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Topo-Geometrically Distinct Path Computation using
Neighborhood-augmented Graph, and its Application to

Path Planning for a Tethered Robot in 3D
Alp Sahin and Subhrajit Bhattacharya

Abstract—Many robotics applications benefit from being able
to compute multiple geodesic paths in a given configuration space.
Existing paradigm is to use topological path planning, which can
compute optimal paths in distinct topological classes. However, these
methods usually require non-trivial geometric constructions which
are prohibitively expensive in 3D, and are unable to distinguish
between distinct topologically equivalent geodesics that are created
due to high-cost/curvature regions or prismatic obstacles in 3D. In
this paper, we propose an approach to compute k geodesic paths using
the concept of a novel neighborhood-augmented graph, on which
graph search algorithms can compute multiple optimal paths that are
topo-geometrically distinct. Our approach does not require complex
geometric constructions, and the resulting paths are not restricted to
distinct topological classes, making the algorithm suitable for problems
where finding and distinguishing between geodesic paths are of interest.
We demonstrate the application of our algorithm to planning shortest
traversible paths for a tethered robot in 3D with cable-length constraint.

Index Terms—Motion and Path Planning, Multi Path Planning,
Graph Search-based Path Planning, Tethered Robot

I. INTRODUCTION

A. Background and Motivation

The optimal path planning problem for robots requires a sequence

of transformations to be found from an initial to a goal configuration

that avoids obstacles and globally minimizes a cost functional. This

classical instance of the problem is solved in lower dimensions by

discrete graph-search algorithms [1, 2, 3, 4, 5, 6] in a systematic and

complete manner up to the resolution of the discretization, whereas

sampling-based path planning algorithms [7, 8, 9] provide a more

effective solution for higher-dimensional problems, however, only

with probabilistic completeness.

In this paper, we are interested in the k geodesic path planning

problem, where the goal is to find k non-identical paths in the free

configuration space that locally (i.e. under small perturbations of the

path) minimize a cost functional. This instance of the problem has

many practical applications in robotics including motion planning

for multi-robot teams and tethered robots. Once a set of distinct

geodesics are found, they can be used by a higher-level motion

planning algorithm as reference paths to distribute a swarm of mobile

robots along different routes in order to avoid congestion in the

environment while keeping the overall travel times at a minimum [10].

In a similar manner, geodesic paths can serve as references for multiple

robots [11] or a heterogeneous team of robots and humans to explore

unknown or partially-known environments in search-and-rescue type

operations [12]. Multiple geodesic paths can be provided to a user

interface for interactive and transparent operation [13, 14] or input

to an external algorithm for further assessment and decision-making

regarding robot’s motion. Geodesic paths can be used to represent
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taut tether configurations and enumerating them enables planning for

tethered robot motion [15] or for robots carrying cables [16].

Topological path planning (TPP) methods can be used for com-

puting optimal paths in distinct homotopy classes [17, 18, 19, 20].

However, these methods (a) require a priori geometric constructions,

(b) require complex representations of the homotopy groups of

the configuration space along with complicated equivalence check

algorithms, (c) cannot identify multiple geodesic paths within the

same homotopy class, and, (d) are not easily extended to 3 and higher

dimensional configuration spaces. The limitations described in (c)

is frequently encountered when a robot navigates on a surface with

non-zero curvature or around prismatic obstacles without holes in

spatial domains.

Other methods that compute multiple non-identical paths require

global information regarding the configuration space, such as the

visibility/line-of-sight between configuration points and the global

topology of the configuration space [21, 22, 13]. However, such

information can be challenging to define and compute in an automated

fashion when the configuration spaces become more complex.

The topo-geometric path planning approach proposed in this

paper provides a solution to the k geodesic path planning problem,

while remaining applicable to higher dimensional and geometrically

complex configuration spaces. This is accomplished by augmenting

any wavefront propagation algorithm with path neighborhood infor-

mation to incrementally construct a neighborhood augmented graph

representation of the configuration space. As typical of wavefront

propagation algorithms, the approach only utilizes local connectivity

information (adjacency function) to incrementally construct and

search in the neighborhood augmented graph. Path neighborhoods

efficiently distinguish between the geodesic paths, which can then

be used to create and maintain multiple vertices that correspond to

the same configuration, but different geodesic paths leading up to it.

B. Contributions

The contributions of this paper are as follows:

• Design of a novel topo-geometric path planning approach that

interfaces with any wavefront propagation algorithm and utilizes

a neighborhood augmented graph, the construction of which is

simple and does not require complex geometric constructions on

the underlying configuration space or global information about

its topology (Sections V-A, V-B). We also provide theoretical

results on the algorithm (Section V-C).

