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Abstract—For the safe operation of robotic systems, it is

important to accurately understand its failure modes using prior

testing. Hardware testing of robotic infrastructure is known to

be slow and costly. Instead, failure prediction in simulation can

help to analyze the system before deployment. Conventionally,

large-scale naı̈ve Monte Carlo simulations are used for testing;

however, this method is only suitable for testing average system

performance. For safety-critical systems, worst-case performance

is more crucial as failures are often rare events, and the size

of test batches increases substantially as failures become rarer.

Rare-event sampling methods can be helpful; however, they

exhibit slow convergence and cannot handle constraints. This

research introduces a novel sampling-based testing framework

for autonomous systems which bridges these gaps by utilizing

a discretized gradient-based second-order Langevin algorithm

combined with learning-based techniques for constrained sam-

pling of failure modes. Our method can predict more diverse

failures by exploring the search space efficiently and ensures

feasibility with respect to temporal and implicit constraints. We

demonstrate the use of our testing methodology on two categories

of testing problems, via simulations and hardware experiments.

Our method discovers up to 2X failures compared to naı̈ve

Random Walk sampling, with only half of the sample size.

Index Terms—Robot Safety, Probabilistic Inference, Formal

Methods in Robotics and Automation

I. INTRODUCTION

T
ESTING, verification, and model validation are integral

to ensuring the safety of robotic systems. Discovering

possible failure modes of the system through testing is chal-

lenging for several reasons. First, the underlying mathematical

problem of failure discovery is highly non-convex with an

unpredictable loss landscape. Second, sufficient exploration of

the search space is important, as there are multiple failure

modes of varying probability of occurrence. To ensure proper

coverage of the state space, state-of-the-art methods for testing,
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such as Random Walk MCMC sampling [1], need a significant

amount of computational resources, and can be extremely

time-consuming [2].

In the past few years, some new favorable alternatives

have emerged. Primarily, there are two ways to approach

the problem of failure discovery, given a dynamic system

and a known environment. The first set of methods relies

on adversarial optimization [3], where the key challenge is

that it typically renders one failure case per search. Addi-

tionally, initialization plays a key role in the implementation

of gradient-based methods for non-convex optimization [4],

therefore, inappropriately chosen initial conditions are likely

to converge to a few high-probability failure modes, thereby

completely missing out on some rare failures that are equally

detrimental to the safety of the system.

The second approach utilizes recent advancements in ma-

chine learning, such as generative modeling, to learn failure

representations by using failure data as input [5]. A key

challenge with this approach is the lack of generalization guar-

antees of neural network-based models for out-of-distribution

data, causing the generated failure instances to be biased

towards the failures observed in the training dataset.

Some works have recently analyzed failure discovery and

model validation under the lens of Bayesian inference [6],

[7], which combines the convergence properties of adversarial

optimization and the search-space exploration capabilities of

sampling-based methods. While these methods do not suffer

from initialization limitations of deterministic optimization,

they typically carry over some of the drawbacks of sampling

methods, such as uneven search space exploration, curse of

dimensionality, and slow convergence.

In this paper, we study the question — what is the most

efficient way of testing a known dynamic system with known

environmental interactions? The objective of this work is to

discover the failure modes of a given dynamic system with a

known controller, where the focus is on failures caused due to

environmental interactions (Fig. 1). We exploit the awareness

of testing scenarios to discover failure modes in simulation,

with an aim to reduce the dependency on field testing as

much as possible. Building upon the fundamental structure of

Bayesian inference, we provide a modular approach to testing

via learning-based stochastic optimization.

A. Key Contributions

This paper introduces a novel testing framework for control

and planning algorithms for robotic systems by formulating
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Fig. 1: Our approach utilizes learning-based priors within a Bayesian inference

framework for sampling environment variables using gradient-based Langevin

sampling for falsification of robotic systems

testing as a Bayesian inference problem (Section-II). One of

the main objectives of this study is to extract meaningful

information about the system without necessitating a heavy

expenditure on the testing budget. A key contribution of this

work is the proposal of learning-based methods for reducing

the volume and dimensionality of prior distributions, pro-

moting better performance for Bayesian inference techniques.

Additionally, our framework can efficiently handle constrained

stochastic optimization (Section-IV).

To address the convergence gap of sampling-based tech-

niques in Bayesian inference, we exploit system awareness

and leverage differentiability of controller and dynamics for

gradient-based sampling [6]. We make use of the Under-

damped Langevin Algorithm [8] (also known as 2nd-order LA),

which provides accelerated convergence guarantees and better

coverage, leading to the discovery of diverse failure modes. In

Section-III-A we provide a theoretical intuition for the same.

