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ABSTRACT. We consider numerical approaches for deterministic, finite-dimensional op-
timal control problems whose dynamics depend on unknown or uncertain parameters.
We seek to amortize the solution over a set of relevant parameters in an offline stage
to enable rapid decision-making and be able to react to changes in the parameter in
the online stage. To tackle the curse of dimensionality arising when the state and/or
parameter are high-dimensional, we represent the policy using neural networks. We com-
pare two training paradigms: First, our model-based approach leverages the dynamics
and definition of the objective function to learn the value function of the parameterized
optimal control problem and obtain the policy using a feedback form. Second, we use
actor-critic reinforcement learning to approximate the policy in a data-driven way. Us-
ing an example involving a two-dimensional convection-diffusion equation, which features
high-dimensional state and parameter spaces, we investigate the accuracy and efficiency
of both training paradigms. While both paradigms lead to a reasonable approximation
of the policy, the model-based approach is more accurate and considerably reduces the
number of PDE solves.

1. INTRODUCTION

We are interested in deterministic, finite-time optimal control problems in which the
dynamical system depends on parameters that are unknown or uncertain. Such problems
arise in decision-making for complex systems and are prevalent across application domains,
including physics, engineering, finance, robotics, economics, environmental sciences, and
traffic flow [9, 45, 38, 5, 43, 48].

We aim to amortize the solution across multiple parameter uncertainties and obtain a
policy that maps the current state and parameter to approximate optimal actions. While
this introduces significant offline costs, the policy is fast to evaluate online which enables
rapid decision-making.

Since an effective policy must depend on the current state of the system and the value
of the parameter, amortization is subject to the curse of dimensionality (CoD). Traditional
solution approaches become ineffective when the combined dimensions of the state and pa-
rameter exceed approximately four. Tackling the CoD leads to two critical challenges: First,
one needs to determine policies using a high-dimensional function approximator. Motivated
by their universal approximation properties, we consider neural networks. Second, identi-
fying the relevant parts of the state space is critical to avoid the infeasibility of globally
sampling high-dimensional spaces. Therefore, it is common to limit the search to parts of
the state space likely to be visited when following optimal policies [28, 44].
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Given a class of function approximators, we focus primarily on numerical methods for
learning effective policies and compare a model-based and a data-driven approach. Our
model-based approach approximates the value function of the control problem from which
the policy is obtained using a feedback form. The feedback form requires a model of the
dynamical system and knowledge of the objective function. This enables incorporating the
physics of the system and including known properties of the value function via the Hamilton-
Jacobi-Bellman (HJB) equations into the training problem. Our data-driven approach uses
the actor-critic reinforcement learning framework to decouple the networks for the policy
(i.e., the actor) and the value function (i.e., the critic) and trains both networks purely from
observations. Both approaches are intimately related through the underlying control theory,
especially Pontryagin’s maximum principle theory and HJB equations.

To compare the accuracy and efficiency of both approaches, we implement a model prob-
lem motivated by control of contaminant transport. Here, the state is governed by the
two-dimensional advection-diffusion partial differential equation (PDE). The objective is
to prevent a contaminant originating at a source location from reaching a target region by
controlling the location of a sink. Uncertain parameters, in this case, consist of different sce-
narios for the source location and the velocity field. Since the state is infinite-dimesional, the
problem is well-suited to create high-dimensional problem instances through discretization.

Our main contributions and observations are summarized as follows:

e We extend the optimal control approaches from [37] to address parametric control
problems by amortizing the control policy over the parameters.

e We provide a direct comparison of the OC and RL approaches, including respective
sub-optimalities. For the parameterized OC approach, this experiment increases the
problem dimension from around 100 in [37] to about 1000 (see Section 6).

e We observe in our experiments that the OC approach achieves more accurate policies
with fewer dynamical system simulations (20x less).

The remainder of the paper is organized as follows: Section 2 introduces the parametric
OC problem and provides a brief background on OC theory that informs our approaches.
Section 3 discusses related approaches for learning amortized policies. Section 4 presents
our neural network approach for computing the value function. Section 5 revisits key RL
concepts, laying the groundwork for employing Proximal Policy Optimization (PPO) and
Twin Delayed Deep Deterministic Policy Gradients (TD3) algorithms in policy approxima-
tion. Section 6 conducts a comprehensive numerical assessment of both approaches for PDE
control problems. Finally, Section 6.4 provides a discussion of the results, highlighting the
strengths and limitations of the proposed methodologies.

2. PARAMETERIZED OPTIMAL CONTROL PROBLEM

We consider a family of deterministic, finite horizon optimal control problems of the form

T
(2.1a) mig J(t, z,u;y) ::/t L(s,z(s),u(s))ds + G(2(T)),

ue

subject to a nonlinear dynamical constraint
(2.1b) dsz(s) = f(s,2(s);y) + g(s,z(s);y) u(s), setT] =z(t) ==

These problems are parameterized by the vector y which is sampled from a distribution
n on the parameter space. For a given y, the functions f : [0,7] x R — R? and g :
[0,T] x R? — R¥*® model the evolution of the states z : [0,7] — R? in response to the
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controls w : [0,7] — U C R®. The initial state of the system is denoted as € R?, and the
initial time is represented by t € [0,7]. The function L : [0,T] x R? x R* — R represents
the running cost and G : R — R represents the terminal cost in the control objective
eq. (2.1a). We assume that f, L, G, U are sufficiently regular (see [50, Chapter 2] and [15,
Sec. 1.3, 1.8-9] for a list of assumptions).

We aim to determine an optimal control policy amortized over the parameters y ~ 7 that
minimizes the overall cost. In particular, given a specific parameter y, we seek to find the
value function

(2.2) O(t,z;y) = 1161{] J(t,z,u;y) st eq. (2.1b),

which represents the minimum cost-to-go for any initial state (¢,«). The control u* for
this minimum value is referred to as optimal control, and the corresponding trajectory z*
is called an optimal trajectory.