• Demonstration of the algorithm’s capabilities for finding

multiple geodesic paths in 2D and 3D configuration spaces

of various geometry including configuration spaces on which

distinct geodesic paths belong to the same homotopy class

(Section VII-A).

• An adaptation of the proposed method for computing geodesic

paths in environments with extremely low curvature or cost vari-

ation where geodesic paths are almost identical (Section V-E1).
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• Implementation of the algorithm in path planning for a tethered

robot navigating in 3D and with a tether-length constraint

(Section VI), along with simulations and real robot experiments

in different environments (Section VII-C2, VII-C3).

II. RELATED WORK

A. Optimal Path Planning

Graph-search based path planning has been used extensively in

solving low-dimentional planning problems because of its simplicity

and effectiveness [23, 24, 25, 26]. It involves a wavefront propagation

approach which incrementally constructs a discrete representation

of the configuration space in the form of a graph, and explores

it starting from an initial configuration until a goal configuration.

This is accomplished via systematic graph search algorithms such

as Dijkstra’s [1], A* [2] and D* [3]. In recent years, development

of any-angle search algorithms [4, 5] have allowed computation

of optimal paths that are not necessarily restricted to a discrete

graph, and development of search algorithms for simplicial complex

representations (instead of graph representations) have allowed

computation of smooth paths that are optimal in the underlying

configuration space [6].

Sampling-based path planning methods emerged as a scalable

alternative as the motion planning problems got more complex and

higher-dimensional. These methods sample configuration space points

according to a scheme, check their validity through collision detection

algorithms and connect them into a graph or a tree representation of

the configuration space. By leveraging the sampling strategy, they

produce paths without exploring as many points on the configuration

space as graph-search based algorithms. However, they can only

guarantee completeness and optimality in the probabilistic sense.

Algorithms in this category include PRM [27], RRT [28] and their

optimal variants [7].

As our approach relies on wavefront propagation to construct path

neighborhoods, in this paper we focus on graph-search based path

planning algorithms.

B. Topological Path Planning (TPP)

There is a wide range of topological tools that have been applied to

robot motion planning problems, with the aim of computing distinct

non-homotopic paths, paths constrained to a specified homotopy class,

non-entangling paths for multi-robot and tethered robot motion.

In [29], braid groups are used to represent the space-time tra-

jectories of a multi-robot system. This method allows local path

deconfliction using braids and braid groups, which only capture

topological properties of the joint configuration space of multiple

robots and cannot reason about geodesics that may arise not only

due to the topology of the underlying configuration space (e.g., due

to the presence of obstacles), but also due to the underlying metric

(high cost/curvature regions). The notion of persistent homology is

used in [30] to classify robot trajectories, which relies on a simplicial

complex representation of the configuration space constructed via a

sampling-based approach. However, this approach is more concerned

with the classification of the trajectories and can only provide distinct

paths if large enough number of paths samples are input to the

classifier, which is not a systematic way of producing distinct paths.

A sampling-based approach is proposed in [31] to compute paths

from diverse homotopy classes. Their method relies on the application

of discrete Morse theory to a simplicial complex representation of

the configuration space to identify critical points on the obstacle

boundaries. However, the method is expensive as it requires a

topological collapse to be performed and only allows non-homotopic

paths to be computed, hence unable to compute distinct geodesic paths

that are homotopic and created pure due to the underlying metric of the

configuration space such as high cost/curvature regions. A k-shortest

non-homotopic path planning problem is considered in [20], where the

authors leverage computational geometry to identify visibility regions

and construct a tree-based representation of the configuration space

divided into visibility regions. Although computationally efficient,

this method is restricted to motion planning problems on a 2D plane.

More relevant to our work is the use of homotopy invariants to

augment the classical path planning algorithms with topological

information. Each point on the configuration space, either explored

on the grid or sampled randomly, is assigned a homotopy invariant,

based upon the geodesic path that leads to the point. The resulting rep-

resentation of the configuration space is said to be augmented, where

there may exist multiple vertices representing the same configuration,

if they are reached via non-homotopic paths. Then by deploying

graph-search algorithms, it becomes possible to find a desired number

of geodesic paths in distinct homotopy classes. For more details on

TPP methods that leverage graph-search algorithms, the reader can

refer to the author’s prior work [15, 16, 10, 17, 18]. Homotopy-Aware

RRT* algorithm by Yi et al. provides a sampling-based approach to

TPP augmented with a string-based homotopy invariant, allowing

paths restricted to specified homotopy classes to be found [19].

