Topo-Geometrically Distinct Path Computation using
Neighborhood-augmented Graph, and 1ts Application to
Path Planning for a Tethered Robot in 3D

Alp Sahin and Subhrajit Bhattacharya

Abstract—Many robotics applications benefit from being able
to compute multiple geodesic paths in a given configuration space.
Existing paradigm is to use topological path planning, which can
compute optimal paths in distinct topological classes. However, these
methods usually require non-trivial geometric constructions which
are prohibitively expensive in 3D, and are unable to distinguish
between distinct topologically equivalent geodesics that are created
due to high-cost/curvature regions or prismatic obstacles in 3D. In
this paper, we propose an approach to compute % geodesic paths using
the concept of a novel neighborhood-augmented graph, on which
graph search algorithms can compute multiple optimal paths that are
topo-geometrically distinct. Our approach does not require complex
geometric constructions, and the resulting paths are not restricted to
distinct topological classes, making the algorithm suitable for problems
where finding and distinguishing between geodesic paths are of interest.
We demonstrate the application of our algorithm to planning shortest
traversible paths for a tethered robot in 3D with cable-length constraint.

Index Terms—Motion and Path Planning, Multi Path Planning,
Graph Search-based Path Planning, Tethered Robot

1. INTRODUCTION

A. Background and Motivation

The optimal path planning problem for robots requires a sequence
of transformations to be found from an initial to a goal configuration
that avoids obstacles and globally minimizes a cost functional. This
classical instance of the problem is solved in lower dimensions by
discrete graph-search algorithms [1, 2, 3, 4, 5, 6] in a systematic and
complete manner up to the resolution of the discretization, whereas
sampling-based path planning algorithms [7, 8, 9] provide a more
effective solution for higher-dimensional problems, however, only
with probabilistic completeness.

In this paper, we are interested in the k geodesic path planning
problem, where the goal is to find & non-identical paths in the free
configuration space that locally (i.e. under small perturbations of the
path) minimize a cost functional. This instance of the problem has
many practical applications in robotics including motion planning
for multi-robot teams and tethered robots. Once a set of distinct
geodesics are found, they can be used by a higher-level motion
planning algorithm as reference paths to distribute a swarm of mobile
robots along different routes in order to avoid congestion in the

environment while keeping the overall travel times at a minimum [10].

In a similar manner, geodesic paths can serve as references for multiple
robots [11] or a heterogeneous team of robots and humans to explore
unknown or partially-known environments in search-and-rescue type
operations [12]. Multiple geodesic paths can be provided to a user
interface for interactive and transparent operation [13, 14] or input
to an external algorithm for further assessment and decision-making
regarding robot’s motion. Geodesic paths can be used to represent

Department of Mechanical Engineering and Mechanics, Lehigh
University, 19 Memorial Drive West, Bethlehem, PA 18015, US.A.,
[als421,sub216]@lehigh.edu.

taut tether configurations and enumerating them enables planning for
tethered robot motion [15] or for robots carrying cables [16].

Topological path planning (TPP) methods can be used for com-
puting optimal paths in distinct homotopy classes [17, 18, 19, 20].
However, these methods (a) require a priori geometric constructions,
(b) require complex representations of the homotopy groups of
the configuration space along with complicated equivalence check
algorithms, (c) cannot identify multiple geodesic paths within the
same homotopy class, and, (d) are not easily extended to 3 and higher
dimensional configuration spaces. The limitations described in (c)
is frequently encountered when a robot navigates on a surface with
non-zero curvature or around prismatic obstacles without holes in
spatial domains.

Other methods that compute multiple non-identical paths require
global information regarding the configuration space, such as the
visibility/line-of-sight between configuration points and the global
topology of the configuration space [21, 22, 13]. However, such
information can be challenging to define and compute in an automated
fashion when the configuration spaces become more complex.

The topo-geometric path planning approach proposed in this
paper provides a solution to the k geodesic path planning problem,
while remaining applicable to higher dimensional and geometrically
complex configuration spaces. This is accomplished by augmenting
any wavefront propagation algorithm with path neighborhood infor-
mation to incrementally construct a neighborhood augmented graph
representation of the configuration space. As typical of wavefront
propagation algorithms, the approach only utilizes local connectivity
information (adjacency function) to incrementally construct and
search in the neighborhood augmented graph. Path neighborhoods
efficiently distinguish between the geodesic paths, which can then
be used to create and maintain multiple vertices that correspond to
the same configuration, but different geodesic paths leading up to it.

B. Contributions

The contributions of this paper are as follows:

« Design of a novel topo-geometric path planning approach that
interfaces with any wavefront propagation algorithm and utilizes
a neighborhood augmented graph, the construction of which is
simple and does not require complex geometric constructions on
the underlying configuration space or global information about
its topology (Sections V-A, V-B). We also provide theoretical
results on the algorithm (Section V-C).

o Demonstration of the algorithm’s capabilities for finding
multiple geodesic paths in 2D and 3D configuration spaces
of various geometry including configuration spaces on which
distinct geodesic paths belong to the same homotopy class
(Section VII-A).

o An adaptation of the proposed method for computing geodesic
paths in environments with extremely low curvature or cost vari-
ation where geodesic paths are almost identical (Section V-E1).



« Implementation of the algorithm in path planning for a tethered
robot navigating in 3D and with a tether-length constraint
(Section VI), along with simulations and real robot experiments
in different environments (Section VII-C2, VII-C3).

II. RELATED WORK
A. Optimal Path Planning

Graph-search based path planning has been used extensively in
solving low-dimentional planning problems because of its simplicity
and effectiveness [23, 24, 25, 26]. It involves a wavefront propagation
approach which incrementally constructs a discrete representation
of the configuration space in the form of a graph, and explores
it starting from an initial configuration until a goal configuration.
This is accomplished via systematic graph search algorithms such
as Dijkstra’s [1], A* [2] and D* [3]. In recent years, development
of any-angle search algorithms [4, 5] have allowed computation
of optimal paths that are not necessarily restricted to a discrete
graph, and development of search algorithms for simplicial complex
representations (instead of graph representations) have allowed
computation of smooth paths that are optimal in the underlying
configuration space [6].

Sampling-based path planning methods emerged as a scalable
alternative as the motion planning problems got more complex and
higher-dimensional. These methods sample configuration space points
according to a scheme, check their validity through collision detection
algorithms and connect them into a graph or a tree representation of
the configuration space. By leveraging the sampling strategy, they
produce paths without exploring as many points on the configuration
space as graph-search based algorithms. However, they can only
guarantee completeness and optimality in the probabilistic sense.
Algorithms in this category include PRM [27], RRT [28] and their
optimal variants [7].

As our approach relies on wavefront propagation to construct path
neighborhoods, in this paper we focus on graph-search based path
planning algorithms.

B. Topological Path Planning (TPP)

There is a wide range of topological tools that have been applied to
robot motion planning problems, with the aim of computing distinct
non-homotopic paths, paths constrained to a specified homotopy class,
non-entangling paths for multi-robot and tethered robot motion.

In [29], braid groups are used to represent the space-time tra-
jectories of a multi-robot system. This method allows local path
deconfliction using braids and braid groups, which only capture
topological properties of the joint configuration space of multiple
robots and cannot reason about geodesics that may arise not only
due to the topology of the underlying configuration space (e.g., due
to the presence of obstacles), but also due to the underlying metric
(high cost/curvature regions). The notion of persistent homology is
used in [30] to classify robot trajectories, which relies on a simplicial
complex representation of the configuration space constructed via a
sampling-based approach. However, this approach is more concerned
with the classification of the trajectories and can only provide distinct
paths if large enough number of paths samples are input to the
classifier, which is not a systematic way of producing distinct paths.
A sampling-based approach is proposed in [31] to compute paths
from diverse homotopy classes. Their method relies on the application
of discrete Morse theory to a simplicial complex representation of
the configuration space to identify critical points on the obstacle

boundaries. However, the method is expensive as it requires a
topological collapse to be performed and only allows non-homotopic
paths to be computed, hence unable to compute distinct geodesic paths
that are homotopic and created pure due to the underlying metric of the
configuration space such as high cost/curvature regions. A k-shortest
non-homotopic path planning problem is considered in [20], where the
authors leverage computational geometry to identify visibility regions
and construct a tree-based representation of the configuration space
divided into visibility regions. Although computationally efficient,
this method is restricted to motion planning problems on a 2D plane.

More relevant to our work is the use of homotopy invariants to
augment the classical path planning algorithms with topological
information. Each point on the configuration space, either explored
on the grid or sampled randomly, is assigned a homotopy invariant,
based upon the geodesic path that leads to the point. The resulting rep-
resentation of the configuration space is said to be augmented, where
there may exist multiple vertices representing the same configuration,
if they are reached via non-homotopic paths. Then by deploying
graph-search algorithms, it becomes possible to find a desired number
of geodesic paths in distinct homotopy classes. For more details on
TPP methods that leverage graph-search algorithms, the reader can
refer to the author’s prior work [15, 16, 10, 17, 18]. Homotopy-Aware
RRT* algorithm by Yi et al. provides a sampling-based approach to
TPP augmented with a string-based homotopy invariant, allowing
paths restricted to specified homotopy classes to be found [19].

Existing work on TPP provides insight on how multiple paths
can be computed when they are non-homotopic. However, it
becomes challenging to apply these methods to problems where the
configuration space has a more complex geometry, as the necessary
constructions to evaluate homotopy invariants are difficult to generate
in an automated fashion. For 2D configuration spaces with convex
obstacles these representations could be as simple as some non-
intersecting rays emanating from representative points — as seen in
Figure 1(b). However, in higher dimensional spaces, obstacles of
more complex topology and geometry may only be represented with
skeletons and hyper-surfaces which are certainly more challenging
to construct — as seen in Figure 1(c). In such spaces the fundamental
groups are often not freely generated, and hence the computation of the
homotopy invariants require complex equivalence check algorithms.
Even then, algorithms discussed in this section are not able to
distinguish between geodesic paths when they belong to the same
homotopy class, resulting in only a subset of desired solutions being
found for the & geodesic path planning problem.

C. Multi-Path Planning

Works categorized under this section address the fact that the
homotopy classes may not capture the set of all useful paths in certain
configuration spaces and consider the task of distinguishing between
paths even when they belong to the same homotopy class.

A heuristic method has been developed to compute diverse paths
in [32]. The method works in an iterative manner, by computing
the shortest path on a graph and removing edges in the vicinity of
the found path in each iteration. Resulting paths are separated by
a tunable distance that measures the path diversity. However, this
method is concerned with finding multiple paths that are separated
by the tunable threshold even when a distinction between the paths
do not exist with respect to the geometry of the underlying space.

Jaillet and Simeon developed an approach for constructing proba-
bilistic roadmaps that capture a set of paths that are difficult to deform
into one another [21]. The deformation difficulty provides a finer



(a) Homotopy equivalences: 7 and 7
are homotopic, while 73 belongs to a

different homotopy class. h-signatures [15, 16].

(e) On a 2D environ-
ment with high cost
regions, there exists
multiple, geodesic
paths that are topolog-
ically equivalent.

(d) There exist multiple, geodesic paths
around a rectangular prism, even though
these paths are topologically equivalent
(belong to the same homotopy class).

! sa DA -

() On a surface with non-zero curvature,
there exists multiple, geodesic paths
that are topologically equivalent (can
be continuously deformed into one
another although it requires a path to
be stretched over the hill).

(b) In 2D environments, rays emanating
from representative points on the
obstacles can be used to generate
word-based homotopy invariant called

(c) In 3D environments, rays need to be replaced by surfaces bounded
by obstacles with genus higher than zero. Such constructions are
significantly more difficult, and the h-signature computation is highly
nontrivial especially in presence of knotted or linked obstacles [18].

-1

(g) A tethered quadrotor performing a
navigation task in a building-like environment
with doors/windows need to reason about
topo-geometrically distinct paths.

