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Abstract—For robots to effectively collaborate with human
partners, they need to be able to understand what instructions
and/or statements mean in the context of their environment.
To ground objects in a dynamic world, robots need an un-
derstanding of how both spatial and temporal relationships
evolve as a function of time in the environment. However, it
is computationally intensive to classify, track, and predict the
motion of all objects. Approaches based on Language-Guided
Temporally Adaptive Perception (LGTAP) utilize information
embedded in the instruction to selectively classify objects
to construct minimal but sufficiently detailed models of the
environment for symbol grounding. Such methods, however,
fail when the instruction refers to the future state of the
environment as it lacks any notion of whether to and for how
long a future prediction is necessary to ground the instruction.
This prompts a reformulation of LGTAP that can selectively
utilize information from past observations to accurately predict
the future state of objects. This paper describes a novel
approach for LGTAP for instructions that may refer to the
past, present, and/or future state of the environment by closing
the loop around symbol grounding and adaptive perception. A
detailed analysis of a grounding problem that refers to the
future state of the environment, a corpus-based analysis of
performance, and a physical demonstration of natural language
understanding is presented along with a description of this novel
architecture.

I. INTRODUCTION

As robots become more capable, aware, and safer to
operate, applications are growing where they assist humans
with daily tasks. A prerequisite for effective teaming is
the ability to accurately and efficiently communicate with
humans. Natural language understanding is one important
component of this capability, which requires a robot to
understand what is being said to it in the context of the
environment in which the instruction is given. Grounded
language communication is a subset of natural language
understanding which refers to interactions that make specific
references to the environment and can only be understood
in the context of that environment. Because the environment
is not necessarily known a priori, sensor observations must
be collected, interpreted and/or processed to successfully
translate the meaning of what was said to the robot.

When a human gives an instruction to a robot, it may
refer to the past, the present, or the future state of the
world to disambiguate objects in the environment. Three of
these examples are illustrated in Figure 1. The first image
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Fig. 1. Three unique human-robot collaboration situations in non-trivial
dynamic environments. The image in 1(a) shows the robot requiring the
present state of the world to successfully interpret the utterance. The image
in 1(b) shows the robot requiring past and present dynamics of the world to
ground the object of interest. The image in 1(c) shows the robot needing to
utilize past and present states of the objects to predict the future dynamics
of the world to interpret and execute the instruction.

in Figure 1(a) illustrates the instruction, “Husky, retrieve
the ball inside the box™ that refers to the present state of
the world. To ground this instruction, it can attempt to
process the immediate sensor data or prior model of the
world to identify “ball” and “box” objects and reason about
the inferred spatial relationship from the word “inside” to
interpret the meaning of the instruction. The second image
in Figure 1(b) shows the instruction “Hand me the wrench
that I was using a few minutes ago”. This instruction is
different from the first because it requires knowledge about
the past to ground the instruction. To accurately disambiguate
which “wrench” is being referred to in an environment where
many objects may satisfy that semantic category, a robot
must be able to recall information about the relationships of



the person asking the question and the objects in the scene.
The last image in Figure 1(c) exhibits the instruction “Grab
the cup that is about to fall off the table”. This instruction
differs from the previous two because it requires knowledge
about the future state of the objects in the scene. To ground
the meaning of the noun phrase “the cup that is about to
fall off the table” we must understand that it is referring
to a cup that is currently on the table but will soon not
be on the table. These examples illustrate three important
problems in grounded language communication for human-
robot interaction that can occur when a human is naturally
interacting with a robot partner.

Over the past several decades, many different approaches
[4], [9], [17] have been explored to translate instructions
into a meaningful representation of a task in the context
of the robot’s environment. Present-day models frame this
problem as one of inferring associations between linguistic
constituents of the utterance and the symbolic representation
of the entities observed in the world, their metric and
semantic properties, and potential actions that the robot can
execute. As elaborated further in Section II, many recent
approaches only work within the context of instantaneous
worlds, and while some have been able to work in dynamic
environments [11], [14], their approaches focus only on
past world states and fail to address language instructions
referencing future world dynamics.