In Section-V we present three case studies of falsification of

dynamic systems with different control algorithms along with

experimental validation for analyzing the sim-to-real transfer.

II. PROBLEM STATEMENT

We consider continuous-time closed-loop dynamic systems

of the form ẋ = f(x, π(x, o)) for given state x ∈ R
n, where

a = π(x, o) ∈ R
m is a known controller which outputs actions

a ∈ A ⊆ R
m based on system state and environmental

observations o ∈ O ⊂ R
d in a fully observable setting. In

the rest of the paper, we refer to o as Environment Variables

(EVs). The testing architecture takes a user-defined property

as an input (such as “obstacle avoidance”) for which we

aim to find compelling failure cases that reveal loopholes in

the controller performance and underlying limitations of our

dynamic system.

For a given user-defined property, we design a cost function

c(o,X) where X = (xi)
T
i=1 such that a failure of the under-

lying dynamic system in the presence of a chosen controller

can be defined as the corresponding cost function exceeding

a threshold c∗. That is, c(o,X) > c∗ corresponds to the

violation of the desired property. The testing problem can then

be mathematically formulated as

find Ofail = {o|c(o,X) > c∗}. (1)

Note that by definition, c∗ is specific to the desired task

and the controller, as the chosen controller affects the severity

of failures observed. An appropriate selection of c∗ requires

user-inputs and fine-tuning to ensure that the user expectation

aligns with the corresponding severity of failures observed.

III. APPROACH: OPTIMIZATION VIA SAMPLING

We employ Bayesian inference to solve (1), as it can

discover more than one failure per search. This is done by

constructing a Bayesian inference problem that is equivalent

to (1) using o as a decision variable. This can be understood

as sampling from the conditional distribution of o that triggers

failures, that is,

o ∼ p(o|c(o,X) > c∗). (2)

Failures are low-probability events, consequently, regions rep-

resenting p(o|c(o,X)) are extremely low-density regions. To

facilitate efficient sampling from these regions, we construct a

posterior distribution p(c(o,X) > c∗|o) that is highly biased

towards failures, given by:

p(c(o,X) > c∗|o) ∝ exp(−γ[c∗ − c]+) (3)

Here [ · ]+ represents the ReLU operator and assigns equal

cost to every failure mode with c > c∗ and γ corresponds

to the learning rate of the Langevin dynamics leveraged for

solving this problem, explained in detail in Section-III-A. This

construction ensures that the target density from which we

wish to sample, p∗ is indeed a solution to (1) and contains

all failure modes regardless of their severity [6]. Using Bayes

rule, the inference problem can therefore be written as:

p(o|c(o,X) > c∗) ∝ p(o) exp(−γ[c∗ − c]+). (4)

Here, p(o) represents the prior belief. In this work, we utilize

spatio-temporal constraints imposed on o to inform the design

of prior using machine-learning-based methods, discussed

in Section-IV. This ensures that the constraints are always

satisfied. In the next subsection, we provide insights on how

to sample from the distribution p ∝ exp(−γ[c∗ − c]+) using

the 2nd-order Langevin algorithm (LA).

A. Stochastic Optimization via Underdamped Langevin

Recently, reference [6] demonstrated that for end-to-end

differentiable systems, gradient-based Langevin Monte Carlo

(also known as 1st-order LA) is a helpful tool for solving

problems that can be written as in (4). Langevin dynamics

(LD) based sampling tools have emerged as a promising

alternative to gradient-free MCMC algorithms such as Random

walk MCMC, which are popularly used in verification and

falsification tools for stochastic optimization [1].

Consider the problem of sampling from a target distribu-

tion p∗ of the form p∗(o) ∝ exp(−U(o∗)), where o∗ =
argminU(o) for a differentiable function U(o). The 1st-

order Langevin Algorithm (LA) approaches this problem by

constructing gradient-based iterates corresponding to a first-

order Stochastic Differential Equation (SDE) given by:

dot = −γ∇U(ot) dt+
√

2γ dBt, (5)
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where Bt denotes the standard Brownian motion and γ corre-

sponds to the learning rate.

Note that the Langevin diffusion process (5) has an in-

variant measure p∞(o) which can be expressed as p∞(o) ∝
exp(−γU). Therefore, by modeling the posterior distribution

as in (3), we guarantee that the distribution we are sampling

from does not change along the trajectory of ot. This technique

has been used in several Bayesian inference based problem

formulations [6], [7].