Existing work on TPP provides insight on how multiple paths

can be computed when they are non-homotopic. However, it

becomes challenging to apply these methods to problems where the

configuration space has a more complex geometry, as the necessary

constructions to evaluate homotopy invariants are difficult to generate

in an automated fashion. For 2D configuration spaces with convex

obstacles these representations could be as simple as some non-

intersecting rays emanating from representative points – as seen in

Figure 1(b). However, in higher dimensional spaces, obstacles of

more complex topology and geometry may only be represented with

skeletons and hyper-surfaces which are certainly more challenging

to construct – as seen in Figure 1(c). In such spaces the fundamental

groups are often not freely generated, and hence the computation of the

homotopy invariants require complex equivalence check algorithms.

Even then, algorithms discussed in this section are not able to

distinguish between geodesic paths when they belong to the same

homotopy class, resulting in only a subset of desired solutions being

found for the k geodesic path planning problem.

C. Multi-Path Planning

Works categorized under this section address the fact that the

homotopy classes may not capture the set of all useful paths in certain

configuration spaces and consider the task of distinguishing between

paths even when they belong to the same homotopy class.

A heuristic method has been developed to compute diverse paths

in [32]. The method works in an iterative manner, by computing

the shortest path on a graph and removing edges in the vicinity of

the found path in each iteration. Resulting paths are separated by

a tunable distance that measures the path diversity. However, this

method is concerned with finding multiple paths that are separated

by the tunable threshold even when a distinction between the paths

do not exist with respect to the geometry of the underlying space.

Jaillet and Simeon developed an approach for constructing proba-

bilistic roadmaps that capture a set of paths that are difficult to deform

into one another [21]. The deformation difficulty provides a finer
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manifold). This edge can be easily represented by the straight-line

constructed via linear interpolation on any coordinate chart. These

properties make the algorithm proposed in this paper a local one

that does not require global visibility information between distant

configurations.

D. Tethered Robot Motion Planning

When the optimal path planning problem is posed for a robot with

limited tether length (L), each point in the configuration space will

represent a valid location of the robot and a valid configuration of its

tether starting from the anchor point and ending at the robot location.

This poses a challenge, as the space of all tether configurations (space

of curves of length L) is infinite-dimensional. A compact represen-

tation of an elastic cable’s configuration space have been developed

in [34], that relies on solving the differential equations governing the

equilibrium configurations of the cable. This compact representation

can be leveraged by a sampling-based method to plan the necessary

motions for manipulating the cable [35]. However, the cables consid-

ered in this case have large stiffness and fewer degrees of freedom than

an arbitrarily flexible one, which makes it possible to represent the

cable configuration space as a finite-dimensional configuration space.

This allows the cable to deform around obstacles without the need of

considering contact or interaction with obstacles. In contrast, the teth-

ers we consider in this work are flexible without curvature constraints,

and they can come into contact and wrap around the obstacles as the

robot navigates. A more suitable modeling approach is to assume a

taut tether and to consider the geodesic curves to approximate the

tether configurations. In 2D environments with obstacles, this allows

the configuration of a tether to be represented discretely via a word-

based homotopy invariant, since there exist a single geodesic path in

each homotopy class. By running a wavefront propagation algorithm

for a fixed radius, Kim et al. construct a homotopy-augmented graph

representing the configuration space of a tethered robot and search

this graph for the optimal tethered path [15]. In their following work,

authors utilize a homotopy informed heuristic together with the Multi-

Heuristic A* algorithm to eliminate the preconstruction step [36].

Although homotopy based methods work effectively in 2D

problems, geometrical constraints brought by the tether cannot be

captured by only considering the non-homotopic paths in 3D. In

3D environments with prismatic obstacles, there may exist tether

configurations that are homotopic, but when identified as the same

that result in paths that violate the tether length constraint. In the

literature, tethered robot planning problems in 3D are simplified

either by considering projections onto 2D or assuming obstacles

extending vertically to infinity [37, 38].

As the space of tether configurations is infinite dimensional and the

approximate representation using word-based homotopy invariants

is discrete, strategies for sampling and connecting sampled states do

not work well, thus sampling-based methods are not very common.

Paton et al. utilizes a sampling-based approach where the tether

configurations are not sampled but predicted from the sampled robot

location as a sequence of contact points with the environment [39].

However, prediction of the contact points requires computationally

expensive checks for the interaction with the environment mesh and

the history of contact points needs to be tracked for both sampling

and connecting configurations.

Our solution to the tethered robot motion planning problem based

on the neighborhood-augmented graphs captures the necessary geo-

metrical properties, avoids any violation of the tether length constraint

and does not require any simplification to the actual environment.

III. PRELIMINARIES

In this section, we provide background on homotopy classes of

paths, geodesic paths and augmented graph search based planning

to aid the discussion on the k geodesic path planning problem and

the proposed solution using neigborhood-augmented graphs.