The problem eq. (2.1) is typically tackled using local solution methods. These methodolo-
gies involve minimizing the cost functional by eliminating the constraints while considering
a fixed parameter y. However, local solutions must be recomputed each time y changes, ren-
dering the previously computed solution obsolete. This motivates devising a global approach
where an amortized control policy approximates the optimal control for all parameters y ~ 7.

Subsequently, we will see that the value function ® contains complete information about
the optimal control, and we can straightforwardly deduce u* from ®. Notably, this connec-
tion is not explicitly utilized by RL algorithms during policy approximation. This distinction
between the HJB approach and RL is significant, as leveraging the underlying physics of
the problem can lead to improved results as presented in Section 6.

We now introduce the Hamiltonian, H : [0,7] x R? x RY — R U {oc} of the system
eq. (2.1), which plays a pivotal role in both OC theory and our numerical approach:

(23) H(S,Z,p,y) = sup H(S,Z,p,u;y)~
uelU

Here p : [to, T] — R? is referred to as the adjoint or costates of the system and

’H(s,z,p,u;y) =P (f(57z;y) +g(57zay) ’LL) —L(S,Z,U).

The Pontryagin maximum principle (PMP) provides a set of first-order necessary conditions
and states that, see [15, Theorem 1.6.3], the adjoint, p, satisfies the adjoint equation. Fur-
thermore, when the value function ® is differentiable, the adjoint p and the optimal control
u* can be derived from ® using [15, Theorem 1.6.2]: for s € [¢, T

(2.4) p(s) =V.®(s,2z"(s);y), and

(2.5) u*(s,2%(s), V2 (s, 27(s)); y) € arg;r&ax?—[(s, z*(s), V2 (s,2"(s);y),u(s); y).
Equation (2.5) characterizes optimal control in the feedback form and states that it can be
readily computed at any space-time pair for a given y when the value function ® and V,®
are available. For a thorough exploration of the aforementioned relationships, we refer the
readers to [15, 28, 37].

The model-based approach exploits this fundamental relationship to approximate a ®
amortized across diverse parameters y. This ensures a readily accessible approximate op-
timal control for each parameter setting. The data-driven approach, on the other hand, is
agnostic to this relationship and hence suffers in terms of accuracy.
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3. RELATED WORK

This section reviews closely related approaches applying machine learning techniques to
optimal control/policy training. Existing approaches can roughly be grouped based on two
fundamental characteristics: (i) the type of function approximators used and (ii) whether
training is driven primarily by the data itself or by learning a model. In this work, we restrict
our attention to approaches that use neural networks (NNs) as function approximators and
consider both model-based and data-driven training algorithms.

Model-based approaches can further be subcategorized into supervised and unsupervised
learning approaches. The method in [35] adopts a supervised learning approach to learn
a closed-form value function from optimal control trajectories. Other supervised methods,
such as those in [13], approximate the value function and its gradient using tensor product
decomposition with datasets generated via adaptive sampling from the PMP or by solv-
ing state-dependent Riccati equations. Similarly, [1] learns a feedback law from datasets
generated by state-dependent Riccati equation solvers.

Some unsupervised, model-based approaches, such as the physics-informed neural net-
works (PINNs) method in [30, 34], integrate the cost functional into the standard PINNs
loss for solving OC problems. However, these approaches are local methods and do not solve
the HJB equation corresponding to the control problem, making them very different from
our approaches.

Other techniques, such as deep-learning-based surrogate models [48, 32] and operator
learning methods [46, 20], focus on achieving fast OC solution inference without intensive
computations. In [12], an extended PINN approach utilizes Karush-Kuhn—Tucker (KKT)
conditions as the loss function. Similarly, the surrogate modeling approach proposed in
[31] reduces the computational cost of PDE solves to enable efficient PDE-constrained opti-
mization under uncertainty. The approach employs neural operators to learn the mapping
from uncertain parameters to the solution of the underlying PDE along with its derivatives.
The significant acceleration of local solution methods in the above works makes surrogate
modeling an attractive option to extend the policy-based methods in this work to higher-
dimensional and more complex systems.

The existence and convergence of optimal feedback control when the value function is
approximated by a neural network or a polynomial is shown in [25]. In this work, the loss
function penalizes the violation of the control cost and the adjoint state from the PMP
with the value function and its derivative, respectively, rather than directly penalizing the
HJB equation. While this analysis is not directly applicable to our approach, it presents an
interesting avenue for future research.

A recent development is the adjoint-oriented neural network method proposed in [49]
for parametric OC problems. This method learns the states, adjoints, and control of the
system through three different neural networks using a direct-adjoint looping method-type
loss. While capable of handling parametric problems simultaneously with random sampling
instead of spatial domain discretization, it faces challenges in the presence of changes in ini-
tial states or disturbances when following the optimal solution. Moreover, training separate
networks introduces computational complexity, limiting the applicability of this approach
to less complex problems.

Reinforcement learning (RL) has emerged as a powerful data-driven approach and shown
success in diverse applications such as robotics, autonomous driving, games, and recom-
mender systems [33, 41, 47, 42, 11, 21, 7]. Its non-intrusive and gradient-free nature make
RL suitable for problems lacking well-defined models. However, RL often requires many
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samples, which are computationally expensive in our setting. The process of hyperparam-
eter tuning in RL algorithms is laborious and computationally expensive, hindering their
applicability for parametric dynamics [36, 18, 22, 53, 2]. To overcome these limitations,
there is a growing interest in effectively integrating system knowledge to overcome the con-
straints of data-driven methods for handling complex dynamics. In [51, 52], the authors
investigate solving OC problems using actor-critic and policy gradient-type methods within
the realm of RL. While successful for general OC problems, these methods have limited
direct applicability to parametric problems. The main challenge arises from the added com-
plexity introduced by parameters, in addition to the already expensive task of evolving the
dynamics over time.

Works closely related to our OC approach include [37, 26, 28], which employ NNs to
parameterize the value function and penalize the HJB equation satisfied by the value func-
tion. What distinguishes our framework from similar approaches is its consideration of
higher-dimensional, parametric OC problems, with dimensionality arising from the states
and the amortization of control policies across uncertainties. Moreover, amortization allows
us to solve different problems at the same time that typically vary by parameters, making
it valuable for various scientific applications, such as digital twins [10, 3]. Additionally,
amortization enables a direct comparison with RL techniques.