In multimodal distributions, a sufficient amount of global

search space exploration is extremely important to discover all

possible solutions. Additionally, speed of convergence to the

optimum is also crucial. In [9] it was shown that accelerated-

gradient-based methods such as Nesterov’s method [10], are

able to locate the optimal solution with faster speed of

convergence for non-convex optimization problems, compared

to first-order gradient-based methods. We hypothesize that the

Underdamped Langevin Algorithm (also known as 2nd-order

LA) [8] performs better than 1st-order LA and Random Walk

MCMC in discovering diverse failure modes and converges

faster.

The second-order SDE corresponding to 2nd-order LA can

be written as

dot = −rt dt,

drt = −∇U(ot) dt− γrt dt+
√

2γ dBt.
(6)

Note that the momentum variable rt is also present in ac-

celerated gradient descent and it helps avoid getting stuck

in local minima. We hypothesize that the 2nd-order LA can

provide better search space exploration for a similar reason,

and thus identify diverse failure modes. Recently, it was shown

that non-reversible SDEs such as 2nd-order LA search for

global optimum at a much faster timescale [11]. Additionally

[8] shows that the 2nd-order LA converges to ϵ-accuracy

of the global minimum in
√

(d/ϵ) steps (as opposed to

d/ϵ steps needed for the 1st-order LA [12]), under certain

assumptions. This shows that for high-dimensional non-convex

optimization, 2nd-order LA is a promising approach, ensuring

speed, sufficient search space exploration, and scalability.

Furthermore, [6, Theorem 5.1] shows that using an appropriate

cost design c(·), the problem of discovering failure modes as

in (4) meets these assumptions. Therefore, we can utilize the

convergence guarantees enjoyed by the 2nd-order LA in our

framework.

For this work, we adopt the discretization of Underdamped

Langevin proposed in [8], where each step can be defined

as sampling from a normal distribution with mean µ(o) and

covariance Σ introduced in [8, Algorithm-1], namely,

oj ∼ N (µ(oj−1),Σ). (7)

IV. PRIOR DESIGN

For testing purposes, the region of failures are low-density

distributions and naı̈vely chosen priors such as uniform dis-

tribution can severely over-estimate the likelihood of failure

that impacts the efficiency of sampling, as a lot more steps are

needed to converge to the true distribution. By having stronger

(a) (b) (c) (d)

Fig. 2: Neural Projection for the AutoRally racetrack. (a) The AutoRally

racetrack. (b) The decision boundary learned by gφ. (c) The classification of

uniformly sampled 2D datapoints across the 2D box classified by gφ. (d) The

points projected on Ω after applying Algorithm-1.

prior estimates, we can significantly improve the efficiency

of sampling. We reframe the prior distribution as constraints

on the EVs, and create learned representations of EVs using

available information about the environmental variable o and

its interaction with the system. Using this method, we can

simultaneously construct a strong prior and at the same time

satisfy hard constraints imposed on the EVs.

Prior distribution design can be classified by the nature of

the environment variables under consideration. Specifically, we

consider two cases:

(i) Static EVs: (o ∈ R
d1×m1 ) These variables remain static

throughout the evolution of the dynamic system. Here,

m1 defines the dimension of the search space and d1
corresponds to the number of identical classes of EVs. In

this study, we consider the problem of locating d1 circular

obstacles of fixed radius as a typical example.

(ii) Sequence EVs: (o = (ot)
n1

t=1, ot ∈ R
d1×m1 ) These

variables have a sequential structure. Typical examples

include reference paths and non-ego vehicles. Here n1

denotes the length of sequence.

This distinction is motivated by the fact that Static EVs are

low dimensional but have complex, implicit spatial constraints

and do not change their position. On the other hand, Sequence

EVs have constraints of temporal consistency, and are high

dimensional. Therefore, different approaches suit their prior

construction. In this paper, we focus on independent EVs, that

do not take the ego-agent’s behavior into consideration, such

as a reference path or obstacles.

The spatio-temporal behavior (i.e., location, evolution with

time, etc) of independent EVs can be predicted with known

confidence. Hence, neural network-based architectures are a

highly attractive means for learning accurate prior representa-

tions of these variables. The design approach for both cases

is discussed in detail in the next sections.

A. Neural Projection for Static Environment Variables

For a fixed number of obstacles, consider the problem

of finding obstacle locations on a racetrack for autonomous

driving that are highly likely to collide with the vehicle. Here,

the environment variable o ∈ R
d1×2 represents d1 obstacles

scattered in a 2D environment around a pre-designed reference

path.