A. Path Properties

To better explain the difference between k geodesic path planning

and k non-homotopic path planning problems, we provide a definition

of the homotopy first:

Definition 1 (Homotopy Classes of Paths). Two paths connecting

the same start and goal points in a configuration space are said

to be in the same homotopy class (or homotopic) if one can be

continuously deformed into another without intersecting/crossing

obstacles (Figure 1(a)). Otherwise they are called non-homotopic.

Homotopy classes are the main topological classes of interest

when it comes to paths or trajectories in a configuration space. One

common way to classify the paths and keep track of their classes

is to use a homotopy invariant as discussed in Section II-B.
In this work, we consider the robot configuration spaces on which

paths, infinitesimal perturbations of paths, and small neighborhoods

of configuration points are well defined. These conditions are satisfied

by Riemannian manifolds with boundaries, which constitute the types

of configuration spaces that we will consider. We formalize the notion

of geodesic paths as follows:

Definition 2 (Geodesic Paths [40]). A path connecting a fixed

pair of start and goal points is called geodesic if any infinitesimal

perturbation to the path results in an increase in the cost of the path.

An immediate observation is that given a start and a goal point

in a configuration space, there can be multiple distinct geodesics

connecting them that may or may not be in different homotopy classes

(Figure 1(d-f)). The presence of distinct homotopy classes give rise to

distinct geodesic paths (at least one in each homotopy class) [41]. But

even within the same homotopy class there can be multiple geodesic

paths created due to geometry, curvature and non-uniform cost.

B. Augmented Graph Search Based Planning

1) Discrete Graph Representation of a Configuration Space

for Optimal Path Planning: During graph-search based optimal

path-planning, a configuration space graph G=(V,E), is constructed

as a discrete representation of the configuration space, where the

vertex set (V ) consist of points from the free configuration space

and the edge set (E) contains the edges connecting adjacent vertices.
Search-based algorithms such as Dijkstra’s, S*, construct the

graph via a wavefront propagation approach: Starting from a start

vertex, qs ∈ V , they sequentially explore adjacent vertices, while

maintaining a priority queue of vertices sorted by the g-score (the

optimal cost-to-come from the start vertex qs). Expanded vertices

are popped from the front of the queue, whereas newly generated

vertices are inserted based on the g-scores. We refer to the maintained

priority queue as the open list or the exploration front and the set

of expanded vertices as the closed list. For a detailed discussion on

graph-search please refer to [42]. This expansion process continues

until a desired goal vertex, qg∈V , is reached. An optimal path from

qs to qg can be constructed by following the steepest decrease in the

g-scores, a procedure referred to as path reconstruction.
At the core of this process, algorithms require the following

modules, which implicitly represents the structure of G:
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Algorithm 1 Incremental Construction and Dijkstra’s Search in a

Neighborhood-augmented Graph (NAG)

GN = searchNAG (qs,A,C,@stopSearch)

Inputs:

a. Start configuration qs∈V
b. Adjacency function A (describing the connectivity of graph

G)

c. Cost function C :V ×V →R+

d. Stopping criteria (function), stopSearch: VN →{0,1}

Output:

Graph GN , with g-scores and neighborhoods computed

for every vertex

1: vs :=(qs,{&vs}) // start vertex in VN , with self-reference

// in its path neighborhood set.

2: Set g(vs)=0 // g-score

3: VN ={vs} // vertex set

4: EN =∅ // edge set, maintained implicitly as a link tree/graph

5: Q={vs} // open list, maintained by a heap data structure.

6: v :=vs
7: while Q 6=∅ AND not stopSearch(v) do

8: v :=(q,U)=argminv′∈Qg(v
′) // heap pop.

9: Q=Q−v // heap pop.

10: U ′= computePNS (v,GN ) // path neighborhood set

// for path leading to v

11: for q′∈A(q) do

12: v′ :=(q′,U ′) // potential adjacent vertex

13: g′=g(v)+C(q,q′) // potential g-score for v′

14: if ∄ w∈VN , with v′≡w then // new vertex

15: VN =VN∪{v′}
16: EN =EN∪{(v,v′)} // maintained as linktree

// for adjacency function computation, AN

17: g(v′)=g′

18: Q=Q∪{v′}
19: v′.came_from=v
20: else // vertex already exists (w)

21: EN =EN∪{(v,w)}
22: if g′<g(w) AND w∈Q then // update w

23: g(w)=g′

24: w.came_from=v
25: w.U=U ′

26: GN :=(VN ,EN)
27: return GN

in Algorithm 2 as the input, provided a goal coordinate and number

of desired paths. However, depending on the application, there could

be other uses of the algorithm, utilizing alternative stopping criteria,

as it will be further discussed in Section VI-B.