Extending such models to construct minimal but sufficient
models of the environment for grounded language communi-
cation with reference to the past, present, and/or future world
dynamics requires a novel approach that uses language in
several ways. First, as in [11], a language model is used
to infer grounding constraints that dictate what kinds of
symbols are expected to be inferred from the instruction.
Second, symbols are inferred from language from a second
language model to identify what minimal representation of
the environment is needed for grounding and what changes to
the history of observations may be required to satisfy ground-
ing constraints. A departure from the approach described
in [11] is the ability to extract observations backward from
the current time, forward from the first observation, and/or
forward from the current time to understand instructions
that may refer to the past, present, and/or future state of
objects in the world. Third, language is used to perform
grounding using weighted binary features that trigger from
spatiotemporal relationships in the inferred minimal but
sufficient environment model. This work represents the first
probabilistic approach to natural language symbol grounding
that simulates the future state of the environment only when
it is deemed necessary for interpreting the meaning of the
statement. The contributions of this paper are as follows:

o A novel architecture for grounded language commu-
nication with robots that enables the extraction of a
minimal but sufficient environment representation for
interpreting instructions that may refer to the past,
present, and/or future state of the environment

o A detailed analysis of the application of the proposed
model for an example of language understanding of

an instruction that refers to the future state of the
environment

o An analysis of model performance across a corpus of
instructions that refer to the past, present, and/or future
state of the environment

¢ A demonstration of the proposed model for real-time
human-robot interaction of an instruction that refers to
the future state of the environment

II. RELATED WORK

Recent approaches to symbol grounding reason in the con-
text of a rich but instantaneous version of the world [3], [13],
[16] and are effective for interpreting a variety of utterances
relating to the present, but they fail to execute utterances
that require knowledge of past and/or future dynamics of
the world. Temporal Grounding Graphs [14] lazily infer
the context implied by the utterance through a probabilistic
inference on a factor graph to resolve some issues involving
past utterances, but again do not extend to models that may
refer to the future state of the environment. Other works
such as [10], [15] use large-scale visual-language pre-trained
models and embeddings to resolve underspecified instruc-
tions and partially unknown environments. However, these
approaches address the problem of grounding through inter-
active dialogue to resolve ambiguities. Extensions to Dis-
tributed Correspondence Graphs, including our more recent
approaches involving language-guided adaptive perception
[12], have attempted to use language to generate minimal
but sufficient models of the environment that contain only
the details needed to understand the instruction. A recent
paper presenting a novel approach to resolving instructions
that may refer to the past or present states of objects
is presented in [11]. This paper introduced the idea of
grounding language in a closed loop, guided by symbols
that predicted the necessity to extend the temporal horizon
of the world model backwards. However, these approaches
would also fail to address language instructions that refer to
the future state of objects in the world.

In recent years, Large Language Models (LLMs) have
shown significant improvements in language-related tasks
such as engaging in conversations, question answering, and
prompt-based text generation. This raises the question of
whether LLM-based techniques can also perform symbol
grounding effectively. Recent approaches have shown that
LLM-based techniques work well to convert complex nav-
igation commands to Linear Temporal Logic (LTL) spec-
ifications [8], as well as long-horizon manipulation tasks
[1], [7] with robustness to the diversity of natural language.
The framework used in [8] has shown to use pre-trained
LLMs with a known static semantic map to parse navigation
commands in indoor and outdoor settings and output an LTL
formula for an LTL-based motion planner. The frameworks
used in [1], [7] have shown to use LLMs that have been
trained on low-level skills to parse long-horizon tasks in
static environments and generate sequences of skills that
perform the tasks. Furthermore, the framework in [7] is also
capable of refining the solutions generated by the LLM-based



techniques using the present state of the robot’s environment.
However, many LLM-based approaches assume a single
camera frame input and do not refer to actions that require
the past and/or future states of the world.