Fig. 1: Background and Motivation — Top row (a-c): Existing/prior work on topological path planning (TPP) for computing optimal paths
in different homotopy classes. The constructions and computations gets significantly harder in 3-D configuration spaces, requiring complex
group-theoretic reasoning in presence of obstacles that are knotted or linked (such structures are encountered in urban structures such as
buildings with stairways, doors and windows). Bottom row (d-g): Motivation behind current work — Even in absence of topologically-distinct
classes of paths, there can exists different geometrically-distinct geodesic paths (d-f). This, along with the increased complexity of TPP
in 3D (c), motivates our current topo-geometric planning algorithm that creates an unified framework for computing multiple geodesic

paths connecting a start and a goal configuration.

classification of paths than the notion of homotopy. An adaptation of
this work to robust trajectory replanning for quadrotors is presented
in [22]. As PRM based approaches, these works generate a representa-
tive roadmap of the configuration space that capture a wider variety of
paths than only distinct homotopy classes. In doing so, they utilize the
notion of visibility between a pair of configuration space points. To
evaluate visibility between a pair of points in the configuration space,
one has to construct and edge/path connecting the two configurations
in the absence of obstacles and check whether this path lies in the
obstacle free space [33]. The construction of these paths can be
done in several ways including linear interpolation on a coordinate
chart, solving the geodesic equation or an intermediate path planning
problem in between the two points. The first approach makes the
notion of visibility dependent on the choice of coordinate charts and
thus on global information such as the topology of the configuration
space and location/size of the obstacles. The latter two approaches will
amount to using the solution to the problem at hand (i.e., being able
to compute locally-optimal paths) to solve the problem. Additionally,
in environments with high-cost regions or non-zero curvature, the
presence of multiple locally-optimal/geodesic paths between two
points makes the definition of visibility ambiguous. An example of
such a scenario can be seen in the Figure 1(e,f), where in the absence of
obstacles, using the Cartesian chart, every pair of points on the domain

would be visible to each other, thus a visibility-based check deeming
all paths to be equivalent even though there can exist multiple locally-
optimal paths around the high-cost region. In this situation, it is even
possible that one locally-optimal path may be blocked by an obstacle
while another is not, making the definition of visibility ambiguous.

Orthey et al. developed an algorithm that can compute geodesic
paths, categorize and present them via a tree structure [13]. This tree
allows users to choose between classes of geodesic paths, with each
choice leading to the exploration of a finer classification of the paths
in the category. This approach also relies on visibility checks to make
a distinction between paths and is subject to the same challenges.

The topo-geometric approach proposed in this paper only requires
local information indicating collision-free adjacents of a configuration,
in other words two configurations that are sufficiently close, which
is a notion independent of the choice of the coordinate chart in most
configuration spaces (configuration spaces that can be represented
as manifolds with boundaries) and is defined by the existence of a
small neighborhood (open set) containing those configurations. Since
our configuration space is discretized as a graph, the resolution of
“sufficiently close” is that of the edges in the graph. Two feasible
configurations that are adjacent are, by definition, connected via an
edge and they belong to a small neighborhood that locally resembles
Euclidean space (tangent space of the underlying configuration



manifold). This edge can be easily represented by the straight-line
constructed via linear interpolation on any coordinate chart. These
properties make the algorithm proposed in this paper a local one
that does not require global visibility information between distant
configurations.

D. Tethered Robot Motion Planning

When the optimal path planning problem is posed for a robot with
limited tether length (L), each point in the configuration space will
represent a valid location of the robot and a valid configuration of its
tether starting from the anchor point and ending at the robot location.
This poses a challenge, as the space of all tether configurations (space
of curves of length L) is infinite-dimensional. A compact represen-
tation of an elastic cable’s configuration space have been developed
in [34], that relies on solving the differential equations governing the
equilibrium configurations of the cable. This compact representation
can be leveraged by a sampling-based method to plan the necessary
motions for manipulating the cable [35]. However, the cables consid-
ered in this case have large stiffness and fewer degrees of freedom than
an arbitrarily flexible one, which makes it possible to represent the
cable configuration space as a finite-dimensional configuration space.
This allows the cable to deform around obstacles without the need of
considering contact or interaction with obstacles. In contrast, the teth-
ers we consider in this work are flexible without curvature constraints,
and they can come into contact and wrap around the obstacles as the
robot navigates. A more suitable modeling approach is to assume a
taut tether and to consider the geodesic curves to approximate the
tether configurations. In 2D environments with obstacles, this allows
the configuration of a tether to be represented discretely via a word-
based homotopy invariant, since there exist a single geodesic path in
each homotopy class. By running a wavefront propagation algorithm
for a fixed radius, Kim et al. construct a homotopy-augmented graph
representing the configuration space of a tethered robot and search
this graph for the optimal tethered path [15]. In their following work,
authors utilize a homotopy informed heuristic together with the Multi-
Heuristic A* algorithm to eliminate the preconstruction step [36].

Although homotopy based methods work effectively in 2D
problems, geometrical constraints brought by the tether cannot be
captured by only considering the non-homotopic paths in 3D. In
3D environments with prismatic obstacles, there may exist tether
configurations that are homotopic, but when identified as the same
that result in paths that violate the tether length constraint. In the
literature, tethered robot planning problems in 3D are simplified
either by considering projections onto 2D or assuming obstacles
extending vertically to infinity [37, 38].

As the space of tether configurations is infinite dimensional and the
approximate representation using word-based homotopy invariants
is discrete, strategies for sampling and connecting sampled states do
not work well, thus sampling-based methods are not very common.
Paton et al. utilizes a sampling-based approach where the tether
configurations are not sampled but predicted from the sampled robot
location as a sequence of contact points with the environment [39].
However, prediction of the contact points requires computationally
expensive checks for the interaction with the environment mesh and
the history of contact points needs to be tracked for both sampling
and connecting configurations.

Our solution to the tethered robot motion planning problem based
on the neighborhood-augmented graphs captures the necessary geo-
metrical properties, avoids any violation of the tether length constraint
and does not require any simplification to the actual environment.

III. PRELIMINARIES

In this section, we provide background on homotopy classes of
paths, geodesic paths and augmented graph search based planning
to aid the discussion on the k geodesic path planning problem and
the proposed solution using neigborhood-augmented graphs.

A. Path Properties

To better explain the difference between k geodesic path planning
and k non-homotopic path planning problems, we provide a definition
of the homotopy first:

Definition 1 (Homotopy Classes of Paths). Two paths connecting
the same start and goal points in a configuration space are said
to be in the same homotopy class (or homotopic) if one can be
continuously deformed into another without intersecting/crossing
obstacles (Figure I(a)). Otherwise they are called non-homotopic.

Homotopy classes are the main topological classes of interest
when it comes to paths or trajectories in a configuration space. One
common way to classify the paths and keep track of their classes
is to use a homotopy invariant as discussed in Section II-B.

In this work, we consider the robot configuration spaces on which
paths, infinitesimal perturbations of paths, and small neighborhoods
of configuration points are well defined. These conditions are satisfied
by Riemannian manifolds with boundaries, which constitute the types
of configuration spaces that we will consider. We formalize the notion
of geodesic paths as follows:

Definition 2 (Geodesic Paths [40]). A path connecting a fixed
pair of start and goal points is called geodesic if any infinitesimal
perturbation to the path results in an increase in the cost of the path.

An immediate observation is that given a start and a goal point
in a configuration space, there can be multiple distinct geodesics
connecting them that may or may not be in different homotopy classes
(Figure 1(d-f)). The presence of distinct homotopy classes give rise to
distinct geodesic paths (at least one in each homotopy class) [41]. But
even within the same homotopy class there can be multiple geodesic
paths created due to geometry, curvature and non-uniform cost.

B. Augmented Graph Search Based Planning

1) Discrete Graph Representation of a Configuration Space
for Optimal Path Planning: During graph-search based optimal
path-planning, a configuration space graph G=(V,E), is constructed
as a discrete representation of the configuration space, where the
vertex set (V') consist of points from the free configuration space
and the edge set (F) contains the edges connecting adjacent vertices.

Search-based algorithms such as Dijkstra’s, S*, construct the
graph via a wavefront propagation approach: Starting from a start
vertex, ¢s € V, they sequentially explore adjacent vertices, while
maintaining a priority queue of vertices sorted by the g-score (the
optimal cost-to-come from the start vertex ¢s). Expanded vertices
are popped from the front of the queue, whereas newly generated
vertices are inserted based on the g-scores. We refer to the maintained
priority queue as the open list or the exploration front and the set
of expanded vertices as the closed list. For a detailed discussion on
graph-search please refer to [42]. This expansion process continues
until a desired goal vertex, g, € V, is reached. An optimal path from
gs to g4 can be constructed by following the steepest decrease in the
g-scores, a procedure referred to as path reconstruction.

At the core of this process, algorithms require the following
modules, which implicitly represents the structure of G:



Fig. 2: Visualization of the s-augmented graph [15, 16, 43]: Left: A
planar configuration space (light gray), with a single obstacle (black),
and the vertex set, V' (blue dots), in it. Right: The vertex set, V4, in
the i-augmented graph. Note how the paths /ift to have different goal
points of the form (gg,*) € V3, corresponding to the same goal ¢, € V.

i. Anadjacency function, A, that returns the valid adjacent vertices

of the vertex g € V' (that will be connected to ¢ by edges)

ii. A cost function, C, that returns the cost of an edge

iil. A vertex equivalency function, Q, to check whether two vertices
are identical. This module is required to determine if a vertex
has been previously visited (already inserted in V7). For the
usual discrete graph representation of a configuration space, this
is usually as simple as comparing the coordinates of the new
vertex with the coordinates of the already expanded vertices.
Note that for configuration spaces such as S', this function
implements the identification of points 0 and 27.

Without any other way to distinguish between vertices besides
their coordinates, graph-search based methods can only maintain the
globally optimal path leading to a configuration. Augmented graphs
allow us to keep track of multiple geodesic paths.

2) Augmented Graph for Multi-Path Planning: The graph
representation of the configuration space can be augmented with
additional information based on path properties to make a distinction
between vertices that are reached via different paths. The resulting
representation is an augmented graph, G 4 =(V4,E ). The vertices
in V4 are of the form v=(¢q,«) for ¢ € V" denoting the configuration
and « the path property (e.g. homotopy class, path neighborhood). In
the case of an augmented graph, @ 4 compares both the configuration
and the the path property. Thus, corresponding to a vertex g €V there
may exist multiple vertices of the form (g,cv1),(¢,c2),+ € Via, each
corresponding to the configuration ¢ reached via a different path. The
edges and associated costs are determined by A 4,C4, which can
be designed based on .A4,C. The search for k paths on an augmented
graph terminates once (¢g,cv),...,(gy, 04 ) are reached. k distinct
optimal paths can be reconstructed for each (qg,v1),...,(qg,0u).

The idea of augmented graph is most easily demonstrated by the
construction of s-augmented graph in context of topological path
planning in multiple homotopy classes [15, 16, 43]. Figure 2 provides
a visualization of the /-augmented graph.

IV. PROBLEM DEFINITION AND ANALYSIS

In this section, we define the problem of finding % geodesic paths
and relate it to the topo-geometrically distinct paths via the notion
of path neighborhoods.

A. Problem Definition

Definition 3 (£ geodesic path planning problem). Given a
configuration space equipped with a path metric, a start and a goal

configuration, the k geodesic path planning problem seeks to find
k geodesic paths between the start and goal configuration in the free
configuration space.

The purpose of this paper is to develop an algorithm to solve the
k geodesic path planning problem.

B. Problem Analysis using Path Neighborhoods

We investigate the distinctive properties of geodesic paths to
develop a solution using a wavefront propagation type algorithm.

Remark 1 (Key Observation about Tangents to Geodesics). Tiwo
distinct geodesic paths between a start and a goal point intersect at
least at one point g on which the tangents to both paths are distinct,
causing paths to diverge from each other (Figure 3).

Remark 2 (Path Neighborhoods as Proxy for Tangent Vectors).
The tangent space of the configuration space at a point is reasonably
represented by a small neighborhood around the point. Therefore, the
tangent vector to a path at a point can be approximately represented
by a neighborhood around the path at that point (see Figure 3). We
call such a representative neighborhood a path neighborhood.

