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Abstract
Climate change can affect reef fish both directly (e.g., mortality, growth, fecundity) and indirectly (e.g., habitat degradation). 
The extent to which the effects of rising water temperature could drive changes in fish populations and if and how these 
effects may interact with potential management interventions remain unclear. The objective of this study was to test various 
hypothesized mechanisms by which sea surface temperature (SST) could affect reef fish population dynamics and explore 
these effects in combination with fishing effort restrictions and spatial closures. To do this, we modeled hypothesized rela-
tionships between SST and two governing parameters of the fish populations: intrinsic growth rate (r) and carrying capacity 
(K). We coupled these temperature-dependent fish population models with a fisheries harvest model and explored interactions 
between thermal effects, fishing effort level, and spatial closures. Under small closure scenarios, we found that the thermal 
effects models predicted substantially lower fish population biomass and harvest compared to the baseline (constant r and K) 
model. Under large closure scenarios, the thermal effects models more closely resembled the baseline. Generally, incorporat-
ing spatial closures mitigated some of the detrimental thermal effects on fish biomass and allowed for increased harvest under 
certain fishing effort levels. Whether intrinsic growth or carrying capacity most affected fish population levels also depended 
on the fishing effort and the spatial closure area. Overall, we described how fishing effort and spatial closures can influence 
the relative importance of key processes and the extent to which rising water temperatures affect fish populations and harvest.
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Introduction

Nearshore fisheries provide food security and support 
livelihoods for hundreds of millions of people (Cisneros-
Montemayor et al. 2016) but are experiencing the conse-
quences of widespread habitat degradation and overexploi-
tation (Mullon et al. 2005). Fisheries management aims to 
maintain, protect, and enhance fish populations to ensure 
long-term sustainability of stocks and their associated eco-
systems, as well as provide fishing and job opportunities. 
To meet these goals, fisheries managers use a variety of 
methods to regulate the frequency and/or intensity of fish-
ing effort, including strategies like spatial closures, bag lim-
its, seasonal closures, and gear restrictions (Woodward and 
Griffin 2003; Carvalho et al. 2019; Carvalho and Humphries 
2021). Implementing these strategies is far from simple, as 
successful management also requires enforcement, compli-
ance, and community support (Pendleton et al. 2018).
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Fisheries management is further complicated by climate 
change, as changing ocean conditions can affect fish popula-
tions in both direct and indirect ways (Pratchett et al. 2015). 
Direct effects of warming waters on fish populations include 
changes in their distribution and life histories (Wang et al. 
2020). In general, the geographic ranges of warm-water 
species are experiencing poleward expansion, while cold-
water species are becoming increasingly vulnerable as they 
approach their thermal limits (Williams et al. 2015). In terms 
of effects on life history, general trends include faster metab-
olism, faster growth and maturity, smaller size at maturity, 
higher mortality, and decreased fecundity in warmer waters, 
although these vary across species and functional groups 
(Ospina and Mora 2004; McClanahan 2010; Cheung et al. 
2013; Donelson et al. 2014; Pratchett et al. 2015; Wang 
et al. 2020). Overall, these physiological changes can lead 
to declines in population growth for many functional groups 
(Wang et al. 2020).

Fish populations are also indirectly affected by climate 
change through habitat loss and changes in competition and 
predation due to range shifts of other species (Pratchett et al. 
2011a, b). An example of the former occurs when rising 
water temperatures cause mass coral bleaching and death, 
leading to a subsequent loss of an important habitat for many 
reef fishes (Pratchett et al. 2015). This degradation often 
leads to a decline in topographic complexity (Bozec et al. 
2015). Reef fish and invertebrates depend on coral reefs for 
food and/or shelter and are highly sensitive to the loss of 
this habitat (Munday 2004; Pratchett et al. 2006). When 
reefs degrade, there become fewer places for reef-associ-
ated species to shelter from potential predators and com-
petitors, with the result that degraded reefs support fewer 
individuals and fewer species (Sano et al. 1987; Jones et al. 
2004; Wilson et al. 2006; Graham et al. 2006). Fish carry-
ing capacity, diversity, and abundance have been found to 
decrease as topographic complexity decreases (Friedlander 
et al. 2007; Noonan et al. 2012; Pratchett et al. 2015; Folpp 
et al. 2020; Fukunaga et al. 2020). Although climate change 
affects many aspects of fish life histories, the potential of 
water temperature to act as a driver of reef fish population 
patterns remains uncertain. This uncertainty is especially 
problematic given that certain management strategies may 
unintentionally interact with climate-driven changes in fish 
life history traits (Serpetti et al. 2017). For example, climate 
drivers can cause demographic parameters, which are used 
to determine biological reference points and harvest rules, 
to vary on decadal time scales (Free et al. 2019; Tableau 
et al. 2019).