Regions far away from the reference path have an extremely

low probability of collision. Hence, a suitable choice of

prior would include a region in the vicinity of the reference
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Fig. 3: Encoding latent variables for generating sequential environment

variables ’o’ using VAE presented in Section-IV-B.

track. Based on this hypothesis, for a given reference track,

we construct a region Ω defined by inner and outer track

boundaries of a width w. It is hard to express the region Ω
as an explicit function since a parametric expression of the

racetrack is not always available. We therefore first construct

a box D circumscribing the region Ω such that Ω ⊆ D and

sample 2D data points uniformly from D. We then train a

DNN-based binary classifier gφ(x, y) to learn the likelihood of

a previously unseen datapoint (x, y) being within Ω or in D\Ω.

Fig. 2b shows an example of the learned decision boundary

for the AutoRally racetrack [13] using gφ(x, y).
To refine our Bayesian inference using this information, for

any point within D, we propose a Neural Projection Operator

(NPO) P : D → Ω as follows:

P [o] = o−∇gφ(o)gφ(o)/∥∇gφ(o)∥
2. (8)

This is a Newton’s method-based projection operator, inspired

by the Neural Projection technique presented in [14]. P [o]
ensures that any point lying outside Ω is mapped to the nearest

point within Ω. Fig. 2d shows an example applying Neural

Projection with the AutoRally track region Ω, given uniformly

generated samples in a 2D box D.

Finally, for sampling static environment variables, we pro-

pose Algorithm-1, which combines the 2nd-order LA with the

Neural Projection operator at each iteration to strictly sample

from within Ω. After each update of 2nd-order LA sampling,

we perform M updates of gradient-based projection using (8)

given by õj ← P [õj−1], for j = 1, . . . ,M where M is large

enough to ensure that õM ∈ Ω. The process is outlined in

Algorithm-1 shown below:

Algorithm 1 Neural Projection with Langevin

1: Initial conditions o0 ∼ U [D] ▷ Uniform sampling

2: for k = 1 to N do

3: õ0 ∼ N (µ(ok−1),Σ) ▷ 2nd-order LA sampling (7)

4: for j = 1 to M do

5: õj ← P [õj−1] ▷ Neural Projection (8)

6: end for

7: ok = õM ▷ Update ok after M projection steps

8: end for

B. Latent Variable Encoding for Sequence Environment Vari-

ables

As a motivating example, given a reference-tracking con-

troller, we consider the problem of finding reference paths

that are hard for a dynamic system to follow. For this task,

the environment variable under consideration is a reference

path o ∈ R
N×2 of length N , where ok = [xk, yk]

T for

k = 0, . . . , N − 1.

1) Challenges with optimization for sequence EVs: Firstly,

the decision variable o is high-dimensional, and finding falsi-

fying examples in a high-dimensional space can be quite ineffi-

cient and slow. Secondarily, our search space is constrained to

be a set of “realisitic” trajectories which should have temporal

consistency.

2) Approach: To tackle the second problem of temporal

consistency, we use the evolution of a dynamic system to

generate o. Consider a control affine dynamic system with

open-loop control ũ ∈ R
m and drift and control vector fields

f(·) : Rp → R
p and g(·) : Rm → R

p, respectively. We gener-

ate every element of the sequence ok using the discretization

of the open-loop dynamic system ˙̃o = f(õ) + g(ũ) such that

ok = õk[0:2]. Therefore, we have, for all k = 0, . . . , N − 1,

õk = õk−1 +∆t(f(õk−1) + g(ũk−1)).

For an appropriate choice of f(õ), g(ũ) and ∆t, we can

generate a wide variety of sequences.

To resolve the first challenge of dimension reduction, we use

Variational Autoencoders (VAE) to learn a lower-dimensional

time-invariant representation of a continuous control input ũ(t)
such that ũk = ũ(k∆t) defined in the range t ∈ [0, N∆t]. To

learn a generalized low-dimensional representation, we need

to train the model on a rich dataset that consists of a wide

range of EVs. To generate the appropriate training dataset, we

formulate the control inputs at every timestep t as a finite sum

of n1 sinusoidal component functions h(Aj , ωj , ϕj) where

Aj , ωj , ϕj represent the amplitude, frequency, and phase lag

corresponding to each sinusoidal function. Mathematically, for

a given t ∈ [0, N∆t], ũ can be expressed as:

ũ(t) =

n1
∑

j=1

Aj sin(ωjt+ ϕj). (9)

We generate the training data by uniformly sampling across

a range of {Aj , ωj , ϕj}
n1

j=1 for a fixed sum length n1 and

chosen open-loop dynamic system. We wish to span across

a large variety of functions for ũ(t) to generate the training

dataset. The expression for ũ(t) shown in (9) is equivalent to

a truncated Fourier series representation for ũ(t). Therefore,

by spanning across a range of {Aj , ωj , ϕj}
n1

j=1 in a low-

dimensional space, we generate a large diversity of functions

ũ(t), which in turn leads to diverse evolutions of the chosen

dynamic system, generating complicated realistic trajectories.

