LEAVES OF FOLIATED PROJECTIVE STRUCTURES
ALEXANDER NOLTE

ABSTRACT. The PSL(4,R) Hitchin component of a closed surface group 7 (S) consists
of holonomies of properly convex foliated projective structures on the unit tangent bun-
dle of S. We prove that the leaves of the codimension-1 foliation of any such projective
structure are all projectively equivalent if and only if its holonomy is Fuchsian. This
implies constraints on the symmetries and shapes of these leaves.

We also give an application to the topology of the non-T( space €(RP") of projective
classes of properly convex domains in RP™. Namely, Benzécri asked in 1960 if every
closed subset of €(RP™) that contains no proper nonempty closed subset is a point. Our
results imply a negative resolution for n > 2.

1. INTRODUCTION

A PSL(4,R) Hitchin representation p of a closed surface group I' induces a curious
I-invariant curve s, from the Gromov boundary OI' to the space € of projective classes
of properly convex domains in RP2. We call s, the leaf map of p, and study it here.

As for other equivariant maps from OI" arising from geometry (e.g. [4, 8, 9, 10, 20, 37]),
the regularity and irregularities of s, are salient and interesting. The relevant aspects of
our setting have an idiosyncratic character due to the point-set topological richness of
¢. Namely, € is non-separated (i.e. not Ty) and contains both large families of closed
one-point sets and dense one-point sets (see [6, 18, 27]).

We prove s, is constant if and only if p is Fuchsian. A proposition of Benoist [5] then
implies that, for non-Fuchsian p, images of leaf maps are closed in €, are not points,
and are minimal in the sense that they contain no proper nonempty closed subset. It
follows that non-point minimal closed sets exist in the space €(RP™) of projective classes
of properly convex domains in RP™ (n > 2). The existence of non-point minimal closed
sets is a basic question for a non-separated space. It has been open for €(RP") since
Benzécri posed the question in 1960 ([6] §V.3).

Let us be more detailed. By work of Guichard-Wienhard [23], PSL(4,R) Hitchin rep-
resentations are exactly the holonomies of properly convex foliated projective structures
on the unit tangent bundle T'S, which are a refinement of (PSL(4,R), RP?) structures
on T'S. See §3.1.1 for definitions of Hitchin and Fuchsian representations and §3.2.2 for
properly convex foliated projective structures. By definition, the developing map of a
properly convex foliated projective structure maps leaves of the stable foliation F of TS
to properly convex domains in projective planes. The leaf space of F is identified with
o', and s,(x) is defined for x € OI" as [dev,z| € €. For p Fuchsian, s, is constant with
value the ellipse.

Leaf maps exhibit counter-intuitive phenomena. For instance, s, maps any nonempty
open set U C JI" onto all of 5,(0I"). In general, determining when leaf maps are constant
is made difficult by the non-separation of €. We resolve the matter:

Theorem 1.1. Let p € Hity(S). The following are equivalent:
(1) p is Fuchsian,
(2) The leaf map s, is constant,

(3) The leaf map s, has countable image,
1
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(4) There exists a leaf s,(x) that is an ellipse, is divisible, is a closed point of €, or
has non-discrete projective automorphism group.

Recall that a properly convex domain is divisible if it admits a cocompact action by a
discrete subgroup of SL(3,R). Condition (4) considerably limits the symmetries of leaves
of non-Fuchsian p. It is in contrast to the observation that some leaves have symmetries:
automorphism groups of leaves s,(7*) of fixed points y* € OI" for v € I' — {e} contain Z.

Theorem 1.1 is a rigidity result for Fuchsian representations among PSL(4, R) Hitchin
representations in terms of the behavior of the leaf map s,. It is a theme in the better-
studied setting of convexr projective geometry that highly symmetric examples, namely
ellipsoids, exhibit numerous rigidity phenomena. See e.g. [4] Proposition 6.1, [13] Theo-
rems 0.5-0.6, [14] Theorem 1.1, [44] Theorem 1.35, and [45] Theorem 1.4. For examples
of rigidity phenomena in the study of discrete subgroups of Lie groups more generally,
see e.g. [3] Théoreme 1.2.b, [32] Theorem 1.1, [37] Theorem D, and [40] Theorem B.

Though non-constancy of s, for non-Fuchsian p may appear intuitive, it implies leaf
maps exhibit a rather dramatic phenomenon, impossible for any map to a Ty space:

Theorem 1.2. For non-Fuchsian p € Hity(5), the leaf map s, : Om1 S — € is continuous,
constant on m.S orbits, and not constant.

Note in the above theorem that all 7S orbits in dm S are dense.

Benoist has proved that s, has closed image in € (in unpublished work; see §4.4 for
details). From the continuity of s, and the minimality of the action of I on JI', it follows
that the image 5,(0I') is a minimal closed set in €, in the sense that it is closed and
contains no proper nonempty closed subset. By taking cones over leaves of non-Fuchsian
PSL(4,R) Hitchin representations, non-point minimal closed subsets of €(RP") can be
constructed for all n > 2 (§4.6).

All prior examples of minimal closed sets in €(RP™), such as divisible domains [6], are
points. So our results imply:

Theorem 1.3. For alln > 2, €(RP") contains minimal closed sets that are not points.

Benzécri concludes his seminal thesis, in which his namesake compactness theorem is
proved and the topology of € is first seriously studied, with a few questions on €(RP™) for
n > 2 ([6] §V.3). The first was whether all minimal closed subsets of €(RP™) are points.

Among the experts aware of s, having closed image, Theorems 1.1-1.3 were expected
to be true. However, no proof that s, is non-constant for non-Fuchsian p had been found.
This ends up being the main difficulty, and presents technical challenges. Our proof
uses a range of methods, for instance relying on the Baire category theorem and the
classification of Zariski closures of Hitchin representations.

1.0.1. Shapes of Leaves. Our results place further restrictions on the geometry of indi-
vidual leaves of non-Fuchsian properly convex foliated projective structures, which we
explain here. First, they prevent any boundary point of a leaf from being too regular
without being very flat.

Corollary 1.4. Let p be non-Fuchsian and x € dmS. Then the leaf 5,(z) has no C*
boundary point of nonvanishing curvature.

This is analogous to a classical result of Benzécri for divisible domains. It is notable in
that it constrains arbitrary boundary points. This is in contrast to the constraints accessi-
ble with standard methods to study boundary regularity of similar objects, which control
the worst-behaved points (e.g. [20] Theorem 22, [37] Theorem D, and [43] Theorem 1.1).
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Pairing Theorem 1.1 with the closedness of the collection of all leaves in € results in
constraints on how complicated and asymmetric the boundary behavior a leaf may be.
For instance, Benzécri showed in [6] (§V.3, p.321) that there are dense one-point sets in
€. The following implies that any such domain cannot occur as a leaf.

Corollary 1.5. If p € Hity(S) is non-Fuchsian and x € 0T, then Cle{s,(x)} contains
no closed point.

In the remainder of the introduction we outline our proof and situate our results in the
context of broader projects in higher Teichmiiller theory.

1.1. Outline of Proof of Theorem 1.1. A rough outline of our proof is that after
addressing regularity of varying projective equivalences with a Baire category argument,
the closed subgroup theorem forces major constraints on the eigenvalues of p when s,(z)
is constant. These constraints, when paired with the classification of Zariski closures of
Hitchin representations [41] allow us to deduce Theorem 1.1.

It proves useful to do case analysis on the size of the projective automorphism group
of s,(z). The most involved case is when s,(x) has discrete automorphism group. This
case is ill-suited to productive use of Benzécri’s compactness theorem, and is a place
where we must contend with the non-separation of €. This appears in the form that
there are discontinuous paths A, : [0,1] — SL(3,R) and domains € in RP? so that A,Q
is continuous in the Hausdorff topology.

