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Abstract. The PSL(4,R) Hitchin component of a closed surface group π1(S) consists
of holonomies of properly convex foliated projective structures on the unit tangent bun-
dle of S. We prove that the leaves of the codimension-1 foliation of any such projective
structure are all projectively equivalent if and only if its holonomy is Fuchsian. This
implies constraints on the symmetries and shapes of these leaves.

We also give an application to the topology of the non-T0 space C(RPn) of projective
classes of properly convex domains in RPn. Namely, Benzécri asked in 1960 if every
closed subset of C(RPn) that contains no proper nonempty closed subset is a point. Our
results imply a negative resolution for n ≥ 2.

1. Introduction

A PSL(4,R) Hitchin representation ρ of a closed surface group Γ induces a curious
Γ-invariant curve sρ from the Gromov boundary ∂Γ to the space C of projective classes
of properly convex domains in RP2. We call sρ the leaf map of ρ, and study it here.

As for other equivariant maps from ∂Γ arising from geometry (e.g. [4, 8, 9, 10, 20, 37]),
the regularity and irregularities of sρ are salient and interesting. The relevant aspects of
our setting have an idiosyncratic character due to the point-set topological richness of
C. Namely, C is non-separated (i.e. not T0) and contains both large families of closed
one-point sets and dense one-point sets (see [6, 18, 27]).

We prove sρ is constant if and only if ρ is Fuchsian. A proposition of Benoist [5] then
implies that, for non-Fuchsian ρ, images of leaf maps are closed in C, are not points,
and are minimal in the sense that they contain no proper nonempty closed subset. It
follows that non-point minimal closed sets exist in the space C(RPn) of projective classes
of properly convex domains in RPn (n ≥ 2). The existence of non-point minimal closed
sets is a basic question for a non-separated space. It has been open for C(RPn) since
Benzécri posed the question in 1960 ([6] §V.3).
Let us be more detailed. By work of Guichard-Wienhard [23], PSL(4,R) Hitchin rep-

resentations are exactly the holonomies of properly convex foliated projective structures
on the unit tangent bundle T 1S, which are a refinement of (PSL(4,R),RP3) structures
on T 1S. See §3.1.1 for definitions of Hitchin and Fuchsian representations and §3.2.2 for
properly convex foliated projective structures. By definition, the developing map of a

properly convex foliated projective structure maps leaves of the stable foliation F of T 1S̃
to properly convex domains in projective planes. The leaf space of F is identified with
∂Γ, and sρ(x) is defined for x ∈ ∂Γ as [devρx] ∈ C. For ρ Fuchsian, sρ is constant with
value the ellipse.

Leaf maps exhibit counter-intuitive phenomena. For instance, sρ maps any nonempty
open set U ⊂ ∂Γ onto all of sρ(∂Γ). In general, determining when leaf maps are constant
is made difficult by the non-separation of C. We resolve the matter:

Theorem 1.1. Let ρ ∈ Hit4(S). The following are equivalent:

(1) ρ is Fuchsian,
(2) The leaf map sρ is constant,
(3) The leaf map sρ has countable image,
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(4) There exists a leaf sρ(x) that is an ellipse, is divisible, is a closed point of C, or
has non-discrete projective automorphism group.

Recall that a properly convex domain is divisible if it admits a cocompact action by a
discrete subgroup of SL(3,R). Condition (4) considerably limits the symmetries of leaves
of non-Fuchsian ρ. It is in contrast to the observation that some leaves have symmetries:
automorphism groups of leaves sρ(γ

±) of fixed points γ± ∈ ∂Γ for γ ∈ Γ−{e} contain Z.
Theorem 1.1 is a rigidity result for Fuchsian representations among PSL(4,R) Hitchin

representations in terms of the behavior of the leaf map sρ. It is a theme in the better-
studied setting of convex projective geometry that highly symmetric examples, namely
ellipsoids, exhibit numerous rigidity phenomena. See e.g. [4] Proposition 6.1, [13] Theo-
rems 0.5-0.6, [14] Theorem 1.1, [44] Theorem 1.35, and [45] Theorem 1.4. For examples
of rigidity phenomena in the study of discrete subgroups of Lie groups more generally,
see e.g. [3] Théorème 1.2.b, [32] Theorem 1.1, [37] Theorem D, and [40] Theorem B.