In summary, recent approaches to symbol grounding only
reason about natural language using a static representation of
the robot’s environment. Even though LLM-based techniques
can capture the diversity and nuances of natural language ut-
terances, they have not been used to reason about instructions
in a dynamic environment relating to the past and/or the
future states of the robot’s environment. This paper builds
upon the work of [11] to propose a new model that not
only enables robots to efficiently interpret natural language
instructions that refer to the past, but also infer instructions
that reason about the future dynamics of the world.

III. BACKGROUND

The language grounding models used in this paper are
based on the Distributed Correspondence Graph (DCG) [13].
DCGs are probabilistic models that infer a set of most
likely symbols I' = {v1,...,7,} from language A; =
{A1,..., Ay} and world model Y; at time ¢. The world
model is extracted from the history of sensor observations
z1:+ using a set of detectors in the robot’s perception pipeline
A = {61,...,06,} capable of detecting various semantic and
metric properties of the entities in the robot’s workspace.
Each factor in the DCG searches for the most likely asso-
ciations between the linguistic elements A; € A; and the
symbolic constituents 7;; € I'y by introducing the notion of
unknown random variables called correspondence variables
¢i; € ®. The correspondence variables ¢;; associate a
phrase \; with a symbol ;;. The model reasons about the
meaning of a particular phrase conditioned on the grounded
meaning of its immediate children phrases ®.,, and then
assumes conditional independence across the linguistic and
symbolic constituents to propose an approximate factoriza-
tion of the grounding distribution that affords an efficient
inference. DCG inference involves searching over the graph
for the most likely correspondence variables ¢;; associated
with phrase \; and the ;" symbol for that phrase vij by
maximizing the factored distribution. A graphical depiction
of a DCG for the expression “the ball that will hit the table
second” is illustrated in Figure 2.

In practice [6] this learned function
U (oij,vij, Peyy Aiy, T¢) is implemented as a log-linear
model [5] with binary features being evaluated for each
known random variable in a factor. Weight parameters
associated with each feature function are optimized by
training on a corpus of examples [13] that were self-labeled
by the authors.

The formulation introduced in [13] and other applications
consider a static model of the world Y; which represents
the state of the world at the time of the given utterance. For
instructions that refer to the past, these models must track the
state of all objects T'1.;, which is a nontrivial computational
burden for dynamic environments with many objects. A solu-
tion to this problem is explored in [11], which introduces the
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Fig. 2. The DCG for the expression “the ball that will hit the table second”.

notion of Language Guided Temporally Adaptive Perception
(LGTAP) for symbol grounding of instructions that refer to
the past or present state of the world. This model performs
inference in a temporally compact world model Y} ., with
objects selectively interpreted from object detectors that are
themselves inferred from the language. A DCG based symbol
grounding inference when reasoning in the context of this
temporally compact world model then takes the following
form:

[Ae] |T¢|
®* = arg max H Hp(¢ij|'7ij7q)ci; Ao Ty ) (D)
Pii €L =1 j=1

Experimental results presented in [11] illustrate the ad-
vantages of inferring minimal but sufficient environment
models for language understanding in cluttered and dynamic
environments. Such models however would not be able to
ground the meaning of instructions that refer to the future
state of the environment, such as the example illustrated in
Figure 2. The next section illustrates an extension to that
architecture that enables the construction of minimal but
sufficient environment models that may refer to the past,
present, and/or future state of the world.

IV. TECHNICAL APPROACH

Inspired by the approach described in [11], we seek an
approach to computationally efficient grounded language
communication that constructs a minimal but sufficient en-
vironment model for language instructions that refer to the
past, present, and/or future state of the world. This requires
the construction of T; . 4 Wwith a minimum number of
objects and their state histories needed to accurately interpret
the meaning of the sentence. In this section, we introduce
this novel architecture in Section IV-A, review a space of
symbols necessary for each language model in Section IV-B,
and discuss novel features necessary to ground instructions
that refer to the future in Section IV-C.