Figure 5 illustrates the incremental construction of a neighborhood-

augmented graph based on a given discrete graph. Two separate

search branches emerge due to a hole in the underlying discrete graph.

Neighborhoods for selected vertices are shown in the bottom row.

Vertices shown in the first two columns are trivially distinct as they

do not share the same coordinates. In the third column, two vertices

with the same coordinates (i.e., the same vertex in G) are selected for

which the path neighborhood sets are disjoint as they are reached via

different branches of the search. As a result, two distinct vertices (with

common coordinates but with two disjoint path neighborhood sets)

Algorithm 2 Goal-Based Stopping Criteria for Search

[bool, Vg] = stopSearch_AtGoalqg,k(v)

Input: Current vertex v=(q,U)∈VN
Static variables / parameters:

a. Goal configuration qg∈V
b. Number of paths to find k

Output:

a. Boolean (true to stop search, false to continue)

b. Vertices in the NAG found at goal configuration Vg

1: static Vg(=∅) // static variable initiated with empty set

2: if v.q=qg AND v /∈Vg then

3: Vg=Vg∪v
4: return (|Vg|==k)

are maintained within the neighborhood-augmented graph. Whenever

a distinct vertex at the goal coordinates is expanded, it is possible to

reconstruct a topo-geometrically distinct path from the start to the goal

coordinate using the corresponding goal vertex and the constructed

neighborhood-augmented graph with a path reconstruction subroutine.

Two of such paths are shown in the last column of Figure 5.

For given shape characteristics/geometry of the path neighborhood

sets, and the geometry of the artifacts on the configuration space

influenced by holes, obstacles, high-cost or non-zero curvature

regions, or topology, it thus is possible that vertices sharing the same

coordinates, but reached via topo-geometrically distinct paths, have

non-intersecting path neighborhood sets and hence are inequivalent in

the neighborhood-augmented graph (Figure 5(c)). This creates distinct

branches of the search around such artifacts that stay separate (cross-

over) and progress further. The effect of the size/geometry of the path

neighborhood sets on the ability to find topo-geometrically distinct

paths around artifacts of different size/geometry is discussed in more

detail in Section V-D. Performing the search on the neighborhood-

augmented graph computes geodesic paths, in addition to the globally

optimal path, that are topo-geometrically different.

B. Neighborhood Generation

During the construction of the neighborhood-augmented graph

(Algorithm 1 – also referred to as primary search henceforth), a

path neighborhood set, U , of a vertex v∈VN needs to be computed.

The path neighborhood set consists of a set of vertices within some

distance rn of v in the neighborhood of the path leading to v in

the neighborhood-augmented graph – Line 10 of Algorithm 1. To

compute this path neighborhood set, a secondary search is performed

on the current neighborhood-augmented graph, GN (using A*

algorithm), starting from the vertex of interest v. We emphasize that

this secondary search (which will be referred to as neighborhood

search from now on) occurs on the existing graph, GN , during which

GN remains unchanged. A pseudo-code for the neighborhood search

(computePNS routine) is provided in Algorithm 3.

If the neighborhood search is carried out until a distance rn from

v (reaching a g-score of rn), the expanded vertices will form a shape

similar to a disk-section around v, bounded by a circle of radius rn at

the upstream and by the open list of the primary search at the down-

stream (Figure 6(a)). However, a disk-shaped set does not provide a

reasonable representation for a neighborhood around the path leading

up to v. By using the g-score from the primary search as heuristic
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the NAG search algorithm is robust to ad hoc choice of the parameter

for a wide range of environments. In particular, by choosing the bound

on the neighborhood search depth to be sufficiently smaller than

neighborhood radius, we observe that Proposition 2 can be used to

choose the neighborhood radius in nonuniform cost environments.

E. Pathological Cases - Low Cost/Curvature Domains

As explained in Section V-A, comparison of neighborhoods allow

distinction between vertices with the same coordinates that are reached

via different branches of the search. However, the branching of the

search is only possible if the configuration space geometry generates

closed geodesics and in particular closed geodesics with enough

length so that they can be captured with a reasonable discretization

via a proper choice of the neighborhood radius. As the curvature of

an environment decreases (e.g., for a high-cost region in a planar

domain if the cost is not sufficiently high), the path neighborhoods

keep overlapping and is unable to give rise to distinct topo-geometric

branches. Instead of creating distinct branches, only a small cusp in

the search wave-front is generated, and the search in the neighborhood-

augmented graph is unable to compute multiple topo-geometrically

distinct paths (CM=1 case in Figure 17). Similarly, around a corner

of a prism in 3D, the search is only slowed down by a small amount

through the corner. This behavior is illustrated in Figure 9(b,d). In

these cases, only a single path is found as a result of the search on

the neighborhood augmented graph. For such pathological cases, we

present an additional algorithm capable of computing geodesic paths

around such low cost/curvature domains that do not create multiple

branches of the wavefront in the main NAG search algorithm.