Though non-constancy of sρ for non-Fuchsian ρ may appear intuitive, it implies leaf
maps exhibit a rather dramatic phenomenon, impossible for any map to a T1 space:

Theorem 1.2. For non-Fuchsian ρ ∈ Hit4(S), the leaf map sρ : ∂π1S → C is continuous,
constant on π1S orbits, and not constant.

Note in the above theorem that all π1S orbits in ∂π1S are dense.
Benoist has proved that sρ has closed image in C (in unpublished work; see §4.4 for

details). From the continuity of sρ and the minimality of the action of Γ on ∂Γ, it follows
that the image sρ(∂Γ) is a minimal closed set in C, in the sense that it is closed and
contains no proper nonempty closed subset. By taking cones over leaves of non-Fuchsian
PSL(4,R) Hitchin representations, non-point minimal closed subsets of C(RPn) can be
constructed for all n ≥ 2 (§4.6).

All prior examples of minimal closed sets in C(RPn), such as divisible domains [6], are
points. So our results imply:

Theorem 1.3. For all n ≥ 2, C(RPn) contains minimal closed sets that are not points.

Benzécri concludes his seminal thesis, in which his namesake compactness theorem is
proved and the topology of C is first seriously studied, with a few questions on C(RPn) for
n ≥ 2 ([6] §V.3). The first was whether all minimal closed subsets of C(RPn) are points.

Among the experts aware of sρ having closed image, Theorems 1.1-1.3 were expected
to be true. However, no proof that sρ is non-constant for non-Fuchsian ρ had been found.
This ends up being the main difficulty, and presents technical challenges. Our proof
uses a range of methods, for instance relying on the Baire category theorem and the
classification of Zariski closures of Hitchin representations.

1.0.1. Shapes of Leaves. Our results place further restrictions on the geometry of indi-
vidual leaves of non-Fuchsian properly convex foliated projective structures, which we
explain here. First, they prevent any boundary point of a leaf from being too regular
without being very flat.

Corollary 1.4. Let ρ be non-Fuchsian and x ∈ ∂π1S. Then the leaf sρ(x) has no C2

boundary point of nonvanishing curvature.

This is analogous to a classical result of Benzécri for divisible domains. It is notable in
that it constrains arbitrary boundary points. This is in contrast to the constraints accessi-
ble with standard methods to study boundary regularity of similar objects, which control
the worst-behaved points (e.g. [20] Theorem 22, [37] Theorem D, and [43] Theorem 1.1).
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Pairing Theorem 1.1 with the closedness of the collection of all leaves in C results in
constraints on how complicated and asymmetric the boundary behavior a leaf may be.
For instance, Benzécri showed in [6] (§V.3, p.321) that there are dense one-point sets in
C. The following implies that any such domain cannot occur as a leaf.

Corollary 1.5. If ρ ∈ Hit4(S) is non-Fuchsian and x ∈ ∂Γ, then ClC{sρ(x)} contains
no closed point.

In the remainder of the introduction we outline our proof and situate our results in the
context of broader projects in higher Teichmüller theory.

1.1. Outline of Proof of Theorem 1.1. A rough outline of our proof is that after
addressing regularity of varying projective equivalences with a Baire category argument,
the closed subgroup theorem forces major constraints on the eigenvalues of ρ when sρ(x)
is constant. These constraints, when paired with the classification of Zariski closures of
Hitchin representations [41] allow us to deduce Theorem 1.1.

It proves useful to do case analysis on the size of the projective automorphism group
of sρ(x). The most involved case is when sρ(x) has discrete automorphism group. This
case is ill-suited to productive use of Benzécri’s compactness theorem, and is a place
where we must contend with the non-separation of C. This appears in the form that
there are discontinuous paths At : [0, 1] → SL(3,R) and domains Ω in RP2 so that AtΩ
is continuous in the Hausdorff topology.1

Our argument in this case to obtain constraints on eigenvalues of ρ if sρ is constant
hinges on the Baire category theorem. Using it, we show that the above pathology may
be avoided on a nonempty open subset U ⊂ ∂Γ in the sense that we may arrange for
representatives of the equivalence classes sρ(x) to vary by a continuous family of projective
equivalences on U . Paired with this basic regularity, the closed subgroup theorem forces
a compatibility of the action of ρ(Γ) on leaves and our family of projective equivalences.