The objective of this study was to explore the hypoth-
esized mechanisms by which temperature could affect reef 
fish populations and to subsequently test the extent to which 
they interact with fishing effort and spatial closure scenarios. 
To do this, we reviewed the literature and identified potential 

relationships between sea surface temperature (SST) and two 
key population parameters in reef fish populations: intrinsic 
growth rate (r) and carrying capacity (K). Then, we incor-
porated multiple formulations of the temperature-growth 
rate and temperature-carrying capacity relationships into a 
theoretical model of a reef fish population and compared 
projected population biomass. We then coupled this popula-
tion model to a fisheries harvest model and different fishing 
effort and spatial closure scenarios to evaluate any potential 
interactions between temperature effects and management 
interventions on outputs of fish biomass and harvest.

Material and methods

Thermal effects functions

For all scenarios, we used Insular Pacific-Hawaiian Sea 
Surface Temperature Anomaly (relative to the 1976–2005 
climatological mean) Projections for the CMIP6 SSP2-4.5 
scenario (Figure S1). To relate SST to reef fish intrinsic 
population growth rate, we used a quadratic formulation 
where the maximum intrinsic growth rate (r) corresponded 
to an optimal temperature, and deviations from this optimum 
led to declines in the growth rate. There is an abundance 
of literature that supports this formulation (summarized in 
Table S1), in particular that reef fish population growth rate 
will decrease as water temperature increases from an opti-
mum. However, fish population responses to rising tempera-
ture are not universal, because different species have differ-
ent optimal conditions for growth (Jobling 1997). To address 
this uncertainty, we tested three formulations relating intrin-
sic growth rate to SST, each representing populations with 
differing optimal temperatures. For the first formulation, r1, 
we set the maximum growth rate to correspond to a 0° yearly 
anomaly (i.e., optimal temperature is the 1976–2005 clima-
tological mean; Fig. 1A; Eq. 1), representing a population 
where growth was highest under historical conditions. For 
the second formulation, r2, we set the maximum growth rate 
to correspond to a + 1 °C anomaly (i.e., optimal tempera-
ture is 1 °C higher than the climatological mean; Fig. 1A; 
Eq. 2), representing a population where growth is highest 
under warmer waters. For the third formulation, we set the 
maximum growth rate to correspond to a − 1 °C anomaly 
(i.e., optimal temperature is 1 °C lower than the climatologi-
cal mean; Fig. 1A; Eq. 3), representing a population where 
growth is highest in cooler waters. We chose a maximum 
growth rate of r = 0.3, because it generally represents spe-
cies targeted in coral reef fisheries such as parrotfishes and 
wrasses (Labridae) (Carvalho et al. 2019; Froese and Pauly 
2023), and established the function so that r = 0 with an 
anomaly of 9 °C (Ospina and Mora 2004; Table S1).
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To relate SST to reef fish carrying capacity (K), we tested 
two different formulations. For the first formulation (K1), we 
assumed a linear relationship where increases in SST anomaly 
led to declines in K (Eq. 4; Fig. 1B). This relationship was 
based on findings that reef fish carrying capacity is expected 
to decline ~ 6% by 2040, assuming a 2% annual loss of coral 
cover (MacNeil et al. 2015). The points used to establish our 
linear relationship were as follows: 0° anomaly, 101.3 g/m2 
(the maximum K from MacNeil et al. 2015), and 1.23° (2040 
anomaly), 95.22 g/m2 (0.94 K, representing a 6% decline). We 
established upper and lower limits on the linear function so 
that it did not extend indefinitely. Maximum K was bounded 
at 101.3 g/m2 (the global average expected unfished biomass 
for resident diurnally active reef fish from MacNeil et al. 2015) 
and minimum K was bounded at 10 g/m2 (derived from Dar-
ling et al. 2017, where ~ 10 g/m2 fish biomass was maintained 
with no habitat complexity). For the second formulation (K2), 
we used a quadratic function where maximum K (101.3 g/m2) 
corresponded to an optimal temperature anomaly (0°) and 
deviations from the optimum led to declines in K, and mini-
mum K was again bounded at 10 g/m2 (Fig. 1B). We chose to 
test a quadratic formulation due to its prevalence as a pattern 
found in the temperature performance curves of ectothermic 
organisms (Pratchett et al. 2011a, b), and it has previously been 
found to be a realistic formulation for the response of tuna 
carrying capacity to SST deviations (Mediodia et al. 2023). 