1) Cut Point Identification: On a flat planar domain without any

holes there is a unique geodesic between any two points and it is

neither necessary nor expected to generate different branches of the

search. As some small curvature is introduced to the surface by a

high-cost region, closed geodesics and correspondingly multiple

geodesic paths can arise between two points. However, along the cusp

generated in the search wave by the low curvature, these paths are

very similar to each other and the corresponding path neighborhood

sets are likely to intersect. That is why it is not possible to generate

branches of the search in low curvature environments (Figure 9(b)).

Although it is possible to modify the shape and size of the path

neighborhood sets, it is not possible to use the theoretical results from

Section V-C to come up with a neighborhood radius and heuristic

weight that allow distinction between such close paths without

causing spurious topo-geometric branches to be generated at other

locations in the environment. This is mainly caused by the fact that

closed geodesics are either significantly short or non-existent on these

pathological environments. A similar behavior is observed around the

corners of a 3D prism. Another approach could be to consider a finer

discretization, to increase the capability of distinguishing between

similar paths. However, we propose an approach to tackle with

the low curvature environments, without requiring any changes to

discretization or further fine tuning of the neighborhood parameters.

The idea behind the proposed solution is to introduce an artificial

cut to the neighborhood-augmented graph that will allow separate

branches of the search to be generated. To decide where the cut

should be introduced, we identify the points along the cusp generated

by the low curvature to which the distinct geodesics are separated

significant enough. These points will be referred to as cut points.

Then, it would be possible to treat a region around those points

(referred to as cut point regions (CPR)) as an obstacle to give rise

to different branches of the search.

A pseudocode describing the cut point identification and cut

point region generation procedures are given in Algorithm 4. When

running the search algorithm on low curvature environments, the

cutPointCheck subroutine is called within the searchNAG routine

provided in Algorithm 1, after a successor v′ is identified the same

with an existing vertex w – after Line 20. To identify the cut points

algorithmically, we utilize the following observation. Although the

path neighborhood sets for vertices at the cusp are not entirely disjoint,

they should have relatively smaller intersections (Figure 9(b)). It is

possible to compute a neighborhood intersection ratio (ratio of the

number of common vertices in the path neighborhood sets to the size

of the path neighborhood sets), such that the ratios at a cut point falls

below a certain threshold – Line 1 of Algorithm 4. Parallel to that,

we also make use of the observation that the lengths of the geodesics

to two vertices should be similar to each other at the cusp, which

can be confirmed by looking at the difference in g-scores of the

vertices – Line 4 of Algorithm 4. We also perform an addition check

on the separation between path segments leading to the two vertices

(Line 9), following which the CPR is computed using a Dijkstra’s

search for a fixed radius rCP . The CPR is treated as an obstacle,

leading to separate branches to be generated downstream as illustrated

in Figure 9(c).

Algorithm 4 Cut Point Check and Cut Point Region Generation

Procedure

[bool, CPR]=cutPointCheck (w,v′,GN)

Inputs:

a. Two vertices with intersecting neighborhoods, w∈VN ,v′

(v′ is not inserted in the graph)

b. Parent vertex of v′, v∈VN
c. Neighborhood augmented graph, GN

Output:

a. Boolean (true if cut point, false if not)

b. Cut point region (a set of vertices), CPR

1: α= getNeighborhoodIntersectionRatio (w. U, v′. U)
2: if α>εi then

3: return (false,∅)

4: if |g(w.came_from)−g(v)|>εg then

5: return (false,∅)

6: pw= getPathPoint (w,rl,GN) // getPathPoint (w,rl,GN) returns

the vertex at a distance of rl ·g(w) from w, along the shortest path

leading up to the start vertex

7: pv′ = getPathPoint (v′,rl,GN)
8: dsep= searchOnGraph (pw,pv′,GN) // by running A* from pw

to pv′ with a radius of εupper, returns the distance if pv′ is reached,

returns false otherwise

9: if dsep AND dsep>εlower then

10: CPR = generateCutPointRegion (w,rCP ,GN) // by running

Dijkstra’s starting from w with a radius rCP , expanded vertices are

included within cut point region

11: return (true,CPR)

The parameters associated with the cut point identification, neigh-

borhood intersection ratio threshold (εi), geodesic length difference

threshold (εg), geodesic reconstruction portion (rl), path separation

lower and upper bounds (εlower,εupper), and the cut point region

radius (rCP ) are to be treated separately from the parameters of the
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B. Method

