
sociated seismic radiation. Finally, we do not include tilt contributions to the radial seis-
mograms, which are likely to be important in the ULP and possibly VLP frequency bands.
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Figure 3. Gaussian pulse crystal volume fraction injection profiles.

381 4 Results

382 4.1 Gaussian pulse

383 Magma enters the conduit at constant pressure and initially ascends as a relatively
384 incompressible fluid at nearly constant velocity. The Gaussian pulse (Figure 3) is a par-

385 cel of magma with higher crystallinity, higher viscosity, and higher drag than the rest

386 of the magma. Therefore, a larger pressure gradient is required to push the parcel through
387 the conduit. This reduces the pressure in the conduit at and above the parcel (Figures

388 4 and 5), enhances gas exsolution, and causes the exsolution and fragmentation depths

389 to descend (Figure 6). They eventually return to their initial depths after the parcel is
390 fully fragmented.

301 The region of highest viscosity and wall shear stress just below the fragmentation

392 depth descends as fragmentation descends in the conduit. Therefore, the wall shear stress
303 decreases around the initial fragmentation depth and increases below it, explaining the

304 pattern in wall shear stress change seen in Figures 4 and 5. The depth integral of this

305 change is proportional to the seismic force. We note that despite a partial cancellation

396 of the positive and negative changes in wall shear stress, the net force increases as the

307 parcel ascends through the conduit and passes through fragmentation because of the higher
308 drag associated with the crystal-rich parcel.

399 As the parcel passes through fragmentation, the velocity decreases, not only around
400 fragmentation but also in the upper section of the conduit. The mass eruption rate drops
201 by about 50%. Interestingly, despite the Gaussian pulse width being only about 20 =

402 32 s, the reduction in mass eruption rate lasts for more than one minute. A similar in-

403 crease in duration is seen for the crystal volume fraction. This is explained by the time-
204 varying fragmentation depth, which alters the particle velocity distribution and hence

405 particle paths within the conduit. Magma at the leading edge of the Gaussian pulse frag-
406 ments lower in the conduit and then quickly ascends to the vent. In contrast, magma

407 at the trailing edge of the pulse fragments higher in the conduit, and thus spends more
408 time at the slower velocities characteristic of the unfragmented magma. This broadens

400 the pulse duration and its expression in the time history of crystal content through the
410 vent and the mass eruption rate.

a1 Many of these processes are reflected in the seismic force and moment histories (Fig-
a2 ure 10). When the pulse enters the conduit and ascends, the associated depressurization
a13 of the upper conduit is captured in the progressive decrease in the seismic moment. The
414 seismic force also progressively increases (in the upward direction) due to the higher vis-
a1 cosity and drag of the parcel, which increase as gas exsolves. The fragmentation front

416 is descending through the conduit during this period (Figure 6), dropping about 20 m
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Figure 4. Gaussian pulse simulation results for o = 16 s.
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over the course of 7 minutes. During this ramp-up period, the two contributions to the
seismic force, introduced in Section 2, are as follows: 1) The fragmentation depth drops
about 20 m with a viscosity ~107 Pa s, corresponding to a force fluctuation AF, ~ —5x
10° N. 2) The width of the pulse is about 40 m with a viscosity difference on the order
of 107 Pa s, corresponding to expected AF, ~ 10'® N. These two combinations are the
same order of magnitude but have opposite sign. This is confirmed by the smaller force
change of ~10° N calculated from integration over the conduit walls, indicating that the
contribution from the viscosity variation is larger than that from the change in fragmen-
tation depth.

As the parcel is being pushed through the fragmentation depth, the seismic mo-
ment increases and switches from negative to positive as overpressure develops below the
parcel (Figure 10). The upward seismic force decreases and eventually switches direc-
tion. The higher pressures below the parcel slow exsolution. This leads to more water
being dissolved in the melt, which decreases the viscosity. Therefore, once the parcel frag-
ments, the viscosity over the whole conduit is less than for the initial steady-state. So
even though the fragmentation front has moved upward, it has not moved a sufficient
amount to counteract the decrease in force from the reduction in viscosity.

Figure 11 shows the associated synthetic displacement and velocity seismograms.
The receiver is r = 10 km from the vent. The solid response becomes quasi-static at
periods greater than ~30 s, for which wr/cs; < 1 (for angular frequency w and shear
wave speed ¢ ). Displacements are proportional to force and moment in this limit, and
particle velocities are proportional to their time derivatives. Thus displacement seismo-
grams at these long periods are effectively a linear combination of the seismic force and
moment histories, and thus capture the progression of the parcel through the conduit
and eventually the fragmentation front. Force and moment contributions are compara-
ble in the radial component of displacement but with competing effects. The vertical com-
ponent is dominated by the force contribution. In the velocity seismograms — which are
dominated by force contributions in all components — there is an initial signature asso-
ciated with the parcel entering the conduit, followed later by a distinct VLP feature as-
sociated with the parcel passing through fragmentation and the associated reduction in
upward force. The force change is therefore downward and is reflected in the downward
pulse in the vertical velocity seismogram. The combination of this seismic signal with
the approximately coincident reduction in mass eruption rate provides an observation-
ally testable prediction of what occurs when high crystal content magma is fragmented.
Such a significant drop in mass eruption rate would likely disrupt the eruption column,
yielding observable signal in infrared or visual data, gas emission data, and possibly also
in infrasound data, depending on how impulsive the process is.