4. MODEL-BASED APPROACH

In this section, we present our model-driven approach, inspired by [37], for approximating
the amortized value function of the parameterized OC problem eq. (2.1). The central concept
revolves around utilizing an efficient function approximator to model the amortized value
function ® in eq. (2.2) and subsequently computing the control using the feedback form
given by eq. (2.5). The learning adopts an unsupervised approach akin to RL. The loss
function consists of the sum of the expected cost over different parameters, y ~ 7, driving
the trajectories and penalty terms that enforce the HJB equations along the trajectories
and at the final time.

4.1. Learning Problem. Let ®g denote the approximation of the value function ® with
parameters 8. Ideally, we aim for a choice of 8 where ®¢ matches the value function of the
corresponding control problem for every given y. However, this problem suffers from the
curse of dimensionality, so we resort to an approach that enforces this property in a subset
of the space-time domain.

To learn the parameters in an unsupervised way (that is, no apriori data for ® and
optimal control trajectories), we approximately solve the minimization problem

min Eyn {J(t, 2, w;y) + Pujn, y(2)}

(4.1)
st dez = f(s,2(5);y) + g(s,2(s);y) u(s), se(t,T); =z() ==

Here, Pyjp, y penalizes deviations from the HJB PDE satisfied by the value function for each

parameter y. In the learning process, the optimal control is computed through the feedback

form provided in eq. (2.5), hence, incorporating the model information and introducing a

dependence on 6 for both the control w and state z.
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Exploiting the fact that the value function satisfies the HJB PDE (see [15, Theorems
1.5.1, 1.6.1]), we guide the approximation of ® using the penalty term Pujp, 4, defined as:

T
Py, y(2) =1 /t |H(s,z,V®o(s,2(5);y);y) — 0sPa(s, 2(s); y)|ds
+ B2|G(2(T)) — ®o(T, z(T); y)| + B3|V=G(2(T)) — VP (T, z(T); y)|,

where the relative influence of each term is controlled by the components of 5 = (81, 82, 83) €

]Ri. The first component on the right-hand side is the cumulative residual of the HIB PDE

satisfied by the value function ®; the other two components are the terminal time condition

and the terminal gradient condition, which are both satisfied by the value function as well.
We further make the following assumption for our model-driven approach.

(4.2)

Assumption 4.1. There exists a closed form solution to eq. (2.5), which allows us to write
the control u as a function of V,®, explicitly, i.e.,

(4.3)  u*(s,2%(s), V.®(s,2"(s);y); y) = arggjax?—l(s,z*(s),Vzé(s,z*(s);y),u(s);y),

A closed-form solution for the optimal control exists in a wide variety of OC problems [29,
6, 24]. While we do not explicitly demonstrate it in this work, it is worth noting that this
assumption can be relaxed to include implicitly defined functions as long as they can be
efficiently obtained. This flexibility allows for the modeling of more general convex running
costs and enhances the applicability of our approach to a wider range of problems.

Equations (4.1) and (4.3) provide a framework for obtaining the optimal control and
trajectory based on the value function ®, subject to certain smoothness assumptions, by
outlining the necessary conditions for optimality. Once a good approximation of the value
function ® is computed, this framework can be applied to any initial data and parameters,
also allowing for adaptability to perturbations in the system.

4.2. Function Value Approximation. In principle, one could employ any high-dimensional
function approximator to parameterize the value function. Yet, due to the universal ap-
proximation properties inherent in NNs, we opt for using an NN to parameterize the value
function. Designing an effective neural network architecture is essential for various learning
tasks, and it remains an active area of research. In our approach, we treat this as a modular
component, providing flexibility. Our framework can seamlessly integrate with any scalar-
valued neural network that accepts inputs in R!*¢*v  with d,, denoting the number of
parameters and possesses at least one continuous derivative concerning its first d+ 1 inputs,
to allow computations of V.
In our experiments, we use a residual neural network given by

(4.4) ®g(hy) = w' NN(ho; Onx),

with weights @ containing w € R™ and Oyn € R? and inputs hg = (¢, 2(t);y) € R1+d+dw
corresponding to time-space, and NN(hg; Oxn): R!T9F% — R™ is a residual neural network
(ResNet) [17]

h1 = O'(Koho + bo)
(4.5) hito =hit1 +o0(Kipihip1 +bip1), 0<i<M-2
NN(ho; Onn) = has + o(Kvbhyv + by),

with neural network weights Onn=(Ko,..., K, bo,...,byr) where b; € R™ Vi, Ky €
R7*(4d+dy) and {K,..., Ky} € R™*™ with M being the depth of the network. We
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use the element-wise nonlinearity o(x) = log(exp(z) + exp(—x)), which is the antiderivative
of the hyperbolic tangent, i.e., o’(z) = tanh(x). For the experiments, we use m = 64 nodes
per layer and a network depth of M = 4.

4.3. Numerical Implementation. We tackle the control problem in eq. (4.1) using the
discretize-then-optimize approach. We begin by discretizing the constraints and then opti-
mize. To do so, we first sample parameters y ~ n and then use a time discretization of N +1
equidistant time points t = sg,...,sy = T with step size As = (T — t)/N to eliminate the
constraints in eq. (2.1b). The specific discretization details for each experiment vary and
are discussed in their respective sections. This yields a state trajectory starting at zo = @
via

(4.6) Ziv1 = zi + f(8i,2iv1;9) As + 9(8i, zir1;Y) w; As, i=0,...,N—1,

where z; = z(s;) and u; = u*(s;, 2, V.Po(si, z;;y)) is the optimal control obtained from
the feedback form, that is, from eq. (4.3), computed by equating V,H = 0. Finally, we
approximate the objective functional via

N
(4.7 J(sky 2z, w3 y) :ASZL(si,zi,ui)+G(zN),

i=k
and approximate the penalty term Pyjp . in a similar manner at the same time. Approx-
imating PmgjB,y requires one network and gradient evaluation per time step, which is not
very expensive compared to the PDE solves.