(1)r1,t = 0.3 − 0.0037 ∗ anomaly2
t

(2)r2,t = 0.3 − 0.0037 ∗ (anomalyt + 1)2

(3)r3,t = 0.3 − 0.0037 ∗ (anomalyt − 1)2

We did not test a formulation where K is projected to increase 
under warming waters (i.e., a higher optimal temperature sce-
nario), because coral habitat complexity has been shown to 
decline with rising water temperatures (Alvarez-Filip et al. 
2011; Bozec et al. 2015).

Fish population and harvest model

All values for the following parameters and state variables are 
given in Table 1.

We calculated fisheries harvest:

where fisheries harvest ( ht ) was simulated as a function of 
stock biomass at the beginning of time t ( Xt−1 ), fraction of 
the stock harvested ( f

(
Et

)
 ), and fishing area ( A , White and 

Costello 2014). We used an exponential survival function to 
calculate the fraction of the stock harvested:

(4)

K1,t =

⎧
⎪⎨⎪⎩

−4.95243768 ∗ anomalyt + 101.3if10 < K1,t < 101.3

10ifK1,t < 10

101.3ifK1,t < 101.3

(5)K2,t =

⎧
⎪⎨⎪⎩

101.3 + −0.7 ∗ anomaly2
t
if10 < K2,t < 101.3

10ifK2,t < 10

101.3ifK2,t < 101.3

(6)ht = Xt−1f
(
Et

)
A

(7)f
(
Et

)
= 1 − exp

(
−Etqt

)
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Fig. 1   A Temperature-dependent intrinsic growth rate and B temperature-dependent carrying capacity as a function of the sea surface tempera-
ture anomaly
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where the fraction of the stock harvested ( f
(
Et

)
 ) was 

based on fishing effort ( Et ) and catchability ( qt , White and 
Costello 2014). We calculated the post-harvest population 
for time t (Nt):

We then simulated logistic fish population growth:

where the fish population biomass after growth ( Gt ) was a 
function of the population biomass after harvest ( Nt ), intrin-
sic population growth rate (r), carrying capacity (K, Schaefer 
1957). For the temperature-dependent model versions, r and 
K were replaced by the respective temperature-dependent 
version of the variable at each time step (e.g., baseline r 
replaced by r1).

Fishing effort and spatial closure scenarios

We tested different scenarios of fishing effort and spatial clo-
sures in conjunction with the r and K thermal effects models. 
First, we varied fishing effort (Et) from 0 to 0.5, to represent 
measures taken to regulate the amount of fishing. The fish-
ing effort value range was set to range from no fishing (0) 
to the value that led to extinction of the stock in the base-
line (nonspatial, constant r and K) model (0.5, Figure S2). 
Then, we tested a range of spatial closures (0 to 100% of area 
designated as no-take spatial closures). To incorporate spa-
tial closures, we used a two-patch model framework where 

(8)Nt = Xt−1 − ht

(9)Gt = Nt + r ∗ Nt ∗

(
1 −

Nt

K

)

each patch has a fish population and, at each time step, the 
two populations can disperse and move from one patch to 
another (Fig. 2). We used dispersal methods from White 
and Costello (2014) where, after harvest, the fish biomass 
disperses from one patch to another:

where the final stock biomass in patch i at time t ( Xi,t ) was 
a function of the dispersal kernel ( Dji ), patch areas ( Ai,Aj ), 
and fish biomass after growth (Gj,t, White and Costello 
2014). The dispersal matrix was calculated by modifying a 
common pool matrix by a site fidelity term (S) using meth-
ods from White and Costello (2014):

where Qs,d represented the proportion of individuals mov-
ing from a source (s) to destination (d) patch. For the com-
mon pool matrix (i.e., S = 0), the fraction of individuals that 
disperse to each patch was proportional to the relative size 
of the patches (e.g., if patch i covers 70% of the domain, 
then 70% of all individuals go to patch i). Higher values 
of site fidelity increased the fraction of the population that 
remained in their original patch. S = 1 represents completely 
isolated patches (i.e., no movement between patches). A 
more detailed explanation of how S modifies the common-
pool matrix can be found in White and Costello (2014). Note 
that our model was strategically designed using simplifying 