This compatibility implies certain actions of ρ(γ) on fixed subspaces are projectively
conjugate, which places major constraints on the eigenvalues of ρ(γ) for γ ∈ Γ−{e}. This
in turn places constraints on the Zariski-closure of the image of ρ(Γ). The argument is
concluded by comparing the constraints we obtain and Guichard’s classification of Zariski
closures of Hitchin representations (see [41]).

1.2. Context and Related Results.

1.2.1. Properly Convex Projective Structures. Some notable analogues to Theorems 1.1
and 1.2 occur in the study of properly convex projective structures on surfaces. These
structures parameterize SL(3,R) Hitchin components [11, 18].
Briefly, a projective structure (dev, hol) on S is said to be properly convex if dev is

a homeomorphism of S̃ onto a properly convex domain Ω of RP2. In this case, Γ acts
properly discontinuously and without fixed-points on Ω through hol.

A similar statement to Theorem 1.2 that is much easier to prove is the observation
that in the above notation, ∂Ω is topologically a circle and the map reg : ∂Ω → (1, 2]
associating to x ∈ ∂Ω the optimal pointwise Cα regularity of ∂Ω at x (see e.g. §2) is
a Γ-invariant map that is constant on all orbits of Γ, and only constant if hol is in the
Fuchsian locus of Hit3(S).

1A simple example of this phenomenon is as follows. Let Ω be a domain with nontrivial projective
automorphism group and let At be a discontinuous path of projective automorphisms of Ω. Then
AtΩ = Ω is constant but At is not continuous. We must also contend with e.g. the possibility that for a
divergent sequence At ∈ SL(3,R) the domains AtΩ converge to Ω.
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Of course this is an imperfect analogue to Theorem 1.2 since the target, (1, 2], of reg is
much better-separated than C, and there is no aspect of continuity present. Nevertheless,
there is a theme here that the local projective geometry of domains of discontinuity for
non-Fuchsian PSL(n,R) Hitchin representations is quite complicated (c.f. also [38]).
The geometry of properly convex projective structures is well-studied, and much of the

structure in this setting (e.g. [4, 20]) is due to the presence of divisibility. It is not clear
to what extent the geometry of leaves sρ(x) is similar. One expects similarities due to
the closedness of the image of sρ.

1.2.2. Geometric Structures and Hitchin Representations. For all split real forms G of
complex simple centerless Lie groups, the G-Hitchin components are parametrized by
holonomies of connected components of spaces of geometric structures on manifolds MG

associated to S [24]. Understanding the qualitative geometry of these geometric structures
is a program within higher rank Teichmüller theory, into which this work falls. The basic
question of the topological type of MG has seen major recent progress in cases of special
interest in [1] and more generally in [2] and [16]. There is no qualitative characterization
of these connected components of geometric structures currently known in general.

In fact, the only Lie group G as above of rank at least 3 where MG is known and the
geometric structures corresponding to Hitchin representations are qualitatively charac-
terized is PSL(4,R). Since the analytic tools that are often used to study these geometric
structures in low rank (e.g. [12]) break down in rank 3 [39], the PSL(4,R) Hitchin compo-
nent is a natural candidate for study in developing expectations for the general geometry
of Hitchin representations.

1.2.3. The Mapping Class Group Action on Hitchin Components. A long-standing ques-
tion in higher Teichmüller theory is to understand the structure of the action of the
mapping class group Mod(S) on Hitchin components. A conjecture that would have set-
tled this question was due to Labourie ([30], Conjecture 1.6). Labourie’s conjecture holds
for Hitchin components for Lie groups G as above of rank 2 [31], and was disproved in
rank at least 3 as the culmination of a series of papers by Marković, Sagman, and Smillie
[34, 35, 39].