The smaller width Gaussian pulse (o = 8 s instead of 16 s in the previous exam-
ple) exhibits a similar sequence of events as the wider pulse, with differences arising in
the timing and amplitude of force and pressure changes (Figures 7 and 8). The smaller
width means that there is less total drag provided by the parcel because the contact area
between the parcel and the conduit walls is smaller. Therefore, the parcel requires less
overpressure to push it through the conduit. The parcel also moves up the conduit faster,
so the differential flow between the parcel and the magma above it is less than for the
wider pulse. As a result, the magma above depressurizes at a slower rate in this case.
This is confirmed by the reduced descent of the fragmentation front (Figure 9). The smaller
parcel is also advected through fragmentation more quickly, which leads to a sharper re-
duction in the mass eruption rate (Figure 8) and the seismic force (Figure 10).

The associated displacement seismograms have smaller amplitude than for the wider
pulse, but the velocity seismograms exhibit a higher amplitude but shorter duration fea-
ture as the parcel passes through fragmentation (Figure 11). The duration of both the
mass eruption rate reduction and the VLP signatures may indicate the size of the par-
cel being advected through the conduit. The amplitude of the VLP feature depends on
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Figure 12. Sinusoidal crystal volume fraction injection profiles.

both the relative crystal content or viscosity of the parcel as well as its size. Therefore,
seismic amplitude on its own may not be sufficient to make an estimation of the crys-
tal content of the parcel. However, the amplitude of reduction in mass eruption rate is
about the same for the two parcel sizes, indicating that it might serve as a diagnostic
for the composition of the parcel.

4.2 Sinusoid

Next we examine simulations of the injection of a sinusoidal crystal volume frac-
tion profile. The injection profiles are shown in Figure 12. The initial adjustment phase
of the simulation, when heterogeneities ascend through the conduit and displace the ho-
mogeneous magma, is similar to the Gaussian pulse. Specifically, the net drag and vis-
cous pressure drop increase and there is an overall increasing trend in seismic force and
moment. This phase is not shown in the figures as we choose to focus instead on the fully
“spun-up” state (i.e., when the solution reaches a periodic limit cycle) to highlight the
higher frequency signatures associated with the advection of the composition variations
through fragmentation.

We can think of the sinusoidal variations as a series of parcels with alternating higher
and lower crystal content. Even though the injected crystal content varies sinusoidally,
the nonlinear dependence of viscosity on crystal volume fraction leads to nonsinusoidal
but periodic variations in viscosity, fragmentation depth, and other features in the so-
lution (Figure 13). The general behavior is similar to what was seen for the Gaussian
pulse simulations. The fragmentation depth decreases as high crystallinity parcels ap-
proach fragmentation. This is because the viscous pressure drop is higher, due to the higher
viscosity from both the higher crystallinity and the additional exsolution that accom-
panies the pressure drop. As the high crystallinity parcels fragment, the fragmentation
depth rises. This process is accentuated by the passage of a low crystallinity parcel through
fragmentation. The oscillations in the fragmentation depth are nonsinusoidal, with rapid
descent followed by more gradual rise (Figure 14).

The mass eruption rate also varies periodically. Interestingly, the maximum mass
eruption rate occurs as high crystallinity magma passes through fragmentation and ex-
its the vent. This is different from the Gaussian pulse. We suspect that the phase re-
lations between different solution components, such as crystal content and mass erup-
tion rate, may change as a function of frequency due to the nonlinear dynamics of the
system response. A more thorough investigation may be warranted, but this is beyond
the scope of our study.

The magnitude of the force fluctuations are smaller than for the Gaussian case be-
cause of the smaller amplitude of crystal content variation used — leading to lower peak
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viscosities — and the fragmentation depth fluctuates over a smaller range (Figure 14).