Our argument in this case to obtain constraints on eigenvalues of p if 5, is constant
hinges on the Baire category theorem. Using it, we show that the above pathology may
be avoided on a nonempty open subset U C OI' in the sense that we may arrange for
representatives of the equivalence classes s,(x) to vary by a continuous family of projective
equivalences on U. Paired with this basic regularity, the closed subgroup theorem forces
a compatibility of the action of p(I') on leaves and our family of projective equivalences.

This compatibility implies certain actions of p(7) on fixed subspaces are projectively
conjugate, which places major constraints on the eigenvalues of p(v) for v € I'—{e}. This
in turn places constraints on the Zariski-closure of the image of p(I'). The argument is
concluded by comparing the constraints we obtain and Guichard’s classification of Zariski
closures of Hitchin representations (see [41]).

1.2. Context and Related Results.

1.2.1. Properly Convex Projective Structures. Some notable analogues to Theorems 1.1
and 1.2 occur in the study of properly convex projective structures on surfaces. These
structures parameterize SL(3,R) Hitchin components [11, 18].

Briefly, a projective structure (dev,hol) on S is said to be properly convex if dev is
a homeomorphism of S onto a properly convex domain € of RP?. In this case, I' acts
properly discontinuously and without fixed-points on {2 through hol.

A similar statement to Theorem 1.2 that is much easier to prove is the observation
that in the above notation, 0f2 is topologically a circle and the map reg : Q2 — (1,2]
associating to x € 09 the optimal pointwise C'“ regularity of 00 at = (see e.g. §2) is
a I'-invariant map that is constant on all orbits of I', and only constant if hol is in the
Fuchsian locus of Hits(S5).

1A simple example of this phenomenon is as follows. Let Q be a domain with nontrivial projective
automorphism group and let A; be a discontinuous path of projective automorphisms of 2. Then
A Q = is constant but Ay is not continuous. We must also contend with e.g. the possibility that for a
divergent sequence A; € SL(3,R) the domains A4, converge to .
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Of course this is an imperfect analogue to Theorem 1.2 since the target, (1, 2], of reg is
much better-separated than €, and there is no aspect of continuity present. Nevertheless,
there is a theme here that the local projective geometry of domains of discontinuity for
non-Fuchsian PSL(n,R) Hitchin representations is quite complicated (c.f. also [38]).

The geometry of properly convex projective structures is well-studied, and much of the
structure in this setting (e.g. [4, 20]) is due to the presence of divisibility. It is not clear
to what extent the geometry of leaves s,(z) is similar. One expects similarities due to
the closedness of the image of s,.

1.2.2. Geometric Structures and Hitchin Representations. For all split real forms G of
complex simple centerless Lie groups, the G-Hitchin components are parametrized by
holonomies of connected components of spaces of geometric structures on manifolds Mg
associated to S [24]. Understanding the qualitative geometry of these geometric structures
is a program within higher rank Teichmiiller theory, into which this work falls. The basic
question of the topological type of Mg has seen major recent progress in cases of special
interest in [1] and more generally in [2] and [16]. There is no qualitative characterization
of these connected components of geometric structures currently known in general.

In fact, the only Lie group G as above of rank at least 3 where M is known and the
geometric structures corresponding to Hitchin representations are qualitatively charac-
terized is PSL(4, R). Since the analytic tools that are often used to study these geometric
structures in low rank (e.g. [12]) break down in rank 3 [39], the PSL(4, R) Hitchin compo-
nent is a natural candidate for study in developing expectations for the general geometry
of Hitchin representations.

1.2.3. The Mapping Class Group Action on Hitchin Components. A long-standing ques-
tion in higher Teichmiiller theory is to understand the structure of the action of the
mapping class group Mod(S) on Hitchin components. A conjecture that would have set-
tled this question was due to Labourie ([30], Conjecture 1.6). Labourie’s conjecture holds
for Hitchin components for Lie groups G as above of rank 2 [31], and was disproved in
rank at least 3 as the culmination of a series of papers by Markovi¢, Sagman, and Smillie
(34, 35, 39].

However, the negative resolution to Labourie’s conjecture does not appear to directly
yield information about the Mod(S) action on Hitchin components, and leaves open what
we shall call the fibration conjecture ([42], Conjecture 14). To state the fibration con-
jecture, let Q%(S) denote the holomorphic bundle over Teichmiiller space of holomorphic
k-adic differentials (see e.g. [7]).

Question 1.6 (Fibration Conjecture). Is the PSL(n,R) Hitchin component naturally
Mod(S)-equivariantly diffeomorphic to the bundle sum @,_; Q%(S)?

Work of the author [36] implies that a conjecture of Fock and Thomas on higher degree
complex structures [17] is equivalent to the fibration conjecture. The connection of the
fibration conjecture to this paper is through its prediction that there should be canonical
projections Hit,, (S) — Hitg(S) for 2 < k& < n. The only known such projections have
k=2 (e.g. [29, 33, 25]).

In their paper ([23], §1) introducing properly convex foliated projective structures,
Guichard and Wienhard suggest that perhaps these geometric objects could be used
to approach the fibration conjecture for PSL(4,R). The question that motivated the
investigations leading to this paper was if examining the leaves of properly convex foliated
projective structures gave rise to a projection Hity(S) — Hits(S). This would have been
evidence in favor of the Fock-Thomas and fibration conjectures.
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More specifically, properly convex subsets of RP? are the setting of the geometric
structures corresponding to the SL(3,R) Hitchin component, and also appear as leaves
of properly convex foliated projective structures. One might hope, after noticing that
s, is continuous and constant on I'-orbits that s, was constant, s,(x) was divisible, and
examining the action of p € Hity(S) on the value of s5,(x) gave an element of Hits(.S).
Theorem 1.1 shows that this hope fails.

Organization. Following the introduction are two sections on background: §2 on convex
domains in RP? and §3 on Hitchin representations and properly convex foliated projective
structures. In §4 we prove Theorems 1.1-1.3 and present a proof, following Benoist and
printed here with his permission, that s,(9I') is closed in €.
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2. PROPERLY CONVEX DOMAINS IN RIP?

In this section we recall the foundational facts about properly convex subsets of RP?
that are essential to our later arguments.

We begin by introducing definitions and notation. A projective line in RP? is the
collection of lines contained in a plane in R®. We refer to intervals contained in projective
lines as line segments in RP2. A set Q C RP? is convez if for any pair of points p, ¢ €
there is a line segment contained in €2 between p and ¢q. A domain is an open connected
subset of RP?. A convex domain ) is said to be properly convez if Q is contained in a
single affine chart, and is said to be strictly convex if for every p,q € €, a line segment
connecting p and ¢ in Q can be taken to be contained in € except at its endpoints.

2.1. Spaces of Properly Convex Sets. Let C denote the collection of properly convex
domains in RP?. Let C* denote the collection of pointed properly convex domains in RP?
that is, pairs (€2, p) where Q € C and p € Q. We give C the topology induced by the
Hausdorff topology on closures, and C* the topology induced from the product C x RP?.
Both spaces are Hausdorff. Note that SL(3,R) takes lines in RP? to lines in RP?, and so
acts on C and C*. We denote the quotients of C and C* by the action of SL(3,R) by &
and €*, respectively.

The topology of € only separates some points—one-point sets in € need not be closed.
This phenomenon plays a prominent role in this paper. A first example of non-closed
points in € is as follows.