This ensures that the generated trajectories have temporal

consistency and diversity, and do not correspond to a restrictive

family of parametric curves such as circles, ellipsoids, etc.

With X = (Aj , ωj , ϕj)
n1

j=1 ∈ R
n1×3 as the input and

output of the Autoencoder, we train a DNN-based VAE, where

the encoder network genc : R
n1×3 → R

d2 learns a latent

representation of the input space such that d2 ≤ 3n1. The

network is trained to minimize the KL-divergence between the

ground truth sequences and sequences generated by the control

inputs rendered by the decoder network gdec : R
d2 → R

n1×3.

The training pipeline is summarized in Fig. 3.

Therefore, we compress the problem of finding an N -

dimensional sequence to an equivalent problem of finding a
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d2-dimensional latent variable z ∈ R
d2 such that d2 ≤ N .

After reducing the dimension of our search space, we use

Langevin-based optimization to find the set of latent variables

Zfail = {z|c̄(gdec(z)) > c∗}, where c̄ measures the cost

c(o,X) generated by this method. Fig. 4 shows examples of

different kinds of reference paths generated by our method,

along with the corresponding trajectories generated by an

LQR speed+steering controller for a bicycle dynamic model

discussed in Section-V-B.

3) Limitations of our approach: The raceline dataset gen-

eration pipeline presented in this section is helpful for cases

where baseline dataset is not already available in the required

format for training the VAE. The overall pipeline relies on

expert knowledge to make subjective assessment of “good

quality” data for training purposes. The term “good quality”

here refers to data that represents realistic representation of

EVs that can lead to user-relevant failures upon inference.

V. SIMULATION & EXPERIMENTS

We present results from a case study of testing using the

sequence environment variables (Section-V-B) and falsification

using the static environment variables (Section-V-C, V-D)

along-with experimental validation in Section-V-E.

A. Baselines & Metrics

To demonstrate the modularity of our approach, we present

an implementation of our framework on the 1st-order LA [12]

and the gradient-free Random sampling (brute force method)

in addition to the 2nd-order LA. We test for the effect of accel-

eration, speed of convergence, and coverage by comparing the

failure discovery rate, mean and max cost value and dispersion

metric Cdisp respectively, across all baselines.

For comparing coverage of the search space, we introduce

our own metric Cdisp in (10). To calculate Cdisp, sampled

failure modes are clustered using Gaussian Mixture Clustering,

and the maximum Euclidean distance between the mean

positions of all clusters across all dimensions is computed.

Mathematically, Cdisp can be written as:

Cdisp = max
1≤k≤d

{ max
1≤i,j≤M

{∥µk
i − µk

j ∥
2
2}}. (10)

Here M denotes the number of cluster components, µk
i denotes

the mean of the ith cluster in the kth dimension. A higher value

of Cdisp implies better coverage of search space.

B. Case-study 1: Falsification of reference path tracking using

speed and steering LQR control

1) Problem Description: We consider the problem of track-

ing a given reference path using an LQR controller, adopted

from [15], for a bicycle dynamic model (n = 4) with

steering angle and acceleration as control input (u = [δ, a]T)

and specified control limits (±δmax,±amax). We define the

performance metric as the average distance from the reference

path o, with the cost function designed as

c(o,X) =
N
∑

i=1

∥x̄i − oi∥
2
2, (11)

where x̄ = x[0:2]. Failure is defined as c > c∗, with c∗ =
200 chosen by trial and error. For this task, the environment

variable is a reference path o ∈ R
N×2 of length N = 100,

where ok = [xk, yk]
T for k = 0, . . . , N−1. Hence, the testing

objective is to find the set of reference paths for which LQR

fails to generate a suitable tracking trajectory.