The peaks of the force fluctuations correspond to the passage of a high crystallinity par-
cel through fragmentation, as this parcel has the largest peak viscosity and the fragmen-
tation front moves upward. The troughs in force correspond to low crystallinity parcels
passing through fragmentation, due to the lower viscosities and the fragmentation front
moving back down. For the low frequency injection, the parcels are larger and take longer
to fragment, which determines the frequency of the force fluctuations. Thus, the force
fluctuation frequency increases with increasing injection frequency. On the other hand,
the force fluctuation amplitude decreases with increasing frequency, though the relation-
ship is nonlinear and appears to saturate (Figure 15). The largest viscosities occur within
high crystallinity parcels that have just reached fragmentation. The value of the peak
viscosity is the same across all frequency injections because that is determined by the
peak crystal volume fraction (which is the same) and the amount of dissolved gas (which
is also approximately the same). However, the contact area between the high crystallinity
parcels and the conduit walls is different, as the different frequencies yield different spa-
tial extents of the parcels within the conduit. Parcel width decreases with increasing fre-
quency; it is around 16 m, 8 m, and 4 m for 0.0625 Hz, 0.125 Hz, and 0.25 Hz, respec-
tively. Therefore, the high crystallinity parcels in the lower frequency profiles make larger
contributions to the seismic force. Similar reasoning explains why the low crystallinity
parcels in lower frequency injections lead to greater reduction in the upward seismic force
than for the higher frequency injections.

Radial and vertical seismograms, shown in Figure 16, are dominated by force con-
tributions. Displacement seismograms display a similar trend to the seismic force with
amplitude decreasing with increasing injection frequency. The nonlinear system response
to the sinusoidal input is reflected in the displacement seismograms (becoming more ap-
parent at higher frequencies) and it is even more pronounced in the velocity seismograms.
Looking in particular at the vertical velocity seismograms, the waveforms exhibit peri-
odic cycles beginning with a rapid upward increase to peak velocity, followed by a trail-
ing fall off in amplitude. With increasing injection frequency, these features sharpen and
the peak particle velocity increases. For the 0.25 Hz injection profile, velocity amplitudes
reach ~1 pm/s, which are comparable with observed eruption tremor amplitudes (Fee,
Haney, et al., 2017). The peaks correspond to the rupture of high crystallinity parcels
passing through fragmentation, when the fragmentation front rapidly descends as the
low crystallinity parcel approaches. The tails of the velocity peaks are produced when
high crystallinity parcels approach fragmentation, creating resistance to flow as viscos-
ity increases before fragmenting. The seismic velocity PSD (Figure 17) confirms the pe-
riodic nature of the system output, with sharply defined peaks at the same frequency
as the injection. Overtone peaks are due to the Dirac comb effect, when a signal is pe-
riodically repeated a finite number of times (Hotovec et al., 2013; Dmitrieva et al., 2013).

4.3 Stochastic profile

Now that we have an understanding of how heterogeneities at different frequencies
affect the fragmentation dynamics and their expression in the seismic response, we move
on to a stochastic injection profile. For the exponential autocorrelation model, we choose
the standard deviation € so that crystal volume fraction variations are of comparable am-
plitude as in the sinusoidal examples. We investigate how the correlation timescale ¢,
affects the seismic signal by considering two simulations with t.,, = 1 s and 10 s. Fig-
ures 18 and 19 show the PSD and time series, respectively, of the particular realization
of the stochastic profile used in this study. In our simulations, the inlet velocity is ap-
proximately 1 m/s; therefore, these correlation timescales can be thought of as correla-
tion length scales of 1 m and 10 m, respectively. The particular realizations of the ran-
dom signal used in our simulations are shown in Figures 18 and 19. To reduce compu-
tational expense, we have chosen a cutoff frequency of 0.25 Hz in order to ensure that
no numerical artifacts are introduced due to insufficient spatial resolution. The 10 s cor-
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Figure 18. Power spectral densities of stochastic crystal volume fraction fluctuation profiles

with different correlation timescales.
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Figure 19. Time-domain realization of stochastic crystal volume fraction fluctuation profile
with different correlation timescales. Red dotted lines mark the heterogeneities that are passing

through fragmentation during the time windows shown in subsequent plots.

relation timescale yields greater power in the lower frequency range, with steeper fall-

off in power at higher frequencies. The shorter correlation timescale of 1 s yields a rel-
atively flat spectrum within the resolvable frequency band. The greater power at low fre-
quencies for the 10 s correlation timescale is also apparent when comparing the time do-
main realizations of the injection profiles (Figure 19).

As in the sinusoid case, we restrict attention to a time window after an initial “spin-
up” period during which heterogeneities ascend and fully fill the conduit. The fragmen-
tation front moves up and down in a stochastic manner, reflecting the range of frequen-
cies contained in the heterogeneous profile. The higher power in the lower frequencies
in the t.or = 10 s simulation leads to longer length-scale variations in crystal content.
This leads to longer period motion of the fragmentation front (Figures 22 and 23), which
oscillates over a depth range of 25 m over the course of 5 minutes. In the t.,, = 1 s sim-
ulation, the fragmentation motion is reflective of the flatter injection spectrum with higher
frequency motion providing a comparable contribution as the longer periods (Figures 20
and 21). The fragmentation front moves over a depth range of 15 m over the course of
5 minutes. The range of peak wall shear stress at fragmentation is comparable between
the two cases, but the rate of change is greater for the shorter correlation timescale (Fig-
ures 21 and 23). In both cases, there is a lot of unsteadiness exhibited in the mass erup-
tion rate as the stochastic heterogeneities pass through fragmentation. There are longer
period trends in mass eruption rate for the 10 s correlation timescale associated with the
long period crystal content variations. Also, in the particular time window selected for
analysis, there is enhanced mass eruption rate as a lower crystal content region passes
through fragmentation (Figure 22).
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Figure 20. Stochastic injection simulation results for tcor = 1 s.
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582 The seismic force and moment histories (Figure 24) exhibit fluctuations over a larger