For solving the tethered robot shortest path planning problem,

we adopt an approach similar to [15], where the vertices of a h-

augmented graph would maintain information about not only the

pose of a robot, but also the homotopy class (h-signature) of the

cable. However, this approach cannot be naturally extended to 3D

domains since in 3D the homotopy classes of paths do not capture

all possible tether configurations. In other words, there may exist

geodesic curves that belong to the same homotopy class which

cannot be deformed into one another without violating the tether

length constraint. As neighborhood-augmented graphs are capable of

distinguishing between topo-geometrically distinct paths, they provide

a solution to the tethered robot path planning problem applicable to

more complex spatial domains. In this work, we use neighborhood-

augmented graph to represent the configuration space, the vertices in

which not only capture information about the pose of the robot, but

also the cable configuration represented by the path neighborhood of

the corresponding geodesic path.
Path planning for a tethered robot consists of two stages of search

using neighborhood-augmented graphs. The first stage is referred to

as tethered configuration space construction, where a neighborhood

augmented graph is incrementally constructed starting from a base

vertex vb and includes every neighborhood-augmented vertices that

are reachable within the tether length constraint. The algorithm

used for the construction is identical to the one in Algorithm 1,

where the stopping criteria is a distance based one – instead of

stopping at a vertex that has matching coordinates with an assigned

goal, construction terminates at the first vertex that has a g-score

exceeding the maximum tether length. During the construction of

this length-constrained neighborhood augmented graph, we use the

S* algorithm, such that the computed g-scores represent the lengths

of the shortest paths in the underlying configuration space.
The second stage is referred to as length constrained search (LCS),

where another search is performed on the previously constructed

length-constrained neighborhood augmented graph. This search starts

from an initial vertex vs corresponding to the initial robot pose and

a unique tether configuration (path neighborhood corresponding to

that configuration) in the neighborhood augmented graph. The search

terminates when a vertex in the neighborhood-augmented graph with

target robot pose/coordinate qg within the reachable workspace is

expanded for any path neighborhood (which would correspond to

the final tether configuration). Path resulting from a LCS is referred

to as length constrained path (LCP) and is the shortest path between

the start and the goal poses/coordinates that satisfies the tether length

constraint starting at the given cable pose.

VII. EXPERIMENTS AND RESULTS

In this section we provide experimental results showing the

capabilities of the main NAG search algorithm proposed in

Section V(A-D) and its extension using the notion of cut points

explained in Section V-E3. We also demonstrate results on the

application to tethered robot motion planning problem from

Section VI. Throughout the experiments, the algorithm is run on an

11th Gen Intel Core i7-1165G7 @ 2.80GHz with 16GB of RAM.

A. Experiments using the Main NAG Search Algorithm

1) Results in 2D and 3D domains: Proposed neighborhood

augmented path planner is validated in 6 different planning

3An open source implementation of our algorithm can be found at:
https://github.com/asahin1/nbh-aug-planning

environments shown in Figure 11. For each environment, the

discretization size is specified within the caption as (length ×
width) and (length × width × height) for 2D and 3D environments

respectively. The primary search is performed using S* and the

neighborhood searches are performed using A* algorithms. For using

the S* algorithm, we discretize the 2D environments into isosceles

right triangles with unit side length (2 triangles per unit square) and

the 3D environments into uniform tetrahedrons (with 6 tetrahedrons

per unit cube). We note that the necessary simplices are generated and

the neighborhood augmented graph is constructed on-the-fly as the

wavefront propagates. As discussed in Section V, the wavefronts of

the search may cross-over during the construction of a neighborhood

augmented graph, in which case more than a single simplex can be

generated at the same coordinates of the environment corresponding

to more than one branch of the wavefront passing over that coordinate.

On the other hand, if the wavefront does not reach some parts of

the environment, simplices will not be generated for those parts.

Therefore, the memory requirement for a neighborhood-augmented

search on an environment is directly proportional to the number of

expanded vertices, which are reported in the caption of Figure 11

for each environment. Vertices in a 2D environment takes up around

30 kB of storage on average, whereas in 3D they take up around

168 kBs. For each expanded vertex, 2 triangles are generated on 2D

environments and 6 tetrahedrons are generated on 3D environments.

On nonuniform cost environments, the cost of an edge lying entirely

in white space is equal to the Euclidean norm, whereas an edge lying

entirely in the high cost center (marked with darkest shade of red) has

a cost scaled by a factor ∼3. The artifacts in 2D environments (Fig-

ure 11(a-c)) are significantly large compared to the discretization, thus

the theoretical results provide a large upper bound for the choice of rn.