(10)Xi,t =

∑N

j=1
DjiAjGj,t

Ai

(11)D =

[
Qi,i +

(
1 − Qi,i

)
S Qi,j − Qi,jS

Qj,i − Qj,iS Qj,j +
(
1 − Qj,j

)
S

]

Table 1   Defined parameters and their data source for the fish population and harvest model. t indicates the timestep and i and j refer to the 
respective patch

Parameter Units Description Value and data source

ht g∕m2 Fisheries harvest at time t Calculated from Eq. 6
f(Et) Proportion Fraction of the stock harvested time t Calculated from Eq. 7
Et Proportion Fishing effort at time t Varies
qt Proportion Catchability at time t 1
Nt g∕m2 The fish population after harvest Calculated in Eq. 8
Gt g∕m2 The fish population after growth Calculated in Eq. 9
r Rate Baseline intrinsic rate of population growth 0.3 (Froese and Pauly 2023), previously used for reef species in fisheries 

models (Boncoeur et al. 2002; Carvalho et al. 2019; Cabral et al. 2019). 
Varied in r models

K g∕m2 Baseline carrying capacity 101.3 (MacNeil et al. 2015). Varied in K models
Xt g∕m2 The fish population after dispersal Calculated in Eq. 10 for spatial scenarios; for nonspatial scenarios, Xt = Gt; 

X0 = 10
Ai Proportion Area of patch i 1 for nonspatial scenarios; varied in spatial closure scenarios. Ai + Aj  = 1
Dji Proportion Dispersal kernel between patches Calculated in Eq. 11
Qji Proportion Proportion of individuals in patch j that 

disperse to patch i
Equal to Ai

S Unitless Site fidelity parameter used to s6cale Qs,d 0.5 in management strategy runs; varied in sensitivity analysis
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assumptions to compare relative population dynamics in 
response to fishing and temperature scenarios (Levins 1966) 
and therefore should not be viewed as generating absolute, 
quantitative predictions of reef fish populations.

For our analyses, we tracked outputs of fish population 
biomass (calculated as Xi * Ai + Xj * Aj) relative to (1) the 
baseline model fish population biomass and (2) the optimal 
nonspatial management scenario. For the biomass relative 
to the baseline model, we divided each model’s projected 
biomass by the baseline model’s projected biomass. We 
determined the optimal nonspatial management scenario by 
running the baseline fish population and harvest model with 
no spatial closure and a variety of fishing efforts (Figure S2). 
From this, we determined the fishing effort scenario that 
maximized harvest and termed this the “optimal nonspatial 
management scenario” (E = 0.16). We then divided each 
model’s projected biomass by the optimal nonspatial man-
agement scenario’s biomass (51.35 g/m2), giving us biomass 
relative to the optimal nonspatial management scenario. We 
also divided the projected harvest from each model by the 
respective harvest of the optimal nonspatial management 
scenario (7.59 g/m2). All analyses were conducted in R 4.2.1 
(R Core Team 2024).

Simulations

We first ran the baseline fish population model (no thermal 
effects) and then again with each of the five different thermal 
effects model versions (r1–r3, K1–K2). For these trials, there 
was no fishing (E = 0) or spatial closure (Aj = 0). We then 
ran the same thermal effects model versions while varying 
fishing effort. Finally, we ran the same model versions and 
fishing effort values under varying spatial closure scenarios 

(5%, 10%, 30%, and 50% of area closed to fishing). We com-
pared outputs of fish biomass (relative to the baseline model 
and relative to the optimal nonspatial management scenario) 
and harvest (relative to the optimal nonspatial management 
scenario). We analyzed the average outputs from the last 
20 years of the simulation (corresponding to SST anomalies 
2070–2089), chosen because the baseline model had reached 
equilibrium by this point.