583 range of values, as compared to the sinusoidal cases. The force ranges are comparable

584 between the two correlation timescales, with t.o,; = 10 s exhibiting a slightly larger range.
585 Even though the fragmentation depth moves over a greater range for t.o, = 10 s, the

586 peak wall shear stress (i.e., peak viscosities) are more frequently reached for tco, = 1

587 s. This is reflected in the force histories, where the shorter correlation timescale exhibits
588 larger amplitude high frequency features. There is an overall reduction in upward force

589 accompanied by an increase in moment in the first 3.5 minutes as the region of higher

590 crystal content passes through fragmentation, reducing the total drag along the whole

501 length of the conduit. While this is seen in both cases, it is particularly apparent for the
502 longer correlation timescale case. This is similar to the Gaussian pulse simulations. We

503 can draw an analogy to a wider pulse with small scale variations around that longer pe-
504 riod feature. Immediately following the time window shown here, a region of higher crys-
595 tal content follows (Figure 19). The precursor features associated with the approach to

596 fragmentation of a high crystal content region are seen in the force and moment histo-

597 ries (Figure 24): The seismic force increases as the high crystal content region approaches
508 fragmentation and viscosity increases, which is accompanied by depressurization of the

509 conduit above the region.

600 The vertical component of the displacement seismograms is dominated by the force
601 contribution, capturing the full spectrum of the progression of the heterogeneities through
602 fragmentation (Figure 25). The radial displacement has comparable contributions from

603 the force and moment. Radial displacements associated with the pressurization/depressurization
604 of the conduit are dominated by low frequencies, leading to preservation of high frequency
605 features from force changes along the conduit walls in the full waveform. The displace-

606 ment amplitudes are comparable for the two correlation timescale simulations, with the

607 shorter timescale simulation exhibiting more prominent high frequency features. Veloc-

608 ity seismograms highlight these high frequency features.

609 The vertical velocity power spectral densities (PSDs) (Figure 26) confirm the boost-
610 ing of higher frequencies for the shorter correlation timescale simulation. The crystal in-
611 jection PSDs (Figure 18) have a flat spectrum at frequencies below the corner frequency,
612 above which the spectrum follows a power-law decrease. However, the seismic spectra

613 are either flat (tcor = 10 8) or slightly increasing (t.or = 1 8) beyond the injection cor-

o4 ner frequency, until they roll over at the injection cut-off frequency (0.25 Hz). Power at
615 low frequencies is comparable between the two correlation timescales but slightly higher
616 for teor = 10 s. For higher frequencies (> 0.1 Hz), t.o, = 1 s has greater power that

617 peaks around the injection corner frequency. The shorter correlation timescale yields a

618 somewhat broader spectrum that is pushed further out beyond the injection cut-off fre-
619 quency.

620 5 Discussion

621 5.1 Model validation and relation to other observables

622 Because our modeling framework couples conduit flow dynamics to seismic wave

623 generation, we are able to draw connections between seismic signals and other observ-

624 ables, providing observationally testable predictions. In addition to predictions of dis-

625 tinct seismic signatures in the VLP and ULP bands, our work makes predictions of co-

626 incident mass eruption rate fluctuations associated with fluctuations in fragmentation.

627 Estimates of mass eruption rate can be made using visual and thermal monitoring of erup-

628 tion plumes (e.g., Vulpiani et al., 2016; Freret-Lorgeril et al., 2021) or through gas emis-
620 sions measurements (Hobbs et al., 1991; Mori & Burton, 2009; Fee, Izbekov, et al., 2017;
630 Reath et al., 2021; Raponi et al., 2021). Correlations between VLP signals and varia-

631 tions of volcanic gas emissions have been observed at Mt. Asama, Japan (Kazahaya et

632 al., 2011). The observed VLP velocity waveforms — similar in duration and shape to those
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predicted in this work — were followed by enhanced SO5 flux through the vent, which might
be explained by unsteady fragmentation in response to the development of overpressure
from magma degassing. The scale of variations in mass eruption rate predicted in this
work (~ 107 kg/s) would yield significant features in these additional measurements. There-
fore, observations of VLP/ULP seismic signatures cross-checked with additional mon-
itoring data for the eruption plume can be used to provide evidence for fluctuating frag-
mentation as a source of eruption unsteadiness. Extending our modeling above the vent,

or coupling with a plume and atmospheric response model (Liu et al., 1982; Kanamori

et al., 1994; Ripepe et al., 2010; Nakashima et al., 2016), would yield further quantita-

tive predictions for validation. Our modeling outputs include time-series for relevant fluid
dynamic properties at the conduit vent (e.g., mass eruption rate, pressure) that define
source processes through direct connection to modeled eruptive processes. This allows

for predictions of any instabilities in the eruptive jet that might be triggered or caused

by fluctuating fragmentation. In addition, it is possible that variations in mass eruption
rate will also generate infrasonic signatures, which can then be used to further constrain
characteristics of fluctuating fragmentation.