For generating falsifying racelines, we utilize the Se-

quence Environment variable design approach described in

Section IV-B. We chose the bicycle dynamic vehicle model

with steering and throttle as inputs to define f(õ) and g(ũ),
where, õ = [ox, oy, oθ, ov]

T and o = õ[0:2].
2) Dataset Design: To train the VAE, we chose reference

trajectories from a distribution that is very close to the actual

failure distribution. This is done intentionally to observe the

learned distribution and generalization capability of the VAE.

We achieved this by introducing several instances of reference

trajectories that require violation of control limits to track

correctly. This is done by uniformly sampling around regions

of amplitude {Ai}
n
i=1 higher than the control limit magnitude

i.e., for a given σ, we chose:

{Ai}
n
i=1 ∼ U [δmax − 3σ, amax − 3σ]× [δmax + σ, amax + σ].

(12)

Using this method, we learn the Nominal distribution of our

four-dimensional latent space (Z ⊆ R
4) centered around µz =

[0.8, 0.9, 0.95, 9]T, as shown in Fig. 5 in blue.

3) Observations: We apply the 2nd-order LA to generate

a failure distribution by sampling from the latent space Z .

Eventually, we notice that our method discovers a failure

region far from the learned (nominal) distribution (Region-

1, µz = [0.06, 0.03, 0.03, 0]T, highlighted in red, Fig. 5)

in addition to a low variance distribution near the nominal

distribution (Region-2, µz = [0.99, 0.93, 0.89, 0.99]T, Fig. 5).

We compared three baseline algorithms (10 chains, 100

epochs each), namely, brute force method, 1st and 2nd-order

LA using the Sequence EV design framework. The results

are summarized in Table-I. We observe that the 2nd-order LA

outperforms the 1nd-order LA and the brute force method in

discovering higher frequency of failures as well as covering

larger search-space.

TABLE I: LQR Speed+Steering Control (Bicycle Model) baseline

comparison.

Failure rate Mean cost Max cost Cdisp

Random sampling 0.53 0.45 1.27 0.91

1st-order LA 0.43 0.36 1.27 1.43

2nd-order LA 0.75 0.51 1.52 1.48

C. Case-study 2: Falsification of Obstacle avoidance via SQP

1) Problem Description: In this example, we use the JAX

library called trajax [16] to solve a reference tracking problem

with obstacle avoidance on a semicircular track with obstacle

locations of fixed radius as the decision variable. Here, the

environment variable o ∈ R
d1×2 represents d1 obstacles

scattered in a 2D environment within the semicircular track

for a unicycle dynamic model with speed and angular velocity
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Fig. 4: Encoding distribution generated using Brute force method to reflect

the high proportion of non-failure encodings (Left). Only 30% of the samples

correspond to failure cases. Our method generates 1.9X failures using 0.5X

samples with 75% failure discovery rate (Table-I). Examples of reference

trajectory tracking failure cases generated using our method (Right). Reference

trajectories shown in orange and actual trajectories of the vehicle shown in

blue.

Fig. 5: VAE Latent space visualization for LQR on Bicycle Model example.

The Nominal distribution is the latent distribution learned by the VAE on the

training dataset. The Failure distribution corresponds to that discovered using

our approach.

Fig. 6: Comparison of samples generated by 2nd-order LA, 1st-order LA,

Brute force-II and Brute force-I (left to right). Obstacle-1 (Obstacle-2)

positions are shown at the top (bottom). 2nd-order LA provides more spatial

coverage of search space than the baselines. The colorbar shows the cost where

failure corresponds to samples with cost ≥ 0.6. Our algorithm discovers more

than 2X failures with 0.3X the sample size compared to Brute force-I method

(w/o projection).

as control inputs u = [v, ω]T. The inner and outer track

boundaries are used for constructing a region Ω such that

o ∈ Ω, i.e, the prior p(o) is well defined by the constraint

of being within the boundaries, but is not explicitly known.

We use the NPO presented in Section IV-A to learn gφ that

outputs the likelihood of a point being in or out of the track.

We aim to find obstacles that cause a significant deviation

from the reference trajectory, and find instances where the

solver favors feasibility over optimality. Algorithm-1 is applied

for testing against the performance metric of the distance from

the reference trajectory, with the cost function as in (11).