(a) )
Fig. 3: Optimal/geodesic paths to a point g, in the configuration
space that are topo-geometrically distinct have distinct tangent vectors
at a point ¢ (with ¢ = g4 in case (a), but a point other than g, in
case (b)). Instead of comparing and distinguishing the paths by their
tangent vectors (which is often computationally difficult) at a point
where the paths meet, a reasonable approach is to compare the path
neighborhoods (shown by hatched regions) in the proximity of the
paths near the point q.

Motivated by these observations we provide the following
definition:

Definition 4 (Topo-geometrically Distinct Paths). Two distinct
geodesic paths connecting the same start and target points, qs and
qg, are called topo-geometrically distinct if there exists a common
point, q, on the paths at which they have distinct path neighborhoods.

In a wave-front propagation type algorithm!, starting from g, this
definition is particularly relevant for identifying topo-geometrically
distinct paths to the point where different branches of the wave-front
meet for the first time around an obstacle and/or high-curvature/cost
regions (see Figure 4(a-c)). Such a point lies on the cut locus of
gs [44], and identification of topo-geometrically distinct paths to it
based on distinct path neighborhoods (Figure 4(c)) is critical in being
able to identify, create and maintain distinct branches of the wave-front.
Once identified, the branches can be kept separated by distinguishing
between vertices that represent the same configuration reached
via different branches (Figure 4(d-f)). Subsequently, configurations

In practice, this is Dijkstra’s or $* algorithm on a discrete graph representation
of the configuration space as will be discussed in the next section



s

g

Fig. 4: Overview of the proposed topo-geometric path planning using
search in neighborhood-augmented graph: (a-b) Search propagates as
a uniform wave-front before encountering any obstacle or high-cost
region. (b-c) Two branches of the search emerge as the search
wave-front is disturbed by the increased costs. (c) When two branches
meet, paths leading up to the same configuration point will have
disjoint path neighborhood sets (041 and 4>). (d) Branches stay
separate as a result. Two topo-geometrically distinct paths to g are
found as (e) the first branch reaches the point ¢, (f) followed by
the second branch. (g) Eventually the branches reach ¢, and two
topo-geometrically distinct paths are obtained. The figures are actual
results from the proposed algorithm.

reached via the topo-geometrically distinct branches have different
path neighborhoods and hence can be identified as distinct with
topo-geometrically distinct paths leading to them (see Figure 4(e-g)).

At this point we do not explicitly define or restrict the shape or size
of the path neighborhoods. The effect of parameters determining
the shape and size of these neighborhoods will be discussed
later along with ways of estimating these parameters for a given
configuration space. Under some conditions regarding the curvature
of the configuration space, all geodesic paths are topo-geometrically
distinct. As a result, an algorithm capable of computing £ topo-
geometrically distinct and geodesic paths solves the k geodesic path
planning problem.

V. ALGORITHM DEVELOPMENT
A. Neighborhood-augmented Graph

In order to do away with complex geometric constructions in
topological path planning, and to be able to find geodesic paths
that are topo-geometrically distinct (Definition 4), in this paper we
propose a neighborhood-augmented graph (NAG), Gn = (Vn,En),
that is constructed based on the given discrete graph representation

of the underlying configuration space, G = (V,E), by augmenting
each vertex with a “path neighborhood” that is representative of
the tangent vector of the path leading to the vertex (Figure 3).
Just like the previously-described augmented graphs, corresponding
to a vertex g € V, there can exist multiple distinct vertices,
(qU1),(qUs), € Vi, where each I; is a set consisting of pointers’
to vertices in Viy (i.e., U; C Vv) that make up the neighborhood of the
path leading to the vertex (q,; ). We refer to each such Uf; as a path
neighborhood set corresponding to the path leading to the vertex v.

For topo-geometrically distinct paths, the path neighborhood sets
are expected to be disjoint as illustrated in Figure 3. While, for a
configuration reached via paths that are topo-geometrically similar,
there will be significant overlap between the path neighborhood sets
of the corresponding vertices. Thus, we define

Definition 5 (Equivalence of Vertices in G n). Given (qU),(¢' U") €
VN, they are called equivalent (i.e., considered to be the same vertex,
and denoted as (qU)= (¢’ U)), if g=q’ and UNU' .

This definition of the vertex equivalency determines the behavior
of Qn (as described in Section III-B) and is critical in incremental
construction of the graph, G — every time a vertex is generated, it
can be compared against the vertices in the closed list to determine
whether it is a new vertex or identical to an existing one.

An Implementational Detail: 1t is to be noted that for two path
neighborhood sets to intersect (i.e., for the computation of U NA"),
they must contain a common vertex that not only has the same
coordinates/configuration but also the same path neighborhood sets
(that is, UNU'£D <= T (wW)el, (W' W)ell st. (w W)=
(w', W"). At a first glance it may appear that the computation
of equivalence thus requires an iterative computation of other
equivalences for vertices in the path neighborhood sets. However, in
implementation, since path neighborhood sets are stored as pointers
to vertices in Vi, it is sufficient to check if the sets of pointers, I/
and U’, have any common pointer. If two pointers are identical, that
will automatically imply that the corresponding vertices are identical
(since otherwise they would have been identified as different vertices
in the first place and would have been assigned different pointers).

Adjacency Function: For any vertex (q,U) € Vi, we can utilize
the adjacency function of the configuration space graph, G, which
returns the configuration of vertices that are adjacent to g. Suppose
A(q) ={q1,92, }. The path neighborhood sets of each g; is then
constructed by computing a neighborhood of (¢,) via a short
secondary search in the current Gy. The details of this secondary
search is described in Section V-B. If this secondary search returns a
path neighborhood set 24, the adjacency function of G x can then be
described as An ((¢.U)) ={(q1,14),(g2, 14", }. The cost of each
edge on G5 v is the same as its projection on the original graph G (that
iS, CN((Q)“))((]’L au/)) :C(Qaq/))

The construction of the graph Gy can be performed using any
graph-search algorithm, given the implicit representation of GG via
A,C and Q. Throughout this paper we have presented results obtained
using Dijkstra’s and S* [6] algorithms for computing different
topo-geometrically distinct paths that are optimal in the underlying
configuration space.

As a simple illustration, however, we present a pseudo-code for
the approach using Dijkstra’s algorithm that incrementally constructs
a neighborhood-augmented graph in Algorithm 1. The traditional way
to use this algorithm is to insert the goal-based stopping criteria given

2 A pointer refers to the address/reference in the computer memory where the data
associated with a vertex is stored.



Algorithm 1 Incremental Construction and Dijkstra’s Search in a
Neighborhood-augmented Graph (NAG)

G n = searchNAG (q5,.A,C,QstopSearch)

Inputs:
a. Start configuration g; €V
b. Adjacency function A (describing the connectivity of graph
G)
c. Cost function C:V xV —R*
d. Stopping criteria (function), stopSearch: Viy —{0,1}
Output:
Graph G, with g-scores and neighborhoods computed
for every vertex

1: vg:=(qs,{&Ws}) // start vertex in Viv, with self-reference
// in its path neighborhood set.

2: Set g(vs)=0 // g-score
3. Vn={vs} // vertex set
4: En=0 //edge set, maintained implicitly as a link tree/graph
5 Q= {Us} // open list, maintained by a heap data structure.
6: V=04
7: while QQ # () AND not stopSearch(v) do
8: v:=(qU)=argmin, cog(v’) // heap pop.
o: Q=Q—v // heap pop.
10: U' = computePNS (v,G n) // path neighborhood set

// for path leading to v

11: for ¢ € A(q) do

12: v :=(q'U") I/ potential adjacent vertex

13: g =g(v) +C(q7ql) // potential g-score for v’

14: if B we Vy, with v/ =w then // new vertex

15: VN:VNU{UI}

16: En :ENU{(U,U/)} // maintained as linktree
// for adjacency function computation, A

17: g(')=g

18: Q=QuU{v'}

19: v’ .came_from=v

20: else // vertex already exists (w)

21: EN:ENU{(’U/LU)}

22: if ¢’ <g(w) AND weQ then // update w

23: g(w)=g'

24: w.came_from=wv

25: wld=U'

26: GNZ:(VN,EN)
27: return G

in Algorithm 2 as the input, provided a goal coordinate and number
of desired paths. However, depending on the application, there could
be other uses of the algorithm, utilizing alternative stopping criteria,
as it will be further discussed in Section VI-B.

Figure 5 illustrates the incremental construction of a neighborhood-
augmented graph based on a given discrete graph. Two separate
search branches emerge due to a hole in the underlying discrete graph.
Neighborhoods for selected vertices are shown in the bottom row.
Vertices shown in the first two columns are trivially distinct as they
do not share the same coordinates. In the third column, two vertices
with the same coordinates (i.e., the same vertex in (7) are selected for
which the path neighborhood sets are disjoint as they are reached via
different branches of the search. As a result, two distinct vertices (with
common coordinates but with two disjoint path neighborhood sets)

Algorithm 2 Goal-Based Stopping Criteria for Search
[bool, V,] = stopSearch_AiGoaly, .(v)

Input: Current vertex v=(q,U{) € Vn
Static variables / parameters:

a. Goal configuration g, €V
b. Number of paths to find &

Output:

a. Boolean (true to stop search, false to continue)
b. Vertices in the NAG found at goal configuration V,

1: static Vg(: @) // static variable initiated with empty set
2. if v.g=q;, AND v ¢V, then

3: Vy=V,Uv

4 return (|V,|==k)

are maintained within the neighborhood-augmented graph. Whenever
a distinct vertex at the goal coordinates is expanded, it is possible to
reconstruct a topo-geometrically distinct path from the start to the goal
coordinate using the corresponding goal vertex and the constructed
neighborhood-augmented graph with a path reconstruction subroutine.
Two of such paths are shown in the last column of Figure 5.

For given shape characteristics/geometry of the path neighborhood
sets, and the geometry of the artifacts on the configuration space
influenced by holes, obstacles, high-cost or non-zero curvature
regions, or topology, it thus is possible that vertices sharing the same
coordinates, but reached via topo-geometrically distinct paths, have
non-intersecting path neighborhood sets and hence are inequivalent in
the neighborhood-augmented graph (Figure 5(c)). This creates distinct
branches of the search around such artifacts that stay separate (cross-
over) and progress further. The effect of the size/geometry of the path
neighborhood sets on the ability to find topo-geometrically distinct
paths around artifacts of different size/geometry is discussed in more
detail in Section V-D. Performing the search on the neighborhood-
augmented graph computes geodesic paths, in addition to the globally
optimal path, that are topo-geometrically different.

B. Neighborhood Generation

During the construction of the neighborhood-augmented graph
(Algorithm 1 — also referred to as primary search henceforth), a
path neighborhood set, 4, of a vertex v € Viy needs to be computed.
The path neighborhood set consists of a set of vertices within some
distance r,, of v in the neighborhood of the path leading to v in
the neighborhood-augmented graph — Line 10 of Algorithm 1. To
compute this path neighborhood set, a secondary search is performed
on the current neighborhood-augmented graph, G (using A*
algorithm), starting from the vertex of interest v. We emphasize that
this secondary search (which will be referred to as neighborhood
search from now on) occurs on the existing graph, Gy, during which
G n remains unchanged. A pseudo-code for the neighborhood search
(computePNS routine) is provided in Algorithm 3.