In principle, any stochastic approximation approach can be used to solve the above
optimization problem. Here, we use Adam [23] and sample a minibatch of trajectories
originating in i.i.d. samples from 7 with an initial learning rate of 0.075. During training, the
learning rate gradually diminishes with an exponential decay rate of 0.975 until it stabilizes
at 0.0025. For each training iteration, we randomly select a batch of 20 problem parameters
from the distribution n. Following the HJB framework, we evaluate controls for each problem
and evolve the systems accordingly. Subsequently, we compute the losses, using them to
update the network weights, as illustrated in Algorithm 1.

5. DATA-DRIVEN APPROACH

We now consider an alternative, data-driven approach to the problem: reinforcement
learning (RL), which provides a general framework for approximating policies through a
series of interactions with an environment. More precisely, an RL environment specifies
all possible system states, a description of admissible actions, and a model governing the
evolution of the system space when an action is performed. In RL language, the controls
are referred to as the actions. The environment is paramount for RL algorithms, and its
proper definition is critical. In this section, we provide the RL formulation for the learning
problem introduced in Section 4.1. We then give a brief overview of the actor-critic models
we will use for comparison with the proposed model-based approach. Our presentation
follows [8, 44].

Let mg, denote the policy, parameterized by parameters 6, which is a mapping from
the state space to the action space. The policy can be either deterministic, denoted as
u; = Teq(2;), or stochastic, indicated as u; ~ mgq(-|2¢). Using eq. (4.6), a policy generates
a sequence of states and actions, (zi, ui)ﬁvzo, referred to as an episode.

To evaluate the performance of a policy, it is necessary to create functions step() and
reset() to govern the problem dynamics and the interaction between the agent and the
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Algorithm 1 Model-based training approach

Require: Number of training problems P, problem parameter distribution 7, number of
time steps N, initial network weights @, Hamiltonian H, and loss weighting factors

(B1, B2, B3)
1: Initial Setup for Training
2: Derive Feedback Form Ezpression, using eq. (4.3)
3: Feedback_Form : (—=V.®g, f, g) — u
4:
5. Assemble Randomized Problems
6: Sample P parameters {y,}i_; ~7
7: Store discretization for f and g corresponding to {y,}}_;
8:
9: Training Iteration
10: Sample Batch of Problems
11: Retrieve discretized f and g corresponding to y,, with p ~ Uniform({1,...,P})
12:
13: Assess HJB Control Performance
14: Set so=0,zg=x,J =0, aIld]DH‘]}?,,yp =0
15: while i < N do
16: Approximate Control using Feedback Form
17: Evaluate network <I>9(si,zi,yp) and gradient V,®g(s;, z;; yp)
18: u; = Feedback Form(—V.®g(si, z:;¥,), [, 9)
19:
20: Evolve System Dynamics eq. (2.1b) in Time
21: ziy1 + Time Integrator(z;, u;;y,)
22: Sit1 < S+ As
23:
24: Update Intermediate Losses
25: J J-I-L(si,zi,ui)As
26: Puipy, < Puisy, + B1lH (si, i, VaPe(si, 2i3Y,)i ¥,) — 0sPa(si, 2i,y,)|As
27: end while
28: Update Final Losses
29: J J+G(ZN)
30: Puyp,y, < Puipy, + B2|G(2n — Po(sn, 2n, yp)| + B3|V2G(2n) — Ve Po(sn, 2N, Y,
31:
32: Update Networks Weights
33: 6 < Optimizer(J + PHJB7yp)

environment. Aiming to address the optimization problem introduced in Section 2, these
functions operate as follows

e reset(): This function initializes or resets the environment to its initial state, z¢, preparing

it for the new episode.

e step(): Given an action wu; as input, determined by a policy, it returns the following:

— The next state z;11 using the dynamics described in eq. (4.6).
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— A scalar feedback signal representing the objective function, known as the reward,

. As L(8;, 2, u;), 1< N
e ASL(SN,ZN,UN)+G(ZN), i=N"~

— The termination status indicates the terminal time 7" has been reached or the current
episode has been terminated.

Specific environment details for the problems considered are provided in Section 6.
The goal is to identify an optimal policy in order to minimize the cumulative reward,
called return’, given by the value function

N
(5.1) U(0,) = Eﬂea,w{zn} = Ery, yon L J(50, 2,45 9)} .
=0

When the policy is deterministic, the expectation over mg, in eq. (5.1) is omitted, making
the return equivalent to the objective function in the model-based approach; see eq. (4.7).

Remark 5.1. When starting from the initial state zo and following the optimal policy mg,
we recover the original value function ® in eq. (2.2).

In our work, we consider the policy stochastic as they provide additional flexibility, robust-
ness, and adaptability that can be advantageous in complex and uncertain environments.

Now that we have established a loss function representative of the original optimization
problem, we must also review the expression for the gradients with respect to 8, for updating
these parameters. This expression is provided by the following foundational result from the
theory of RL.

Theorem 5.2. [}/, Policy Gradient Theorem, Chapter 13] The gradient of the cumulative
reward objective function eq. (5.1) can be expressed in terms of the policy gradients as follows:

N
(5.2) Vo,¥(0a) = Ery, y~n { Z Vo, log maa(uil|zi)J (i, 2, u; y)} .
i=0
While the direct use of Theorem 5.2 for policy optimization can work effectively in some
cases, the practical performance often suffers from high variance in the gradient estimate,
and thus produce slow learning. To reduce variance effects and increase stability, many
policy-based RL algorithms subtract the cumulative reward by a baseline, b(s):

N
(53)  Vo,¥(0a) = Eny,. yon { S° (51, 26 wisy) — b(z0)) Vo, logwuﬂzi)} .
i=0

Intuitively, making the cumulative reward smaller by subtracting it with a baseline will
make smaller gradients, and thus smaller and more stable updates.