Results

Thermal effects

We ran simulations with six model versions of thermal 
effects (baseline model with no thermal effects; r1–r3; 
K1–K2; Figure S3). Aside from the baseline model, the r2 
model (+ 1° anomaly as the optimal temperature) reached 
the carrying capacity most quickly, followed by the r1 model 
(0° anomaly as optimal temperature), and eventually the r3 
model (− 1° anomaly as the optimal temperature). The K2 
model (quadratic formulation) projected a final biomass ~ 3% 
lower than the baseline and r model versions, while the K1 
model (linear formulation) projected a fish biomass ~ 10% 
lower than the baseline and r model versions. The K1 and 
K2 models showed a decreasing biomass trend from years 
25–60 (Figure S3). The time-varying, temperature-depend-
ent intrinsic growth rates (r1–r3) and carrying capacities 
(K1–K2) all showed declining trends over time as tempera-
ture anomaly increased (Figure S4). The largest parameter 
changes due to temperature reduced intrinsic growth rate to 
0.26 (from baseline 0.3) and carrying capacity to 91 g/m2 
(from baseline 101.3; Figure S4).

Fig. 2   The structure and flow 
of the full model framework, 
evaluating thermal effects, fish-
ing effort, and spatial closures 
(graphics by A. Innes-Gold). 
We begin by calculating a 
temperature-dependent growth 
rate or carrying capacity (with 
the exception of the baseline 
model with no temperature 
dependencies), followed by 
fisheries harvest, fish population 
growth, and fish dispersal

Population growth
Equation 8-9

Dispersal
Equation 10-11

Population growth
Equation 8-9

Sea surface temperature
Equation 1-5
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Interactions between thermal effects and fishing 
effort

We then simulated these six model versions with a range of 
fishing effort values, finding notable interactions between 
model version and fishing effort level (Fig. 3). For exam-
ple, at low fishing effort, the r models predicted fish bio-
mass similar to the baseline model, whereas at higher fish-
ing effort levels, the r models diverged from the baseline 
and predicted lower biomass (Fig. 3A, B). The magnitude 
of difference between the r models and the baseline var-
ied by model version, with the r2 model predicting ~ 0.95 
biomass relative to the baseline model, while the r3 model 
predicted ~ 0.35 biomass relative to the baseline model at 
high fishing effort (Fig. 3A). At low fishing effort levels, 
there was a more notable difference between the K mod-
els and the baseline, whereas at high fishing effort levels 
they converged (Fig. 3A). The fishing effort that produced 
the maximum relative harvest also varied slightly between 
model versions (Fig. 3C). In the baseline model, maximum 
harvest occurred at a fishing effort of 0.16. When using the 
r3 model, maximum harvest occurred at a slightly lower 
fishing effort level (0.15). The baseline model produced the 
highest maximum harvest, followed by the r2 model, the 
k2 model, the r1 model, the k1 model, and the r3 model 
(Table S2).

Interactions between thermal effects, fishing effort, 
and spatial closures

Finally, we ran the same model versions and fishing effort 
values with a range of spatial closure scenarios (Figs. 4 
and 5, Fig. S5). In small and intermediate spatial closure 
scenarios (5, 10, 30%), the K1 model predicted the low-
est relative biomass under low fishing effort while the r3 

model predicted the lowest biomass under high fishing 
effort (Fig. 4). Under the large spatial closure scenario 
(50%), the K1 model predicted the lowest relative biomass 
across all fishing effort levels. As the amount of spatial 
closure increased, the spread of relative biomass across 
model versions was reduced (Fig. 4). For example, under 
small spatial closures, the projected biomass relative to 
the baseline model ranged from 0.35 to 1, depending on 
the model version and fishing effort level. Under a large 
spatial closure scenario, all projected biomass relative to 
the baseline model fell within 0.9–1.

Similarly, there were interactive effects of model ver-
sion, fishing effort, and spatial closure area on harvest 
relative to the optimal nonspatial management scenario 
(Fig. 5). Under small spatial closure scenarios (5, 10%), 
there was more difference in projected harvest across 
model versions, particularly at high fishing efforts (> 0.2), 
compared to large spatial closures (30, 50%), where they 
were similar regardless of fishing effort. Notably, under 
small spatial closures, the r3 model predicted the low-
est harvest relative to the optimal nonspatial management 
scenario for high fishing effort levels, but under the large 
spatial closure scenario, the K1 model predicted the low-
est harvest relative to the optimal nonspatial management 
scenario. Finally, the harvest relative to the optimal nons-
patial closure reached higher levels under the large spatial 
closure scenarios for all models, but required higher fish-
ing effort to do so (Fig. 5).