Example 2.1. Let ey, eq, €3 be a basis for R3. Work in an affine chart containing [e1], [ea],
and les]. Let Q be a strictly convexr domain contained in this affine chart preserved by
A = diag(e*, e, e for some A >n > 0. For instance Q may be an ellipse if n = 0.
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Let ¢ denote the line segment from [eq] to [es] in this affine chart and p € £ — {eq,e3}.
Let ¢' denote the line determined by [es] and p. Then ¢’ bisects Q). Let €' be the component
of Q — ' whose closure contains [es]. Then Q' is not projectively equivalent to Q as its
boundary contains a line segment, but A™Y converges to Q2 in the Hausdorff topology. So
€] e {[]}.

The closures of points in € vary a great deal: it is a consequence of Benzécri’s com-
pactness theorem below that all divisible domains are closed points, while Benzécri also
showed ([6] §V.3, p.321) there there exist dense one-point sets in €. The topology of €
is quite complicated, and is rich enough that the continuity of a map with target € has
nontrivial content.

On the other hand, all of the poor separation in € is caused by divergent sequences
of elements of SL(3,R) for the tautological reason that if K C SL(3,R) is compact and
Q) € C, then the orbit of €2 under K represents a single point in €. As a consequence,
if one is able to gain finer control on a sequence €2, € C than convergence in C, it can
be tractable to understand the limiting projective geometry of €2, in spite of the non-
separation of points in €.

The typical way this is done in practice is by gaining control over a single point of
the domains 2, in question, working with the space €* instead of €. It follows from the
below fundamental result of Benzécri ([6], see also [19] Theorem 4.5.4) that this is enough
to guarantee uniqueness of limits.

Theorem 2.2 (Benzécri Compactness). SL(3,R) acts properly and co-compactly on C*.
As an immediate corollary, we have:

Corollary 2.3. €* is a compact Hausdorff space.

3. PROPERLY CONVEX FOLIATED PROJECTIVE STRUCTURES AND HITCHIN
REPRESENTATIONS

In this section, we recall the relevant features of Hitchin representations and the theory
of properly convex foliated projective structures developed by Guichard and Wienhard
in [23] to our later discussion. We also prove a few basic lemmata and set conventions
for later use. §3.3 is the only portion of this section not contained in existing literature.

Notation. Through the rest of the paper, S is a closed, oriented surface of genus g > 2,
[ =m(S), and T = 7, (T'S) where TS is the unit tangent bundle of S.

3.1. Hitchin Representations. We recall the definitions of Hitchin components and
Labourie-Guichard’s characterization of Hitchin representations in terms of the geometry
of certain special invariant curves.

3.1.1. Fuchsian and Hitchin Representations. Let X(I',PSL(n,R)) be the PSL(n,R)-
character variety of T', i.e. the collection of conjugacy classes® of representations I' —
PSL(n,R). For n = 2, there are two connected components of X(I", PSL(2,R)) that con-
sist entirely of discrete and faithful representations. Denote their union by 7(S). Each
is identified with the Teichmiiller space of isotopy classes of hyperbolic structures on S,
and the existence of two components corresponds to a choice of orientation.

Classical Lie group representation theory shows that there is a unique conjugacy class of
embeddings of PSL(2,R) in PSL(n, R) whose images act irreducibly on R™ (see Example
3.2 below). Let ¢, : PSL(2,R) — PSL(n,R) be such an embedding.

2There is some variance in convention on what equivalence relation to use in defining character vari-
eties. Namely, the coarser relation that p; ~ po if the closures of the representations’ conjugation orbits
intersect is often used. These equivalence relations coincide for the representations we consider.
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Definition 3.1. A representation p € X(I', PSL(n,R)) is Fuchsian if it is contained in
tn(T(S)). The PSL(n,R)-Hitchin component(s) Hit, (S) are the connected components
of X(I', PSL(n,R)) containing Fuchsian representations. Representations in Hit,(S) are
called Hitchin representations.

There are one (if n is odd) or two (if n is even) Hitchin components in PSL(n,R), each
homeomorphic to a ball of dimension (2g — 2)(n? — 1) where g is the genus of S [26].

3.1.2. Hitchin Representations and Hyperconvexr Frenet Curves. While efficient, Defini-
tion 3.1 does not illuminate the structure of Hitchin representations. We now recall
another characterization of Hitchin representations, in terms of the geometry of special
equivariant curves, due to Labourie and Guichard. This characterization supplies a great
deal of structure to us and is central to our methods.

Let F(R™) denote the space of full flags of nested subspaces of R", i.e. (n — 1)-tuples
(VA, ..., V1) of nested subspaces of R™ with dimV; =i fori =1,...,n — 1. A continuous
curve £ = (&1,..., "1 1 O — F(R™) is a hyperconvex Frenet curve if:

(1) (Convexity) For any ky, ..., k; with Z{:l k; < n, and distinct 2, ...,x; € OI', the
vector space sum & (1) + ... + &% (x;) is direct;
(2) (Osculation) For any = € JT' and ky, ..., k; with K = >"]_, k; < n we have that
(x) = lim [EM(27") & ... & M (a7")] for any sequence (27", ...,27") of j-tuples
m—0o0
of distinct points so that for all [, the sequence x}" converges to x.

A hyperconvex Frenet curve (£1,...,£"71) is entirely determined by &1

Example 3.2. The standard example of a hyperconver Frenet curve is the Veronese
curve, described as follows. For k > 1, the vector space of homogeneous degree k — 1
polynomials on R? has dimension k and so is a model for R¥. In these models, RP¥~! is
the collection of homogeneous degree k — 1 polynomials on R?, considered up to scaling.

The Veronese embedding ¢! : RP* — RP"! is given in these models by taking (n —1)-
th powers of degree 1 homogeneous polynomials, i.e. E'([f]) = [f"']. In general, for
1 <k <n-—1, we define E([f]) = {[g] € R¥ | f* divides g} . One may verify that
E= (& ..., YY) is a hyperconvex Frenet curve. We call it the Veronese curve.

An irreducible embedding PSL(2,R) — PSL(n,R) may be described explicitly in this
polynomial model for R*¥. To do this, observe SL(2,R) acts on R¥ by Af = fo A~'. The
induced map PSL(2,R) — PGL(n,R) has image in PSL(n,R) and so gives an embedding
tn : PSL(2,R) — PSL(n,R) that one may prove is irreducible. Note that the Veronese
curve is equivariant with respect to v,. So Fuchsian representations in PSL(n,R) admit
equivariant hyperconvex Frenet curves.

The relevant result to us here of Labourie and Guichard, that generalizes the above
example and which serves as our working definition of a Hitchin representation, is:

Theorem 3.3 (Labourie [28] Theorem 1.4, Guichard [22] Théoreme 1). A representation
p: ' = PSL(n,R) is Hitchin if and only if there exists a p-equivariant hyperconvex Frenet
curve.

A fact that will be useful to us is that Hitchin representations p : I' — PSL(n, R) may
always be lifted to SL(n,R). This was observed by Hitchin in [26], and also follows from
e.g. [15], Corollary 2.3 and Theorem 4.1.

Though the definition of a hyperconvex Frenet curve is stated in terms of sums of &,
work of Guichard [21] shows that intersections of ¥ are also quite well-behaved, which is
often the way in which we interact with the hyperconvex Frenet curve property.
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Proposition 3.4 (Guichard [21] Lemme 6). Let & = (¢,...,£"1) be a hyperconvex Frenet
curve. Then:

1) (General Position) If n = 7: k; and xq,...,x; € OU are distinct, then
=1 J
J
(& ") = {0:
i=1
2) (Dual Osculation) For any x € OU and ky, ..., k; with K = j: k; < n we have
j 1=1

that for any sequence (z7",...,x7') of j-tuples of distinct points in OU' so that zj"
converges to x for each [,

J
¢ " (x) = lim (€5 ().
=1

3.2. Properly Convex Foliated Projective Structures. In this subsection, we recall
some features of geodesic foliations on surfaces and collect the results of Guichard and
Wienhard in [23] on PSL(4,R) Hitchin representations that are relevant to us. Our
notation and the content here follows [23]. The Fuchsian case is an instructive model,
and is described in §3.2.3.