A. Architecture

Figure 3 illustrates this new architecture, which differs
from [11] in that it permits the extension of the perception
bounds, and therefore the environment model, forward and/or
backwards in time. First, language (\;) at time ¢ is processed
by a Language-Guided Perception (LGP) model to infer
the direction of the perception bounds and the perceptual
classifiers that will be needed to ground the instruction. If
the symbols inferred by LGP indicate a future relationship,
the Perception/Simulation (PRCP/SIM) module creates the
world model and simulates forward the state of only the
objects deemed relevant by LGP, e.g. ball, at time ¢. When
previous observations are required, it seeks observations
either from the start of the observation history or incorpo-
rates the most recent observations the robot has acquired,
depending on the contents of the symbols extracted from the
LGP module. Additionally, the language input is processed
by a Grounding Constraint Inference (GCI) model to infer
what kinds of symbols are to be expected from the NLU
model. Because Distributed Correspondence Graphs (DCGs)
are used as the model for natural language understanding in
this architecture, if the model deems all symbols to be more
probably false than true then no symbols will be expressed.
This can occur when columns of factors of the model
illustrated in Figure 2 fail to express symbols that are needed
by factors higher in the hierarchy to express weighted binary
features. If the model is trained with examples that cover
the kinds of spatial, temporal, or spatiotemporal relationships
that are represented in \; but fails to satisfy the grounding
constraints C(I';) inferred by the GCI model, then we
hypothesize that it is not an issue of accuracy of the language
model but an absence in detail and/or symbols provided by
the environment model Y; .; - The following discussion will
elaborate on the symbols used by the NLU, LGP, and GCI
models, and the binary features required to implement the
architecture described in Figure 3.

B. Symbols

The first set of symbols reviewed are those for the NLU
model. Just as in [13], many of these symbols represent the
objects present in the robot’s world model and their semantic
properties. We assume that the robot’s world model Y; is
populated with the set of perceived objects O each having
an associated semantic type £ e.g. “ball”, “table”, “camera”,
“robot”, etc. We define the set of symbols referring to these
perceived objects as:

FO = {’701‘ ‘Oi € O} (2)

The set of symbols that refer to the semantic type of these
objects is defined as:

I = {717‘,

To introduce the idea of each object type possessing a
specific order in the context of an utterance such as “the first
ball”, we use H to represent the set of order relations such as
“first”, “second”, “last”, etc., and define the associated order

I, € L} 3)

and ordered object type symbols as follows:

" = {7;” h; € 7‘[} “4)
FLH = {’}/lihj |lz S ﬁ, hj S H} &)

Next, we consider the symbols representing a contact
relation of an object type in phrases such as “hit the ground”
or “roll off the table”. We can use the same set of object
types L to represent the association with words like “hit”
and “roll” to define contact symbols as:

¢ = {y.,|ci e £} (6)

To handle more complex spatiotemporal relationships that
may refer to the past, present, and/or future state of the
environment, new symbols representing such relationships
are needed. We introduce temporal relation symbols within
the contact relations for phrases like “will hit the table” and
“had hit the table”. In TC” we define the set D to represent
the temporal direction of events such as forwards in time or
backwards in time, and the set R to represent the temporal
frame of reference such as the current time or the start time
of the observation history:

FCT — {’yijrk|c7’ (S E,dj (S D7’I“k (= R} (7)

Like how we augmented object types with an order
relation to refer to phrases such as “first ball”, we must
do the same for the contact and temporal contact symbols
mentioned above to interpret phrases such as “hit the table
first” and “will hit the table second”. So, using the set  as
introduced above, we define the set of symbols for ordered
contact I'®* and ordered temporal contact TC% symbols as
follows:

e {Vein,lci € L, h; € H} (8)

r% = {38l eLd D eR e M) O

The symbol space for the NLU model is the union of
symbols defined in Equations 2 through 9. The symbols
for the LGP model are the union of symbols defined by
Equations 3 through 9. The LGP model is used to inform the
construction of T ., , and therefore cannot be dependent
on the object symbols described in Equation 2. Labels for
the LGP model examples derive from the human-annotated
grounded language examples by inspecting the types of
objects and the direction of temporal relationships labeled
at each phrase.