5.2 Coherent fluctuations in fragmentation

Our work predicts that coherent fluctuations in the fragmentation depth, as can
be caused by coherent heterogeneities of magma properties such as the crystal content,
are expressed seismically in the VLP and ULP frequency bands. In particular, fragmen-
tation of a parcel of high crystal content magma produces a distinct VLP signature con-
sisting of a downward pulse in vertical velocity seismograms. This is caused by a drop
in the upward seismic force when the high viscosity parcel fragments. The duration of
the seismic signal correlates with the width of the parcel, reflecting the time it takes for
the parcel to fully pass through fragmentation. The particle velocity amplitudes are con-
trolled by a combination of viscosity variation and parcel width (and seismic wave prop-
agation parameters like source-receiver distance). Our simulations showed that parcels
of the same relative viscosity but different widths will generate different peak amplitudes,
with the smaller width yielding higher amplitude. However, it does not appear to be straight-
forward to disentangle these two contributions to seismic amplitude. Reductions in mass
eruption rate associated with fragmentation of high crystal content parcels provide an-
other means to help constrain viscosity variations. The same reduction in mass eruption
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rate is predicted for different parcel widths having the same relative viscosity. Similarly
to the seismic signatures, the duration of the mass eruption rate reduction is correlated
with parcel width. Therefore, coincident VLP/ULP signatures and mass eruption rate

variations provide potential diagnostics to characterize coherent magma heterogeneities.

As discussed in the previous section, validation of this source mechanism will in-
volve looking for coincident signatures in seismic, visual/thermal, infrasound, and gas
emissions data. Advection and fragmentation of heterogeneous magma could occur at
any point during an eruption. Thus, observations of VLP signatures during a sustained
eruption (in contrast to VLP signatures produced by the eruption onset) — along with
observed changes in mass eruption rate — could potentially be generated by this source
mechanism. Further potential validation could come from petrological study of eruption
deposits. This would be done by checking the composition (Pankhurst et al., 2014) for
variations in crystal content or other differences in erupted products from the specific
time interval marked by the VLP and mass eruption rate signals. This also points to the
potential utility of combining petrological study with these geophysical signals. The am-
plitude and duration of geophysical signals could help to constrain estimates of volumes
of different erupted products. The timing of coincident signatures within the eruption
sequence — along with visual observations of erupted materials — can be used when re-
constructing the compositional evolution of the volcanic deposits. The reconstructed erupted
materials sequence could then be used to make inferences about the sourcing magma body,
such as the magma storage conditions (Bachmann & Huber, 2019; Popa et al., 2021).

The spectral content of the geophysical signatures could potentially be used to infer length
scales of heterogeneities present in the sourcing magma body, which may give valuable
information on magma mixing processes (Perugini & Poli, 2012; Morgavi et al., 2022).

5.3 Eruption tremor

Eruption tremor is a seismic signal ubiquitously observed during explosive erup-
tions (McNutt & Nishimura, 2008; Konstantinou & Schlindwein, 2003). In addition to
its coincidence with explosive eruptive activity, it is characterized by its stochastic na-
ture within the 0.5-10 Hz frequency band. (We discuss another form of tremor, harmonic
tremor, in the next section.) There have been very few theoretical studies on the source
of eruption tremor (McNutt & Nishimura, 2008; Prejean & Brodsky, 2011; Gestrich et
al., 2020). One of the only physical models proposed attempts to recreate seismic PSDs
through defining force spectra from particle impacts and dynamic pressure changes due
to turbulence along the conduit walls (Gestrich et al., 2020). Focus was restricted to the
upper conduit above the fragmentation depth, where flow is turbulent. The authors found
that the traction fluctuations required to explain observed tremor amplitudes required
extreme parameter values, such as impacting particle sizes of ~1 m. While this hypoth-
esized mechanism for eruption tremor is plausible, we feel that it is important to explore
alternative hypotheses. Our work shifts focus to the fragmentation depth and just be-
low it, where tractions are orders of magnitude higher and motion of the fragmentation
front can produce requisite amplitudes of force fluctuations. We can no longer appeal
to turbulence to explain stochasticity for this mechanism; therefore, stochastic motion
of the fragmentation front is required.