3.2.1. Stable Foliations and Geodesic Foliations. Fixing a hyperbolic metric on S iden-
tifies the geodesic foliations of T1S and T'H?, and identifies OI' with OH?. There is a
well-known description of T'H? as orientation-compatible triples (¢, ,to,t_) of distinct
points in 9. We denote the space of such triples OI'®*. One obtains this identification
by associating to (p,v) € T'S the endpoints at infinity of the geodesic ¢ determined
by v as t_,t,, and the endpoint t; of the geodesic perpendicular to ¢ at p that makes
(t,to,t_) orientation-compatible (see Figure 1).

Under this identification, the leaves of the stable foliation F of T'H? are the collections
of elements of OI'®)* with fixed ¢, entry, and the leaves of the geodesic foliation G are
the collections of elements of OI'®+ with fixed {_ and ¢, entries. So the leaf spaces of F
and G are identified with OI' and OI'® ;=T x I' — {(x,2) | # € T'}. From its description
above, the leaf space of G is also identified with the collection of oriented geodesics in H2.
In the following, we shall identify elements of OT' and OI'® and the corresponding leaves
of F and G.

We remark that both foliations F and G are [-invariant, and so descend to foliations
that we denote by F and G, respectively, of T1S. We also remark that G is the geodesic
foliation of the reference hyperbolic metric. Because our identification between TS
and OT'®)7 is equivariant with respect to the natural actions of I', and the foliations on
OI'®* are independent of our reference metric, the topological type of the pair (F,G) is
independent of the choice of hyperbolic metric.

3.2.2. Domains of Discontinuity and Developing Maps. The starting point for Guichard-
Wienhard’s theory of properly convex foliated projective structures are explicit parame-
terizations of domains of proper discontinuity in RP? for PSL(4,R) Hitchin in terms of
hyperconvex Frenet curves ([23] §4). We recall this construction here.

Let p : T' — PSL(4,R) be Hitchin with hyperconvex Frenet curve & = (&' £2,£3).
Following the notation of Guichard-Wienhard ([23] §4.1.2), define the two-argument map
£L: 00 x oI — RP? by

1y _ JEMNER) t#T
t(t)_{gl(t) t=1t"
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FIGURE 1. The unit tangent bundle T H?2.

Then we can define a map ([23] §4.1.2, Eq. (7)) by
dev:  Or** — RP

(ty,to, t-) = ()& (o) NEL (t)EL (t),

where we denote the line in RP? determined by two points a and b by ab. Write Q, =
dev(OT'®*). See Figure 2, and discussion below.

The following collects the features of this construction proved by Guichard-Wienhard
in §4 of [23]. The most important points to us are (2), (3), (4), and (5). The assertions
below all follow from further convexity features possessed by hyperconvex Frenet curves
beyond their defining conditions (e.g. [21] Proposition 7).

Theorem 3.5 (Guichard-Wienhard (23], §4). With notations as above,

(1) The map dev is a homeomorphism of OT®* onto Q,, which is an open subset of
RP3. It is equivariant with respect to the actions of T' on OT'®* and p(T') on RPS.
(2) The two argument map (t,t') — & (t') is a continuous injection that is equivariant
with respect to the actions of T' on O x OT and p(T') on RP3. Its image is the
boundary 9Q, of Q, in RP® and is a disjoint union of the lines £(x) for x € OT.
That is, 9, = | |, cor ().
(3) The group p(I') acts freely, properly discontinuously, and cocompactly on Q,, with
quotient homeomorphic to T'S.
(4) For any x € U, the image £L(OT) of {x} x OT under the two-argument map &'
is the boundary of dev(z) in &(z). In the expression dev(x) we view x as a leaf
of F, as in §3.2.1. The domain dev(x) is properly convexr. The boundary of Q,
is the disjoint union of the boundaries of these domains: 08, = | | cop Odev(z),
and the domains dev(x) foliate €2,,.
(5) For (z,y) € OT'®, viewed as a leaf of G, the image dev((x,y)) is the open line
segment in dev(x) between EL(y) and £'(x). These segments foliate Q,.
(6) A supporting line to ddev(x) at £2(y) N &3(x) is E(y) N E3(x), and a supporting
line to Odev(z) at &'(x) is £2(x).
We will see in §3.3 that the domains dev(z) (z € dT') are strictly convex and C', so
that the supporting lines in Theorem 3.5.(6) give all supporting lines to the domains

ddev(z). Figure 2, Right gives a sketch of 992, and how a domain dev(x) sits in RP.
Using the domains dev(x) above, we can make the main definition to our investigations:

Definition 3.6. Given a Hitchin representation p : I' — PSL(4,R), for x € OI' define
s,(z) € € to be the projective equivalence class of dev(z). We call s, the leaf map of p.
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E(ty)

(t-) N &(ty) (N

— — g

&(ty)

E(t)NE(t-)

F1GURE 2. Left: the developing map in terms of the hyperconvex Frenet
curve. Right: illustration of how the convex domains dev(z) sit inside of
the domain of discontinuity €2, in an affine chart for RP?, emphasizing the
ruling of 02, by projective lines. Solid lines represent visible portions of
011,, and dotted line segments represent portions of 92, that are not visible
from the viewpoint of the illustration.

Let us briefly remark that Theorem 3.5.(3) implies that dev lifts to a developing map

dev : T*S — RP? of a projective structure on 7S with developing image €,. Guichard
and Wienhard then formalize the basic qualitative features of this projective structure
induced by Theorem 3.5.(5) in the notion of a properly convex foliated projective structure
on T'S. The main result of [23] (Theorem 2.8) is a remarkable converse to Theorem 3.5,
namely that every properly convex foliated projective structure on T'S is equivalent to
one of these examples by a projective equivalence that respects the foliations G and F.
This gives a correspondence between an appropriate moduli space of properly convex
foliated projective structures and the Hitchin component Hity(S).

3.2.3. The Fuchsian Case. The case of Fuchsian representations in PSL(4,R) (described
in §3.1.2 and §4.1 of [23]) is instructive. We briefly describe it. We use the notation of
Example 3.2, so RP? is viewed as the space of homogeneous degree 3 polynomials on R?,
considered up to scaling.

Every [f] € RP? has three projective roots in CP' counted with multiplicity, each
of which is contained in RP' or is one of a conjugate pair of non-real roots. On the
other hand, polynomials on C are determined up to scale by their roots, so that RP3
parameterizes configurations of roots of real homogeneous degree 3 polynomials on R

There are four such combinatorial types, and the action of t4(PSL(2,R)) on RP? pre-
serves types. The first are the polynomials that are a cube, which are exactly the image of
&L, The second are polynomials with a double root that are not cubes, which are exactly
the points of the form &} (y) with 2 # y in OI'. The boundary 952, is the union of these two
types of points, i.e. of polynomials with a real root of multiplicity at least 2. We remark
that 0€2, may be explicitly computed in this case using discriminants: its intersection with
an appropriate affine chart is the zero set of F(z,y, 2) = 18xyz — 432 +2%y* — 4y — 2722
This description is amenable to computer rendering, which when carried out shows the
phenomena illustrated in Figures 2, Right and 3.
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Uil /17

F1GURE 3. Sketch of the relative positions of two convex domains dev(z)
and dev(y) in an affine chart for RP?. Note that the ruling of 992, by lines
gives a canonical maps between the boundaries of these convex domains.