Like the LGP model symbols, the symbols for the GCI
model are also independent of Y7 ., . The GCI model’s
symbol space is solely based on grounding constraints, which
represent the type and number of symbols of that type
that are expected to be expressed for a given instruction.
For example, if I' is the set of grounded symbols for the
instruction “the last ball that had hit the table”, the symbols
inferred by the root of the DCG must satisfy the constraints
IT| = 1 and T' € T'© because that statement refers to a single
object. Symbols for grounding constraints are parameterized
by N, the number of symbols and S, the symbol types
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Fig. 3. The proposed intelligence architecture to infer minimal but sufficient environment models for instructions that refer to the past, present, and/or
future state of objects. This framework requires the development of a new model for grounding constraint inference (GCI) and grounding constraint

checking (GCC). The process of world modeling, language understanding, and
environment model until the grounding constraints are satisfied.

respectively:

oo = {tin; e N, s; € S} (10)

Like the LGP model labels, the labels for the grounding
constraints are derived from the human-annotated grounded
language examples.

C. Features

The NLU, LGP, and GCI models utilize similar structures
for the set of binary features used in training of their log-
linear models. Each feature set is composed as a cartesian
product of vectors of correspondence features £, linguistic
features £*, and symbol features £7:

F(Di 7y Peyy Niy T) = {€%9 x €3 x &7} (11)

Correspondence features encode the correspondence vari-
able ¢;; € ® associated between each phrase \; € A and
symbol «; € I'. Linguistic features encode facts about each
phrase A\; € A, such as the phrase type, the number of
child phrases, and each word present in the phrase. Symbol
features encode information about each symbol v;; € T
Some symbols are independent of the environment and are
only functions of the symbol’s type and properties. Others
are dependent on the state of the world, such as those that
check the relative position of the object to other objects, or
the alignment to various reference frames. Such features are
required to resolve spatial relationships such as “the leftmost
block” or “the moving vehicle”. Other features are purely
concerned with the relationship between the current symbol
and symbols expressed by the child phrases. These are im-
portant for generalizing linguistic patterns like conjunctions,
in phrases such as “the red block and the blue block™.
Lastly, there are complex features that are important for
resolving ambiguities based on patterns of symbols expressed
across multiple child phrases. The motivating example of

symbol checking now exhibits a cyclic behavior that iteratively refines the

“the ball that will hit the table second” is a good example
of this, because it must infer which ball is being referred to
among multiple types of those objects in the world based
on an inferred spatiotemporal relationship from “that will
hit the table second”. The models used in this paper use
implementations of new binary features that consider such
spatiotemporal relationships, which were needed to accu-
rately infer the meaning of such instructions. The advantage
of partitioning the symbol feature vector as such allows us to
efficiently update the solutions inferred by the DCG using
the Efficient Graph Update (EGU) technique described in
[2] when there are only updates to the world model. As
demonstrated in [11], EGU can have a significant impact
on runtime in sufficiently cluttered environments.

V. EXPERIMENTAL DESIGN

Three experiments are presented that will analyze differ-
ent aspects of the proposed model’s performance. First, a
detailed example of the performance of the proposed model
for a language instruction that fails to ground at Y, is
examined. Overall runtime of probabilistic inference, as well
as runtimes for individual aspects of the model are reported
for this detailed example. Simulation of the world model
for actions that referred to the future used MuJoCo [18]
to estimate the motion of objects in each example. Second,
a corpus-based analysis is presented where statistics about
the overall runtime, average number of model iterations, and
runtimes for individual aspects of the model are reported. A
corpus of self-labeled instructions using linguistic patterns
like those found in [13] were used for these experiments.
This corpus consisted of 18 unique instructions that refer
to the past and/or future states of the world across three
unique environments for a total of 54 instructions. Examples
of such instructions include “the ball that had hit the table
second”, “the first ball that had hit the table”, “the fourth
ball that will hit the table”, and “the ball that will hit