For all scenarios, site fidelity (S) was held constant 
at 0.5. We conducted a sensitivity analysis varying S for 
the full range of possible values (from 0 to 1) but found 
there were minimal interactions between S and the thermal 
effects models across spatial closure scenarios under low 
fishing effort (0.16; Figure S6). Under high fishing effort 
(0.5), the crossover point between the r and K models 
shifted based on site fidelity (Figure S7).

Fig. 3   A Fish biomass rela-
tive to the baseline model, B 
fish biomass relative to the 
optimal nonspatial management 
scenario, and C harvest rela-
tive to the optimal nonspatial 
management scenario across 
model versions and fishing 
efforts. Because we assumed 
linear harvest, harvest relative 
to the baseline model appears 
identical to biomass relative 
to the baseline model and thus 
is not shown. There were no 
spatial closures
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Fig. 4   The effects of fishing 
effort (x-axis), thermal effects 
model version (color), and 
spatial closure area (panel) on 
fish biomass. Fish biomass is 
relative to the baseline model
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Fig. 5   The effects of fishing 
effort (x-axis), thermal effects 
model version (color), and 
spatial closure area (panel) 
on fisheries harvest. Fisher-
ies harvest is relative to the 
optimal nonspatial management 
scenario
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Discussion

We explored differing ways to incorporate thermal effects 
into a fish population and harvest model. Our goals were 
to explore the extent to which these temperature depend-
encies could drive patterns in reef fish populations and 
identify any potential interactions with fishing effort and 
spatial closures. Overall, we showed that fishing effort and 
spatial closure scenarios can influence the extent to which 
rising water temperatures affect fish populations and har-
vest. Incorporating spatial closures mitigated some detri-
mental thermal effects while still allowing for increased 
harvest under certain fishing effort levels.

Interactions between thermal effects, fishing effort, 
and spatial closures

Overall, we found that fishing effort and spatial closure 
scenarios can influence the extent to which rising water 
temperatures affect fish populations and fisheries harvest. 
This result was seen clearly when comparing the model 
versions to the baseline model. For scenarios with high 
fishing and small spatial closures, there were substantial 
differences in the fish biomass relative to the baseline 
model, particularly for the r1 and r3 models. These two 
models had the intermediate and low optimal tempera-
tures, respectively, and thus reduced population growth 
rate as water temperature projections passed that optimum. 
Under low fishing and large spatial closure scenarios, there 
were smaller differences in predicted biomass between the 
different thermal effects model versions compared to the 
small spatial closure and high fishing scenarios. For the 
50% spatial closure scenario, the predicted fish popula-
tion biomass of each model version fell within 10% of the 
baseline model biomass. At the 30–50% spatial closure 
scenario, harvest relative to the optimal nonspatial man-
agement scenario reached higher levels than under small 
spatial closure scenarios (but required a higher fishing 
effort level to do so). Essentially, the increase in spatial 
closures, and corresponding spatial reduction in fishing 
effort, mitigated some of the detrimental thermal effects 
and allowed for increased harvest under certain fishing 
effort levels.

We observed nuance in model outcomes depending 
on thermal effects model version used. At low fishing 
effort, the r models predicted fish biomass similar to the 
baseline model, but at higher fishing effort levels, the r 
models diverged from the baseline and predicted lower 
biomass. The K models showed the opposite trend, where 
they differed more from the baseline model at low fish-
ing effort than at high fishing effort. Generally, we found 

that under high fishing/low population scenarios, tem-
perature-dependent population growth rate limited fish 
biomass, whereas at low fishing/high population levels, 
temperature-dependent carrying capacity was the limiting 
factor. In high fishing scenarios, a large amount of bio-
mass was consistently removed before the population had 
time to grow. Thus, carrying capacity had a smaller effect 
because the population did not approach carrying capac-
ity regardless of temperature. At low fishing scenarios, 
the temperature-dependent carrying capacity had a larger 
impact on biomass and harvest because the population 
readily approached the reduced carrying capacity. In typi-
cal logistic growth models, the intrinsic growth rate drives 
population dynamics at low abundance while the carrying 
capacity defines the maximum population size (Anderson 
and Seijo 2010). Because harvest reduced abundance, the 
intrinsic growth rate was thus a more important population 
parameter under increased fishing effort while carrying 
capacity was more relevant under low fishing.