For computational efficiency, we choose a reasonably small rn=8
and a reasonably large ω=0.6. For the 3D environments (Figure 11(d-

f)), the upper bounds on rn are tighter. The shortest closed geodesics

in (d-f) have lengths of 20, 20, and 16 respectively. We choose

corresponding rn’s to be 6,6, and 4, accounting for a rollback of 3.

As shown in Figure 11(a-f), neighborhood augmented path

planning algorithm can identify topo-geometrically distinct geodesic

paths in 2D environments with obstacles, high-cost regions, or a

mixture of both. In 3D environments, it can identify distinct paths

in the presence of objects with non-zero genus, or even more complex

structures such as knots and chains. The local suboptimality of some

of the paths obtained in 3D environments are mainly an artifact of

the coarse discretization used with S* search algorithm.

Corresponding to each environment in Figure 11, we provide

the computation times in the caption. On average, around 68%
of the computation time is spent for the neighborhood search and

comparison.

2) Comparison between S* and A* as the primary search

algorithm: The neighborhood-augmented graph can be searched

with any search algorithm, including Dijkstra’s, A* and S*.

Figure 12 shows the comparison of the results obtained in an 2D

domain with non-uniform cost using the S* and the A* search

algorithms. The A* search algorithm uses an 8-connected grid-world

representation of the domain as the discrete graph, G, using which the

neighborhood-augmented graph, GN , is incrementally constructed

for the search and computation of 3 topo-geometrically distinct paths.

3) Comparison with RRT∗: Current sampling-based path planning

algorithms do not provide a systematic way for computing distinct

geodesic paths. To demonstrate the associated challenges, we follow

the procedure outlined next. On the environment presented in

Figure 11(c), we run the RRT∗ algorithm (using the implementation
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APPENDIX

Proof of Proposition 1: We prove the equivalent contrapositive

statement: If U1∩U2 6=∅, then sep(γ′1,γ
′

2)≤
4rn
1−ω

.

Suppose u ∈ U1 ∩ U2 as shown in Figure 8. Since the path

neighborhood sets are constructed using A* search with radius rn
and with the g-score of the primary search as the heuristic function

with some heuristic weight ω, for any u∈Ui we have

d(u,xi)+ωd(u,vs)≤rn+ω(rs−rn) i=1,2 (1)

and

d(u,xi)≤rn i=1,2 (2)

Since γ′i = γi∩Ui (given by the green and red colored lines in

Figure 8) and γi (given by the black colored lines extending up to

vs) is the shortest path connecting xi in the open list and vs, for any

v∈γ′i we have

d(v,vs)+d(v,xi)=rs (3)

Substituting Equation 3 into Inequality 1,
d(u,xi)+ωd(u,vs)≤rn+ω(d(v,vs)+d(v,xi)−rn)

d(u,xi)+d(v,xi)≤rn(1−ω)+(1+ω)d(v,xi)

+ω(d(v,vs)−d(u,vs))

(4)

From the definition of γ′i,
d(v,xi)≤rn (5)

Using the following triangle inequality,

|d(v,vs)−d(u,vs)|≤d(v,u)≤d(u,xi)+d(v,xi) (6)

Inequality 4 reduces to
d(v,u)≤rn(1−ω)+(1+ω)rn+ωd(v,u)

(1−ω)d(v,u)≤2rn
(7)

For ω∈ [0,1),
sep(γ′1,γ

′

2)≤d(v1,v2)≤d(v1,u)+d(v2,u)

≤2d(v,u)≤
4rn
1−ω

(8)

Proof of Proposition 2: We prove and utilize the following

Lemmas for the proof.

Lemma 1. If d(x1,x2)>2rn, then U1∩U2=∅.

Proof. We prove the equivalent contrapositive statement: If

U1∩U2 6= ∅, then d(x1,x2)≤ 2rn. Suppose u∈U1∩U2 as shown

in Figure 8. Since the path neighborhood sets are constructed using

A* search with radius rn, for any u∈Ui we have

d(u,xi)≤rn i=1,2 (9)

From triangle inequality,

d(x1,x2)≤d(u,x1)+d(u,x2)≤2rn (10)

Lemma 2. For any pair of vertices x1,x2 at the same configuration,

reached via topo-geometrically distinct paths, d(x1,x2)≥l(c∗).

Proof. Since x1,x2 are at the same configuration, any path between

x1,x2 in the closed list will be a closed path on the configuration space.

By definition, any closed path on the configuration space is longer

than the shortest closed geodesic c∗. Then d(x1,x2)≥l(c∗).

From Lemmas 1 and 2,

rn<
l(c)

2
=⇒ d(x1,x2)>2rn =⇒U1∩U2=∅
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