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Learning-based Bayesian Inference for Testing of
Autonomous Systems

Anjali Parashar!, Ji Yin?, Charles Dawson', Panagiotis Tsiotras?, and Chuchu Fan'

Abstract—For the safe operation of robotic systems, it is
important to accurately understand its failure modes using prior
testing. Hardware testing of robotic infrastructure is known to
be slow and costly. Instead, failure prediction in simulation can
help to analyze the system before deployment. Conventionally,
large-scale naive Monte Carlo simulations are used for testing;
however, this method is only suitable for testing average system
performance. For safety-critical systems, worst-case performance
is more crucial as failures are often rare events, and the size
of test batches increases substantially as failures become rarer.
Rare-event sampling methods can be helpful; however, they
exhibit slow convergence and cannot handle constraints. This
research introduces a novel sampling-based testing framework
for autonomous systems which bridges these gaps by utilizing
a discretized gradient-based second-order Langevin algorithm
combined with learning-based techniques for constrained sam-
pling of failure modes. Our method can predict more diverse
failures by exploring the search space efficiently and ensures
feasibility with respect to temporal and implicit constraints. We
demonstrate the use of our testing methodology on two categories
of testing problems, via simulations and hardware experiments.
Our method discovers up to 2X failures compared to naive
Random Walk sampling, with only half of the sample size.

Index Terms—Robot Safety, Probabilistic Inference, Formal
Methods in Robotics and Automation

I. INTRODUCTION

ESTING, verification, and model validation are integral
Tto ensuring the safety of robotic systems. Discovering
possible failure modes of the system through testing is chal-
lenging for several reasons. First, the underlying mathematical
problem of failure discovery is highly non-convex with an
unpredictable loss landscape. Second, sufficient exploration of
the search space is important, as there are multiple failure
modes of varying probability of occurrence. To ensure proper
coverage of the state space, state-of-the-art methods for testing,
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such as Random Walk MCMC sampling [1], need a significant
amount of computational resources, and can be extremely
time-consuming [2].

In the past few years, some new favorable alternatives
have emerged. Primarily, there are two ways to approach
the problem of failure discovery, given a dynamic system
and a known environment. The first set of methods relies
on adversarial optimization [3], where the key challenge is
that it typically renders one failure case per search. Addi-
tionally, initialization plays a key role in the implementation
of gradient-based methods for non-convex optimization [4],
therefore, inappropriately chosen initial conditions are likely
to converge to a few high-probability failure modes, thereby
completely missing out on some rare failures that are equally
detrimental to the safety of the system.

The second approach utilizes recent advancements in ma-
chine learning, such as generative modeling, to learn failure
representations by using failure data as input [5]. A key
challenge with this approach is the lack of generalization guar-
antees of neural network-based models for out-of-distribution
data, causing the generated failure instances to be biased
towards the failures observed in the training dataset.

Some works have recently analyzed failure discovery and
model validation under the lens of Bayesian inference [6],
[7], which combines the convergence properties of adversarial
optimization and the search-space exploration capabilities of
sampling-based methods. While these methods do not suffer
from initialization limitations of deterministic optimization,
they typically carry over some of the drawbacks of sampling
methods, such as uneven search space exploration, curse of
dimensionality, and slow convergence.

In this paper, we study the question — what is the most
efficient way of testing a known dynamic system with known
environmental interactions? The objective of this work is to
discover the failure modes of a given dynamic system with a
known controller, where the focus is on failures caused due to
environmental interactions (Fig. 1). We exploit the awareness
of testing scenarios to discover failure modes in simulation,
with an aim to reduce the dependency on field testing as
much as possible. Building upon the fundamental structure of
Bayesian inference, we provide a modular approach to testing
via learning-based stochastic optimization.

A. Key Contributions

This paper introduces a novel testing framework for control
and planning algorithms for robotic systems by formulating
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Fig. 1: Our approach utilizes learning-based priors within a Bayesian inference
framework for sampling environment variables using gradient-based Langevin
sampling for falsification of robotic systems

testing as a Bayesian inference problem (Section-II). One of
the main objectives of this study is to extract meaningful
information about the system without necessitating a heavy
expenditure on the testing budget. A key contribution of this
work is the proposal of learning-based methods for reducing
the volume and dimensionality of prior distributions, pro-
moting better performance for Bayesian inference techniques.
Additionally, our framework can efficiently handle constrained
stochastic optimization (Section-IV).