the table third”. For the corpus-based experiments, three
distinct training and testing sets were constructed by placing
two random environment examples in the training set and
the other in the test set. This eliminated inference errors
that could have resulted from a lack of coverage of the
language but analyzed the generalization across different
environments. The NLU DCG was trained using a feature set
of 2 binary correspondence features, 16 linguistic features,
and 54 symbol features. The GCI and LGP DCGs were
trained by extracting world-independent symbols from each
fully labeled example because these models are trained on the
uttered instructions alone. The feature sets of both the DCGs
used 2 binary correspondence features and 16 linguistic
features, in addition to the GCI DCG using 20 symbol
features, and the LGP DCG using 50 symbol features.
Probabilistic inference was performed with a beamwidth of
two for all examples. To analyze the performance of the
model in physically realistic setting, we used the Rethink
Robotics Sawyer Collaborative Robot shown in Figure 5
for a manipulation task where the instruction refers to the
future state of the environment. A custom-made gripper
is mounted on the robot’s arm and a net is placed inside
the gripper to attempt catching the ball. A human operator
releases tennis balls inside the robot’s workspace as another
operator sends the instruction to be grounded by the robot.
The robot then initiates the proposed architecture above and
moves its arm towards the ball that the instruction refers
to. The perception pipeline used to detect and track the
state of objects used RGB and depth images from an Intel
RealSense D455 camera. The OpenCV library was used to
create a color segmentation algorithm to detect the tennis
balls and generate bounding boxes of the tennis balls in the
RGB image. Using the pointclouds generated by the depth
images and a distance-based object tracking algorithm, the
3D positions of the tennis balls at each time frame were
stored in the perception pipeline.

VI. RESULTS

A. Detailed Example

For the detailed example of the process illustrated in
Figure 3, the sentence “the ball that will hit the table second”
will be explored. The corresponding DCG for this instruction
is illustrated in Figure 2. The proposed architecture receives
the parsed sentence and uses it to generate three DCGs for
LGP, GCI, and NLU. Because no environment model is
required for LGP or GCI, inference is first performed on
those to understand the temporal relationships contained in
the sentence and what kinds of symbols are expected. The
GCI model infers grounding constraints for the GCC module.
For this sentence, the most likely grounding constraints
inferred at the root of the DCG illustrated in Figure 2 is

C(Ty) ={T; eTO ATy =1}

This means that the grounded symbol from the NLU must
be of an object type as defined in Equation 2, and there must
be only one grounded symbol. GCI constructed a DCG with

8 symbols per factor and took 7.65 milliseconds to perform
inference. For this sentence the LGP model infers a forward
direction of temporal horizon for the PRCP/SIM module
and the kinds of object classifiers that would be needed to
perform inference. LGP constructed a DCG with 65 symbols
per factor and took 52.85 milliseconds to perform inference.
For this instruction, we see object classifiers for v,,,, and
Yorane are expressed at the root of the model in addition to
temporal relationships that describe contact between a pair
of objects at a future state. At first NLU uses a model of
the environment consisting of objects corresponding to those
classified objects at time ¢ to perform symbol grounding.
NLU constructed a DCG with 68 symbols per factor and
took 61.62 milliseconds to perform inference.