However, the negative resolution to Labourie’s conjecture does not appear to directly
yield information about the Mod(S) action on Hitchin components, and leaves open what
we shall call the fibration conjecture ([42], Conjecture 14). To state the fibration con-
jecture, let Qk(S) denote the holomorphic bundle over Teichmüller space of holomorphic
k-adic differentials (see e.g. [7]).

Question 1.6 (Fibration Conjecture). Is the PSL(n,R) Hitchin component naturally
Mod(S)-equivariantly diffeomorphic to the bundle sum

⊕n
k=3 Qk(S)?

Work of the author [36] implies that a conjecture of Fock and Thomas on higher degree
complex structures [17] is equivalent to the fibration conjecture. The connection of the
fibration conjecture to this paper is through its prediction that there should be canonical
projections Hitn(S) → Hitk(S) for 2 ≤ k < n. The only known such projections have
k = 2 (e.g. [29, 33, 25]).
In their paper ([23], §1) introducing properly convex foliated projective structures,

Guichard and Wienhard suggest that perhaps these geometric objects could be used
to approach the fibration conjecture for PSL(4,R). The question that motivated the
investigations leading to this paper was if examining the leaves of properly convex foliated
projective structures gave rise to a projection Hit4(S) → Hit3(S). This would have been
evidence in favor of the Fock-Thomas and fibration conjectures.
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More specifically, properly convex subsets of RP2 are the setting of the geometric
structures corresponding to the SL(3,R) Hitchin component, and also appear as leaves
of properly convex foliated projective structures. One might hope, after noticing that
sρ is continuous and constant on Γ-orbits that sρ was constant, sρ(x) was divisible, and
examining the action of ρ ∈ Hit4(S) on the value of sρ(x) gave an element of Hit3(S).
Theorem 1.1 shows that this hope fails.

Organization. Following the introduction are two sections on background: §2 on convex
domains in RP2 and §3 on Hitchin representations and properly convex foliated projective
structures. In §4 we prove Theorems 1.1-1.3 and present a proof, following Benoist and
printed here with his permission, that sρ(∂Γ) is closed in C.
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2. Properly Convex Domains in RP2

In this section we recall the foundational facts about properly convex subsets of RP2

that are essential to our later arguments.
We begin by introducing definitions and notation. A projective line in RP2 is the

collection of lines contained in a plane in R3. We refer to intervals contained in projective
lines as line segments in RP2. A set Ω ⊂ RP2 is convex if for any pair of points p, q ∈ Ω
there is a line segment contained in Ω between p and q. A domain is an open connected
subset of RP2. A convex domain Ω is said to be properly convex if Ω is contained in a
single affine chart, and is said to be strictly convex if for every p, q ∈ Ω, a line segment
connecting p and q in Ω can be taken to be contained in Ω except at its endpoints.

2.1. Spaces of Properly Convex Sets. Let C denote the collection of properly convex
domains in RP2. Let C∗ denote the collection of pointed properly convex domains in RP2,
that is, pairs (Ω, p) where Ω ∈ C and p ∈ Ω. We give C the topology induced by the
Hausdorff topology on closures, and C∗ the topology induced from the product C ×RP2.
Both spaces are Hausdorff. Note that SL(3,R) takes lines in RP2 to lines in RP2, and so
acts on C and C∗. We denote the quotients of C and C∗ by the action of SL(3,R) by C
and C∗, respectively.

The topology of C only separates some points—one-point sets in C need not be closed.
This phenomenon plays a prominent role in this paper. A first example of non-closed
points in C is as follows.

Example 2.1. Let e1, e2, e3 be a basis for R3. Work in an affine chart containing [e1], [e2],
and [e3]. Let Ω be a strictly convex domain contained in this affine chart preserved by
A = diag(eλ, eη, e−λ−η) for some λ > η ≥ 0. For instance Ω may be an ellipse if η = 0.
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Let ℓ denote the line segment from [e1] to [e3] in this affine chart and p ∈ ℓ− {e1, e3}.
Let ℓ′ denote the line determined by [e2] and p. Then ℓ′ bisects Ω. Let Ω′ be the component
of Ω − ℓ′ whose closure contains [e3]. Then Ω′ is not projectively equivalent to Ω as its
boundary contains a line segment, but AnΩ′ converges to Ω in the Hausdorff topology. So
[Ω] ∈ {[Ω′]}.