If the neighborhood search is carried out until a distance 7,, from
v (reaching a g-score of r,), the expanded vertices will form a shape
similar to a disk-section around v, bounded by a circle of radius r,, at
the upstream and by the open list of the primary search at the down-
stream (Figure 6(a)). However, a disk-shaped set does not provide a
reasonable representation for a neighborhood around the path leading
up to v. By using the g-score from the primary search as heuristic



Open list propagation in Neighborhood-augmented Graph

Topo-geometrically

LAl A

(>

distinct paths

The same vertex, g, in G
corresponds to two distinct

/ vertices (g, i) and (g, U’) in Gy
because of non-intersecting path
neighborhood sets

Fig. 5: Path planning on neighborhood-augmented graph, GGy, using Dijkstra’s search (actual result, with highlights and labeling for
aiding explanation). The planar graph that is visible in the figures is the configuration graph G = (V, F). The neighborhood-augmented
graph is constructed incrementally, and the top row shows the vertices in the open list at different instants during the progress of the search
(colored/highlighted in blue). However, a vertex in the neighborhood-augmented graph, G, is not just a vertex in G, but also contains
information about a path neighborhood set leading to the vertex (maintained as a list of pointers to already-generated vertices in V). This
is shown in the second row, where two vertices, (g1,i41) and (ga,Us), in the two different branches of the search (created due to the central
hole) in the graph, are chosen to illustrate their respective path neighborhood sets (shown/highlighted in red and green respectively). However,
as demonstrated in column (c) of the figure, when the two branches meet, corresponding to the same vertex ¢ in the configuration space
graph, we end up constructing two distinct vertices, (¢,04) and (g,U"), in G . Two topo-geometrically distinct geodesic paths to the goal
are found as a result (last column). The cost function used for this search example is the Euclidean distance between the vertices.

function to guide the secondary search, we obtain a path neighborhood
set that hugs the path more closely. In practice, we use a parameter,
w (called a heuristic weight), to determine the influence of the said
heuristic function (Line 16 of Algorithm 3) — a heuristic weight of
0 will create a disk-shaped neighborhood, while positive and larger
heuristic weights will create more path-hugging neighborhood sets.
We choose a w € [0,1]. Figure 6(a,b) illustrates a comparison between
a disc-shaped neighborhood and a path-hugging neighborhood.

A path neighborhood set of a vertex needs to satisfy following
conditions to achieve desired branching behavior around the artifacts
of the configuration space:

1) Vertices at the same coordinates generated through parent
vertices that are close to each other in the graph should have
large overlap in path neighborhood set. Essentially, a wavefront
should not be giving rise to any branches unless it encounters an
artifact in the configuration space. Size of the path neighborhood
sets of nearby vertices in the same branch of a search should be
large enough to contain common vertices. An example of this
scenario is illustrated in Figure 7, where a vertex v, is generated
by two different parent vertices v;,1 and v,2 on the same branch
whose path neighborhood sets have a large intersection. As a
result, only a single vertex will be created and maintained at

that point without creating any spurious branches.

2) For an artifact to generate multiple topo-geometric branches
during the search, the size of path neighborhood set should be
smaller than the size of the artifact to ensure that there will not
be any intersection at the upstream of the artifact (Figure 6(c,d)).
Hence, vertices generated via parent vertices on a different
branch will be identified as different.

The effect of the size of path neighborhood sets relative to
the obstacle size can be observed in Figure 6(c,d). As observed
empirically, disk-shaped path neighborhood sets are more sensitive
to the size parameter than the path-hugging path neighborhood sets as
they tend to overlap at the upstream of an artifact even for smaller radii.
Therefore, path-hugging path neighborhood sets are to be considered
as the default path neighborhood sets shape unless stated otherwise.

C. Theoretical Analysis

1) A Sufficient Condition for Creating Topo-geometrically Distinct
Branches: We formalize the conditions for being able to compute
topo-geometrically distinct branches at a configuration q. Let 7, CR™
be the g-score at the open list at an instant of the search under the
assumption that vertices on the open list have same/similar g-scores
at the same instant. We consider the closed list generated during



Algorithm 3 Path Neighborhood Set (PNS) Computation using A*
Search

U= computePNSy,.. ., »,y(Vp,GN)

Inputs:
a. Existing/current  neighborhood-augmented  graph
Gy =(Vn,En), along with the g-scores of vertices in the

graph, g(-).

b. Parent vertex v, = (g, U,) € Vi
Geometry Parameters:

a. Neighborhood radius, 7, € R™

b. Heuristic weight, w € [0,1]

c. Rollback amount, r, € Z>¢
Output:

A set of vertices (path neighborhood set), U C Vi

1D v llback(vp,rb) // start vertex for secondary search

2: Z/[ =0

3 glv)= ( =00, Vo€V //implicitly set all - and g- score
for secondary search to infinity for all vertices

4 g(vs) =0 // g-score in secondary search

5. f(vs):=g(vs)+wg(vs), // f-score in secondary search. g refers to
the g-score from the primary search, which is being used as a heuristic
function for the secondary search

6: U= {vs} 1/ vertex set for neighborhood search

7. Q:={vs} // open list for neighborhood search

8 V=1,

9: while Q# () AND not g(v)>r, do

10: v:=argmin /le( v')

11: Q Q v

12: forv c Ay (v) do

13: =gv)+ CN(U v')

14: lf g <g ) then // better g-score
15: ( )

16: fv( "= g "+wg(v)

17: Q=QuU{v'}

18: U=UU{v'}

19: return

the wavefront propagation (which is a discrete and neighborhood
augmented representation of the explored subset of the configuration
space) to be a metric space with metric/distance function, d, so that
for any p1,p2 € Vv, d(p1,p2) is the total distance/cost of the shortest
path through the set of already-explored vertices connecting p; and
P2. Suppose a configuration g € V' is being reached via two distinct
geodsics/shortest paths (i.e., being generated from two different
parents), y; and y» as illustrated in Figure 8.

We try to understand the condition under which the path neighbor-
hoods of these two different paths, I4; and U, will not overlap, hence
giving rise to two distinct vertices 1 = (¢, U1) and zo2 = (¢, Ua),
in the neighborhood augmented graph. Let +/ be the segment of the
path, ~y;, contained within 4;, = 1,2. Then the following result holds:

Proposition 1.
If sep(v1,75)> 1{%, then Uy Ny =1.

where, sep(V,75) = mfvlepy1 v2€%, d(v1,ve) is the separation
berween the path segments ~; and ~.

Size

Fig. 6: (a) Disk-shaped neighborhood at a vertex of interest (VOI).
(b) Path-hugging neighborhood at a VOI (Default option for path
neighborhood sets). (c) Disjoint neighborhoods for two vertices at
the same coordinates due to the obstacle resulting in the second copy
to be inserted to the neighborhood augmented graph. (d) Intersecting
neighborhoods at the upstream of the same obstacle, when the
neighborhood size is increased. The second vertex is equivalent to
the first one, thus it will be discarded.

o ® O
ﬁe

o
‘~_¢
AN

1
’

#ony
ot
&

L
\

|

Fig. 7: A vertex at v.q is generated by two distinct parent vertices v,
and vy,2. Shortest paths y; and 7> leading up to the parent vertices
are also distinct. However, the path neighborhood sets U7 and Us
intersect as the paths are only slightly different. In this case, there is no
need to construct and maintain another vertex at the coordinates v.q.

The proposition, in effect, gives a value for the minimum
separation between two equal-length geodesic paths leading to the
same vertex that will result in identification of the vertices x; and
T2 to be topo-geometrically distinct, and hence will give rise to two
distinct branches in the neighborhood-augmented graph.

Here, we highlight that the separation between path segments is
not an intrinsic geometrical property of the underlying configuration
space, as it depends on the specific paths. Therefore, even though an
insightful theoretical result involving both 7, and w, Proposition 1
does not provide a direct way of determining a working interval for the



Open list

Fig. 8: Path neighborhood sets Z/; and U4 are shown for two paths
71,72 , leading to vertices x; and x5 at configuration ¢ in the open
list. Neighborhood radius is r,, and the radius at the open list is 7.
vy and v9 are points on attached path segments ~; and v5 . uis a
common neighbor, such that u € U; Nis. v1,7y2 are tangent to the
closed geodesic curve c at py,p; respectively, dividing it into two
segments ¢; and cs.

parameters based purely on the propetties of the given configuration
space. Hence we propose an alternative but more conservative result,
which allows us to choose a suitable r,, based on the intrinsic
properties of the configuration space. More specifically, we use the
notion of closed geodesics defined as below:

Definition 6 (Closed Geodesics). A geodesic starting and ending
at the same point in a path metric space is called a closed geodesic.

Examples of closed geodesics include great circles on a sphere and
tightest paths enclosing obstacles on a configuration space. Let ¢
be the shortest closed geodesic created around an artifact such as an
obstacle, a high cost region, or a topological hole in the underlying
configuration space, and let {(¢") denote the length of ¢*. Then, we
can use the following proposition to relate r,, to the length of the
shortest closed geodesics, and hence be able to choose an appropriate
value of 7,

Proposition 2. Picking r, < @ ensures that Uy NUs =1, for a
pair of vertices x1 = (q, Uy ) ,x2 = (q, Us) generated at the cut locus
of qs via topo-geometrically distinct paths.

Note that Proposition 2 only requires information about the length
of the shortest closed geodesic and not the computation of the geodesic
itself. We provide a discussion on the estimation of closed geodesic
lengths in Section VII-A6.

The proofs for the propositions presented in this section are deferred
to the Appendix.

2) Complexity of the Neighborhood Augmented Graph Search:
The Algorithm 1 is essentially a search in the neighborhood-
augmented graph (in particular, it’s illustrated with the Dijkstra’s
search algorithm, although any graph search algorithm can be used).
The main difference is the computation of the path neighborhood
set every time a vertex in the neighborhood-augmented graph is
generated. The construction of the path neighborhood set of each
vertex involves running a separate A* search up to a fixed distance of

Ty, in the partially-constructed neighborhood-augmented graph, and
hence by itself is a constant-time process on an average (while the
path neighborhood sets of different vertices may contain different
number of vertices depending on the cost in the neighborhood, in a
uniform-cost region this number is almost constant, and on a high cost
region this number is lower). Thus, the complexity of the search in
the neighborhood-augmented graph is same as the complexity of the
search algorithm used, only with a constant multiple. For example, the
complexity of the Dijkstra’s search in a graph with an almost-uniform
vertex degree (e.g., graph constructed from uniform discretization of a
configuration space and by connecting each vertex with its neighbors)
is O(|V|log(|V])), where |V| is the number of vertices expanded.
The complexity of searching in the neighborhood-augmented graph
using Dijkstra’s search is thus also O(k,|V|log(|V])), where the
constant k,, is the constant-time complexity of generating the path
neighborhood of each vertex. However, note that the size of the search
graph, and hence |V|, grows exponentially with the dimensionality of
the underlying configuration space.

The proposed topo-geometric path planning algorithm inherits
the completeness and optimality guarantees of the graph search
algorithm being used for the primary search to find the & most
optimal paths, provided there does not exist pathological situations
created by extremely low cost/curvature regions as will be described
in Section V-E.

D. Implementation Details

The main ideas and procedures of the search on a neighborhood
augmented graph is as described in previous sections and the
pseudocodes within. In this section, we will describe some
implementational details that are not captured in previous sections.

Rollback to grandparent. In previous sections, it is assumed that
the neighborhood search for a vertex v’ starts from its parent vertex v.
As a result, path neighborhood sets are always illustrated as attached
to the vertex. However, depending on the primary search algorithm
being used, at the time of neighborhood search, vertex v might not
be inserted in the neighborhood-augmented graph, thus making it
impossible to perform a search starting from v. This mainly occurs
when using S* search algorithm, which generates the grandchildren
of a vertex when expanding a vertex. A solution is to rollback from
the vertex v’ for some fixed number of generations (which means
to consider the parent or n-th grandparent of the vertex) and start the
neighborhood search from that vertex. This procedure is performed by
the rollback subroutine in Line 1 of Algorithm 3, which recursively
calls the ‘came_from’ attribute of a vertex for desired number of
times. A rollback of 7, =3 is found to be suitable for the algorithms
we use in this paper. Note that the amount of rollback needs to be
accounted for when using Proposition 2, which usually requires us
to pick an even smaller 7, .

Bound on neighborhood search depth. In previous sections,
neighborhood radius 7,, was expressed in terms of the g-scores on the
corresponding graph. However, in an environment that is uniformly
discretized, on a high-cost region, a neighborhood whose radius is
based upon the g-scores only may contain very few vertices. To
alleviate this situation, we place a lower bound on the depth in terms
of number of generations from the start vertex of the neighborhood
search that must be performed for a the neighborhood search. The
theoretical results mentioned in Section V-C do not account for this
detail formally, without considering the discretization, and thus we
do not provide any results on that effect. However, the parameter
associated with this implementational detail is not a critical one and



the NAG search algorithm is robust to ad hoc choice of the parameter
for a wide range of environments. In particular, by choosing the bound
on the neighborhood search depth to be sufficiently smaller than
neighborhood radius, we observe that Proposition 2 can be used to
choose the neighborhood radius in nonuniform cost environments.