5.1. Actor-Critic Models. Selecting an effective baseline poses a challenge, but the state-
value function is a suitable choice, making both the value function and policy learnable. This
creates a two-component RL framework known as an actor-critic model:
e The actor mg,, determines actions based on the current state (i.e., defines the policy).
e The critic Wy, , parameterizing the baseline with parameters 8., assesses the ap-
proximate value of the current state (i.e., provides value function estimates).

LConventional RL literature assumes that the objective function is being maximized; for the purposes
of aligning with the optimal control problem setup from previous sections, we instead aim to minimize the
loss (which can be interpreted as the negative reward in standard RL literature).
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and both are parameterized by neural networks.

Now that the value function is also made learnable, that means we must provide an
objective for the critic network to learn the parameters 6.. Since the role of the critic is to
provide a baseline estimate for the return, a natural choice for this objective is the expected
value of the squared error:

N
(5.4) Puitic(8e) = Y o, (2:) — J(si, 2z, 9)|.
i=0
In summary, actor-critic models aim to approximately solve the following minimization
problem, where 85 € R4 controls the relative contribution of critic:
Iinélc Eﬂ'ea, y~n {J(507 zZ,U; y) + 65 PCritic(oc)} .

There are several actor-critic algorithms available, and in this work, we focus on two
prominent, state-of-the-art algorithms: Proximal Policy Optimization (PPO) and Twin De-
layed Deep Deterministic Policy Gradients (TD3). The PPO and TD3 algorithms have been
applied to a range of practical applications and consistently provides performance compet-
itive with other state-of-the-art methods [27, 4, 40]. PPO and TD3 are both advanced
versions of the actor-critic framework that address critical aspects regarding stability, mit-
igating overestimation bias, and improving exploration. PPO uses the concept of trust
regions to control the optimization step-size and prevent the agent from drifting too far
away from the current policy. TD3 uses delayed updates to stabilize training. This is done
by maintaining “twin” copies of the actor and critic models that are updated less frequently
than the primary models. These delayed updates provide a layer of robustness to transient,
unanticipated events that have a tendency to destabilize RL training procedures. OpenAl’s
‘Spinning Up’ documentation provides brief technical overviews of PPO? and TD3®. For
more in-depth explanations and implementation specifics, we direct readers to [39, 16].

5.2. RL Network Architecture. Since the observation data for our experiments is spa-
tially structured on a two-dimensional grid, we employ convolutional network architectures
to process the system state at each time step. Both the actor and critic networks share
the same network architecture with the exception of the final layer which is adapted to the
specific format of the actions and value outputs, respectively. As illustrated in Figure 1,
the networks consist of three convolutional layers with 3 x 3 kernels each followed by 2 x 2
max-pooling layers; the series of convolutional layers is then followed by two dense layers,
and a final linear layer is used to produce the position/variance in the case of the actor
network and the value prediction in the case of the critic network. All layers are equipped
with hyperbolic tangent activation functions, and orthogonal initialization is used for both
the convolutional and dense weights.

We train the networks using a pair of Adam optimizers, one used for the actor network
and the other used for the critic and apply an exponential decay to the learning rates,
which are both initially set to 10~%4. The observation states are also normalized using an
exponential moving average estimate for the mean and variance of the input data in each
batch.

It is essential to highlight the difference in network architectures employed for the OC and
RL approaches. The OC approach necessitates an architecture with at least one continuous
derivative with respect to the network inputs. In contrast, the RL approach only requires

2ht‘cps ://spinningup.openai.com/en/latest/algorithms/ppo.html
Shttps://spinningup.openai.com/en/latest/algorithms/td3.html
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FIGURE 1. Network architectures for the actor (left) and critic (right) com-
ponents of the RL models. Both networks receive input arrays with input
containing the values of z(s), y, and s. Convolutional and max-pooling
layers (blue) process the data received from the PDE environment to ex-
tract features. These features are then flattened and passed to dense layers
(grey) to form the position, variance, and value predictions.

policies that are differentiable with respect to the network weights. Because of this, RL
is compatible with most off-the-shelf architectures, while architecture choices for the OC
approach are slightly more restricted.

6. NUMERICAL RESULTS

In this section we compare the model-based and data-driven training approaches for a
control problem involving the advection diffusion equation. Since the ground-truth solu-
tions for these problems are not available, we use conventional, gradient-based solutions as
baselines to approximate the optimal solutions for fixed parameters in a test set. All models
were trained using 10 cores of an Intel Xeon Platinum 8176 CPU at 2.10GHz.

In our initial experiments, we trained all models using the same network architecture;
however, we found the OC and RL approaches required distinct design choices to attain the
best results. When using a convolutional architecture for the OC training procedure, the
gradient signals appeared to be too weak, and models failed to train from the start. For the
RL models, replacing convolutional layers with a residual network led to a noticeable drop
in performance that remained after several iterations of hyperparameter tuning. To provide
a fair assessment, we present numerical results using the architecture that yields the best
performance for each approach.

6.1. Advection-Diffusion Problem Formulation. For our numerical tests, we consider
the solution a(s,z1,x2) to an advection-diffusion PDE defined on a square domain Q =
[0,1] x [0,1] C R? at time s between t = 0 and T' = 0.75. The control problem is based on
a continuous control vector u(s), and the goal is to prevent positive values of the solution
a from occurring in a target region Qiag = {(21,22) € Q : 1 > 0.75} at the final time.
A motivating contaminant control example is illustrated in Figure 2 where a represents the
contaminant concentration (in red) that originates from a source location determined by
the vector y. For our first experiment, the parameters y determine the source location
while the velocity field remains fixed; we then extend the parameters to include information
specifying the phase of the advecting velocity in addition to the source location. The goal
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[Solution at s = 0‘02] [Solution at s = 0.23] Solution at s = 0.5

. - -

FIGURE 2. Example evolution of advection-diffusion system.

is to prevent contamination from reaching the target subdomain ..., which is shown to
the right of the vertical dashed line. To achieve this, an optimal sequence of locations and
magnitudes for the sink (in blue) must be found, both of which will depend strongly on the
parameter y under consideration.