We found that most of the thermal effects models required 
equivalent fishing effort in order to maximize harvest, with 
the exception of the r3 model in which a slightly reduced 
fishing effort maximized harvest. This finding supports 
claims that in some scenarios, management strategies may 
need to adjust to account for the effects of rising water tem-
perature, especially in the case that the water temperature 
has risen past species’ thermal optimum. There is a growing 
body of work surrounding climate-adaptive fisheries man-
agement (Pinsky and Mantua 2014; Holsman et al. 2019). 
Previous modeling work has also highlighted the need for 
fisheries regulations to adapt harvest regulations based on 
the impacts of rising water temperatures (Fu et al. 2013; 
Collie et al. 2021). However, caution should be taken when 
continuing to use yield-maximizing targets under climate 
change, which can at times lead to decreased productivity 
(Szuwalski et al. 2023).

A novel aspect of our work was the framework we used 
to simultaneously consider temperature-dependent demo-
graphic processes along with fisheries harvest and spatial 
closures. There has been significant previous work surround-
ing both thermal effects on fish populations (Table S1) and 
spatial closure modeling (Gerber et al. 2003). Models have 
been used to demonstrate how spatial closures may affect 
fisheries harvest (e.g., Hastings and Botsford 1999), as well 
as the important role of dispersal in spatial management 
planning (e.g., Gerber et al. 2005). Some previous work has 
also focused on modeling simultaneous effects of fisheries 
management and rising temperature, showing that higher 
temperatures impeded recovery of certain species, particu-
larly those where the projected temperature surpassed the 
species’ optima (Serpetti et al. 2017), similar to our pro-
jected results. Other work has focused on methods of incor-
poration of temperature-dependent bioenergetics—through 
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consumption and respiration at an individual level—which 
led to lower projected fish biomass than in the baseline 
model (Heinichen et al. 2022). We aimed to build on pre-
vious spatial closure modeling work (White and Costello 
2014; Carvalho et al. 2019) to see if and how temperature-
dependent demographic processes affected modeled out-
comes. Our results are similar to previous thermal effects 
modeling studies, as we also found that rising temperatures 
have the potential to decrease fish biomass and harvest. 
However, our methods and focus differed from previous 
models as we have explored two potential ways by which 
climate change may impact fish communities at a population 
level and explored how fishing effort and spatial closure can 
mediate these impacts.

Thermal effects on fish population parameters

Incorporating thermal effects relationships led to lower pro-
jected biomass and harvest when projected using the Insular 
Pacific-Hawaiian Sea Surface Temperature Anomaly Projec-
tions for the CMIP6 SSP2-4.5 scenario. These results are 
consistent with predictions that reef fisheries production will 
decline as SST increases (Jennings and Brander 2010). In 
our results, the extent of the biomass and harvest reduction 
varied depending on the formulation tested. In low levels of 
fishing, the K models generally led to lower projected fish 
biomass than the r models. This was because with no/mini-
mal fishing, the fish population reached carrying capacity 
even with the reduced population growth rate as seen in the r 
models. The r2 model behaved very similarly to the baseline 
model because it utilized a higher optimal temperature that 
was already similar to the projected SST anomalies. The r1 
and r3 models had lower optimal temperatures, producing 
a lower population growth rate, and therefore took longer 
to reach carrying capacity. The K1 (linear) model predicted 
the lowest fish biomass because, at anomalies within ~ 8°, 
the linear formulation produced a lower carrying capacity 
than the quadratic formulation (Fig. 1). If anomalies reached 
higher values (> ~ 8°), there would be a switch where the 
quadratic model started generating lower levels of carrying 
capacity than the linear model.

Virtually all organisms have a bell-shaped temperature 
response curve showing how growth and reproduction 
increase with SST until an optimal temperature is reached, 
after which performance will decline (Pratchett et al. 2011a, 
b). In general, the extent to which rising SST will have posi-
tive and negative effects on individual species depends on 
whether the temperatures are moving toward or away from 
the thermal optimum (Tewksbury et al. 2008). Increases in 
SST during months and seasons where temperatures are well 
below the optimum may increase growth and production, 
although there are likely to be increased risks to fish popu-
lations in seasons where SST begins to exceed the thermal 

optimum (Pratchett et  al. 2011a, b). Current projected 
increases in SST of 1–3 °C will take summer maximum tem-
perature above the range at which metabolic rate, growth, 
and reproduction are maximized for some reef fish species 
(Munday et al. 2008; Nilsson et al. 2009; Donelson et al. 
2010). We used quadratic formulations where populations 
continued to grow until an anomaly of > 9° was reached; 
however, the SST anomalies we used mainly fell within 3°. 
If we used more conservative measures of when popula-
tions would stop growing, we would likely have seen an 
even stronger effect of temperature and lower projections of 
biomass from the r models.