E. Pathological Cases - Low Cost/Curvature Domains

As explained in Section V-A, comparison of neighborhoods allow
distinction between vertices with the same coordinates that are reached
via different branches of the search. However, the branching of the
search is only possible if the configuration space geometry generates
closed geodesics and in particular closed geodesics with enough
length so that they can be captured with a reasonable discretization
via a proper choice of the neighborhood radius. As the curvature of
an environment decreases (e.g., for a high-cost region in a planar
domain if the cost is not sufficiently high), the path neighborhoods
keep overlapping and is unable to give rise to distinct topo-geometric
branches. Instead of creating distinct branches, only a small cusp in
the search wave-front is generated, and the search in the neighborhood-
augmented graph is unable to compute multiple topo-geometrically
distinct paths (C'M =1 case in Figure 17). Similarly, around a corner
of a prism in 3D, the search is only slowed down by a small amount
through the corner. This behavior is illustrated in Figure 9(b,d). In
these cases, only a single path is found as a result of the search on
the neighborhood augmented graph. For such pathological cases, we
present an additional algorithm capable of computing geodesic paths
around such low cost/curvature domains that do not create multiple
branches of the wavefront in the main NAG search algorithm.

1) Cut Point Identification: On a flat planar domain without any
holes there is a unique geodesic between any two points and it is
neither necessary nor expected to generate different branches of the
search. As some small curvature is introduced to the surface by a
high-cost region, closed geodesics and correspondingly multiple
geodesic paths can arise between two points. However, along the cusp
generated in the search wave by the low curvature, these paths are
very similar to each other and the corresponding path neighborhood
sets are likely to intersect. That is why it is not possible to generate
branches of the search in low curvature environments (Figure 9(b)).

Although it is possible to modify the shape and size of the path
neighborhood sets, it is not possible to use the theoretical results from
Section V-C to come up with a neighborhood radius and heuristic
weight that allow distinction between such close paths without
causing spurious topo-geometric branches to be generated at other
locations in the environment. This is mainly caused by the fact that
closed geodesics are either significantly short or non-existent on these
pathological environments. A similar behavior is observed around the
corners of a 3D prism. Another approach could be to consider a finer
discretization, to increase the capability of distinguishing between
similar paths. However, we propose an approach to tackle with
the low curvature environments, without requiring any changes to
discretization or further fine tuning of the neighborhood parameters.

The idea behind the proposed solution is to introduce an artificial
cut to the neighborhood-augmented graph that will allow separate
branches of the search to be generated. To decide where the cut
should be introduced, we identify the points along the cusp generated
by the low curvature to which the distinct geodesics are separated
significant enough. These points will be referred to as cut points.
Then, it would be possible to treat a region around those points
(referred to as cut point regions (CPR)) as an obstacle to give rise
to different branches of the search.

A pseudocode describing the cut point identification and cut
point region generation procedures are given in Algorithm 4. When
running the search algorithm on low curvature environments, the
cutPointCheck subroutine is called within the searchNAG routine
provided in Algorithm 1, after a successor v’ is identified the same
with an existing vertex w — after Line 20. To identify the cut points
algorithmically, we utilize the following observation. Although the
path neighborhood sets for vertices at the cusp are not entirely disjoint,
they should have relatively smaller intersections (Figure 9(b)). It is
possible to compute a neighborhood intersection ratio (ratio of the
number of common vertices in the path neighborhood sets to the size
of the path neighborhood sets), such that the ratios at a cut point falls
below a certain threshold — Line 1 of Algorithm 4. Parallel to that,
we also make use of the observation that the lengths of the geodesics
to two vertices should be similar to each other at the cusp, which
can be confirmed by looking at the difference in g-scores of the
vertices — Line 4 of Algorithm 4. We also perform an addition check
on the separation between path segments leading to the two vertices
(Line 9), following which the CPR is computed using a Dijkstra’s
search for a fixed radius rcp. The CPR is treated as an obstacle,
leading to separate branches to be generated downstream as illustrated
in Figure 9(c).

Algorithm 4 Cut Point Check and Cut Point Region Generation
Procedure

[bool, CPR]= cutPointCheck (w,v' ,G )

Inputs:
a. Two vertices with intersecting neighborhoods, w € Vv’
(v is not inserted in the graph)
b. Parent vertex of v/, vEVy
¢. Neighborhood augmented graph, G
Output:
a. Boolean (true if cut point, false if not)
b. Cut point region (a set of vertices), CPR

1: o= getNeighborhoodlntersectionRatio (w. U, v'. U)

2: if a>¢; then

3 return (false, )

4: if |g(w.came_from)—g(v)|>¢, then

5; return (false, )

6: pw = getPathPoint (w,r;,GN) // getPathPoint (w,r;,G ) returns
the vertex at a distance of 7; - g(w) from w, along the shortest path

leading up to the start vertex

7. py = getPathPoint (v',r;,GN)

8: dsep= searchOnGraph (p,pv ,Gn) // by running A* from p,,
to p,y with a radius of €ypper, returns the distance if p, is reached,
returns false otherwise

9: if dyep AND dyep > Ejouer then

10: CPR = generateCutPointRegion (w,rcp,Gn) // by running
Dijkstra’s starting from w with a radius rc p, expanded vertices are
included within cut point region

11: return (true,CPR)

The parameters associated with the cut point identification, neigh-
borhood intersection ratio threshold (g;), geodesic length difference
threshold (g,), geodesic reconstruction portion (r;), path separation
lower and upper bounds (€;ower;Eupper), and the cut point region
radius (r¢p) are to be treated separately from the parameters of the



(a) (b)

(c)

CPR

Fig. 9: (a) Through a steep hill (high-cost center with high value) search propagation is significantly slowed down, thus two branches emerge.
Neighborhoods remain separate for vertices reached via different branches. (b) Around a flatter hill, (high-cost center with smaller value)
neighborhoods maintain an overlap, hence branches do not emerge naturally even on a neighborhood augmented graph (neighborhoods
maintain the overlap, because the flatter hill only slows down the search through its center by a small amount, causing a small cusp in the
search wave). There exist two vertices w and v’ with small neighborhood intersection. Cut Point Identification: Shortest paths are constructed
until a distance of ;- g(w). Resulting vertices p,,, and p, have a separation of dsep in between. (c) On a low curvature environment, cut point
region is detected at the downstream of the hill. Treatment of these cut points causes branches to emerge around this region. (d) Same/similar

behavior is observed around a corner of a 3D prism.

main NAG search algorithm and need to be estimated empirically
based on a given low cost/curvature scenario in an environment.

Here we highlight that depending on how the initial and goal
configurations are assigned, some of the paths found by the cut
point identification based approach might be non-geodesic in the
underlying configuration space as they are going around an artificial
obstacle introduced by the algorithm. However, it is possible to identify
such paths in an automated manner by checking the change in the
tangents along the paths near the CPR. A sudden change in the tangent
will indicate a non-geodesic path. This behavior is demonstrated by
experimental results in Figure 18.

VI. APPLICATION TO TETHERED ROBOT PATH PLANNING

In this section, we define the tethered robot shortest path planning
problem and explain how the neighborhood-augmented graphs can
be adapted to solve this problem.

A. Problem Description and Analysis

Tethered robots are mostly deployed to perform tasks in
environments where wireless communication is limited and/or robot
is unable to operate without an external power source. This work
is mainly interested in applications where a tethered spatial robot
is to navigate in an environment populated with obstacles. Examples
include a drone tethered to an outside base navigating in and around
a building with windows or gates or a disaster site with multiple
entries and exits, an underwater robot tethered to the surface station
navigating in and around a ship wreck or an underwater cave with
tunnels and passages. We consider the problem defined as follows:

Definition 7 (Tethered robot shortest path planning problem). Given
a mobile robot (ground, aix, underwater) connected to a fixed base
via a tether of maximum length L, a start configuration (robot pose
and tether configuration) and a goal robot pose, the tethered robot
optimal path planning problem seeks to find the globally shortest
path that achieves the goal robot pose with some tether configuration
without any violations of the maximum tether length constraint.

For the purposes of this paper, it can be assumed that the tether
is made from an elastic material with a maximum length L, which
remains taut during the entire operation irrespective of the location
of the robot. Alternatively, it can be assumed that there is a tether

retraction mechanism at the base, that can remove the remaining slack
from the tether when it is not used at its maximum length L. Using
any of the two assumptions, a tether configuration can be represented
as one of the geodesic paths from the tether base to robot’s location.
An illustration of a tethered robot in a 2D environment with obstacles
is given in Figure 10.

2
’
’

Fig. 10: (a) Tethered robot starts from an initial configuration and
can reach the goal via the globally shortest path without violating
the length constraint. (b) Tethered robot starts from the same pose
but with a different tether configuration. From this configuration, the
globally shortest path violates the length constraint (it is untraversible),
thus it reaches the goal via another path that is geodesic.

The tether length constraint not only reduces the size of the
reachable workspace, but a path planning algorithm for such a system
also needs to account for the configuration of the cable. To be able to
compute traversable paths (paths that do not violate the tether length
constraint) for a tethered robot with cable length constraints, it is
necessary to build the configuration space graph for the tethered robot,
the vertices in which capture not only the pose of the robot, but also the
topo-geometric information of the cable configuration. In particular,
the same configuration of the robot may correspond to multiple
different vertices in the length-constrained tethered configuration
space graph based on the configuration of the tether (distinct vertices
for topo-geometrically distinct tether configurations, even for the same
robot pose). This is illustrated in Figure 10.



B. Method

For solving the tethered robot shortest path planning problem,
we adopt an approach similar to [15], where the vertices of a h-
augmented graph would maintain information about not only the
pose of a robot, but also the homotopy class (h-signature) of the
cable. However, this approach cannot be naturally extended to 3D
domains since in 3D the homotopy classes of paths do not capture
all possible tether configurations. In other words, there may exist
geodesic curves that belong to the same homotopy class which
cannot be deformed into one another without violating the tether
length constraint. As neighborhood-augmented graphs are capable of
distinguishing between topo-geometrically distinct paths, they provide
a solution to the tethered robot path planning problem applicable to
more complex spatial domains. In this work, we use neighborhood-
augmented graph to represent the configuration space, the vertices in
which not only capture information about the pose of the robot, but
also the cable configuration represented by the path neighborhood of
the corresponding geodesic path.

Path planning for a tethered robot consists of two stages of search
using neighborhood-augmented graphs. The first stage is referred to
as tethered configuration space construction, where a neighborhood
augmented graph is incrementally constructed starting from a base
vertex vy, and includes every neighborhood-augmented vertices that
are reachable within the tether length constraint. The algorithm
used for the construction is identical to the one in Algorithm 1,
where the stopping criteria is a distance based one — instead of
stopping at a vertex that has matching coordinates with an assigned
goal, construction terminates at the first vertex that has a g-score
exceeding the maximum tether length. During the construction of
this length-constrained neighborhood augmented graph, we use the
S* algorithm, such that the computed g-scores represent the lengths
of the shortest paths in the underlying configuration space.

The second stage is referred to as length constrained search (LCS),
where another search is performed on the previously constructed
length-constrained neighborhood augmented graph. This search starts
from an initial vertex v corresponding to the initial robot pose and
a unique tether configuration (path neighborhood corresponding to
that configuration) in the neighborhood augmented graph. The search
terminates when a vertex in the neighborhood-augmented graph with
target robot pose/coordinate g, within the reachable workspace is
expanded for any path neighborhood (which would correspond to
the final tether configuration). Path resulting from a LCS is referred
to as length constrained path (LCP) and is the shortest path between
the start and the goal poses/coordinates that satisfies the tether length
constraint starting at the given cable pose.

VII. EXPERIMENTS AND RESULTS

In this section we provide experimental results showing the
capabilities of the main NAG search algorithm proposed in
Section V(A-D) and its extension using the notion of cut points
explained in Section V-E3. We also demonstrate results on the
application to tethered robot motion planning problem from
Section VI. Throughout the experiments, the algorithm is run on an
11th Gen Intel Core i7-1165G7 @ 2.80GHz with 16GB of RAM.