The complement of 02, has two connected components. The first, which we shall see is
(1,, consists of polymomials with a conjugate pair of non-real zeroes. The second consists
of polynomials with three distinct real zeroes.

The foliations and convexity appearing in Theorem 3.5 can be seen explicitly here. Let
R? have basis {z,y}. View the corresponding coordinate functions r and y as monomials
on R? and their projective classes as elements of RP!. Then the hyperplane &*([x])
consists of the homogeneous degree 3 polynomials on R? that are divided by z. So a
basis for £3([z]) is {23, 2%y, zy?}. Work in the affine chart A for £3([z]) that is associated
to this basis and contains all polynomials with nonzero z3-coordinate. Then the point
EYx) is [1 : 0 : 0], the line A N &*(x) is the horizontal axis [1 : a : 0] (¢ € R), and
ddev(z) N A is the parabola given by z(z + ay)? = [1 : 2a : ¢*] (a € R). One may see
that e.g. the point z(2? 4+ y*) = [1:1: 1] is in the convex region bounded by dev(z), so
2, consists of homogeneous polynomials with conjugate non-real roots.

3.3. Two Remarks on Boundaries of Leaves. In this subsection, we describe two
basic geometric features of the leaves dev(x).

Our first observation is that the ruling of the boundary of Q, by &*(z) (z € 9I)
gives rise to natural identifications of boundaries of leaves ddev(x). Geometrically, any
boundary point p of dev(z) is contained in exactly one £2(y) for y € dT'. Given another
2’ € O, the identification of boundaries maps p to the unique intersection of £(y) with
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ddev(z’) (Figure 3). The identification of boundaries ddev(xz) — Odev(a’) is given by
EL(t) = €L(t). These identifications vary continuously in z, 2/, and y as a consequence of
continuity of £!(y), which follows from dual osculation in Proposition 3.4.

Our second observation concerns the structure of the boundary of ddev(z) for x € JI™:
it is strictly convex and C*. Strict convexity, in particular, is a tool that we use for some
obstructions later.

Proposition 3.7 (Basic Regularity). For all x € 0T, the leaf dev(z) is strictly convex
and has C* boundary.

Proof. To show that ddev(zx) is C', we consider the collection D* C Gry(£3(x)) of sup-
porting lines to dev(z). From standard projective geometry (e.g. [19], Lemma 4.4.1), D%
is a topological circle. The path 0I' = D} given by

Ey)n&(x) y#=
v {s%x) y=2z

is a continuous injection of OI' = S! into D = S1, and so must be surjective. See Figure
2.

Since the map of Equation (3.1) surjects D?, all supporting lines to dev(z) must be of
the form &3(y) N &3(x) or £3(x). As every point in ddev(z) is contained in exactly one
such line by the General Position conclusion in Proposition 3.4, all boundary points of
dev(x) have unique tangent lines. Because dev(z) is convex, this implies ddev(zx) is C.

Strict convexity follows from the general position property of hyperconvex Frenet curves
as follows. Supposing otherwise, ddev(x) must contain an interval I, contained in a line
¢;. For any y # x € OI so that £1(y) is in the interior of I, we must have &3(y)N&3(x) = £y,
as this is a supporting line to ddev(z) at a point in I. This is impossible by the general
position property of hyperconvex Frenet curves, and proves strict convexity. Il

(3.1)

4. PROOFS OF THE MAIN THEOREMS

In this section we prove our main theorems. The vast majority of the effort is spent
showing s, is not constant unless the Hitchin representation p is Fuchsian. We begin by
setting notation in §4.1. An outline of the structure of the core of our proofs is then given
in §4.2, and the remainder of the paper is spent following this outline.

4.1. Notation, Conventions, and Definitions. Let us begin by setting up notation
to facilitate comparison of projective types of leaves.

The group SL(3,R) acts simply transitively on quadruples of points in general position
in RP?. So, by fixing a point t, € II' and a continuously varying family of 4 points

{(p1(), p2(t), p3(t), pa(t)) | t € OT'} C RP?

so that p;(t) € €(¢) (i = 1,...,4) and the points (p1(t), p2(t), p3(t), pa(t)) are in general
position within &3(¢) for all ¢+ € dT', we induce well-determined projective equivalences
E(t) — &(ty) for all t € OT.

One way to produce such a normalization is to take 4 distinct points z1, ..., x4 € OI" and
let p;(t) (1 = 1,2,3,4) be the unique point of intersection between &*(z;) and ddev(t).
The continuity of the points p;(t) results in such a normalization being continuous in
the sense that the induced mappings from a reference RP? with 4 fixed points in general
position to £3(t) € RP? vary continuously.

Throughout the following, we shall once and for all fix such a normalization and view all
domains dev(t) as subsets of RP? 2 £3(,). When relevant, we will write the map £3(¢) —
&(to) by Ni_t,. We denote Ny, (dev(t)) by Cy. At times when not doing so would make



LEAVES OF FOLIATED PROJECTIVE STRUCTURES 13

notation extremely cumbersome, we abuse notation to suppress the normalization used
to identify dev(t) and C;.

Definition 4.1. Given a Hitchin representation p, domains Cy as above, a subset S C OT,

and a reference point ty € S, a projective equivalence of leaves over S is a function
18— Aut(&3(ty)) so that f(t)Cy, = Cy for allt € S.

Projective equivalences of leaves need not exist over a given subset S C JI'. The leaf
map s, is constant if and only if a family of projective equivalences over OI' exists. We
do not assume continuity or any sort of regularity, measurability, or the like of projective
equivalences over sets S unless explicitly noted.

At times, it will be useful to consider projective equivalences of leaves as two-argument
maps between leaves seen as subsets of RP?, which the next bit of notation facilitates.

Definition 4.2. Given a projective equivalence f of leaves over S and t,t' € S, define
the projective equivalence f(t,t') : dev(t) — dev(t') by

f<t7t/)_ t’%toof<) f() 1O]\/vt—ﬁfo'

4.2. Outline of Proof that non-Fuchsian Leaf Maps are Nonconstant. Our proof
assumes that s, is constant, so that there is a projective equivalence f over 9I', and proves
that p is Fuchsian through obtaining constraints on the eigenvalues of p(I').

In order to get initial leverage for our arguments, we require some control on the
automorphisms of individual leaves s,(z). The dichotomy we use to get this control is
the closed subgroup Theorem, which in our setting implies that either for every z € oI
every s,(z) has discrete projective automorphism group, or there is an « € JI' so that
Aut(&3(ty), C,) C SL(3,R) contains a 1-parameter subgroup.

The discrete case is the most involved. In it, we first show that though f may be
everywhere discontinuous, we may modify f to obtain a continuous family f of projective
equivalences over a nonempty open set U C OI', which can be enlarged using equivariance
of leaf maps. The informal idea of the phenomenon underlying why this is possible is
that all of the discontinuity of f comes from two sources: projective automorphisms of
s,(z), and divergent families of projective equivalences A; so that AtC’to converges to Cy
in the Hausdorff topology for some #'. This is exploited by carefully choosing countable
covers S; of I so that f is well-behaved on each S;, then applying the Baire category
theorem to show some S; is large enough to be useful.

Next, we use a “sliding” argument to show that if v € I' and there is a continuous
family of projective equivalences g over an appropriate open set U, C OI', the logarithms
of the eigenvalues of p(y) are evenly spaced.