The closures of points in C vary a great deal: it is a consequence of Benzécri’s com-
pactness theorem below that all divisible domains are closed points, while Benzécri also
showed ([6] §V.3, p.321) there there exist dense one-point sets in C. The topology of C
is quite complicated, and is rich enough that the continuity of a map with target C has
nontrivial content.

On the other hand, all of the poor separation in C is caused by divergent sequences
of elements of SL(3,R) for the tautological reason that if K ⊂ SL(3,R) is compact and
Ω ∈ C, then the orbit of Ω under K represents a single point in C. As a consequence,
if one is able to gain finer control on a sequence Ωn ∈ C than convergence in C, it can
be tractable to understand the limiting projective geometry of Ωn in spite of the non-
separation of points in C.

The typical way this is done in practice is by gaining control over a single point of
the domains Ωn in question, working with the space C∗ instead of C. It follows from the
below fundamental result of Benzécri ([6], see also [19] Theorem 4.5.4) that this is enough
to guarantee uniqueness of limits.

Theorem 2.2 (Benzécri Compactness). SL(3,R) acts properly and co-compactly on C∗.

As an immediate corollary, we have:

Corollary 2.3. C∗ is a compact Hausdorff space.

3. Properly Convex Foliated Projective Structures and Hitchin
Representations

In this section, we recall the relevant features of Hitchin representations and the theory
of properly convex foliated projective structures developed by Guichard and Wienhard
in [23] to our later discussion. We also prove a few basic lemmata and set conventions
for later use. §3.3 is the only portion of this section not contained in existing literature.

Notation. Through the rest of the paper, S is a closed, oriented surface of genus g ≥ 2,
Γ = π1(S), and Γ = π1(T

1S) where T 1S is the unit tangent bundle of S.

3.1. Hitchin Representations. We recall the definitions of Hitchin components and
Labourie-Guichard’s characterization of Hitchin representations in terms of the geometry
of certain special invariant curves.

3.1.1. Fuchsian and Hitchin Representations. Let X(Γ,PSL(n,R)) be the PSL(n,R)-
character variety of Γ, i.e. the collection of conjugacy classes2 of representations Γ →
PSL(n,R). For n = 2, there are two connected components of X(Γ,PSL(2,R)) that con-
sist entirely of discrete and faithful representations. Denote their union by T (S). Each
is identified with the Teichmüller space of isotopy classes of hyperbolic structures on S,
and the existence of two components corresponds to a choice of orientation.

Classical Lie group representation theory shows that there is a unique conjugacy class of
embeddings of PSL(2,R) in PSL(n,R) whose images act irreducibly on Rn (see Example
3.2 below). Let ιn : PSL(2,R) → PSL(n,R) be such an embedding.

2There is some variance in convention on what equivalence relation to use in defining character vari-
eties. Namely, the coarser relation that ρ1 ∼ ρ2 if the closures of the representations’ conjugation orbits
intersect is often used. These equivalence relations coincide for the representations we consider.
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Definition 3.1. A representation ρ ∈ X(Γ,PSL(n,R)) is Fuchsian if it is contained in
ιn(T (S)). The PSL(n,R)-Hitchin component(s) Hitn(S) are the connected components
of X(Γ,PSL(n,R)) containing Fuchsian representations. Representations in Hitn(S) are
called Hitchin representations.

There are one (if n is odd) or two (if n is even) Hitchin components in PSL(n,R), each
homeomorphic to a ball of dimension (2g − 2)(n2 − 1) where g is the genus of S [26].

3.1.2. Hitchin Representations and Hyperconvex Frenet Curves. While efficient, Defini-
tion 3.1 does not illuminate the structure of Hitchin representations. We now recall
another characterization of Hitchin representations, in terms of the geometry of special
equivariant curves, due to Labourie and Guichard. This characterization supplies a great
deal of structure to us and is central to our methods.