2) Observations: We conducted simulations for the case

d1 = 2, that is, scattering two obstacles in the environment

and comparing between different methods across previously

discussed metrics. In addition to the comparison between the

1st and the 2nd-order LA, we also compared with two variants

of the brute force method, namely, Brute-force-I (Random

Sampling) and Brute-force-II. Brute-force-II implements ran-

dom sampling with neural projection, by applying the NPO

P [o] (8) to each o ∼ U(D). We implemented three chains

with 200 epochs each for Brute-force-II, 1st and 2nd-order LA

and compared it against 2,200 randomly generated samples by

Brute-force-I method. The results are summarized in Table-II

Fig. 6 shows a distribution of obstacles generated by the

various algorithms. The 2nd-order LA is able to move across

low-probability regions to discover newer failure locations,

while the 1st-order LA often gets stuck in local optima. Table-

II shows that the 2nd-order LA has a higher dispersion and

failure discovery rate compared to Brute-force-II, despite its

even coverage of search space. Table-II also highlights the

improvement achieved by neural projection, as Brute-force-

II discovers more failures with a significantly smaller sample

size (0.3X).

TABLE II: SQP baseline comparison.

Failure rate Mean cost Max cost Cdisp

Brute force-I 0.17 0.50 1.0 28.68

Brute force-II 0.25 0.58 1.0 27.13

1st-order LA 0.40 0.67 1.0 26.76

2nd-order LA 0.44 0.69 1.0 30.69

D. Case-study 3: Falsification of Obstacle Avoidance for

Trajectory Tracking via MPPI

1) Problem description: We use MPPI for autonomous

racing on the AutoRally racing platform presented in [13] with

a single-track bicycle dynamic model (n = 7,m = 2). Unlike

the previously discussed examples, MPPI is a stochastic con-

trol algorithm that requires randomly sampled trajectories to

synthesize an optimal control policy. The environment consists

of a bounded reference trajectory and sets of d1-obstacles

scattered in the 2D space. The cost function of MPPI is fine-

tuned to enable obstacle avoidance in addition to reference

trajectory tracking. Here, we constructed a testing scenario

of scattering two sets (d1 = 2) of circular 2D obstacles

with fixed radius (r = 1.5) and implemented Algorithm-1 to
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find falsifying locations of obstacles. Failure is defined as a

collision and the corresponding cost function c(·) is:

c̄(o,X) =
1

k
log

d1
∑

i=1

T
∑

j=1

exp
(

k∥x̄t − oi∥
2
2

)

,

c(o,X) = −c̄(o,X).

(13)

Here T is the length of simulation, k is a constant, set to

k = 1, 000. The function c̄(o,X) approaches max(∥x̄t−oi∥
2
2)

as k → +∞. Therefore, the sampling algorithm seeks to

minimize the maximum distance of either obstacle from the

trajectory. We used a smooth maximum function to ensure that

both obstacles are in close proximity of the trajectory and can

effectively contribute towards a possible collision.

2) Observations: Our method identifies several local min-

ima on the racetrack. Additionally, we observe that collision

with an obstacle depends on the local state behavior, i.e.,

the speed, the angular velocity, and the position at the time

of collision and a few steps before that, and is relatively

unaffected by the state of the vehicle long before that. We

classify the discovered failure modes into two categories:

(i) Type-1: Each instance of this failure mode is a combi-

nation of two independent local minima, i.e., the vehicle

has a high probability of collision with both obstacles

individually. For such failure instances, we can write

pfail(oi|oj) = pfail(oi) for i = 1, 2, j = 2, 1. (14)

(ii) Type-2: This failure mode consists of two obstacles such

that the probability of collision of the vehicle is increased

due to the presence of the other obstacle. Hence, the

location of the first obstacle informs the location of the

other obstacle and this combination creates new local

minima. For such a failure we have

pfail(o2, o1) > max{pfail(o2), pfail(o1)}

pfail(o1|o2) = pfail(o1),
(15)

where, o1 is the first obstacle encountered by the vehicle and

o2 is encountered after o1.

All Type-1 failure modes can be expressed as the union

of independent failure modes of lower cardinality, which

corresponds to d1 = 1 in this case.

To demonstrate the utility of our method, we performed

brute-force sampling without projection using 1,700 random

samples to generate an approximate cost distribution of obsta-

cles (Fig. 7a). The high-cost region marked in green is a local

optimum corresponding to the Type-1 failure mode shown in

Fig. 7b, generated by Algorithm-1. Note that random sampling

is not able to locate Type-2 failures effectively, as Type-2

failures are sensitive to small perturbations in the location

of Obstacle-2, but our algorithm successfully locates several

Type-1 and Type-2 failures with almost an order of magnitude

fewer samples than the brute-force method. Fig. 8c shows

an instance of Type-2 failure mode. Colliding (resp., safe)

trajectories shown in blue (resp,, orange). The likelihood of

collision is calculated over 100 random trials.