Our modeling shows that stochastic fluctuations in fragmentation do in fact lead
to stochastic seismic signals. For ~7.5 % fluctuations in crystal content, seismic parti-
cle velocities at a few to 10 km distance are on the order of 0.1 um/s, which is about an
order of magnitude less than observed tremor amplitudes. However, our simulations were
limited to frequencies below 0.25 Hz due to numerical resolution requirements and com-
putational cost. Our sinusoidal injection study highlighted that shifting power to higher
frequencies could yield seismic amplitudes that are relevant to observed tremor (~1 pm/s)
(Fee, Haney, et al., 2017; Konstantinou & Schlindwein, 2003). Given the limitations of
our simulations, it is premature to falsify or validate our proposed mechanism for erup-
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tion tremor. That said, our results do serve as proof-of-concept that fluctuating fragmen-
tation could be a potential source of eruption tremor, especially if higher frequency fluc-
tuations are included.

Extending to higher frequencies with observationally relevant power could be done
in a couple of ways. Increasing the cutoff frequency of the crystal content fluctuations
will broaden the seismic spectrum, which will likely increase seismic amplitudes with the
introduction of higher frequency variations. In addition to that, one possibility is to con-
sider smaller correlation timescales for heterogeneous injection. The associated corner
frequency for a correlation timescale on the order of 1072 s would reach the upper end
of the characteristic tremor frequency range. For an inlet velocity of 1 m/s, this would
correspond to a correlation length-scale on the order of centimeters for heterogeneity within
the sourcing magma body. Of course, for heterogeneity length scales smaller than the
conduit radius, the quasi-1D modeling assumption breaks down. The fragmentation sur-
face will have more complex geometry than can be captured in our quasi-1D conduit flow
model, and the distribution of wall shear stress will no longer be axisymmetric. These
additional complexities become relevant at frequencies > 1 Hz. Modeling these fluctu-
ations will require moving to a 3D framework that is able to capture the cross-sectional
variations that may be present during the fragmentation process.

5.4 Harmonic tremor

Harmonic tremor is another seismic signal occasionally observed at some volcanoes,
characterized by sustained oscillations with distinct spectral peaks (Konstantinou & Schlindwein,
2003; Chouet & Matoza, 2013). Our study of sinusoidal injection profiles hints at the
possibility that periodic movement of the fragmentation front would yield harmonic tremor.
While it is unlikely that magma heterogeneity would exhibit this regularity, there could
be other self-excited instabilities or forced oscillations that emerge naturally from the
system. For instance, oscillations or “wagging” of the rising magma column in response
to spring-like motion of a compressible bubble-rich annulus along the conduit walls has
been proposed as a possible harmonic tremor mechanism (Bercovici et al., 2013). Nat-
urally emerging oscillatory dynamics have been observed in studies of detonation shock-
wave propagation (Kasimov & Gonchar, 2021), a process that is somewhat analogous
to fragmentation. Alternative fragmentation criteria to the critical volume fraction cri-
terion used in this work (Melnik & Sparks, 2002; Jones et al., 2022; Alidibirov & Ding-
well, 2000; Papale, 1999; Fowler et al., 2010; Scheu & Dingwell, 2022; Lavallée & Kendrick,
2021; McGuinness et al., 2012; Koyaguchi et al., 2008; Gonnermann, 2015; Gonnermann
& Manga, 2003, 2007) may lead to oscillatory behavior, though almost all of these cri-
teria have only been investigated using steady-state models. One exception is the un-
steady conduit flow modeling of Melnik and Sparks (2002) that was designed for vulca-
nian explosion events. They compared the critical volume fraction criterion to two al-
ternatives, a critical bubble overpressure criterion and a critical elongation strain rate
criterion. They found that while the volume fraction criterion produced smoothly vary-
ing fragmentation, the other two criteria produced pulsatory solutions. Further study
of fragmentation and associated seismic signals could be utilized to constrain character-
istics of the particular mechanism, which is still an open science question.

6 Conclusion

In this study, we explored the seismic signatures of a fluctuating fragmentation in
explosive volcanic eruptions. Fragmentation depth fluctuations are associated with changes
in pressure and wall shear stresses, which are proportional to the seismic moment and
force, respectively. Seismograms at a few to ~10 km distances are in most cases dom-
inated by the seismic force, which has contributions arising from changes in fragmenta-
tion depth and from variations in wall shear stress. Through simulations of advection
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and fragmentation of heterogeneous magma using unsteady conduit flow models, we demon-
strated that heterogeneous magma injections could be a source of fluctuating fragmen-
tation. Our work predicts that distinct seismic VLP signatures and coincident variations
in mass eruption rate accompany coherent fluctuations in the fragmentation depth, pro-
viding useful observational diagnostics for validation. Our work also demonstrated that
stochastic movement of fragmentation leads to stochastic seismic signals. This provides

a plausible mechanism for eruption tremor. However, numerical resolution constraints
prevented us from exploring frequencies greater than 0.25 Hz, which must be done to prop-
erly test this hypothesis. Overall, we have demonstrated how unsteady conduit flow mod-
eling can be integrated into volcano seismology studies. This dynamic source modeling
approach complements kinematic source inversions, providing a more direct relation be-
tween eruptive processes of interest and seismograms.