Let F(Rn) denote the space of full flags of nested subspaces of Rn, i.e. (n− 1)-tuples
(V1, ..., Vn−1) of nested subspaces of Rn with dimVi = i for i = 1, ..., n− 1. A continuous
curve ξ = (ξ1, ..., ξn−1) : ∂Γ → F(Rn) is a hyperconvex Frenet curve if:

(1) (Convexity) For any k1, ..., kj with
∑j

l=1 kl ≤ n, and distinct x1, ..., xj ∈ ∂Γ, the
vector space sum ξk1(x1) + ...+ ξkj(xj) is direct;

(2) (Osculation) For any x ∈ ∂Γ and k1, ..., kj with K =
∑j

l=1 kl < n we have that
ξK(x) = lim

m→∞

[
ξk1(xm

1 )⊕ ...⊕ ξkj(xm
j )

]
for any sequence (xm

1 , ..., x
m
j ) of j-tuples

of distinct points so that for all l, the sequence xm
l converges to x.

A hyperconvex Frenet curve (ξ1, ..., ξn−1) is entirely determined by ξ1.

Example 3.2. The standard example of a hyperconvex Frenet curve is the Veronese
curve, described as follows. For k > 1, the vector space of homogeneous degree k − 1
polynomials on R2 has dimension k and so is a model for Rk. In these models, RPk−1 is
the collection of homogeneous degree k − 1 polynomials on R2, considered up to scaling.
The Veronese embedding ξ1 : RP1 → RPn−1 is given in these models by taking (n− 1)-

th powers of degree 1 homogeneous polynomials, i.e. ξ1([f ]) = [fn−1]. In general, for
1 ≤ k ≤ n − 1, we define ξk([f ]) = {[g] ∈ Rk | fk divides g} . One may verify that
ξ = (ξ1, ..., ξn−1) is a hyperconvex Frenet curve. We call it the Veronese curve.
An irreducible embedding PSL(2,R) → PSL(n,R) may be described explicitly in this

polynomial model for Rk. To do this, observe SL(2,R) acts on Rk by Af = f ◦A−1. The
induced map PSL(2,R) → PGL(n,R) has image in PSL(n,R) and so gives an embedding
ιn : PSL(2,R) → PSL(n,R) that one may prove is irreducible. Note that the Veronese
curve is equivariant with respect to ιn. So Fuchsian representations in PSL(n,R) admit
equivariant hyperconvex Frenet curves.

The relevant result to us here of Labourie and Guichard, that generalizes the above
example and which serves as our working definition of a Hitchin representation, is:

Theorem 3.3 (Labourie [28] Theorem 1.4, Guichard [22] Théorème 1). A representation
ρ : Γ → PSL(n,R) is Hitchin if and only if there exists a ρ-equivariant hyperconvex Frenet
curve.

A fact that will be useful to us is that Hitchin representations ρ : Γ → PSL(n,R) may
always be lifted to SL(n,R). This was observed by Hitchin in [26], and also follows from
e.g. [15], Corollary 2.3 and Theorem 4.1.

Though the definition of a hyperconvex Frenet curve is stated in terms of sums of ξk,
work of Guichard [21] shows that intersections of ξk are also quite well-behaved, which is
often the way in which we interact with the hyperconvex Frenet curve property.
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Proposition 3.4 (Guichard [21] Lemme 6). Let ξ = (ξ1, ..., ξn−1) be a hyperconvex Frenet
curve. Then:

(1) (General Position) If n =
∑j

i=1 ki and x1, ..., xj ∈ ∂Γ are distinct, then

j⋂
i=1

ξn−ki(xi) = {0};

(2) (Dual Osculation) For any x ∈ ∂Γ and k1, ..., kj with K =
∑j

l=1 kl < n we have
that for any sequence (xm

1 , ..., x
m
j ) of j-tuples of distinct points in ∂Γ so that xm

l

converges to x for each l,

ξn−K(x) = lim
m→∞

j⋂
i=1

ξki(xm
i ).