To address the convergence gap of sampling-based tech-
niques in Bayesian inference, we exploit system awareness
and leverage differentiability of controller and dynamics for
gradient-based sampling [6]. We make use of the Under-
damped Langevin Algorithm [8] (also known as 2"%-order LA),
which provides accelerated convergence guarantees and better
coverage, leading to the discovery of diverse failure modes. In
Section-III-A we provide a theoretical intuition for the same.
In Section-V we present three case studies of falsification of
dynamic systems with different control algorithms along with
experimental validation for analyzing the sim-to-real transfer.

II. PROBLEM STATEMENT

We consider continuous-time closed-loop dynamic systems
of the form & = f(x,n(x,0)) for given state x € R™, where
a = m(x,0) € R™ is a known controller which outputs actions
a € A C R™ based on system state and environmental
observations 0 € O C R? in a fully observable setting. In
the rest of the paper, we refer to o as Environment Variables
(EVs). The testing architecture takes a user-defined property
as an input (such as “obstacle avoidance”) for which we
aim to find compelling failure cases that reveal loopholes in
the controller performance and underlying limitations of our
dynamic system.

For a given user-defined property, we design a cost function
c(0,X) where X = (x;)Z_, such that a failure of the under-
lying dynamic system in the presence of a chosen controller
can be defined as the corresponding cost function exceeding
a threshold c¢*. That is, c¢(o,X) > ¢* corresponds to the
violation of the desired property. The testing problem can then
be mathematically formulated as

find Ogiy = {o|c(o, X) > ¢*}. (1)

Note that by definition, c¢* is specific to the desired task
and the controller, as the chosen controller affects the severity
of failures observed. An appropriate selection of ¢* requires
user-inputs and fine-tuning to ensure that the user expectation
aligns with the corresponding severity of failures observed.

III. APPROACH: OPTIMIZATION VIA SAMPLING

We employ Bayesian inference to solve (1), as it can
discover more than one failure per search. This is done by
constructing a Bayesian inference problem that is equivalent
to (1) using o as a decision variable. This can be understood
as sampling from the conditional distribution of o that triggers
failures, that is,

o ~ p(olc(o, X) > c*). @)

Failures are low-probability events, consequently, regions rep-
resenting p(o|c(o, X)) are extremely low-density regions. To
facilitate efficient sampling from these regions, we construct a
posterior distribution p(c(o, X) > ¢*|o) that is highly biased
towards failures, given by:

ple(0, X) > ¢*[o) o exp(—[c* — cl) )

Here [ ] represents the ReLU operator and assigns equal
cost to every failure mode with ¢ > ¢* and 7 corresponds
to the learning rate of the Langevin dynamics leveraged for
solving this problem, explained in detail in Section-III-A. This
construction ensures that the target density from which we
wish to sample, p* is indeed a solution to (1) and contains
all failure modes regardless of their severity [6]. Using Bayes
rule, the inference problem can therefore be written as:

Tody). @

Here, p(o0) represents the prior belief. In this work, we utilize
spatio-temporal constraints imposed on o to inform the design
of prior using machine-learning-based methods, discussed
in Section-IV. This ensures that the constraints are always
satisfied. In the next subsection, we provide insights on how
to sample from the distribution p o exp(—y[c* — c|4.) using
the 2"-order Langevin algorithm (LA).

plole(o, X) > ¢) o< p(o) exp(—7le

A. Stochastic Optimization via Underdamped Langevin

Recently, reference [6] demonstrated that for end-to-end
differentiable systems, gradient-based Langevin Monte Carlo
(also known as 1%-order LA) is a helpful tool for solving
problems that can be written as in (4). Langevin dynamics
(LD) based sampling tools have emerged as a promising
alternative to gradient-free MCMC algorithms such as Random
walk MCMC, which are popularly used in verification and
falsification tools for stochastic optimization [1].

Consider the problem of sampling from a target distribu-
tion p* of the form p*(0) x exp(—U(o*)), where o* =
argminU (o) for a differentiable function U(0). The 1%-
order Langevin Algorithm (LA) approaches this problem by
constructing gradient-based iterates corresponding to a first-
order Stochastic Differential Equation (SDE) given by:

do; = —yVU(0¢) dt + /2y dBy, 5)
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where B; denotes the standard Brownian motion and = corre-
sponds to the learning rate.