A. Experiments using the Main NAG Search Algorithm

1) Results in 2D and 3D domains: Proposed neighborhood
augmented path planner is validated in 6 different planning

3An open source implementation of our algorithm can be found at:
https://github.com/asahin1/nbh-aug-planning

environments shown in Figure 11. For each environment, the
discretization size is specified within the caption as (length x
width) and (length x width x height) for 2D and 3D environments
respectively. The primary search is performed using S* and the
neighborhood searches are performed using A* algorithms. For using
the S* algorithm, we discretize the 2D environments into isosceles
right triangles with unit side length (2 triangles per unit square) and
the 3D environments into uniform tetrahedrons (with 6 tetrahedrons
per unit cube). We note that the necessary simplices are generated and
the neighborhood augmented graph is constructed on-the-fly as the
wavefront propagates. As discussed in Section V, the wavefronts of
the search may cross-over during the construction of a neighborhood
augmented graph, in which case more than a single simplex can be
generated at the same coordinates of the environment corresponding
to more than one branch of the wavefront passing over that coordinate.
On the other hand, if the wavefront does not reach some parts of
the environment, simplices will not be generated for those parts.
Therefore, the memory requirement for a neighborhood-augmented
search on an environment is directly proportional to the number of
expanded vertices, which are reported in the caption of Figure 11
for each environment. Vertices in a 2D environment takes up around
30 kB of storage on average, whereas in 3D they take up around
168 kBs. For each expanded vertex, 2 triangles are generated on 2D
environments and 6 tetrahedrons are generated on 3D environments.

On nonuniform cost environments, the cost of an edge lying entirely
in white space is equal to the Euclidean norm, whereas an edge lying
entirely in the high cost center (marked with darkest shade of red) has
a cost scaled by a factor ~ 3. The artifacts in 2D environments (Fig-
ure 11(a-c)) are significantly large compared to the discretization, thus
the theoretical results provide a large upper bound for the choice of 7.
For computational efficiency, we choose a reasonably small r,, =8
and a reasonably large w=0.6. For the 3D environments (Figure 11(d-
1)), the upper bounds on r,, are tighter. The shortest closed geodesics
in (d-f) have lengths of 20,20, and 16 respectively. We choose
corresponding 7,,’s to be 6,6, and 4, accounting for a rollback of 3.

As shown in Figure 11(a-f), neighborhood augmented path
planning algorithm can identify topo-geometrically distinct geodesic
paths in 2D environments with obstacles, high-cost regions, or a
mixture of both. In 3D environments, it can identify distinct paths
in the presence of objects with non-zero genus, or even more complex
structures such as knots and chains. The local suboptimality of some
of the paths obtained in 3D environments are mainly an artifact of
the coarse discretization used with S* search algorithm.

Corresponding to each environment in Figure 11, we provide
the computation times in the caption. On average, around 68%
of the computation time is spent for the neighborhood search and
comparison.

2) Comparison between S* and A* as the primary search
algorithm: The neighborhood-augmented graph can be searched
with any search algorithm, including Dijkstra’s, A* and S*.
Figure 12 shows the comparison of the results obtained in an 2D
domain with non-uniform cost using the S* and the A* search
algorithms. The A* search algorithm uses an §-connected grid-world
representation of the domain as the discrete graph, GG, using which the
neighborhood-augmented graph, G, is incrementally constructed
for the search and computation of 3 topo-geometrically distinct paths.

3) Comparison with RRT*: Current sampling-based path planning
algorithms do not provide a systematic way for computing distinct
geodesic paths. To demonstrate the associated challenges, we follow
the procedure outlined next. On the environment presented in
Figure 11(c), we run the RRT* algorithm (using the implementation



Fig. 11: Results: (a) Distinct paths found in a (125 x 146) 2D building-like environment (expanded 15297 vertices) (3 paths). Path lengths:
[141.57,142.72,154.72]. Found in 7 seconds. (b) (150 x 200) Environment with multiple hills (high-cost centers) (expanded 51779 vertices)
(3 paths). Path lengths: [217.93,273.01,280.87]. Found in 35 seconds. (¢) (200 x 150) Environment with a mixture of obstacles and hills
(expanded 31191 vertices) (3 paths). Path lengths: [168.48,213.05,231.71]. Found in 20 seconds. (d) (10x 10x 20) 3D environment with
genus-1 object (expanded 3585 vertices) (2 paths). Path lengths: [20.74,21.51]. Found in 9 seconds. (e) (20 x 10 x 20) 3D environment
with genus-2 object (expanded 8540 vertices) (3 paths). Path lengths: [20.61,21.30,26.23]. Found in 24 seconds. (f) (28 x 20 x 20) 3D
environment with a chain-like structure (expanded 34247 vertices) (4 paths). Path lengths: [30.97,32.20,32.44,34.53]. Found in 76 seconds.

Fig. 12: Results: (a) Paths found using S*. Path lengths:
[217.93,273.01,280.87]. Found in 35 seconds. (b) Paths found using
A*. Path lengths: [223.77,285.83,288.18]. Found in 49 seconds.

available in the Open Motion Planning Library [45]) for 1000 itera-
tions. The number of iterations are limited to increase the likelihood
of the algorithm converging into paths other than only the globally
optimal one. Using the same settings and starting from an empty tree,
the algorithm is run 1000 times, producing 1000 paths. Each run took
0.057 seconds on average. Resulting paths are shown in Figure 13.

As previously shown in Figure 11, the neighborhood-augmented
search on the same environment is able to plan 3 distinct geodesics in
20 seconds. In comparison, the total time it takes to generate 1000
paths using RRT* was 57 seconds, in which it failed to find a third

path and only was able to plan a path in a distinct homotopy class in
one instance. As a result of the reduced number of iterations, paths
found by RRT* are also suboptimal with respect to the homotopy
classes that they belong to. For a comparison of the path lengths
please see the captions of Figures 11(c) and 13.

4) Path planning on spaces with non-Euclidean topology: We
also demonstrate the capabilities of the neighborhood augmented
path planning algorithm in a space that is not a subset of a Euclidean
space. We choose the surface of a cylinder, S X R, to demonstrate this
capability, with radius 7. and height A. The surface is represented
by a 277, x h rectangle, with the two vertical edges identified. The
search procedure and the resulting paths are shown in Figure 14. We
computed 3 paths through search in the neighborhood-augmented
graph, although clearly it is capable of finding any number of paths
on the cylinder simply by allowing the search to continue further and
allowing the search front to wind around the cylinder the required
number of times. Results show that the lengths of the paths obtained
by the algorithm match with the path lengths computed analytically.

5) Path Planning for a 3-dof planar arm: Neighborhood-
augmented path planning can be applied to configuration spaces
of other types of robots, including a 3-dof planar arm moving around
obstacles, whose free configuration space is a subset of 3-torus (T?).
In this experiment, we use an alternative definition of the cost function,
that reflects the energy required to move each joint based upon the
lengths of the robot links. The cost of moving joint 7 by an amount
of 6 is set equal to the 6> "I, where [; is the length of link j. Cor-
responding torus will contain closed geodesics with 3 distinct lengths,



Fig. 13: Results: RRT* algorithm is run on an environment with
obstacles and high cost regions for 1000 iterations. Within 1000
independent runs of the algorithm, paths from only two distinct
homotopy classes are found. 999 out of 1000 times the globally
shortest path is found (the top paths), whereas only a single path is
found in the other homotopy class that contains the second shortest
geodesic path in the environment (the bottom path). The average cost
for the top paths are 186.33 and the cost of the bottom path is 221.81.

each corresponding to the motion of one joint. Based on this and the
result of Proposition 2, for a planar arm with length links [ =150,lo =
100,l3 =50, we choose r,, = 35000, such that the algorithm makes
a distinction between paths in which the first two joints go through
different motions, but does not differentiate between motions of the

last joint. As a result, we obtain 4 distinct paths presented in Figure 15.

o)
oW >

Fig. 14: Results: Path planning on a cylindrical surface, S xR, with

r. = 30 and h = 100. The cylinder is represented as a rectangle,
whose left and right edges are identified/connected (colored red).

Neighborhood-augmented path planning algorithm is used to compute

3 topo-geometrically distinct paths. Path lengths from search: [86.87,

139.25, 258.39]. These path lengths match the analytically computed
path lengths.

= Final configuration

* Final end-effector
position

Initial configuration

Initial end-effector
position

Fig. 15: Results: Four distinct sequences of robot motions (paths in the
configuration space) for a 3-dof planar arm, between the same initial
and goal configurations, corresponding to 4 geodesic paths found via
a search using the neighborhood-augmented graph. (a) The first joint
follows a clockwise (cw) path, where the last two segments are in an
elbow-up configuration, (b) the first joint follows a cw path, where the
last two segments are in an elbow-down configuration, (c) the first joint
follows a counter-clockwise (ccw) path, where the last two segments
are in an elbow-up configuration, (d) the first joint follows a ccw path,
where the last two segments are in an elbow-down configuration.

6) Application of Theoretical Results on Configuration Spaces
of Various Geometry: We demonstrate the use of Proposition 2 in
configuration spaces where the size of the configuration space artifacts
and the discretization are of the same order of magnitude so that an ad
hoc choice of 7, may not be possible. Results on a 2D environment
with an obstacle, a 2D environment with a high-cost region, and on
a surface of a cylinder is presented in Figure 16. In each environment,
we use the upper bound of I(c)/2 to choose r,, and include some
margin of error to account for the implementational inaccuracies.

For the environment with the obstacle, we estimate the length of
the shortest closed geodesic using the perimeter of the obstacle. For
the high-cost region, we computed the costs of the closed geodesics
enclosing discrete cost levels and picked the one with the smallest
cost. For the cylindrical environment, we use the circumference of the
cylinder to estimate the length of the shortest closed geodesic.

7) Cost multiplier analysis: As mentioned, on uniform cost and
flat subsets of Euclidean planes (for example, Figure 11(a)), the
edge cost between two vertices is computed using the Euclidean
distance as c(v;,v;) = d(vs,v;), where d(v;,v;) = |[v; —vj||2. For
environments with high-cost regions (as in Figurel1(b,c)), the path
cost between two vertices is implemented as a function of the
color of the corresponding cells and a cost multiplier (CM). Let
p(v): V' —[0,1] map the given vertex to the color value. Then the



(a) (b) (c)

Fig. 16: Results: Application of Proposition 2: (a) Two paths are
found around a square obstacle where the length of the shortest closed
geodesic (equal to the perimeter) is 16 and 7,, = 6. (b) Two paths are
found around a high cost region, where the shortest closed geodesic is
around the bright red region with a length of 16 and r,, =6. (c) Two
paths are found on the surface of a cylinder with radius 3 (shortest
closed geodesic has a length of 67), where 1, =7.

Start
Goal

CM =12
CM = 10
CM =5
CM =2
CM =1

L11k%

Fig. 17: Results: Shortest paths obtained on a nonuniform cost
environment. As cost multipliers (CM) decrease, shortest paths tend
to get closer to the high cost region. For CM= 1, the algorithm can
only find a single path.

path cost between two vertices in a nonuniform path cost environment
is computed as c(v;,v;) =d(v;,v;) [1+CM% .

The geometry of the optimal paths obtained by the neighborhood
augmented planning method varies with the cost multiplier being
used in the environment. Figure 17 shows how geodesic paths tend
to get closer to the center of the high cost region as the cost multiplier
decreases. It is worth noting that above a certain value of the cost
multiplier paths will not move further away from the high cost
region. At the other extreme (if the cost multiplier is below a certain
value), the main NAG search will become incapable of distinguishing
between multiple optimal paths and return only one of them (see
the path for CM =1 in Figure 17). This issue was explained further
in detail and tackled in Section V-E.