For a given y ~ n, the objective function for the problem is given explicitly by:

1

T
(6.1) 5/ \u(5)|2ds+p/ |max {a(T, x1,x2),0}| doy dzs.
0 Q

targ

The primary dynamics from eq. (2.1b) are prescribed by the advection-diffusion PDE
(6.2) dsa +div(k Va) + ey Va+ o, = u; - Q(a)

with initial condition a(0,z1,22) = 0 and homogeneous Neumann boundary conditions.
In addition to this PDE, the system dynamics include an equation for tracking the sink’s
position, a, based on the selected controls.

The controls u(s) = [u(s),uz(s)]" influence system dynamics through the sink term ‘Q’
on the right-hand-side of eq. (6.2). The value u; determines the magnitude of the sink, and
ug controls the sink’s velocity. The velocity is used to update the sink position « as the
system evolves; this update is prescribed by the following equation, and it is included as the
final component in the system dynamics:

dsa(s) =us(s), 0<s<T, with «a(0)=0.5.
Once « is computed based on the values of us, we define the sink term @ as follows:
Q(x1,x2,a(s)) = 25-exp(—|z1 — 0.6]/0.025 — |x2 — «(s)]|/0.15).

The problems are randomized by sampling parameters y ~ 7 that affect the initial
state and dynamics of the system. Each parameter consists of three components y =
(Y, Yz, Y| The parameters y, and y,, denote the x; and z» coordinates of the source
term ¢,. The source term is then defined by:

(6.3) pylx1,22) = (c/og) exp (=(|lz1 — Y, | + |22 — y,,1)/05)

The remaining parameter, y,,, adjusts the phase of the velocity field, €., as described below.
For our first family of problems, we consider a fixed velocity field with randomized source
locations. We refer to this as the horizontal setup and use the following parameter values:

ey(T1,22) = [25,0]", ¢=5, 0,=001, and & =0.008.
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We then consider a new family of problems, the sinusoidal setup, which incorporates a
more complex velocity field and extends problem randomization to include an additional
parameter, y,,, that determines the phase of the advecting velocity field:

(1+21) - /0.9 = (0.75 - cos(1.1 — a1) - sin(dn (w1 — y,)))>
—0.9-cos(1.1 — z1) - sin(4n(z1 — y,))

(6.4) ey(z1,20) =

For the sinusoidal setup, we also adjust the source magnitude to ¢ = 0.5 and change the
source size to o5 = 0.025 to produce more natural flows for the modified velocity field.
We sample the components of y from the uniform distributions

Y, ~ Unif(0.1,0.25) , g, ~ Unif(0.2,0.8) , gy, ~ Unif(—0.425,0.0)

so that the source locations are varied in the horizontal and vertical directions across the
left side of the domain. For the sinusoidal setup, the velocity field directs concentration
near the source upward for values of y, ~ —0.425 and directs downward for y, ~ 0.0.

Finally, to balance the importance of the running cost and terminal cost terms in the
objective function, we choose a scaling factor of p = 40 in eq. (6.1). This is generally
necessary since the scale of the action space does not always match that of the state space,
and one of the loss components can dominate the other if left unweighted.

6.1.1. Discretization. Since the continuous formulation results in an infinite-dimensional
OC problem, we cannot apply numerical methods to the problem described above directly.
Instead we consider an approximate formulation arising from the spatial discretization of
eq. (6.2) using finite elements.

Denoting the discretized, FEM representation of a(s, z1,22) by a(s), the state vector for
the problem is given by:

2(s) = la(s), a(s)] -
The dynamics for the a component of the state vector are defined by the linear systems
associated with the FEM formulation of eq. (6.2). By construction, the state dynamics for
« are simply dsa(s) = uz(s).

For the spatial discretization, we have selected linear, triangular elements with nodes
associated with a uniform 32 x 32 grid. The FEM representation for the concentration a is
passed to the neural networks by evaluating pointwise on the grid locations {(z?, xé)}f’%zl
with 2§ =i Az, x% = j - Axy, and Az = Azg = 1/31. We further discretize the PDE in
time via implicit Euler with a step count of N = 25 and step size As = 0.02 to obtain the
fully discretized control objective

25 32
1 o
(6.5) J(0, z,u;y) := 3 E lwi?As + p E Lo, (21, 23) jmax {a(T),0}| Az Ax,.
i=0 ij=1

6.1.2. Feedback Form for HJB. To apply the proposed model-based procedure, we first need
to derive the feedback form for the optimal control. This expression depends on the specific
PDE under consideration and provides a natural way of incorporating system knowledge
into the training procedure. As stated in eq. (2.5), the optimal control is a maximizer for
the Hamiltonian evaluated at V,®. By taking the gradient of the Hamiltonian and setting
the resulting expression to zero, the feedback form for both problem setups is given by:

u(s) = fQTVafI)(s), —Va®(s,2(s);y) T,

where @ is the finite element matrix associated with the sink term ‘Q’ in eq. (6.2).
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6.1.3. Parallel Implementation of RL environments. The FEM calculations used to simu-
late the PDE environment present a significant computational bottleneck in the training
procedure. Fortunately, both the PPO and TD3 algorithms can be trained using interac-
tions with multiple, distinct environments in parallel. This is possible since both algorithms
decouple the actor weights used during optimization from the network weights used in the
simulations®. In particular, since both algorithms update policy weights based on inter-
actions performed by decoupled policies, it is possible to run multiple episodes in parallel
before calculating losses and applying gradient updates. To take advantage of this, we em-
ploy OpenMPI and MPI for Python to parallelize the interactions of the actor network with
several different environment realizations simultaneously. The environments are initialized
in parallel, observation data is gathered to the root node and passed to the actor/critic net-
works as a single batch, and the proposed actions are then broadcast back to the respective
environments. We repeat this process until all environments have completed a full episode.
After all episodes are complete, we compute the associated returns, group transitions from
all environments into minibatches, and perform gradient updates.

6.2. Hyperparameter Selection. Determining effective hyperparameters, such as opti-
mization parameters and network architectures, is critical when training neural networks.
In our experience, the selection of hyperparameters often depends on the specific problem
at hand as well as the learning algorithm being used. Developing well-founded mathe-
matical principles for parameter selection in these models represents a significant area for
future research, but it exceeds the scope of this paper. Here, we provide our insights into
hyperparameter selection for the two approaches considered in this paper.