Finally, we apply the eigenvalue constraints obtained from the condition that s, is con-
stant to show that p must be Fuchsian. We do this by analyzing the constraints we have
obtained on the Zariski closure of p(I') and comparing this to Guichard’s classification
of Zariski closures. The main proposition here may be thought of as a simple case of a
deep theorem of Benoist on Zariski-dense subgroups of linear groups [3]. We find that
our eigenvalue constraints are impossible unless p is Fuchsian.

If one leaf has non-discrete automorphism group, the closed subgroup theorem forces
this leaf to have extremely restricted structure, and in particular a rather smooth bound-
ary. This, together with the closedness of the image of s,, reduces to the case where every
leaf is an ellipse. This is then handled similarly to the discrete case.

The discrete case is the topic of §4.3. Continuity is addressed in §4.3.1 and eigenvalue
constraints in §4.3.2. In §4.3.3 we analyze the Zariski-closure of p and complete the
discrete case. We show that leaf maps have closed image in §4.4. The non-discrete case
is then completed in §4.5. We explain how Theorems 1.1 and 1.2 follow in §4.6.
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4.3. The Discrete Case. In this subsection, we assume that the group Aut(&3(to), C,)
of projective automorphisms of C, is discrete for all z € OT'.

4.3.1. Continuity. We contend first with the poor separation of points in €. Some intu-
ition from Benzécri’s compactness theorem is that for a domain Q with Aut(£2) discrete,
projective equivalences of Aut(2) and divergent sequences A, so A, — Q in € should
be the only possible discontinuities of a family of projective equivalences. The key ob-
servation of this paragraph is that in this setting, as in these two examples, all of the
discontinuity of f comes from jumps of (locally) definite size.

It is useful to know that the domains C; vary continuously in the Hausdorff topology.

Lemma 4.3 (Leaf Map Basics). Let p € Hity(S). Then C, is continuous in t, s, is
continuous, and if v € OI' we have s,(x) = s,(yx) for all v € I

Note that orbits of the action of I' on OI' are dense, as this action is minimal. So for
all x € JI', the leaf map s,(z) is constant on the dense set I'z.

Proof. Observe that C; varies continuously in the Hausdorff topology on domains in &3(t,),
since AC; is parametrized by the continuous function I — £3(¢) given by Ny, (& (7))
for z € 9T, and &/ (x) depends continuously on t. So s,(t) = [C;] € € varies continuously.

For the other claim, if v € I" we have s,(yz) = [p(v)(dev(x))], where p(v)|es) :
&(x) — &3 (yx) is induced by a linear map and hence a projective equivalence. O

We are now ready to prove the main proposition of this paragraph.

Proposition 4.4 (Modify to Continuity). Suppose that s, has countable image and every
leaf s,(x) has discrete automorphism group. Then s, is constant and there is a continuous

projective equivalence f of leaves over a non-empty open set U C OI'.

Proof. By hypothesis, we may write OI' = | |°_, D,,, with D,, sets so that for all m € N
there is some projective equivalence of leaves f,, over D,, with respect to a reference point
$m € Dy,. To begin, let us fix a right-invariant metric dp on SL(3,R) and a metric dg on
OT. Note that for all s € D,,, we have Aut(&3(to), Cs) = fin(s)Aut(E3(ty), Cs,,) fn(s) 1.

To proceed, we need locally uniform control in f,,(s) on the separation of Aut(£3(t), C)
from the identity. To this end, we adopt the notation that for A a discrete subgroup of
a Lie group G equipped with a right-invariant metric we set x(A) := inf{d(e,g) | g €
A — {e}}. Let us abbreviate conjugation by ¥, : h + ghg~'. We obtain control through
the following fact, which is a straightforward consequence of right-invariance of the metric
on G. We include a proof for completeness and the convenience of the reader.

Lemma 4.5 (Discreteness is Conjugation-Stable). Let G be a Lie group and A < G be a
discrete subgroup. Then the function n : g — k(V,4(A)) is 2-Lipschitz.

Proof. Let x,g € G be arbitrary. By right-invariance of d and the triangle inequality,
|d(gzg™, e) — d(z, )| = |d(gz, g) — d(,¢)]
= |d(gx, g) + d(gw, 6) - d(gl‘, 6) - d(ma 6)’
< |d(g[L‘,g) - d(g[[‘, €>| + |d(gZL', 6) - d(l’, 6)|
< d(g,e) + d(gx, x)
= 2d(g,e).
So for g,¢" € G, we have [n(gg') —n(g')| = [£(Vs(¥y(A))) — r(¥y(A))] < 2d(g,e) =

2d(gg’, g'), using the definition of 1 and the right-invariance of d.
OJ
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Now let m be given, with reference point s, € D,,. By Lemma 4.5 (Discreteneness
is Conjugation-Stable), for each g € SL(3,R), there exists a set K, with the following
properties:

(1) K, is compact and contains g in its interior,
(2) Letting x, denote hienlg (k(Pp-1 (Aut(E3(ty), Cs,.)))) = hienlg (k(Aut(&3(to), hCy,)))),

we have k4, > 0,
(3) The map K, x K, — SL(3,R) given by (hy, hy) — hihy' has image contained in
the ball B, (e).
Now let { K7} be a countable cover of SL(3, R) by such compact sets. Define S;* C oI
as f,,'(K7"). We show:

Claim. The restriction of f,, to SI"* is uniformly continuous.

Proof of Claim. Fix e > 0. We must exhibit that there is some § > 0 so that if dg(¢,t') < §
and fm(t)a fm(t/) € Kgfa then dP(fm(t)vfm(t/)) <€

We first remark that the map Bﬁgi/g(e) x K} — R given by (A, h) = diaus(hCs,,, ARC,))

is continuous and has zero set exactly {e} x KJ' by construction of xg,. It follows

from compactness that there is an ¢ > 0 so that if h € K', A € B, ;(e), and
ditans(hCs,, , ARC,, ) < €, then A € B(e).

As 0T is compact, the map t — C} is uniformly continuous with respect to the Hausdorff
topology on &(ty), hence there is a § > 0 so that if dg(t,t') < 0, then dyaus(Cr, Cy) < €.
So if dg(t,t') < 0 and t,t" € SI", we have

6/ > dHaus(au C_t/) = dHaus(au fm(t/)fm(t>71€t>
As Cp = fn(t)Cs,, with f(t) € KJ' and fo(t')fm(t)™" € By, j2(e), we have from
our previous observation that € > dp(e, frn(t)fm(t)™') = dp(fi(t'), fm(t)) by right-
invariance. [

~_The point of this claim to us is that for any 7 and m, there exists a continuous extension
[ of fulsm to Si". Now observe that the two maps S7" — C(&3(ty)) given by t — C;

and t — f"(t)Cy, are continuous and agree on a dense subset of S™. Since C(£3(ty)) is
Hausdorff (§2), this shows f™(t)Cy, = C, for all t € S™. So f™ is a continuous projective
equivalence of leaves over S".

Now, as S cover II" the collection {S7"} is a countable cover of dI" by closed sets. So
by the Baire category theorem at least one S7* has non-empty interior. For any such 4,m,
setting f = ]};m yields the desired continuous family of projective equivalences of leaves
over an open set U.

Having produced f, we observe as remarked above that all C,, for x € U are projectively
equivalent. Since the action of I' on JI' is minimal and acts with North-South dynamics,
it then follows that all C, (z € JI') are projectively equivalent. 4

Using the action of I' on JI', we may enlarge the open sets where we have continuous
families of projective equivalences.

Corollary 4.6 (Enlarge Domains). Suppose s, is constant and every leaf s,(x) has dis-
crete automorphism group. Let v € T' — {e} have attracting and repelling fized-points
v, v~ € O, respectively. Then there is a connected open set U containing v© and vy~
and a continuous projective equivalence of leaves f over U.