Appendix A Governing equations for unsteady multi-phase conduit
flow model with variable viscosity

This appendix lays out the governing equations for the conduit flow model used
in this work. We model adiabatic multi-phase flow through a cylindrical conduit using
a quasi one-dimensional unsteady conduit flow model solved using Quail, a discontin-
uous Galerkin solver for hyperbolic partial differential equations (Ching et al., 2022). The
mixture is composed of multiple phases: exsolved water, liquid melt, dissolved water, and
crystals. We use “magma” to refer to the combination of liquid melt, dissolved water,
and crystals. We assume that the exsolved water and magma share the same temper-
ature and pressure at a given point.

The top pressure boundary condition is set to atmospheric pressure (10% Pa), when
flow through the vent is subsonic. When exit velocity is sonic, the flow is choked. The
bottom boundary conditions consist of an imposed constant pressure (i.e., chamber pres-
sure) as well as specification of the mass fractions of each phase, which can be varied in
time. See Section 3.2 for specifics on how magma composition is specified at the bottom
boundary. Note that governing equations are formulated in terms of partial densities of
each phase: the mass of the phase relative to the total volume.

A1l Mass balance

The governing equations include a mass balance for each of the phases in the mix-
ture. We assume the same phasic density for liquid melt, dissolved water, and crystals.
The magma mass balance captures the loss of mass through exsolution of water:

aﬁmag a(pmagv) = Xd — Xeq (p)
ot + 9z = ~Pmelt () ) (Al)

where p,,,,. is the partial density of magma, x4 is the mass concentration of dissolved
water (mass of dissolved water / mass of melt), 7.5, is the partial density of liquid melt,
Xeq(P) is the equilibrium mass concentration of dissolved water at pressure p, v is the
mixture particle velocity, and t.. is the timescale of exsolution. The equilibrium mass
concentration of dissolved water is described by Henry’s law of solubility:

Xeq(p) = min(xo, Smp™/?) (A2)

where x( is the total water mass concentration and S, is the solubility constant. Magma
phasic density pmag (i.e., mass of magma relative to magma volume) is determined by
a linearized equation of state:

tex

P =Dpo + (pmag - pmag,O)a (A3)

Pmag,0

where pmag,0, K, and pg are the reference magma density, bulk modulus, and reference
pressure, respectively. Water is exchanged between the magma and the exsolved water
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phases, which is also captured in the mass balance for exsolved water:

Wex | O(PexV) _ _ Xd — Xeq(P)
at + 82 = Pmelt ) (A4)

tex

where p,,, is the partial density of exsolved water. The total water content (dissolved plus
exsolved) is governed by a source-free mass balance:

0p.) , 9p.v)
ot 0z

where p, is the partial density of total water. This assumes there is no gas escape or in-
troduction of other sources of water throughout the eruption. Exsolved water obeys an
ideal gas equation of state, despite being in a supercritical state in the lower portion of
the conduit:

—0, (A5)

b= pexRGT7 (AG)

where pey is the phasic density of exsolved water, Rg is the specific gas constant, and
T is temperature. We initialize the conduit magma with a specified crystal content, which
is advected through the conduit following a source-free mass balance:

o5, _ 0(p.0)
o " os

where p, is the partial density of crystals. We do not simulate crystallization kinetics
during the eruption.

=0, (A7)

A2 Momentum and energy balance

The governing equations also include the momentum balance for the mixture, which
is sufficient due to the assumption that all phases are co-moving and share a common
pressure, temperature, and velocity. The momentum balance is

v dv\  Op 2T
p<3t+vaz)——az—pg—R7 (A8)

where 7 is wall shear stress, p is mixture density, v is mixture particle velocity, R is ra-
dius of conduit, and p is pressure. Fragmentation of the mixture is captured in the def-
inition of wall shear stress, which turns off when the mixture has met the critical gas vol-
ume fraction threshold.

Similarly, we use a single energy balance equation for the mixture:

Oe  O((e+p)v 27v
o Olletp) __ o
ot 0z R
where e is the total energy (internal plus kinetic) per unit volume for the mixture. In-
ternal energy per unit volume for the mixture is

(A9)

€internal = ﬁeXCVﬁXT + ﬁmagcv,magT7 (Alo)
where Cy ox and C\ mag are heat capacities for exsolved water and magma, respectively.