Note that the Langevin diffusion process (5) has an in-
variant measure po,(0) which can be expressed as po.(0)
exp(—+U). Therefore, by modeling the posterior distribution
as in (3), we guarantee that the distribution we are sampling
from does not change along the trajectory of o;. This technique
has been used in several Bayesian inference based problem
formulations [6], [7].

In multimodal distributions, a sufficient amount of global
search space exploration is extremely important to discover all
possible solutions. Additionally, speed of convergence to the
optimum is also crucial. In [9] it was shown that accelerated-
gradient-based methods such as Nesterov’s method [10], are
able to locate the optimal solution with faster speed of
convergence for non-convex optimization problems, compared
to first-order gradient-based methods. We hypothesize that the
Underdamped Langevin Algorithm (also known as 2"-order
LA) [8] performs better than 1%-order LA and Random Walk
MCMC in discovering diverse failure modes and converges
faster.

The second-order SDE corresponding to 2"-order LA can
be written as

dOt = —T¢ dt,
dry = —VU (0;) dt — yr dt 4+ /2y dB,.

Note that the momentum variable r; is also present in ac-
celerated gradient descent and it helps avoid getting stuck
in local minima. We hypothesize that the 2"%-order LA can
provide better search space exploration for a similar reason,
and thus identify diverse failure modes. Recently, it was shown
that non-reversible SDEs such as 2"-order LA search for
global optimum at a much faster timescale [11]. Additionally
[8] shows that the 2™-order LA converges to e-accuracy
of the global minimum in +/(d/e¢) steps (as opposed to
d/e steps needed for the 1%-order LA [12]), under certain
assumptions. This shows that for high-dimensional non-convex
optimization, 2"-order LA is a promising approach, ensuring
speed, sufficient search space exploration, and scalability.
Furthermore, [6, Theorem 5.1] shows that using an appropriate
cost design ¢(-), the problem of discovering failure modes as
in (4) meets these assumptions. Therefore, we can utilize the
convergence guarantees enjoyed by the 2"-order LA in our
framework.

For this work, we adopt the discretization of Underdamped
Langevin proposed in [8], where each step can be defined
as sampling from a normal distribution with mean u(o0) and
covariance Y introduced in [8, Algorithm-1], namely,

0j ~ N(p(0j-1),%). (7)

(6)

IV. PRIOR DESIGN

For testing purposes, the region of failures are low-density
distributions and naively chosen priors such as uniform dis-
tribution can severely over-estimate the likelihood of failure
that impacts the efficiency of sampling, as a lot more steps are
needed to converge to the true distribution. By having stronger

(a) (b) (©) (@)

Fig. 2: Neural Projection for the AutoRally racetrack. (a) The AutoRally
racetrack. (b) The decision boundary learned by g4. (¢) The classification of
uniformly sampled 2D datapoints across the 2D box classified by g. (d) The
points projected on €2 after applying Algorithm-1.

prior estimates, we can significantly improve the efficiency
of sampling. We reframe the prior distribution as constraints
on the EVs, and create learned representations of EVs using
available information about the environmental variable o and
its interaction with the system. Using this method, we can
simultaneously construct a strong prior and at the same time
satisfy hard constraints imposed on the EVs.

Prior distribution design can be classified by the nature of
the environment variables under consideration. Specifically, we
consider two cases:

(i) Static EVs: (o € R%*™1) These variables remain static
throughout the evolution of the dynamic system. Here,
m1 defines the dimension of the search space and d;
corresponds to the number of identical classes of EVs. In
this study, we consider the problem of locating d; circular
obstacles of fixed radius as a typical example.

Sequence EVs: (0o = (o04)jt,0, € R%*m1) These
variables have a sequential structure. Typical examples
include reference paths and non-ego vehicles. Here n4
denotes the length of sequence.

(i)

This distinction is motivated by the fact that Static EVs are
low dimensional but have complex, implicit spatial constraints
and do not change their position. On the other hand, Sequence
EVs have constraints of temporal consistency, and are high
dimensional. Therefore, different approaches suit their prior
construction. In this paper, we focus on independent EVs, that
do not take the ego-agent’s behavior into consideration, such
as a reference path or obstacles.

The spatio-temporal behavior (i.e., location, evolution with
time, etc) of independent EVs can be predicted with known
confidence. Hence, neural network-based architectures are a
highly attractive means for learning accurate prior representa-
tions of these variables. The design approach for both cases
is discussed in detail in the next sections.