Proof. Proposition 4.4 (Modify to Continuity) produces an open set U C OI' and a
continuous projective equivalence of leaves f over U. By equivariance of dev, for any
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n € I' we have

Cre = Nt (dev(nz)) = Nyasio (p(0)dev(2)) = Nyoosio (p(1) (N5, (Ca)))-
So defining f : nU — SL(3,R) by

NT > Npg_sty © P(77) © Nx_—lnto © f(x)
gives a continuous projective equivalence of leaves over nUU. The corollary now follows
from North-South dynamics of the action of I" on OT'. U

4.3.2. Eigenvalue Constraints. The goal of this paragraph is to constrain the Jordan
canonical forms of p(v) for v € I'—{e}. We accomplish this through obtaining eigenvalue
constraints from an application of the continuity established in §4.3.1 and the closed
subgroup Theorem. Throughout this paragraph, we suppress uses of normalization maps
N,y = dev(z) — &€3(g) to make notation manageable.

To establish notation, for v € I' — {e} write the eigenvalues of p(y) as A, Ag, A3, A4 or-
dered with nonincreasing modulus, and denote log |A;| by ¢; for i = 1, ..., 4. The quadruple
(A1, Ao, Az, Ay) is defined up to negation and (¢, ¢, {3, (4) is well-defined.

As p is Hitchin, p(7) is real-diagonalizable, {; > ¢y > {3 > {4, and all \; have the same
sign (e.g. [37], discussion in proof of Theorem A). Denote the eigenlines corresponding to
A1, A2, A3, Ag by €1, e, €3, eq, respectively. We have £3(yT) = span(ey, es, €3) and £3(y7) =
span(esg, €3, e4). We show:

Proposition 4.7 (Jordan Form Constraints). Suppose that p is a Hitchin representation,
s, is constant, and s,(x) has discrete automorphism group for all x € OU'. Then for each
v €T —{e} there is a X > 1 so that p(v) is conjugate to £diag(A3, \, A1, A73).

The main input is the following application of discreteness of automorphism groups of
leaves. It shows that our continuous projective equivalences of leaves commute with p in
an appropriate sense.

Lemma 4.8 (Commutativity Lemma). Let v € I' — {e}. If f is a continuous projective
equivalence of leaves over a connected open set U containing v+ for some v € T' — {e},

then for all s € U and p € dev(yT), we have

p(N(p) = [f(ys,77) o p(7) o f(T, 5)](p)
Proof. The maps {A;}sep given by

A, s dev(yt) — dev(y™)
p= [f(rs,7T) o p(y) o f(vF, )] ()

are a continuous family of projective equivalences of dev(y"), and hence must be constant
by discreteness of Aut(&3(tp), C+). At s =~F we have Ay = p(7). 0O

We now prove Proposition 4.7.

Proof of Proposition 4.7. Let v € I'—{e} be given. By Corollary 4.6 there is a connected
open set U containing v+ and v~ and a continuous projective equivalence of leaves f over
U. Let I C JT" be a closed interval with endpoints v+ and ~~.

Applying the Commutativity Lemma 4.7 with s = 4~ shows that the restriction of
p(7) to the open set dev(y™) coincides with

FOm ) ep(y) o f(y ) = f(y" ) ep(y) o f(v7 7).
Since projective equivalences are determined by their values on open sets and f(y™,~v7)

is a projective equivalence, this implies the restrictions of p(7) to £3(y*) and £3(v™) are
conjugate after rescaling.
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So there is a ¢ € R* so that ¢(\, A2, A\3) = (A2, A3, \4), and hence A\;/Ags = Ay/A3 =
A3/Ay = c. This, together with the restriction that all eigenvalues of p(7) have the same
sign and p(v) has determinant 1 implies that p(7) is conjugate to £diag(A3, \, \™1, A73)
for some A > 1. U

4.3.3. Conclusion of Discrete Case. Any Fuchsian representation p satisfies that for
every v € I' — {e} the matrix p(y) (y € I') is conjugate to a matrix of the form
diag(A3, A, A1, A73) for some A > 1. To conclude, we must show that this property dis-
tinguishes Fuchsian representations. In particular, it is not possible for a non-Fuchsian
representation to take values in a collection of distinct principal PSL(2,R) subgroups of
PSL(4,R).

The classification of Zariski closures of Hitchin representations is useful to us here.?
For a lift of p in the PSL(4, R) Hitchin component to SL(4,R), the classification states
that the Zariski closure of p(I') is conjugate to a principal SL(2,R) (in which case p is
Fuchsian), is conjugate to Sp(4,R), or is SL(4, R).

Proposition 4.9 (Fuchsian from Eigenvalues). Suppose that p is lift of a PSL(4,R)
Hitchin representation to SL(4,R) so that for all v € T, p(v) is conjugate to a matrix
of the form Fdiag(A3, \, \"1, A\73) for some positive A = \(y) € R — {0}. Then p is

Fuchsian.

Proof. By the classification of Zariski closures of Hitchin representations [41], it suffices
to show that the Zariski closure of p(I") is neither SL(4,R) nor conjugate to Sp(4,R).

We begin by recalling that if aq, ..., a4 are the eigenvalues of A € GL(4,R), then the
coefficients o; (i = 0,...,3) of the characteristic polynomial of A are the elementary
symmetric polynomials in the variables aq, ..., a4, and are all polynomials in the entries
of A. Solet Fa1,as,as,a4) =1, jeqr, ay(ai— a?). Then F is a symmetric polynomial in
{a1, ..., a4}, and so is an element of the polynomial ring Z[oy, ..., 03] by the fundamental
theorem of symmetric polynomials. Consequently, F' is a polynomial G in the entries of
A. As all g; are conjugation-invariant, so is G.

Note, furthermore, that if A is conjugate to a matrix of the form diag(A3, A\, A\™1, A73),
then F(A3, A, \=1, A73) vanishes. So for a Hitchin representation p satisfying our hypothe-
ses, the Zariski closure of p(I") is contained in the vanishing locus of G.

On the other hand, for instance, the symplectic matrix A = diag(3,2,1/2,1/3) €
Sp(4,R) is not in the vanishing locus of G, as F'(3,2,1/2,1/3) # 0. As G is conjugation-
invariant, this shows that the Zariski closure of p(I') cannot contain any subgroup of
SL(4,R) conjugate to Sp(4,R), which gives the claim. O

Remark. Proposition 4.9 may also be proved using a deep theorem of Benoist on limit
cones of Zariski-dense representations in linear groups ([3] Théoréme 1.a.5). The proof
above uses considerably more elementary tools than Benoist’s theorem.

Let us note that Propositions 4.9 and 4.7 are sufficient to rule out the case of discrete
automorphism group:

Proposition 4.10. Suppose that p € Hity(S) and s,(01") is countable. Then there is a
leaf C, of p for some x € AT so that Aut(&3(z), C,) is not discrete.

Proof. Suppose otherwise, for contradiction. Take a PSL(4,R) Hitchin representation
p with 5,(0I') countable and so that every leaf C, has discrete automorphism group.
Then Proposition 4.4 (Modify to Continuity) shows s, is in fact constant and Proposi-
tion 4.7 shows that for every v € I' — {e} the matrix p(y) has Jordan canonical form

3The classification is due to Guichard in unpublished work, and also follows from recent results of
Sambarino ([41], Corollary 1.5).
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+diag(A3, A\, A71, A73) for some A > 1. Then Proposition 4.9 implies p is Fuchsian. This
is impossible because for p Fuchsian, every leaf C, is an ellipse. U

4.4. The Collection of all Leaves. Following a suggestion of Benoist, we adapt an
argument of Benzécri [6] (see also [19], proof of Theorem 4.5.6) to characterize the image of
s,. This will be used to give a short proof in the case of non-discrete automorphism group
below. We maintain the notations of the previous section, notably the normalization maps
Ny, @ E(t) — &(to). We also adopt the notation that IT : C* — C is the canonical
projection given by forgetting pointings: I1(€2, p) = Q.