We also compared the performance with baseline algorithms

for a shorter length trajectory tracking example over five

(a) (b) Type-1 failure

Fig. 7: Cost distribution of Obstacle-1 (left, Plot (a)) and Obstacle-2 (right,

Plot(a)), generated using the brute-force method. Examples of obstacles

corresponding to Type-1 failure (green) and Type-2 (blue) are shown. Plot

(b) shows the collision likelihood with the Type-1 obstacle (94%). Note that

the collision happens regardless of the location of Obstacle-2.

(a) Obstacle-1 (b) Obstacle-2 (c) Type-2 failure

Fig. 8: Likelihood of collision of Obstacle-1 (Plot (a), 61%) and Obstacle-

2 (Plot (b), 39%) respectively. Plot (c) shows collision likelihood with both

Obstacle-1, Obstacle-2 (81%).

chains of 50 epochs each. The results are summarized in

Table-III. The reported cost values in Table-III is given by

exp(c/250), where c is defined in (13). Here, we notice that

Brute-force-II performs similarly to 2nd-order LA, which is

primarily due to the restricted search space of the sampling

region. This shows that for smaller sampling volumes, in the

absence of true gradient information, the neural projection

technique can be helpful in reducing sampling volume and

thereby increasing the efficiency of the sampling algorithm.

We notice that the 2nd-order LA outperforms the baselines,

by doing well both in terms of exploration and in terms of

convergence.

TABLE III: MPPI baseline comparison.

Failure rate Mean cost Max cost Cdisp

Brute force-I 0.06 0.35 0.53 24.11

Brute force-II 0.116 0.37 0.55 23.57

1st-order LA 0.081 0.44 0.56 11.84

2nd-order LA 0.1 0.48 0.59 17.06

E. Experimental Validation

We analyze the sim-to-real transfer of our approach by

conducting hardware experiments for testing of static EVs

(obstacles, Section-V-D) and sequence EVs (reference path,

Section-V-B) using the AutoRally racing platform and the

F1Tenth platform, respectively. Please refer to the video1 for

experimental demonstration.

1https://mit-realm.github.io/neural-langevin-website/
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(a) (b)

Fig. 9: Fig. (a), (b) show the real-time demonstration of nominal and “failure”

reference paths, respectively. The “failure” reference path cannot be tracked

by implementing the LQR controller as explained in Section-V-B.

(a) (b)

Fig. 10: Fig. (a), (b) show the hardware demonstrations of Type-1 and Type-2

failure respectively found using our approach. Corresponding simulation and

analysis in Fig. 7 and Fig. 8.

1) LQR reference path tracking falsification using the

F1Tenth platform: We performed hardware demonstration for

reference path falsification using the F1Tenth autonomous

racing platform [17]. The LQR controller for Speed and

Steering Control presented in Section-V-B was implemented

on the vehicle for tracking a known reference path. Fig. 9b

shows instances where the vehicle was not able to reach the

goal and deviated significantly from the reference path. The

marginal difference in the observed vehicle trajectory and the

simulated response reflects the sim-to-real gap of our model-

based testing framework, which we aim to address in future

iterations of our work.

2) MPPI Trajectory tracking with obstacle avoidance fal-

sification using the AutoRally platform: We validated the

falsification of the MPPI controller on the AutoRally platform

in the presence of obstacles with a goal to replicate the Type-

1 and Type-2 failures observed in Fig. 7b and Fig. 8. Fig. 10

shows the hardware demonstration of the failures discovered

in simulation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel learning-based

framework for testing of robotic systems via Bayesian in-

ference. As seen from the various examples presented in

the paper, learning-based representations can solve the curse

of dimensionality using latent variable encoding, and enable

an explicit constraint satisfaction scheme using the neural

projection technique.

Across all examples, we observe that the 2nd-order LA

provides an optimal way to balance coverage and failure

discovery rate via momentum-based acceleration. We also

provide a new way to analyze failure patterns by constructing

high-dimensional failure distributions using low-dimensional

failures of the same class. This eliminates the need to perform

high-dimensional sampling in many scenarios.

This paper analyzes the role of differentiability in testing,

and the conclusion is that differentiability can substantially

help in feedback control-based architectures as the explicit

construction of gradients via backpropagation is easy. For

optimal control architectures such as SQP and MPPI, one

would benefit from an easy-to-implement sensitivity analysis

of the environment variables of the optimization problem.

Furthermore, the question of hierarchical failures introduced in

Section-V-D is promising to significantly improve the memory

and convergence of many testing methods.
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