A. Neural Projection for Static Environment Variables

For a fixed number of obstacles, consider the problem
of finding obstacle locations on a racetrack for autonomous
driving that are highly likely to collide with the vehicle. Here,
the environment variable o € R%*2 represents d; obstacles
scattered in a 2D environment around a pre-designed reference
path.

Regions far away from the reference path have an extremely
low probability of collision. Hence, a suitable choice of
prior would include a region in the vicinity of the reference
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Fig. 3: Encoding latent variables for generating sequential environment
variables "o’ using VAE presented in Section-IV-B.
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track. Based on this hypothesis, for a given reference track,
we construct a region {2 defined by inner and outer track
boundaries of a width w. It is hard to express the region 2
as an explicit function since a parametric expression of the
racetrack is not always available. We therefore first construct
a box D circumscribing the region {2 such that & C D and
sample 2D data points uniformly from D. We then train a
DNN-based binary classifier g4(z, y) to learn the likelihood of
a previously unseen datapoint (z, y) being within € or in D\Q.
Fig. 2b shows an example of the learned decision boundary
for the AutoRally racetrack [13] using g4 (z,y).

To refine our Bayesian inference using this information, for
any point within D, we propose a Neural Projection Operator
(NPO) P : D — Q as follows:

Plo] = 0~ Vg4(0)gs(0)/[IV g5 (0)II*. (8)

This is a Newton’s method-based projection operator, inspired
by the Neural Projection technique presented in [14]. P[o]
ensures that any point lying outside €2 is mapped to the nearest
point within €. Fig. 2d shows an example applying Neural
Projection with the AutoRally track region {2, given uniformly
generated samples in a 2D box D.

Finally, for sampling static environment variables, we pro-
pose Algorithm-1, which combines the 2"¢-order LA with the
Neural Projection operator at each iteration to strictly sample
from within Q. After each update of 2"%-order LA sampling,
we perform M updates of gradient-based projection using (8)
given by 6; < P[o;_1], for j =1,..., M where M is large
enough to ensure that 0); € €. The process is outlined in
Algorithm-1 shown below:

Algorithm 1 Neural Projection with Langevin

1: Initial conditions oy ~ U[D] > Uniform sampling
2: for k=1to N do

3 o0 ~ N(p(og—1),%) > 2"d-order LA sampling (7)
4 for j =1to M do

5: 0j < P[o;_1] > Neural Projection (8)
6 end for

7 oK = Opf > Update oy, after M projection steps
8: end for

B. Latent Variable Encoding for Sequence Environment Vari-
ables

As a motivating example, given a reference-tracking con-
troller, we consider the problem of finding reference paths
that are hard for a dynamic system to follow. For this task,
the environment variable under consideration is a reference
path o € RV*2 of length N, where o, = [xk,yk]T for
k=0,...,N—1.

1) Challenges with optimization for sequence EVs: Firstly,
the decision variable o is high-dimensional, and finding falsi-
fying examples in a high-dimensional space can be quite ineffi-
cient and slow. Secondarily, our search space is constrained to
be a set of “realisitic” trajectories which should have temporal
consistency.

2) Approach: To tackle the second problem of temporal
consistency, we use the evolution of a dynamic system to
generate o. Consider a control affine dynamic system with
open-loop control @ € R™ and drift and control vector fields
f(): RP — RP and ¢(-) : R™ — RP, respectively. We gener-
ate every element of the sequence oj using the discretization
of the open-loop dynamic system 6 = f(6) + g(#) such that
O = Og[o:2)- Therefore, we have, for all k =0,..., N —1,

O = Op_1 + At(f([)kfl) + g(ﬂk,l)).

For an appropriate choice of f(6), g(@) and At, we can
generate a wide variety of sequences.

To resolve the first challenge of dimension reduction, we use
Variational Autoencoders (VAE) to learn a lower-dimensional
time-invariant representation of a continuous control input (t)
such that @, = @(kAt) defined in the range ¢ € [0, NAt]. To
learn a generalized low-dimensional representation, we need
to train the model on a rich dataset that consists of a wide
range of EVs. To generate the appropriate training dataset, we
formulate the control inputs at every timestep ¢ as a finite sum
of ny sinusoidal component functions h(A;,w;,d;) where
Aj,wj, ¢; represent the amplitude, frequency, and phase lag
corresponding to each sinusoidal function. Mathematically, for
a given t € [0, NAt], @ can be expressed as:

ny
a(t) =Y Ajsin(wjt + ;). )
j=1
We generate the training data by uniformly sampling across
a range of {A;,wj;,¢;}71, for a fixed sum length n; and
chosen open-loop dynamic system. We wish to span across
a large variety of functions for @(¢) to generate the training
dataset. The expression for @(t) shown in (9) is equivalent to
a truncated Fourier series representation for 4(t). Therefore,
by spanning across a range of {A;,wj,¢;};L; in a low-
dimensional space, we generate a large diversity of functions
4(t), which in turn leads to diverse evolutions of the chosen
dynamic system, generating complicated realistic trajectories.
This ensures that the generated trajectories have temporal
consistency and diversity, and do not correspond to a restrictive
family of parametric curves such as circles, ellipsoids, etc.
With X = (4;,w;,¢;)7%, € R™*® as the input and
output of the Autoencoder, we train a DNN-based VAE, where
the encoder network genc : R"'*3 — R learns a latent
representation of the input space such that do < 3n;. The
network is trained to minimize the KL-divergence between the
ground truth sequences and sequences generated by the control
inputs rendered by the decoder network gge : R —y R71%3,
The training pipeline is summarized in Fig. 3.
Therefore, we compress the problem of finding an N-
dimensional sequence to an equivalent problem of finding a
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ds-dimensional latent variable z € R9% such that dy < N.
After reducing the dimension of our search space, we use
Langevin-based optimization to find the set of latent variables
Zi = {#|€(gaec(#)) > ¢*}, where ¢ measures the cost
¢(o, X) generated by this method. Fig. 4 shows examples of
different kinds of reference paths generated by our method,
along with the corresponding trajectories generated by an
LQR speed+steering controller for a bicycle dynamic model
discussed in Section-V-B.

3) Limitations of our approach: The raceline dataset gen-
eration pipeline presented in this section is helpful for cases
where baseline dataset is not already available in the required
format for training the VAE. The overall pipeline relies on
expert knowledge to make subjective assessment of “good
quality” data for training purposes. The term “good quality”
here refers to data that represents realistic representation of
EVs that can lead to user-relevant failures upon inference.

V. SIMULATION & EXPERIMENTS

We present results from a case study of testing using the
sequence environment variables (Section-V-B) and falsification
using the static environment variables (Section-V-C, V-D)
along-with experimental validation in Section-V-E.

A. Baselines & Metrics

To demonstrate the modularity of our approach, we present
an implementation of our framework on the 1%-order LA [12]
and the gradient-free Random sampling (brute force method)
in addition to the 2"-order LA. We test for the effect of accel-
eration, speed of convergence, and coverage by comparing the
failure discovery rate, mean and max cost value and dispersion
metric Cgisp respectively, across all baselines.

For comparing coverage of the search space, we introduce
our own metric Cgisp in (10). To calculate Ciisp, sampled
failure modes are clustered using Gaussian Mixture Clustering,
and the maximum Euclidean distance between the mean
positions of all clusters across all dimensions is computed.
Mathematically, Cgisp can be written as:

{lln? = 15133}

Here M denotes the number of cluster components, 1¥ denotes
the mean of the 5™ cluster in the k™ dimension. A higher value
of Cgisp implies better coverage of search space.

Caisp = max { max (10)

1<k<d 1<i,j<M

B. Case-study 1: Falsification of reference path tracking using
speed and steering LOR control

1) Problem Description: We consider the problem of track-
ing a given reference path using an LQR controller, adopted
from [15], for a bicycle dynamic model (n = 4) with
steering angle and acceleration as control input (u = [d, a]T)
and specified control limits (£6™®* +a™2*). We define the
performance metric as the average distance from the reference
path o, with the cost function designed as

N
c(o, X) = ||z — oi]3, (11
=1

where T = mg.9). Failure is defined as ¢ > c*, with ¢* =
200 chosen by trial and error. For this task, the environment
variable is a reference path o € RV*2 of length N = 100,
where oy, = [z, yx]" for k =0,..., N — 1. Hence, the testing
objective is to find the set of reference paths for which LQR
fails to generate a suitable tracking trajectory.