B. Results with Cut Point Identification Based Algorithm

Path-planning using the neighborhood augmented graph with the
addition of cut point regions can identify distinct paths in 2D environ-
ments with low curvature. In a 3D environment, it can identify distinct
path around a corner of a prismatic obstacle. Examples for 2D and
3D scenarios are provided in Figure 18(a-d), for which we arrived at
the following set of parameters via tuning: For both 2D and 3D cases,
heuristic weight w=0.6, ;=0.2 and £, =0.1 are used. For the 2D
case, we use the neighborhood radius r,, =8, €16wer =8, Eupper =25,
g, =0.6, and rcp = 3. For the 3D case, we use the neighborhood
radius 7, =6, €10wer =5, Eupper = 10, €;=0.4, and ro p =5.

In both 2D and 3D cases, a high cost center or a prismatic corner
gives rise to two shortest paths, when the start and goal are placed

2D
(a)

(b)

3D
(c)

e Geodesic path e Non-geodesic path Cut points

Fig. 18: Results: (a) Two geodesic paths around a small 4ill (high
cost region, with low cost multiplier), when the start and goal are
placed symmetrically. (b) A geodesic and a non-geodesic path
around a small hill, with start and goal placed asymmetrically. The
non-geodesic path has a sudden change in direction near the cut
point region. (c) Two geodesic paths around the corner of a prism,
when the start and goal are placed symmetrically. (d) A geodesic
an a non-geodesic path around the corner, with start and goal placed
asymmetrically. The non-geodesic path goes around the artificial cut
introduced by the cut points.

symmetrically with respect to the artifact. However, when placed
asymmetrically, the second path can only be identified with the help
of the cut points (the artificial cut). Those paths that present abrupt
corering behavior around cut point regions are not considered among
the solutions to the k& geodesic path planning problem as they are not
geodesics in the underlying configuration space.

Based on the experiments shown in Figure 18, around 65% of the
computation time is spent on the neighborhood search and comparison
and less than 1% of the computation time is spent on the cut point
check and cut point region generation on average.

C. Tethered Robot Motion Planning

1) Tether Length Analyis: To demonstrate the effect of the tether
length constraint on the paths obtained by the length constrained
search algorithm, we consider a building-like environment shown in
Figure 19. The building has a total of 3 rooms shaded with red, yellow
and green. The large green room spans two floors, whereas the smaller
red and yellow rooms are connected via a hole on the floor in between.
Both red and yellow rooms are connected to the green room via doors.
The green and yellow rooms are accessible from outside via windows.
Robot is tethered to a base fixed outside and initially positioned inside
the yellow room, which it accessed through the corresponding window.
The goal is placed within the green room near the window.

Keeping the initial and goal configurations the same, the length
constrained search algorithm is run with varying maximum tether
length I. As observed in Figure 19, LCS algorithm outputs the shortest
path between the start and goal that would satisfy the tether length



constraint. For relatively optimistic/relaxed constraints, resulting
path might correspond to the globally shortest path in a given
environment. With stricter constraints, the algorithm is still able to
find a path between the start and goal. However, these paths might be
significantly longer, requiring the robot to exit the building through
the windows that it has already used while entering.

(a) (b) (c)

@ Robot base ) Start @ Goal === Initial tether configuration

Fig. 19: Results: (a) Max. tether length = 30. Globally shortest path
in the environment satisfies the tether length constraint. (b) Max.
tether length = 25. With a shorter tether, robot has to follow the
next locally (i.e. under small perturbations of the path) shortest path
(which is the second globally shortest path in the environment). (c)
Max. tether length = 20. With a stricter constraint on the tether length,
the path that the robot has to follow is significantly longer.

Length Constrained Path (LCP)

2) Simulated Experiments: We demonstrate the capabilities of
the proposed LCS algorithm on virtual environments shown in
Figure 20 and the accompanying multimedia attachment. In the
scenario shown in Figure 20(a), there exists a long rectangular prism
in the environment around which there exists geodesic paths within the
same homotopy class. The robot is to start from an initial position and a
corresponding tether configuration such that the globally shortest path
from the start to goal does not satisfy the tether length constraint. The
LCP obtained from the algorithm is shown using the green line and
the sequence of tether configurations are shown using the transparent
red lines. As expected, the LCP makes the robot move towards its base
and go around the other side of the prism. It must be noted that in this
scenario the path planning takes place around a genus-0 prism, which
was described amongst limiting cases in the previous sections. The
difference is that beyond a certain ratio of the length, width and depth
of a prism, it is possible to rely on the main NAG search algorithm
(proposed in Sections V-A,V-B) to make a geometrical distinction
across the faces instead of the corners of the prism.

A similar behavior is observed in Figure 20(b), where the
robot has to exit the building-like structure and use the alternative
entrance instead of taking the globally shortest path to reach the goal.
Figure 20(c) features a trefoil knot shaped obstacle around which
arobot is to navigate between a series of goal points. In this scenario,
the robot follows the globally shortest paths whenever they satisfy
the tether length constraint and uses the alternative locally (i.e. under
small perturbations of the path) shortest paths when necessary.

3) Real Robot Experiments: A structure similar to the one shown
in Figure 20(b) is constructed using styrofoam blocks for real robot
demonstrations. A Crazyflie 2.1 quadrotor platform [46] is connected
to a metal hoop that acts as a robot base via a red wool thread that repre-
sents the tether. To ensure collision-free flight without having to detect
the objects in real-time, we run the path planning algorithm on an envi-
ronment with inflated obstacles. The discrete output from the path plan-
ning algorithm, that is a sequence of 3D points, is supplied to an exter-
nal trajectory optimizer [47], which is based on the work in [48, 49],

to generate a feasible trajectory for the quadrotor. Resulting trajectories
are tracked using the controllers proposed in [50] along with an Opti-
Track motion capture system within the Crazyswarm framework [51].

The experimental setup and the navigation progress is to be seen
in Figure 21 and the accompanying multimedia attachment. The
quadrotor is initially placed on the ground closer to the window on
the left. The first goal is defined inside the room on the left which
is accessed via the window as shown in Figure 21 - Step 2 and 3.
The second goal is defined inside the room on the right. The globally
shortest path to the second goal is not traversable due to the tether
length constraint. As shown in Steps 4-6, the quadrotor has to exit
the structure and use the window on the right to reach the goal via
a locally (i.e. under small perturbations of the path) shortest path
without violating the constraint. The tethered configuration space
construction process took 52 seconds and the length constrained
search took around 3 seconds for the problem instance used in the
real robot experiments.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a topo-geometric planning approach
that can interface with existing wavefront propagation algorithms
to find £ geodesic paths. Our method is general in the sense that it
provides a way to compute multiple geodesic paths in configuration
spaces of different geometry and dimension without requiring any
a priori geometric constructions or complex path equivalence checks.
Unlike existing topological path planning methods, it is also able to
find different geodesic paths that may be homotopic but geometrically
distinct due to presence of high cost/curvature regins. Path planning
capabilities of the algorithm are demonstrated on a variety of
environments and scenarios. We further discussed the limitations of
the proposed approach in low-curvature environments and present
modifications to the algorithm to increase path planning capabilities
in such pathological environments. Lastly, we demonstrated the use
of the neighborhood-augmented planning algorithm for a tethered
robot path planning problem. For a tethered robot navigating in 3D,
we find optimal paths that satisfy the tether length constraints, which
we demonstrate using simulations and real robot experiments.

A limitation of our work is the strict dependency on uniform
wavefront propagation type algorithms (Dijkstra’s or $*) upon which
the theoretical results are based. This requires the use of graph search
algorithms with no heuristic and poses a computational burden for
higher dimensional problems. The theoretical results could potentially
be extended to consider algorithms with non-zero heuristic for
the primary search to speed-up computation, which would require
relaxing the assumptions on the shape of the wavefront. Alternatively,
adaptation of the method to sampling-based algorithms can provide
a more scalable solution. This adaptation involves further study into
strategies for sampling configurations and locally connecting them,
while maintaining the neighborhood information. Another future
direction is the improvement of the cut point identification based
method towards a more robust solution that is parameter independent
for the pathological cases presented in the paper.

In its current state, the neighborhood-augmented planning approach
provides a general and an effective way of finding multiple geodesic
paths on 2- and 3-dimensional configuration spaces, which is proven
to be useful in many robotics applications.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-2144246.



(a) (b) {c)
o
/ 3
L * /. J’ - ’.
e | »
[ ] s
\
AN
[ ]
’, Obstacle . Base ‘ Start . Goal(s) Tether LCP

Fig. 20: Results: (a) Environment with long rectangular obstacle. (b) Environment with building-like structure. Building has two rooms
connected via a door. Both rooms have window access and the robot base is placed outside. (c) Environment with a trefoil knot shaped
obstacle. Sequence of tether configurations are plotted starting from opaque to transparent red to highlight the order.

Fig. 21: Photos from real robot experiments for scenario la. Steps 1 through 6. Quadrotor, wool tether and robot base are highlighted with
colored lines for improved visibility.

(1]
(2]

(3]

(4]

(5]

(6]

REFERENCES

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths,”
IEEE Transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100-107, 1968. [Online]. Available:
https://doi.org/10.1109/TSSC.1968.300136

A. Stentz, “The focussed D* algorithm for real-time replanning,”
in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1995, pp. 1652-1659.

K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*:
Any-angle path planning on grids,” Journal of Artificial Intelligence
Research, vol. 39, pp. 533-579, 2010. [Online]. Available:
https://doi.org/10.1613/jair.2994

M. Cui, D. D. Harabor, and A. Grastien, “Compromise-free
pathfinding on a navigation mesh,” in Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence,
LJCAI 2017, Melbourne, Australia, August 19-25, 2017, 2017, pp.
496-502. [Online]. Available: https://doi.org/10.24963/ijcai.2017/70
S. Bhattacharya, “Towards optimal path computation in a
simplicial complex,” The International Journal of Robotics

(71

(8]

(9]

(10]

(11]

Research, vol. 38, no. 8, pp. 981-1009, 2019. [Online]. Available:
https://doi.org/10.1177/0278364919855422

S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846-894, 2011. [Online]. Available:
https://doi.org/10.1177/0278364911406761

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed
rrt*: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic,” in 2014
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2014, pp. 2997-3004. [Online]. Available:
https://doi.org/10.1109/IROS.2014.6942976

J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch
informed trees (bit*): Informed asymptotically optimal anytime
search,” The International Journal of Robotics Research,
vol. 39, no. 5, pp. 543-567, 2020. [Online]. Available:
https://doi.org/10.1177/0278364919890396

X. Wang, A. Sahin, and S. Bhattacharya, “Coordination-free
multi-robot path planning for congestion reduction using
topological reasoning,” Journal of Intelligent & Robotic
Systems, vol. 108, no. 3, p. 50, Jul 2023. [Online]. Available:
https://doi.org/10.1007/s10846-023-01878-3

S. Kim, S. Bhattacharya, R. Ghrist, and V. Kumar, “Topological



[12]

[13]

[15]

[16]

[17]

(18]

[19]

(20]

(23]

[24

—

(25]

s

exploration of unknown and partially known environments,
in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 3851-3858. [Online]. Available:
https://doi.org/10.1109/IROS.2013.6696907

V. Govindarajan, S. Bhattacharya, and V. Kumar, “Human-robot
collaborative topological exploration for search and rescue
applications,” in Distributed Autonomous Robotic Systems.
Tokyo: Springer Japan, 2016, pp. 17-32. [Online]. Available:
https://doi.org/10.1007/978-4-431-55879-8_2

A. Orthey, B. Frész, and M. Toussaint, “Motion planning explorer:
Visualizing local minima using a local-minima tree,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 346353, 2020.
[Online]. Available: https://doi.org/10.1109/LRA.2019.2958524
A. Orthey and M. Toussaint, “Visualizing local minima in
multi-robot motion planning using multilevel morse theory,”
in Algorithmic Foundations of Robotics XIV.  Springer
International Publishing, 2021, pp. 502-517. [Online]. Available:
https://doi.org/10.1007/978-3-030-66723-8_30

S. Kim, S. Bhattacharya, and V. Kumar, “Path planning for a
tethered mobile robot,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2014, pp. 1132-1139. [Online].
Available: https://doi.org/10.1109/ICRA.2014.6906996