Fragmentation poses some numerical challenges, as it is a region with very sharp
spatial gradients as the flow transitions from laminar to turbulent and the wall shear stress
drops from its highest value to zero. We observed in the conduit flow model used in Coppess
et al. (2022), that when the spatial resolution insufficiently resolves the fragmentation
region, we see numerical features dominating the signal. Coppess et al. (2022) resolved
this with a smoothing function for the drag turn-off in the form of a logistic function.
However, this method did not lead to full turning off of the friction above fragmenta-
tion due to smearing never returning to zero. To remedy this and to introduce a tun-
ing parameter that is more physically intuitive, we introduce a new smoothing method
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Figure Al. Viscosity dependence on magma composition. On left, melt viscosity (with no
crystals) as a function of dissolved water content according to (A15) for different melt tempera-

tures. On the right, relative viscosity as function of crystal volume fraction, according to (A16).

by introducing a new tracked quantity to record the progression of fragmentation, which
we call the fragmented phase. This represents the partial density of fragmented magma
and is passively advected through the conduit, only entering into the main governing equa-
tions through the wall shear stress. The evolution of this phase captures the dependence
on gas volume fraction:

aﬁf 8(ﬁfv> 9 /Z I pma _ﬁf
T+ D8 — - ) (P 1) (A1)

where p; is the partial density of the fragmented phase, ¢y is the fragmentation timescale,

¢ is gas volume fraction (i.e. volume of exsolved water relative to total volume), ¢, is
the critical gas volume fraction, and h(x) is a smoothing function of the following form:

B g(z/C+1) o) = e /T x>0
"= e+ e=aig) % ){o <0 (A12)

This is basically a smoothed Heaviside function, where h(z) = 0 for z < —(, h(z) =

1 for x > 0, and h(x) is given by (A12) for —¢ < z < 0. Therefore, when ¢ > ¢,
h(¢—¢y) = 1. When the gas volume fraction is well below the threshold (¢ < ¢q—(),

the fragmented phase remains zero and does not evolve in time. Once the exsolved gas
volume fraction is within range of the critical gas volume fraction that marks the frag-
mentation transition (¢ > ¢,—(), the fragmented phase source term is gradually turned

on and the fragmented phase partial density is pulled towards the magma partial den-

sity over some fragmentation timescale; this simulates a fragmentation process with some
finite timescale. We then use the ratio of the fragmented phase to the magma phase to
turn off the wall shear stress 7, marking a gradual transition between the two flow regimes:

dnv Py
= — —— . Al
’ R( pm> (A13)

The wall shear stress term also depends on the magma composition through vis-
cosity. A common definition of viscosity used in conduit models takes the following form
(Costa, 2005):

1 =m(xd, T)Nc(¢ec), (Al14)
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where 7; is the viscosity of melt without crystals as a function of dissolved water mass
concentration x4 and temperature 7', and 7, is the relative viscosity as a function of crys-
tal volume fraction ¢, (i.e., volume of crystals relative to magma volume). Hess and Ding-
well (1996) performed an experimental study on viscosity of silicate melts, developing

an empirical function capturing the relation between melt viscosity and dissolved wa-

ter content without the presence of crystals:

(9601 — 23681n W)
T — (195.7 4 32.25In W)

log mi(xa, T) = (—3.545 + 0.8333In W) + , Wa =100x4. (A15)
Similar experimental studies have been performed to investigate the effect of crystals on
the mixture viscosity. Similarly, Costa (2005) designed a functional form for the rela-

tive viscosity from crystal content, which was then fit to experimental data:

Me(¢e) = - RN (A16)
{1-aat(fFe: 1+ (&) ])}
where B is the Einstein coefficient (2.5), ¢. is the critical transition fraction (0.673), and
a, §, v are adjustable parameters (0.999916, 16.9386, 3.98937, respectively).

Appendix B Arriving at a steady-state solution for initialization

This section provides an overview of our approach to select a steady-state solution
to initialize simulations. It is common for flow to be choked (i.e., fluid is traveling at sound
speed) at the vent in explosive eruptions, which has the benefit of simplifying modeling
by avoiding the need to model the eruptive jet and plume. We solve the steady-state ver-
sion of the governing equations numerically, with choked flow at the top (or subsonic flow
at atmospheric pressure at the top, if the choked flow pressure would be below atmospheric).
Figure B1 shows characteristics of steady state solutions that satisfy the choked flow re-
quirement. As part of the bottom boundary conditions, we can specify either the inlet
velocity or pressure. Figure B1 shows that the steady state solution space is multi-valued
in inlet velocity. Therefore, we define the steady state solution using an inlet pressure
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condition. This also is a more natural formulation of the problem, as assuming constant
(or slowly varying) pressure is a more realistic approximation for a conduit coupled to
a magma chamber rather than constant velocity. Parameter values were chosen to bal-
ance being within observed ranges and reducing computation time. The bottom pres-
sure boundary condition was chosen to be within 10 MPa of lithostatic pressure. The
chosen solution is indicated by the red line in Fig. B1. To simplify defining the compo-
sition of magma injected through the bottom boundary, we require that the exsolution
depth is fully contained within the simulation domain, in addition to the fragmentation
depth (shaded region in Fig. B1). Crystal volume fraction @, is constant with depth.
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