For generating falsifying racelines, we utilize the Se-
quence Environment variable design approach described in
Section IV-B. We chose the bicycle dynamic vehicle model
with steering and throttle as inputs to define f(0) and g(@),
where, 6 = [0, 0y, 0g,0,]" and o0 = 0[0:2]-

2) Dataset Design: To train the VAE, we chose reference
trajectories from a distribution that is very close to the actual
failure distribution. This is done intentionally to observe the
learned distribution and generalization capability of the VAE.
We achieved this by introducing several instances of reference
trajectories that require violation of control limits to track
correctly. This is done by uniformly sampling around regions
of amplitude {A;}?_, higher than the control limit magnitude
i.e., for a given o, we chose:

{A4;}1 ~ U0 — 3o, a™ — 30] X [0™% + 0,a™™ 4 0].
(12)
Using this method, we learn the Nominal distribution of our
four-dimensional latent space (Z C R*) centered around ., =
[0.8,0.9,0.95,9]T, as shown in Fig. 5 in blue.
3) Observations: We apply the 2"-order LA to generate
a failure distribution by sampling from the latent space Z.
Eventually, we notice that our method discovers a failure
region far from the learned (nominal) distribution (Region-
1, . = [0.06,0.03,0.03,0]", highlighted in red, Fig. 5)
in addition to a low variance distribution near the nominal
distribution (Region-2, 1. = [0.99,0.93,0.89,0.99]", Fig. 5).
We compared three baseline algorithms (10 chains, 100
epochs each), namely, brute force method, 1% and ond_grder
LA using the Sequence EV design framework. The results
are summarized in Table-1. We observe that the 2"-order LA
outperforms the 1"%-order LA and the brute force method in
discovering higher frequency of failures as well as covering
larger search-space.

TABLE I: LQR Speed+Steering Control (Bicycle Model) baseline
comparison.

Failure rate Mean cost ~ Max cost  Cyisp
Random sampling  0.53 0.45 1.27 0.91
1%%-order LA 043 0.36 1.27 1.43
2"_order LA 0.75 0.51 1.52 1.48

C. Case-study 2: Falsification of Obstacle avoidance via SQP

1) Problem Description: In this example, we use the JAX
library called trajax [16] to solve a reference tracking problem
with obstacle avoidance on a semicircular track with obstacle
locations of fixed radius as the decision variable. Here, the
environment variable o € R%*2 represents d; obstacles
scattered in a 2D environment within the semicircular track
for a unicycle dynamic model with speed and angular velocity
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Fig. 4: Encoding distribution generated using Brute force method to reflect
the high proportion of non-failure encodings (Left). Only 30% of the samples
correspond to failure cases. Our method generates 1.9X failures using 0.5X
samples with 75% failure discovery rate (Table-I). Examples of reference
trajectory tracking failure cases generated using our method (Right). Reference
trajectories shown in orange and actual trajectories of the vehicle shown in
blue.
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Fig. 5: VAE Latent space visualization for LQR on Bicycle Model example.
The Nominal distribution is the latent distribution learned by the VAE on the
training dataset. The Failure distribution corresponds to that discovered using
our approach.

10

Fig. 6: Comparison of samples generated by 2"d-order LA, 1%-order LA,
Brute force-II and Brute force-I (left to right). Obstacle-1 (Obstacle-2)
positions are shown at the top (bottom). 2"-order LA provides more spatial
coverage of search space than the baselines. The colorbar shows the cost where
failure corresponds to samples with cost > 0.6. Our algorithm discovers more
than 2X failures with 0.3X the sample size compared to Brute force-I method
(w/o projection).

as control inputs u = [v,w]’. The inner and outer track
boundaries are used for constructing a region ) such that
o € Q, i.e, the prior p(o) is well defined by the constraint
of being within the boundaries, but is not explicitly known.
We use the NPO presented in Section IV-A to learn g, that
outputs the likelihood of a point being in or out of the track.

We aim to find obstacles that cause a significant deviation
from the reference trajectory, and find instances where the
solver favors feasibility over optimality. Algorithm-1 is applied
for testing against the performance metric of the distance from
the reference trajectory, with the cost function as in (11).