S. Bhattacharya, S. Kim, H. Heidarsson, G. S. Sukhatme, and
V. Kumar, “A topological approach to using cables to separate and
manipulate sets of objects,” The International Journal of Robotics
Research, vol. 34, no. 6, pp. 799-815, 2015. [Online]. Available:
https://doi.org/10.1177/0278364914562236

S. Bhattacharya, M. Likhachev, and V. Kumar, ‘“Topological
constraints in search-based robot path planning,” Autonomous
Robots, vol. 33, no. 3, pp. 273-290, Oct 2012. [Online]. Available:
https://doi.org/10.1007/310514-012-9304- 1

S. Bhattacharya and R. Ghrist, ‘“Path homotopy invariants and their
application to optimal trajectory planning,” Annals of Mathematics
and Artificial Intelligence, vol. 84, no. 3, pp. 139-160, Dec 2018.
[Online]. Available: https://doi.org/10.1007/s10472-018-9596-8
D. Yi, M. A. Goodrich, and K. D. Seppi, “Homotopy-aware
rrt*: Toward human-robot topological path-planning,” in 2016
11th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), 2016, pp. 279-286. [Online]. Available:
https://doi.org/10.1109/HR1.2016.7451763

T. Yang, L. Huang, Y. Wang, and R. Xiong, “Tree-based representa-
tion of locally shortest paths for 2d k-shortest non-homotopic path
planning,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA), 2024, pp. 16 553—16 559. [Online]. Available:
https://doi.org/10.1109/ICRA57147.2024.10610073

L. Jaillet and T. Simeon, ‘“Path deformation roadmaps:
Compact graphs with useful cycles for motion planning,”
The International Journal of Robotics Research, vol. 27,
no. 11-12, pp. 1175-1188, 2008. [Online]. Available:
https://doi.org/10.1177/0278364908098411

B. Zhou, J. Pan, E Gao, and S. Shen, ‘“Raptor: Robust and
perception-aware trajectory replanning for quadrotor fast flight,”
IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1992-2009, 2021.
[Online]. Available: https://doi.org/10.1109/TRO.2021.3071527
D. Ferguson, C. Baker, M. Likhachev, and J. Dolan, “A reasoning
framework for autonomous urban driving,” in 2008 IEEE Intelligent
Vehicles Symposium, 2008, pp. 775-780. [Online]. Available:
https://doi.org/10.1109/1VS.2008.4621247

D. Hong, S. Kimmel, R. Boehling, N. Camoriano, W. Cardwell,
G. Jannaman, A. Purcell, D. Ross, and E. Russel, “Development
of a semi-autonomous vehicle operable by the visually-impaired,”
in 2008 IEEFE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, 2008, pp. 539-544. [Online].
Available: https://doi.org/10.1109/MFI.2008.4648051

B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based
planning for manipulation with motion primitives,” in

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(371

[38]

[39]

2010 IEEE International Conference on Robotics and
Automation, 2010, pp. 2902-2908. [Online]. Available:
https://doi.org/10.1109/ROBOT.2010.5509685

S. Swaminathan, M. Phillips, and M. Likhacheyv, “‘Planning for multi-
agent teams with leader switching,” in 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), 2015, pp. 5403-5410.
[Online]. Available: https://doi.org/10.1109/ICRA.2015.7139954
L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566-580, 1996. [Online]. Available:
https://doi.org/10.1109/70.508439

S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic
planning,” The International Journal of Robotics Research,
vol. 20, no. 5, pp. 378-400, 2001. [Online]. Available:
https://doi.org/10.1177/02783640122067453

C. I Mavrogiannis and R. A. Khnepper, Decentralized
Multi-Agent Navigation Planning with Braids. Cham: Springer
International Publishing, 2020, pp. 880-895. [Online]. Available:
https://doi.org/10.1007/978-3-030-43089-4_56

E T. Pokorny, M. Hawasly, and S. Ramamoorthy, ‘“Topological
trajectory classification with filtrations of simplicial complexes
and persistent homology,” The International Journal of Robotics
Research, vol. 35, no. 1-3, pp. 204-223, 2016. [Online]. Available:
https://doi.org/10.1177/0278364915586713

A. Upadhyay, B. Goldfarb, and C. Ekenna, “A topological
approach to finding coarsely diverse paths,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021, pp. 6552-6557. [Online]. Available:
https://doi.org/10.1109/IROS51168.2021.9636714

C. Voss, M. Moll, and L. E. Kavraki, “A heuristic approach to
finding diverse short paths,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 4173-4179.
[Online]. Available: https://doi.org/10.1109/ICRA.2015.7139774
J-P. L. T. Siméon and C. Nissoux, “Visibility-based
probabilistic roadmaps for motion planning,” Advanced Robotics,
vol. 14, no. 6, pp. 477-493, 2000. [Online]. Available:
https://doi.org/10.1163/156855300741960

T. Bretl and Z. McCarthy, “Quasi-static manipulation of
a kirchhoff elastic rod based on a geometric analysis of
equilibrium configurations,” The International Journal of Robotics
Research, vol. 33, no. 1, pp. 48-68, 2014. [Online]. Available:
https://doi.org/10.1177/0278364912473169

A. Sintov, S. Macenski, A. Borum, and T. Bretl, “Motion planning
for dual-arm manipulation of elastic rods,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6065-6072, 2020.

S. Kim and M. Likhachev, “Path planning for a tethered robot
using multi-heuristic a* with topology-based heuristics,” in
2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2015, pp. 4656-4663. [Online]. Available:
https://doi.org/10.1109/IROS.2015.7354040

S. McCammon and G. A. Hollinger, ‘“Planning and executing
optimal non-entangling paths for tethered underwater vehicles,”
in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 3040-3046. [Online]. Available:
https://doi.org/10.1109/ICRA.2017.7989349

M. Cao, K. Cao, S. Yuan, T.-M. Nguyen, and L. Xie,
“Neptune: Nonentangling trajectory planning for multiple
tethered unmanned vehicles,” IEEE Transactions on Robotics,
vol. 39, no. 4, pp. 27862804, 2023. [Online]. Available:
https://doi.org/10.1109/TR0O.2023.3264950

M. Paton, M. P. Strub, T. Brown, R. J. Greene, J. Lizewski,
V. Patel, J. D. Gammell, and I. A. D. Nesnas, “Navigation on the
line: Traversability analysis and path planning for extreme-terrain
rappelling rovers,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020, pp. 7034-7041. [On-



line]. Available: https://doi.org/10.1109/IROS45743.2020.9341409
[40] M. Gromov, M. Katz, P. Pansu, and S. Semmes, Metric structures for
Riemannian and non-Riemannian spaces. Springer, 1999, vol. 152.
M. P. Do Carmo and J. Flaherty Francis, Riemannian geometry.
Springer, 1992, vol. 6.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. The MIT Press, 2009.
X. Wang and S. Bhattacharya, “A topological approach to
workspace and motion planning for a cable-controlled robot
in cluttered environments,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2600-2607, 2018. [Online]. Available:
https://doi.org/10.1109/LRA.2018.2817684
S. Bhattacharya, R. Ghrist, and V. Kumar, “Multi-robot
coverage and exploration on riemannian manifolds with
boundaries,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 113-137, 2014. [Online]. Available:
https://doi.org/10.1177/0278364913507324
I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion
Planning Library,” IEEE Robotics & Automation Magazine, vol. 19,
no. 4, pp. 72-82, December 2012, https://ompl.kavrakilab.org.
“Crazyflie 2.1 | Bitcraze — bitcraze.io,” https://www.bitcraze.io/
products/crazyflie-2-1/.
“GitHub - whoenig/uav_trajectories: Helper scripts and programs
for trajectories,” https://github.com/whoenig/uav_trajectories.
C. Richter, A. Bry, and N. Roy, Polynomial Trajectory Planning
for Aggressive Quadrotor Flight in Dense Indoor Environments.
Cham: Springer International Publishing, 2016, pp. 649-666.
[Online]. Available: https://doi.org/10.1007/978-3-319-28872-7_37
M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart,
“Real-time  visual-inertial mapping, re-localization and
planning onboard mavs in unknown environments,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015, pp. 1872-1878. [Online]. Available:
https://doi.org/10.1109/IROS.2015.7353622
D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, 2011, pp. 2520-2525. [Online].
Available: https://doi.org/10.1109/ICRA.2011.5980409
J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian,
“Crazyswarm: A large nano-quadcopter swarm,” in
2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 3299-3304. [Online]. Available:
https://doi.org/10.1109/ICRA.2017.7989376

[41]
[42]

[43]

(44]

[45]

[46]
[47]

(48]

[49]

[50

—

[51]

APPENDIX

Proof of Proposition 1: We prove the equivalent contrapositive
statement: If Uy NUs 70, then sep(v} yh) < 12
Suppose u € Uy N Uy as shown in Figure 8. Since the path
neighborhood sets are constructed using A* search with radius r,,
and with the g-score of the primary search as the heuristic function
with some heuristic weight w, for any u €/; we have
d(u,z;)twd(uws) <rp+w(rs—r,) i=12 D
and
d(u,z;)<rn, =12 2)
Since 7, = v; NU; (given by the green and red colored lines in
Figure 8) and y; (given by the black colored lines extending up to
v,) is the shortest path connecting z; in the open list and v, for any
vE~y; we have
d(vyvs)+d(v,x;) =rs 3
Substituting Equation 3 into Inequality 1,
d(u,z;) +wd(u,ws) <rp+w(d(vvs)+d(v,a;)—ry,)
d(u,z;)+d(v,x;) <rp(1—w)+(14+w)d(v,x;) 4

+w(d(v,vs)—d(u,vs))

20

From the definition of ~/,
d(vya;) <rp ®)
Using the following triangle inequality,
|d(v,05) —d(u,ws)| <d(v,u) <d(u,x;)+d(v,;) 6)
Inequality 4 reduces to
d(v,u) <r,(1—w)+(14w)r, +wd(v,u)

7
(1—-w)d(v,u) <2r, )
For we[0,1),
sep(1,72) <d(v1,v2) <d(vi,u)+d(ve,u)

4r,, ®)

<2 < —

<2d(vu)<
]

Proof of Proposition 2: We prove and utilize the following
Lemmas for the proof.

Lemma 1. [f d(z1,25) > 2r,, then Uy MUy =1).

Proof. We prove the equivalent contrapositive statement: If
Uy NUz # 0, then d(z1,72) < 2ry,. Suppose u € Uy NUsy as shown
in Figure 8. Since the path neighborhood sets are constructed using

A* search with radius 7, for any u €f; we have
d(u,z;)<r, =12 9)

From triangle inequality,

d(z1,22) <d(u,x1)+d(u,xe) <2r, (10)
O

Lemma 2. For any pair of vertices x1,xo at the same configuration,
reached via topo-geometrically distinct paths, d(xq,22) >1(c*).

Proof. Since x1,x5 are at the same configuration, any path between
21,79 in the closed list will be a closed path on the configuration space.
By definition, any closed path on the configuration space is longer
than the shortest closed geodesic ¢*. Then d(x1,x2) >1(c*). O

From Lemmas 1 and 2,

Ty < 70) = d(x1,22) >2r, = UiNUy=0 O

Alp Sahin is a Ph.D. student in the Department of Mechan-
ical Engineering and Mechanics at Lehigh University, PA,
U.S.A. He received his B.Sc in Mechanical Engineering
S from Bogazici University, Istanbul, in 2014. He received his
M.S. in Robotics Engineering from Worcester Polytechnic
Institute (WPI), MA, U.S.A, in 2021 with a thesis on
motion planning for in-hand manipulation. Currently, his
research focuses on the application of geometrical and topo-
logical methods to graph-based motion planning for robots.

|

S &
L 4

Subhrajit Bhattacharya is an associate professor in the
Department of Mechanical Engineering and Mechanics
of Lehigh University, PA, U.S.A. He received his Ph.D. in
Mechanical Engineering and Applied Mechanics in 2012,
and was a postdoctoral researcher in the Department of
Mathematics until 2016, at the University of Pennsylvania,
PA, U.S.A. His research interests are centered around
motion planning and control of autonomous, intelligent
and networked robotic systems using topological and
geometric methods. He is a recipient of the 2022 NSF
CAREER award.