Using the environment model at the time of the language
input Y; the NLU model fails to infer any groundings at
the root of the sentence that satisfies the inferred grounding
constraints because the current environment detected no
contacts between “ball” or “table” objects. The architecture
now feeds back this failed inference into the PRCP/SIM
module, which uses the symbols from the LGP model to
move the temporal horizon in the forward direction. To
move the temporal horizon forward, the PRCP/SIM module
instantiates a MuJoCo simulation environment with three
objects that represent the state of two tennis balls and the
table contained in the world model ;. The model simulation
inside MuJoCo was set to run at 500Hz. Updates with an
increment of 0.1sec were used between each Y update so
that the world model is not unnecessarily simulated beyond
the horizon required to perform inference. Contacts between
objects are recorded in the updated world model, which is
used by symbol features in the NLU’s DCG to interpret
words such as “on”, “hit”, or “touch”. The updated world
model is loaded into the NLU’s DCG model and inference is
performed to update the robot’s interpretation of the sentence
in the context of the environment. This is where the efficient
graph updates become useful; since only the world model has
changed and the uttered sentence has not, we do not need to
generate a new DCG for the NLU module for re-inference
and re-evaluate all the binary weighted features but can
only re-evaluate the world-dependent features. This process
continues until the NLU produces symbols that satisfy the
grounding constraints inferred by the GCI model. In this
example, 7 environment updates were needed, which took a
total of 309.00 milliseconds to go from the receipt of the
sentence to accurately inferred symbols with a simulated
world Yi440.7scc- Incremental updates to the NLU took
an average of 26.11 milliseconds. An illustration of the
progression of the environment model during this process
is shown in Figure 4.

B. Corpus Based Experiments

Table I illustrates the results of the corpus-based exper-
iments of the novel architecture without the use of EGU
and with the use of EGU, as described in Section V. Each
time the framework was trained on one of the three distinct
training sets containing 36 examples and then tested on
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Fig. 4. A visualization depicting the internal state of the MuJoCo
simulation during the PRCP/SIM module’s extension of the environment
model horizon. In this example the environment at time ¢ uses two spherical
objects to represent tennis balls o; and o2 at positions (z,y,z) =
(0.0m,0.1m, 1.5m) and (x,y,z) = (0.0m, —0.1m, 2.0m) respectively
above an planar objects to represent a table o3 at position (z,y,z) =
(0.0m, 0.0m, 0.0m) at time ¢ with no initial velocity. The simulation ran
for a duration of 0.7sec at 0.1sec intervals. 4(a) shows the state of the
simulation at time ¢4 .4sec When both the spheres are still falling under
gravity and yet to make contact with the table. 4(b) shows the state of the
simulation at time t{.6sec When the sphere on the left registers a contact
with the table. 4(c) shows the state of the simulation at time ¢40.7sec When
the sphere on the right registers a contact with the table.

its corresponding test set of 18 examples. The number of
iterations and runtimes of all the modules in the architecture
were recorded for each of the test examples. At the end
of the three experiments, all the test example data were
collected together, and their results averaged. Column 1 of
Table I shows the mean number of iterations and runtimes
in milliseconds of the different modules during the inference
process with a 95% confidence interval without the use of
Efficient Graph Updates (EGU). For comparison purposes,
the three experiments were repeated with EGU enabled, and
the results are shown in column 2 of Table I. The number of
iterations required for the inference process did not change
at all when EGU was enabled. This is expected because the
EGU algorithm is a mechanism that allows to efficiently re-
evaluate the binary features used in the inference process
and does not contribute to the number of iterations, which is
dependent on the compactness of the robot’s world model.
Similarly, it can be seen that the runtimes of the GCC and
PRCP/SIM modules are also unaffected by the introduction
of EGU, because the processes taking place inside the
modules are completely independent of the EGU algorithm.

The large spread in the PRCP/SIM module average
runtime can be explained as follows: the distribution of
PRCP/SIM runtimes is bimodal, i.e. it depends on if the
uttered instruction refers to the past or the future. In the
case that the instruction refers to the past, the SIM part
of the module is not initiated at all, and it is a matter of
refining the world model using past observations inside the
PRCP part of the module. This is a relatively very fast
process compared to when the uttered instruction refers to
the future, in which case the SIM part of the module is
initialized and the world model is simulated forwards in time,
resulting in a more computationally expensive and time-

mean + 20 without EGU EGU
Iterations (#) 11.06 + 5.47 11.06 &+ 5.47
LGP (ms) 37.63 + 11.11 42.17 + 24.04
GCI (ms) 538 £ 1.52 5.76 £+ 2.14
NLU (ms) 261.26 £+ 144.76  236.83 + 129.84
GCC (ms) 0.13 + 0.07 0.13 £+ 0.08
PRCP/SIM (ms) 2.35 £ 2.96 2.35 +2.93
Total (ms) 307.06 £+ 151.58 287.55 + 138.81

TABLE I
CORPUS-BASED EXPERIMENTAL RESULTS WITH AND WITHOUT
EFFICIENT GRAPH UPDATES

consuming process. Hence, a single confidence interval does
not really provide a useful insight into the spread of the
average runtime of the PRCP/SIM module.