2) Observations: We conducted simulations for the case
d; = 2, that is, scattering two obstacles in the environment
and comparing between different methods across previously
discussed metrics. In addition to the comparison between the
1%t and the 2"-order LA, we also compared with two variants
of the brute force method, namely, Brute-force-I (Random
Sampling) and Brute-force-II. Brute-force-II implements ran-
dom sampling with neural projection, by applying the NPO
PJo] (8) to each o ~ U(D). We implemented three chains
with 200 epochs each for Brute-force-II, 1%* and 2"-order LA
and compared it against 2,200 randomly generated samples by
Brute-force-I method. The results are summarized in Table-II

Fig. 6 shows a distribution of obstacles generated by the
various algorithms. The 2"%-order LA is able to move across
low-probability regions to discover newer failure locations,
while the 1%*-order LA often gets stuck in local optima. Table-
II shows that the 2"-order LA has a higher dispersion and
failure discovery rate compared to Brute-force-II, despite its
even coverage of search space. Table-II also highlights the
improvement achieved by neural projection, as Brute-force-
IT discovers more failures with a significantly smaller sample
size (0.3X).

TABLE II: SQP baseline comparison.

Failure rate Mean cost ~ Max cost  Cygp
Brute force-I 0.17 0.50 1.0 28.68
Brute force-II  0.25 0.58 1.0 27.13
15torder LA 0.40 0.67 1.0 26.76
2" order LA 0.44 0.69 1.0 30.69

D. Case-study 3: Falsification of Obstacle Avoidance for
Trajectory Tracking via MPPI

1) Problem description: We use MPPI for autonomous
racing on the AutoRally racing platform presented in [13] with
a single-track bicycle dynamic model (n = 7, m = 2). Unlike
the previously discussed examples, MPPI is a stochastic con-
trol algorithm that requires randomly sampled trajectories to
synthesize an optimal control policy. The environment consists
of a bounded reference trajectory and sets of dj-obstacles
scattered in the 2D space. The cost function of MPPI is fine-
tuned to enable obstacle avoidance in addition to reference
trajectory tracking. Here, we constructed a testing scenario
of scattering two sets (dy = 2) of circular 2D obstacles
with fixed radius (r = 1.5) and implemented Algorithm-1 to
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find falsifying locations of obstacles. Failure is defined as a
collision and the corresponding cost function ¢(-) is:

i T
1
é(o,X) = ElogZZexp (kl|ze — oill3),

i=1 j=1
c(o,X) = —¢(0, X).

Here T is the length of simulation, k is a constant, set to
k = 1,000. The function (o, X ) approaches max(||z; —o0;||3)
as k — +oo. Therefore, the sampling algorithm seeks to
minimize the maximum distance of either obstacle from the
trajectory. We used a smooth maximum function to ensure that
both obstacles are in close proximity of the trajectory and can
effectively contribute towards a possible collision.

2) Observations: Our method identifies several local min-
ima on the racetrack. Additionally, we observe that collision
with an obstacle depends on the local state behavior, i.e.,
the speed, the angular velocity, and the position at the time
of collision and a few steps before that, and is relatively
unaffected by the state of the vehicle long before that. We
classify the discovered failure modes into two categories:

(13)

(i) Type-1: Each instance of this failure mode is a combi-
nation of two independent local minima, i.e., the vehicle
has a high probability of collision with both obstacles
individually. For such failure instances, we can write

Prait(03]0j) = prait(0;) fori=1,2, j=2,1. (14)

(ii) Type-2: This failure mode consists of two obstacles such
that the probability of collision of the vehicle is increased
due to the presence of the other obstacle. Hence, the
location of the first obstacle informs the location of the
other obstacle and this combination creates new local
minima. For such a failure we have

Prait (02, 01) > max{pgi(02), prair(01) }
Prait(01]02) = pran(01),

where, 01 is the first obstacle encountered by the vehicle and

09 is encountered after o;.

All Type-1 failure modes can be expressed as the union
of independent failure modes of lower cardinality, which
corresponds to d; = 1 in this case.

To demonstrate the utility of our method, we performed
brute-force sampling without projection using 1,700 random
samples to generate an approximate cost distribution of obsta-
cles (Fig. 7a). The high-cost region marked in green is a local
optimum corresponding to the Type-1 failure mode shown in
Fig. 7b, generated by Algorithm-1. Note that random sampling
is not able to locate Type-2 failures effectively, as Type-2
failures are sensitive to small perturbations in the location
of Obstacle-2, but our algorithm successfully locates several
Type-1 and Type-2 failures with almost an order of magnitude
fewer samples than the brute-force method. Fig. 8c shows
an instance of Type-2 failure mode. Colliding (resp., safe)
trajectories shown in blue (resp,, orange). The likelihood of
collision is calculated over 100 random trials.