The proposed HJB approach requires tuning only a small number of parameters: the
networks’ width and depth, the learning rate and decay schedule, the batch size, and three
HJB penalty weights (81, B2, 83). Since the 8 parameters determine the weight of the HIB
constraints in the loss function, these choices can result in varying outcomes.

e 31 weights the HJB residual; if set too high, the model underprioritizes reaching the
target, leading to suboptimal solutions.

e 35 weights the final condition on ®; if set too high, the model overprioritizes fitting
® at time T rather than V,®, which is more relevant to the dynamics.

e 33 weights the gradient term; if set too high, the model overprioritizes reaching the
target with less flexibility to choosing trajectories for optimizing L. If 3 is too low,
the model may fail to adequately reach the target, increasing suboptimality.

The RL models considered in this work have a much larger set of hyperparameters and
require a substantial number of system solves to identify the correct training settings. In
addition to the parameters explicitly described in the original papers, there are a number
of subtle implementation details required for the data-driven RL procedures to work in
practice [14, 19]. In particular, we found that a series of scaling factors needed to be
introduced to adjust the magnitude of the rewards and actions for the RL agents. Gradient
clipping was also critical to the performance of the RL models, and an extensive series of
experiments was performed to identify suitable clipping and scaling levels. When these
parameters are not set correctly, the models’ performance will often deteriorate midway
through training, and the procedure must be restarted.

For the experiments considered in this work, we found the hyperparameter tuning process
for the RL models required significantly more time than the HJB approach. This was in

1pPO decouples weights through an ‘old’ policy, and TD3 uses a related technique using a ‘target’ policy.
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part due to the larger number of parameters for the RL algorithms (and the need to imple-
ment new clipping and scaling operations after tuning alone was deemed insufficient). The
effects of the RL parameters were also less transparent, and interactions between different
parameters further complicated the tuning process. For example, the appropriate level of
gradient clipping was strongly influenced by the scaling operations, but it also needed to be
balanced with the learning rates for the actor and critic. Finding an effective combination
of settings for these parameters was non-intuitive and required dozens of training attempts.
For the HJB approach, each parameter is directly associated with a specific component of
the loss. The values of each loss term can easily be monitored during training, and we
adjusted the parameters to ensure no term is under-represented or over-represented in the
overall loss. This results in a straight-forward procedure for tuning HJB hyperparameters,
which is noticeably faster than the RL tuning procedure and requires significantly fewer
PDE solves.

6.3. Baseline via Gradient-Based Solutions. To understand how the proposed amor-
tized procedure compares with more conventional approaches, we now review how gradient-
based methods handle this class of control problems. These methods apply to a single
problem realization (i.e., a fixed value of y) and rely on gradient information, namely V,,J,
to identify an optimal control. For this work, we have implemented a gradient-based solver
using FEM matrices extracted from FEniCS and automatic differentiation provided by Py-
Torch to retrieve the necessary gradients. We then use the L-BFGS algorithm to search
the control space for an optimal solution. We use the solutions obtained from this gradient-
based search as proxies for the true optimal solutions (which are intractable for the problems
considered in this work).

Here, it is important to note that the control obtained from the gradient-based method is
specific to the given parameter. While the control may perform well for nearby parameters,
in general, changes in the parameter require another solve. In many cases, the original
control does not even provide an effective initialization point for new problems (since the
optimal control can change considerably when system dynamics are modified). Because of
this, the initialization procedure is another important and non-trivial aspect of gradient-
based methods. Even though these methods are designed to solve a single problem, unlike
amortized approaches that target a number of problems at once, the gradient-based search
can fail to converge to an optimal control without proper initialization. In order to evaluate
the nonlinear impact of uncertain parameters, we conducted a linear regression analysis
between the parameters y and the corresponding optimal controls obtained using L-BFGS.
The resulting average R? (coefficient of determination) score of 0.6 suggests a significant
nonlinear influence.

6.4. Assessment of HIJIB and RL Performance. For the first set of experiments, we
consider the horizontal velocity setup. The RL and HJB models are tasked with posi-
tioning the sink in locations that block the concentration from entering the target region
while using as little movement as possible. To evaluate each model’s performance, we
assess the accuracy of the models on a set of fixed validation problems throughout train-
ing. For the validation set, we have selected parameter values y, € {0.125,0.225} and
Y., € {0.25,0.4,0.5,0.6,0.75}. This corresponds to 10 realizations of the horizontal setup
with source locations spread across the left side of the domain. For HJB training, we used
P = 200 example problems with values of y,, and y,, randomly sampled from the intervals
[0.1,0.25] and [0.2,0.8], respectively. We compare the performance of the RL and HJB mod-
els with solutions obtained using the gradient-based method from Section 6.3 as a baseline
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FIGURE 3. Horizontal problem setup: (left) Validation loss during training
and (right) number of PDE solves required for different target accuracies
of control objective.

for near-optimal performance; the resulting suboptimality levels for both experiments are
reported in Figure 5.

The results for the horizontal setup are summarized in Figure 3 where we observe that
the HJB framework yields several, noticeable improvements over both RL models. The most
clear, and practically significant, distinction between the HJB and RL training procedures is
the rapid drop in the HJB validation loss at the very start of training. This is perhaps to be
expected thanks to the gradient information exposed by the HJB training formulation, while
the RL models are initially reliant on an uninformed, trial-and-error state of exploration.
For practical applications, this is a key feature of the HJB training procedure; the model is
able to identify effective control policies using far fewer forward-model PDE solves than its
RL counterparts. By relying on fewer forward solves, the HJB approach has the potential
to be applied to more computationally expensive simulations where performing the tens of
thousands of queries required by RL models is simply impractical.