Comparing the average runtimes of the LGP and GCI
modules with their EGU counterparts, we see that using
EGU resulted in slightly higher runtimes of about 4.54
and 0.38 milliseconds respectively. Since we know that the
inference process for the LGP and GCI modules takes place
in a single inference step, using EGU should not affect
the LGP and GCI average runtimes significantly because
the benefit of efficient re-evaluation of features show up at
successive re-inference steps. We argue that since the spread
of the average runtimes for both the LGP and GCI modules
increased by almost two-folds using the EGU algorithm,
we can contribute the apparent slight increase in average
runtimes of the modules to random noise. Interesting to note
that the ratio of average runtimes between the LGP and
GCI modules in both cases are approximately equal to the
ratio of the number of symbols in the symbol space of their
respective DCGs. In other words, there are approximately 8
times more symbols used in inference inside the LGP module
compared to the GCI module, hence the average runtime for
the LGP module was approximately 8 times longer that the
GCI module.

Another useful result from Table I is the average runtimes
of the NLU module with and without EGU. Using EGU
makes the NLU module 24.42 milliseconds faster overall
than without EGU, which is an approximately 10% reduction
in execution time. We argue that this is an acceptable
reduction in execution time because the world and child
phrase dependent features that are being evaluated inside
the NLU take up a large portion of the runtime because of
their need to iterate over the history of observed states or
the simulated states many times over all objects present in
the robot’s environment. Hence the world and child phrase
independent features that EGU does not re-evaluate already
contributes to a very small chunk of the average runtime.

C. Physical Robot Experiments

Figure 5 shows three snapshots from a demonstration of
the framework described in Section IV. The demonstration
shows a human operator releasing two tennis balls on the



table placed in front of the Sawyer Collaborative Robot. The
balls were held approximately 1.0m and 1.25m above the
table and were about 20cm apart. The robot then receives the
text-based instruction “the ball that will hit the table first”.
This required the robot to run a Kalman filter to estimate the
present velocities of the tennis balls and simulate forwards
into the future states of the world model. The simulator was
set to update the world model at 0.05s intervals, and it took
the framework 10 iterations of the NLU to correctly ground
the object of interest. Upon inferring that the ball on its left
will hit the table first, the robot arm moves underneath the
ball to catch it with the net that is attached to its custom-
made gripper attachment.

(2) (b) (©

Fig. 5. A demonstration of the Sawyer Collaborative Robot responding
to the statement “the ball that will hit the table first”. Upon identifying the
ball that is being referred to by the statement, the arm moves to grab the
ball with its net attachment.

VII. CONCLUSION

This paper presents a novel approach to grounding lan-
guage instructions that refer to the past, present, and/or
future state of objects in the world. Building off techniques
where previous observations were selectively processed to
produce a minimal but sufficient representation of the world
for symbol grounding, this approach extends this idea to be
able to additionally handle language that refers to the future
state of the environment. The efficiency of the DCG models
and the EGU technique for providing iterative updates to
solutions enables the model to produce solutions fast enough
for human-robot communication, which to the authors’
knowledge, no other published approach has been able to
demonstrate. Experimental results illustrated an example in
detail, analyzed performance of the model on a small corpus
designed to explore language of interest, and demonstrated
this idea for a language-guided task on a physical robot
manipulator. Future work will investigate the performance
of these models on a larger corpus of instructions and
further explore the details of the architecture’s behavior for
instructions that refer to the past, present, and/or future state
of the world.
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