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I. PROBLEM AND MOTIVATION

With the prevalence of networked and embedded devices
adopting System-on-Chip architectures there is a need for
accompanying security architectures to protect these devices.
Most current SoCs do not contain security built into the hard-
ware, relying solely on external security. This makes it possible
for any software application running on the SoC to read the
sensitive data of all hardware components, perform Denial-
of-Service attacks, and more. Given this, on-chip security is
a hot topic for SoCs. One security architecture that is of
international interest is the Zero-Trust Architecture.

In 2020 the National Institute of Standards and Technology
(NIST) released their first Special Publication on Zero-Trust
Architectures (ZTA) [1]. This publication details the core
structure of a ZTA, as shown in Figure 1. While this archi-
tecture was primarily intended for networking applications, its
concepts are widely applicable to related domains, such as
embedded systems and SoCs.

A ZTA consists of an untrusted subject, a protected resource,
and three components: Policy Enforcement Point (PEP), Policy
Decision Point (PDP), and Policy Information Point. These
components work together to determine whether a subject is
trusted enough to access protected resources.

This publication by the NIST was followed in 2023 by a
set of pre-prints focusing on implementing ZTA in commercial
systems, for example, Volume B “Implementing a Zero Trust
Architecture” [2]. To produce this publication, NIST worked
with numerous industry partners who were interested in, or
already produced, Zero-Trust products such as AWS Identity
and Access Management, Cisco Firepower Threat Defense,
and IBM’s Security QRadar XDR. The wide range of compa-
nies involved showcases just how interested the community is
in ZTA.

Motivated by the growing interest in ZTA principles across
both research and industry, as well as the need for hardware
security in SoCs, this work proposes a novel architecture that...

1) To our knowledge, is the first Zero-Trust Architecture
implemented in an FPGA-based SoC.

2) Generically implements the requirements of NIST’s
Zero-Trust Architectures for application in CPS, IoT, etc.
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3) Incorporates a Long-Short Term Memory (LSTM) deep
learning algorithm that calculates the Trust-Level of
users based on their transaction history.

Enforces Dynamic Mandatory Access Control in the
form of Zero-Trust Policies for each component that
state what Trust Level is needed to perform certain
actions. For example, a Trust Level of 90% is needed to
read the output of Component 1, but 50% for Component
2.

This prototype ZTA architecture is implemented as a SoC
on a Xilinx Zybo Z-7010 FPGA SoC development board. It
should be noted that our implementation does not include
the PIP as it is intended to be a collection of third-party
applications monitoring the system. These can be integrated
into the decision-making of the PDP as needed.
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Fig. 1. NIST Zero Trust Architecture:
[2]
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II. RELATED WORKS

In this section, we will discuss the state-of-the-art and
related works on ZTA.

To begin, in [3], Yao et al. proposed Trust-Based Access
Control, where the trust degree of the user is the deviation
between the user’s historical behavior and the current behavior.
The higher the user’s trust, the more authorizations they are
given. Our work differs from theirs because while Yao et al.
researched the methods and calculation of determining user



trust, our work handles dynamically updating and implement-
ing the Al model’s decision.

Another related work comes from Zanasi et al. in [4].
The authors present a prototype ZTA architecture that is
Software-Defined Network-based and updates component’s
security policies by distributing resource configuration files
with certificates as proof of authorship. Our work differs from
this work because our ZTA is implemented in the hardware
and focuses on hardware-related challenges, rather than the
setup and configuration of a SDN for ZTA.

The final related work is from Ferretti et al. in [5]. This
work proposes a detailed exploration of Survivable ZTA for
the cloud, where every component, including components that
are typically considered trusted, can be compromised. This
work differs from ours because it focuses on whether or not
you can trust your own components, rather than the trust of a
user.

III. APPROACH AND UNIQUENESS

This section outlines the proposed architecture seen in Fig-
ure 2, which integrates the NIST’s Policy Enforcement Point
(PEP) and Policy Decision Point (PDP) into an SoC. While
the implementation is different, this is the same architecture
seen in Figure 1.
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Fig. 2. Proposed Zero Trust Architecture

A. Policy Enforcement Point (PEP)

The proposed PEP is a dynamic firewall that ensures
protected resources cannot be maliciously used by untrusted
subjects. The PEP is placed between the protected resource
and the untrusted subject to enforce a layer of separation,
as seen in Figure 2. It then implements zero-trust policy
checks on each access request. The implementation of the PEP
consists of three components, the Access Vector Cache, the
Policy Lookup Function, and the Enforcement Module.

1) Access Vector Cache (AVC): The AVC is a cache com-
ponent that keeps the Policy Decision Point’s most recently
approved policy for its particular component. The AVC is
regularly flushed and updated by the Policy Decision Point.
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2) Policy Lookup Function (PLF): The PLF compares
the policies in the component’s AVC to the security policy
provided by the untrusted subject. If the policy matches, the
Enforcement Module (EM) is informed that the transaction
is approved, and the transaction data is forwarded to the
Policy Decision Point (PDP). If the policy does not match,
the transaction is forwarded to the PDP for analysis and, once
the PDP responds, the PLF forwards the decision to the EM.

3) Enforcement Module (EM): The EM enforces the de-
cision sent by the PLF by either preventing or allowing the
transaction to be forwarded to the component.

This implementation of the PEP is adequately suited to
be used in Zero-Trust Architectures due to its capability to
separate the resource from the network, dynamically update
policies, and enforce the principle of least privilege, features
which are critical to the implementation of security in ZTAs.

B. Policy Decision Point (PDP)

The proposed Policy Decision Point consists of two com-
ponents, the Policy Engine and Policy Administrator.

1) Policy Engine: The Policy Engine runs incoming trans-
actions through both a deep-learning LSTM and a user-defined
set of zero-trust policies. The LSTM will determine what the
Trust-Level of the user is over time given their prior usage
of that component. The zero-trust policies are pre-defined and
state whether a user can access that component, what functions
or registers they have access to, and whether they can read or
write.

2) Policy Administrator (PA): The PA handles dynamically
updating the zero-trust policies of the Policy Enforcement
Point based on the Policy Engine’s decisions. The PA also
handles enforcing the principle of least privilege within each
PEP it controls, wiping their security policies after some
amount of time.

IV. EXPECTED RESULTS AND CONTRIBUTIONS

The expected result of this work is the first working example
of a Zero-Trust Architecture implemented on an FPGA-based
SoC. Additionally, due to the versatility of both Systems-
on-Chip and Zero-Trust Architectures, this work will, once
finalized on an FPGA, be applied to the domains of Cyber-
Physical Systems and Cloud-based Systems.
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