To assess how well the model-based approach framework extends to more complicated
systems, we now turn to evaluating its performance on the sinusoidal setup. This setup
introduces more complex system dynamics which incorporate non-uniform velocity fields for
advection. We also add another layer of randomization by varying the phase of the velocity
field according to an additional problem parameter y,. This variability in the velocity field
is designed to reflect uncertain ambient conditions (such as weather) which may need to be
taken into account when developing control strategies for practical applications. This form
of randomization influences how systems evolve in time and will help us gauge how well
the model-based and RL approaches are able to amortize over problems with substantially
different dynamics.

For the sinusoidal setup, we define the validation set using parameter values selected from
Y., €1{0.125,0.225}, y,, € {0.25,0.4,0.5,0.6,0.75}, and y,, € {—0.35, —0.2125, —0.1}. This
yields 30 problem realizations with source locations spread across the left side of the domain
and velocity fields which direct concentration near these source terms upward, horizontally,
as well as downward. For HJB training, we increased the number of example problems to
P =400, and sampled values of y, randomly from the interval [—0.425,0.0].

The results for the sinusoidal setup are depicted in Figure 4, where we again observe a
clear advantage in data efficiency for the HJB model. The HJB model achieves an average
control objective of 0.15 using only 780 PDE solves. However, both RL models fail to achieve
an average control objective below 0.25 even with the full 15,000 solves.
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FIGURE 4. Sinusoidal problem setup: (left) Validation loss during training
and (right) number of PDE solves required for different target accuracies
of control objective.

In Figure 5, we also present the suboptimality of HJB and RL approaches compared to
the baseline, as discussed in Section 6.3. We observe that the HJB model achieves much
lower suboptimality than the RL models with significantly fewer PDE solves. This difference
is particularly pronounced in the sinusoidal setup, where the HJB approach can achieve a
suboptimality of 0.03 after 4740 PDE solves, while both RL approaches fail to reach a
suboptimality below 0.20.

This faster convergence can be partially attributed to the training algorithms used in
RL. While both RL models succeed in preventing positive concentrations from reaching the
target region, they do so with unnecessary movement. The RL policies often exhibit bias
in initial movement in one direction (e.g., drifting downward at the start of a simulation)
and then correct with a sharp reversal in direction if needed. These inefficiencies result in
much larger running costs for the RL models and prevent them from reaching the control
objective levels attained by the HJB approach.

7. DISCUSSION

We consider deterministic, finite-time optimal control problems with unknown or uncer-
tain parameters and aim to approximate optimal policies for all parameters with neural
networks. We compare two training paradigms. On the one hand, our model-based ap-
proach parameterizes the value function using a neural network and derives the policy
from the feedback form. This approach incorporates the system’s physics by penalizing the
Hamilton-Jacobi-Bellman equation satisfied by the value function during training. On the
other hand, the data-driven approach adopts state-of-the-art actor-critic RL frameworks and
trains separate networks for the policy (actor) and the value function (critic). Both networks
are trained exclusively from observational data. Despite drawing inspiration from control
theory, particularly Dynamic Programming, both approaches exhibit distinct behaviors in
practical applications.

Although we strived to use almost identical learning problems in both paradigms, we
had to allow for some differences to account for their assumptions. Most importantly, our
model-based approach had to use a simpler network architecture to ensure differentiability
with respect to the inputs needed to apply the feedback form. While non-differentiable
off-the-shelf CNN architectures worked well for the data-driven approach, the RL approach
failed to achieve adequate results using the simpler architecture.
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FIGURE 5. Suboptimality, relative to the baseline, on validation problems
for the horizontal (left column) and sinusoidal (right column) problem se-
tups.

We apply both approaches to a model problem inspired by contaminant containment to
assess accuracy and efficiency. In this scenario, the system’s state is governed by a two-
dimensional advection-diffusion PDE. The objective is to prevent the contaminant from
reaching a target region by controlling the location and intensity of a sink, with the param-
eter reflecting various scenarios for the source locations and velocity fields.

While both approaches follow an unsupervised training regime, our numerical results
reveal that the model-based approach approximates a reasonable policy with much lower
sub-optimality when compared to a gradient-based baseline. Notably, it achieves this with
far fewer PDE solves than RL (see Figure 5). The superior performance of the model-based
approach can be attributed to the incorporation of physics and system derivatives guided
by control theory. In contrast, RL lacks awareness of this information and demands a larger
number of PDE solutions. During RL training, many models showed promising learning
for several thousand PDE solves but eventually diverged and were unable to recover. This
phenomenon never occurred in the model-based approach.

Despite requiring a large number of PDE solves to learn the value function, RL algorithms
are widely applicable due to their non-intrusive and gradient-free characteristics. This makes
them particularly suitable for experimenting with new problems that lack well-defined mod-
els or face challenges in efficiently computing feedback forms and system derivatives.

The model-based approach also benefits from a more straightforward hyperparameter
setup. Compared to RL approaches, it requires fewer hyperparameters, including the num-
ber of time steps N, the network width m, ResNet depth (the number of layers) M, and
the multipliers 51, B2, 83. Effective hyperparameters identified for one problem setup could



NEURAL NETWORK APPROACHES FOR PARAMETERIZED OPTIMAL CONTROL 19

be seamlessly applied to other problems without modification. Conversely, RL training pro-
cedures proved sensitive to hyperparameter choices, often necessitating re-tuning between
problems for convergence. This again emphasizes the data efficiency of the model-based
approach.

As part of our future work, we plan to extend our model-based approach to tackle more
complex problems, including those that lack well-defined models or closed-form solutions for
the feedback form. We also intend to adapt our methods to handle changes in parameters
over time. Additionally, we will investigate how both smooth and non-smooth dependencies
of states and controls on uncertain parameters affect outcomes. While this work currently
focuses on examples with smooth parameter dependencies, addressing non-smooth depen-
dencies will require revisiting the derivations for the model-based approach and potentially
modifying neural network architectures for both methods to address these challenges.

Furthermore, we aim to explore the scalability of our approaches by using increasingly
finer discretizations and higher-dimensional parameter spaces. To achieve this, we will
need to efficiently implement the model-based approach to handle the extensive memory
requirements for solving PDEs when using dense solvers in PyTorch. Another interesting
avenue for exploration could be the investigation of the convergence behavior of the model-
based approach.
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