Proposition 4.11 (Benoist). Let t € OI'. Then 5,(0') = Cle({[C]}).

Proof. From the minimality of the action of I' on OI', the continuity of s,, and the
observation that for v € I" and t € OI' we have [s,(t)] = [s,(7t)], we see that s,(0') C
Cle({C:}). So it suffices to show that s,(0I") is closed in €.

We next describe the condition we shall verify in order to prove this. To show s,(0I")
is closed in € it suffices to show that the union of the SL(3,R)-orbits of {C;} (¢ € 9I")
is closed in C, which is equivalent to the closedness of the union of the SL(3,R)-orbits
of the preimages II7'({gC;}) = {9C:} x (9Cy) (t € 9T, g € SL(3,R)) in C*. This is
in turn equivalent to showing the image £ of |J,co;p 7' ({s,(¢)}) under the projection
Q" : C* — €* is closed. By Benzécri’s compactness theorem, €* is a Hausdorff space and
so compact sets in €* are closed. As €* is second-countable, it suffices to verify that £ is
sequentially compact. This is what we shall prove.

Fix a compact set K C Q, so that p(I')K' = ,. One verifies using compactness
of K and Ol that the image of K after normalization is uniformly separated from the
complement of the leaves in the sense that there is some & > 0, independent of ¢ € OT,
so that lfp e KN 53(t) then dto (Nt—>t0 (p)7€3(t0) - Ct) > 0.

So let ¢, € £ be a sequence. For all n, choose a leaf C;, and p, € Int(C},) so that
Q*((Ct,,pn)) = cy. Since p(I') K = Q,, after applying projective equivalences arising from
compositions of normalizations and the action of p(y) (y € I') on Q,, we may arrange
for p, € KN CCy,. It follows from compactness of K and continuity features of our
normalization that after taking a subsequence, there is some t,, € 9" and p,, € C; N K
so that JEEO(Ctn’p") = (C}.,Pxo) in C*. Hence Q*(Cy_,ps) € £ is a limit point of ¢,

and so £ is compact, as desired. O

4.5. The Non-Discrete Case. We show:

Proposition 4.12 (Only Ellipses). Suppose there is some x € OI' so that s,(z) has
non-discrete automorphism group. Then p is Fuchsian and s,(y) is the ellipse for all
yedl.

Proof. Let x € 0T be so that Aut(£3(tg), C,) is non-discrete. Then by the closed subgroup
theorem, Aut(£3(ty), C,;) contains a one-parameter subgroup H = {A;};cg. Then for any
po € 0C,, the orbit Hpg is entirely contained in 0C,.

Since fixed-points of A; for ¢t # 0 are either isolated or contained in a line of fixed points
and C, is strictly convex, it follows that 0C, contains a nontrivial orbit O of H, which
must be smooth. Note that O cannot have everywhere vanishing curvature, since then
O would be a line segment and C, is strictly convex. So dC, must have a C? point of
nonvanishing curvature. It is then a standard fact (e.g. [19] Ex. 4.5.2.3) that the ellipse
[O] € € is contained in the €-closure of {[C,]}.

By Proposition 4.11, there is some y € JI' so [C,] = [O]. Since the projective class
[O] of the ellipse is a closed point of €, by Lemma 4.3 (Leaf Map Basics) the preimage
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FIGURE 4. Some sample orbits of one-parameter subgroups of SL(3,R).

s, ({[O]}) C T is closed and contains a dense subset of 9", hence must be all of II'. So
for all t € O, the leaf C; is an ellipse.

Let v € I' — {e}. Since C,+ and C,- are ellipses and the restrictions of p(v) to
&3 (v") and C.+ is diagonalizable, the restrictions p(7)|e(y+) and p(y)|es(,-) of p(7), must
have Jordan forms that are scalar multiples of matrices of the form diag(A,+, 1,)\;+1)
and diag(A,-, 1, )\;,1), respectively, for some A,+,\,- € R*. The first constraint implies
0y — ly = 0y — {3 and the second that ¢y — {3 = {3 — ¢,. This implies p(v) has Jordan
canonical form +diag(A3, A\, A7t A73) for some A\ > 1.

Now, Proposition 4.9 (Fuchsian from Eigenvalues) shows p is Fuchsian. U

4.6. Deduction of Results. We end by documenting how the results claimed in the
introduction follow. We first note:

Theorem 4.13. The leaf map s, is constant if and only if p is Fuchsian. If p is Fuchsian,
then s, takes value the ellipse.

Proof. The Fuchsian case is shown by Guichard-Wienhard in [23]. That s, is not constant
if p is not Fuchsian follows from Propositions 4.10 and 4.12. U

The main theorems follow:

Proof of Theorem 1.1. The first equivalence is Theorem 4.13. The equivalence of (2) and
(3) is given by the equivalence of constancy and countable image in Proposition 4.4. The
parts of the equivalence of (4) with (1) pertaining to Fuchsian representations follow from
standard facts about ellipses. That a closed point of € or a divisible domain occuring
as a leaf implies (2) follows from that divisible domains are closed points of € ([6] §V.3
Proposition 3, see also [19] Theorem 4.5.6) together with Lemma 4.3 (Leaf Map Basics).
Indeed, if s,(t) is a closed point of €, by continuity and I-invariance of s, (Lemma 4.3),
s5,'(s,(t)) is a closed, T-invariant subset of OT' and hence all of OI'. That a leaf having
non-discrete automorphism group implies p is Fuchsian follows from Proposition 4.12. [

Proof of Theorem 1.2. Combine Theorem 4.13 with Lemma 4.3 (Leaf Map Basics). O

Proof of Theorem 1.3. For p non-Fuchsian, that s,(0I') is a non-point closed subset of €
is Theorem 1.1 and Proposition 4.11. That s,(0I") is minimal among closed sets follows

from the characterization in Proposition 4.11 that s,(0I") is the closure of any point in
5,(0T). This proves the Theorem for €(RP?).
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The result for €(RP") for n > 3 reduces to the n = 2 case by a classical characterization
of €(RP")-closures of convex hulls due to Benzécri ([6] §V.3, Proposition 4), as follows.
Let ©Q € €(RP") be a convex domain so that the closure in €(RP") of {[2]} is a minimal
closed subset of €(RP") that is not a point. Let ' be a convex domain in RP"™! formed
as the convex hull in an affine chart A of an inclusion of €2 in the intersection with A of
a copy P of RP" C RP"! and a point p € A — P. Then Benzécri’s proposition implies
the closure of {[Q?]} in €(RP"') is a minimal closed subset in €(RP"™!) that is not a
point. U

Proof of Corollary 1.4. This follows from the standard fact (e.g. [19] Ex. 4.5.2.3) that
if Q) is a properly convex domain in RP? with a C? boundary point of nonvanishing
curvature, then the €-closure of {[Q2]} contains the ellipse. If p € Hity(S), then since
s, has closed image, this implies that if any leaf s, contains a C* boundary point with
nonzero curvature then there is a leaf s,(y) projectively equivalent to the ellipse. We
conclude p is Fuchsian by Theorem 1.1. U

The proof of Corollary 1.5 is similar to that of Corollary 1.4.
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