We also compared the performance with baseline algorithms
for a shorter length trajectory tracking example over five

15)

035
0.30
025 B
020 ¥
0.15

(a) (b) Type-1 failure

Fig. 7: Cost distribution of Obstacle-1 (left, Plot (a)) and Obstacle-2 (right,
Plot(a)), generated using the brute-force method. Examples of obstacles
corresponding to Type-1 failure (green) and Type-2 (blue) are shown. Plot
(b) shows the collision likelihood with the Type-1 obstacle (94%). Note that
the collision happens regardless of the location of Obstacle-2.

(a) Obstacle-1

(b) Obstacle-2 (c¢) Type-2 failure

Fig. 8: Likelihood of collision of Obstacle-1 (Plot (a), 61%) and Obstacle-
2 (Plot (b), 39%) respectively. Plot (c) shows collision likelihood with both
Obstacle-1, Obstacle-2 (81%).

chains of 50 epochs each. The results are summarized in
Table-III. The reported cost values in Table-III is given by
exp(c/250), where c is defined in (13). Here, we notice that
Brute-force-II performs similarly to 2"-order LA, which is
primarily due to the restricted search space of the sampling
region. This shows that for smaller sampling volumes, in the
absence of true gradient information, the neural projection
technique can be helpful in reducing sampling volume and
thereby increasing the efficiency of the sampling algorithm.

We notice that the 2"%-order LA outperforms the baselines,
by doing well both in terms of exploration and in terms of
convergence.

TABLE III: MPPI baseline comparison.

Failure rate  Mean cost ~ Max cost  Cgisp
Brute force-1 0.06 0.35 0.53 24.11
Brute force-II  0.116 0.37 0.55 23.57
15torder LA 0.081 0.44 0.56 11.84
2 order LA 0.1 0.48 0.59 17.06

E. Experimental Validation

We analyze the sim-to-real transfer of our approach by
conducting hardware experiments for testing of static EVs
(obstacles, Section-V-D) and sequence EVs (reference path,
Section-V-B) using the AutoRally racing platform and the
Fl1Tenth platform, respectively. Please refer to the video! for
experimental demonstration.

Uhttps://mit-realm.github.io/neural-langevin-website/
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Fig. 9: Fig. (a), (b) show the real-time demonstration of nominal and “failure”

reference paths, respectively. The “failure” reference path cannot be tracked
by implementing the LQR controller as explained in Section-V-B.

(a) (b)

Fig. 10: Fig. (a), (b) show the hardware demonstrations of Type-1 and Type-2
failure respectively found using our approach. Corresponding simulation and
analysis in Fig. 7 and Fig. 8.

1) LOR reference path tracking falsification using the
FlTenth platform: We performed hardware demonstration for
reference path falsification using the FlTenth autonomous
racing platform [17]. The LQR controller for Speed and
Steering Control presented in Section-V-B was implemented
on the vehicle for tracking a known reference path. Fig. 9b
shows instances where the vehicle was not able to reach the
goal and deviated significantly from the reference path. The
marginal difference in the observed vehicle trajectory and the
simulated response reflects the sim-to-real gap of our model-
based testing framework, which we aim to address in future
iterations of our work.

2) MPPI Trajectory tracking with obstacle avoidance fal-
sification using the AutoRally platform: We validated the
falsification of the MPPI controller on the AutoRally platform
in the presence of obstacles with a goal to replicate the Type-
1 and Type-2 failures observed in Fig. 7b and Fig. 8. Fig. 10
shows the hardware demonstration of the failures discovered
in simulation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel learning-based
framework for testing of robotic systems via Bayesian in-
ference. As seen from the various examples presented in
the paper, learning-based representations can solve the curse
of dimensionality using latent variable encoding, and enable
an explicit constraint satisfaction scheme using the neural
projection technique.

Across all examples, we observe that the oMd_grder LA
provides an optimal way to balance coverage and failure
discovery rate via momentum-based acceleration. We also
provide a new way to analyze failure patterns by constructing
high-dimensional failure distributions using low-dimensional
failures of the same class. This eliminates the need to perform
high-dimensional sampling in many scenarios.

This paper analyzes the role of differentiability in testing,
and the conclusion is that differentiability can substantially
help in feedback control-based architectures as the explicit
construction of gradients via backpropagation is easy. For
optimal control architectures such as SQP and MPPI, one
would benefit from an easy-to-implement sensitivity analysis
of the environment variables of the optimization problem.
Furthermore, the question of hierarchical failures introduced in
Section-V-D is promising to significantly improve the memory
and convergence of many testing methods.
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