There has been extensive research to understand the 
effects of temperature on certain species of corals (e.g., 
Jokiel and Coles 1977) and fish (e.g., Ospina and Mora 
2004; Pratchett et al. 2015). However, understanding how 
these effects scale up to a population level comes with addi-
tional challenges. We used the best available data relating 
to SST, habitat complexity, and reef fish biomass and carry-
ing capacity in order to estimate potential SST-K relation-
ships and explore population-level effects on projected fish 
biomass and harvest. Our findings highlight that different 
formulations of the SST-K and SST-r relationships can yield 
different projections of biomass and harvest, emphasizing 
the need for future research to further resolve the impacts of 
SST on fish population parameters.

Limitations and next steps

There were several limitations to our model which suggest 
areas for future work. Our study focused on a theoretical 
population of reef fish and is not species or functional-group 
specific, although there is variation in the response of reef 
fish to fishing and climate change (Pratchett et al. 2011a, b). 
Future studies could focus on a specific species or functional 
groups and adapt the temperature responses to be specific to 
that group. Additionally, the fish population could be bro-
ken down into age classes to incorporate differing dispersal 
patterns and temperature impacts on juvenile and adult fish. 
Future work could also consider how somatic growth rate, 
size at maturity, and fecundity levels differ inside closed 
areas due to older spawners being present (Evans et al. 
2008).

Our model could be extended to increase its spatial and 
temporal resolution. We represented nonspatial manage-
ment broadly by varying fishing effort from zero to over-
fishing, rather than distinct management rules. There could 
be greater levels of detail included and consideration for dis-
criminate and less discriminate gear types. To expand on the 
management scenarios that can be represented in this model, 
future work could involve simulations using a monthly time 
step to model seasonal closures and differentiating catch by 
gear type.
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Although informed by data, there is uncertainty surround-
ing the relationships between temperature and population 
metrics. While we based our thermal effects relationship on 
the most relevant literature to our topic of interest, species-
specific responses would introduce variation into these pat-
terns (e.g., Heenan et al. 2017). We were able to address 
some of this uncertainty through testing multiple formu-
lations. The uncertainty surrounding the thermal effects 
relationships could be reduced from additional empirically 
based parameterization, such as Pratchett et al.’s (2015) 
findings that show how the growth rate of Acanthochromis 
polyacanthus varies with deviations from an optimal tem-
perature. In addition, our SST-K modeled relationship does 
not capture the time lag that occurs between increased SST 
and declining complexity (mortality from coral bleaching 
loses structure in 4–10 years; Pratchett et al. 2015).

Additionally, numerous other direct effects of climate 
change would be useful to incorporate into a fish popula-
tion and harvest model framework, including poleward 
migration (distribution shifts and changes in demography 
and abundance; Woodworth-Jefcoats et al. 2017), decreases 
in species maximum sizes (Cheung et al. 2013), and physi-
ological responses to ocean acidification and reductions in 
dissolved oxygen (Pratchett et al. 2015). Finally, the model 
could be run using multiple CMIP6 scenarios, as has been 
done in other modeled systems (e.g., Woodworth-Jefcoats 
et al. 2017). However, exploring the effects of various cli-
mate change scenarios on fish populations was outside the 
scope of this study, as we focused on the effects of tempera-
ture on intrinsic growth rate and carrying capacity and then 
expanded these relationships to explore their interactions 
with fisheries management scenarios.

Conclusion

Declines in fish populations due to exploitation and climate 
change threaten both ecosystems and food security. Because 
of these declines, many coastal nations are prioritizing the 
management of their marine resources. In this study, we 
presented a fish population and harvest model that explores 
potential climate change impacts as well as fishing effort and 
spatial closures, in order to better understand the interactions 
between multiple drivers of fish populations. Overall, we 
described how fishing effort and spatial closure scenarios 
can influence the relative importance of key processes and 
the extent to which rising water temperatures affect fish 
populations and harvest. We also showed that management 
strategies like spatial closures can help mitigate detrimental 
thermal effects without necessarily sacrificing harvest. As 
the interactive effects of climate change and resource exploi-
tation continue to cause ecosystem degradation and fish-
eries declines, predictive models that account for multiple 

stressors will be essential as managers work to sustain and 
restore resources.
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