3.2. Properly Convex Foliated Projective Structures. In this subsection, we recall
some features of geodesic foliations on surfaces and collect the results of Guichard and
Wienhard in [23] on PSL(4,R) Hitchin representations that are relevant to us. Our
notation and the content here follows [23]. The Fuchsian case is an instructive model,
and is described in §3.2.3.

3.2.1. Stable Foliations and Geodesic Foliations. Fixing a hyperbolic metric on S iden-

tifies the geodesic foliations of T 1S̃ and T 1H2, and identifies ∂Γ with ∂H2. There is a
well-known description of T 1H2 as orientation-compatible triples (t+, t0, t−) of distinct
points in ∂Γ. We denote the space of such triples ∂Γ(3)+. One obtains this identification
by associating to (p, v) ∈ T 1S the endpoints at infinity of the geodesic ℓ determined
by v as t−, t+, and the endpoint t0 of the geodesic perpendicular to ℓ at p that makes
(t+, t0, t−) orientation-compatible (see Figure 1).

Under this identification, the leaves of the stable foliation F of T 1H2 are the collections
of elements of ∂Γ(3)+ with fixed t+ entry, and the leaves of the geodesic foliation G are
the collections of elements of ∂Γ(3)+ with fixed t− and t+ entries. So the leaf spaces of F
and G are identified with ∂Γ and ∂Γ(2) := Γ× Γ− {(x, x) | x ∈ Γ}. From its description
above, the leaf space of G is also identified with the collection of oriented geodesics in H2.
In the following, we shall identify elements of ∂Γ and ∂Γ(2) and the corresponding leaves
of F and G.

We remark that both foliations F and G are Γ-invariant, and so descend to foliations
that we denote by F and G, respectively, of T 1S. We also remark that G is the geodesic

foliation of the reference hyperbolic metric. Because our identification between T 1S̃
and ∂Γ(3)+ is equivariant with respect to the natural actions of Γ, and the foliations on
∂Γ(3)+ are independent of our reference metric, the topological type of the pair (F ,G) is
independent of the choice of hyperbolic metric.

3.2.2. Domains of Discontinuity and Developing Maps. The starting point for Guichard-
Wienhard’s theory of properly convex foliated projective structures are explicit parame-
terizations of domains of proper discontinuity in RP3 for PSL(4,R) Hitchin in terms of
hyperconvex Frenet curves ([23] §4). We recall this construction here.

Let ρ : Γ → PSL(4,R) be Hitchin with hyperconvex Frenet curve ξ = (ξ1, ξ2, ξ3).
Following the notation of Guichard-Wienhard ([23] §4.1.2), define the two-argument map
ξ1 : ∂Γ× ∂Γ → RP3 by

ξ1t (t
′) =

{
ξ3(t) ∩ ξ2(t′) t ̸= t′

ξ1(t) t = t′
.
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Figure 1. The unit tangent bundle T 1H2.

Then we can define a map ([23] §4.1.2, Eq. (7)) by

dev : ∂Γ3+ → RP3

(t+, t0, t−) 7→ ξ1(t+)ξ1t+(t−) ∩ ξ1t−(t+)ξ
1
t+(t0),

where we denote the line in RP3 determined by two points a and b by ab. Write Ωρ :=
dev(∂Γ(3)+). See Figure 2, and discussion below.

The following collects the features of this construction proved by Guichard-Wienhard
in §4 of [23]. The most important points to us are (2), (3), (4), and (5). The assertions
below all follow from further convexity features possessed by hyperconvex Frenet curves
beyond their defining conditions (e.g. [21] Proposition 7).

Theorem 3.5 (Guichard-Wienhard [23], §4). With notations as above,

(1) The map dev is a homeomorphism of ∂Γ(3)+ onto Ωρ, which is an open subset of
RP3. It is equivariant with respect to the actions of Γ on ∂Γ(3)+ and ρ(Γ) on RP3.

(2) The two argument map (t, t′) 7→ ξ1t (t
′) is a continuous injection that is equivariant

with respect to the actions of Γ on ∂Γ × ∂Γ and ρ(Γ) on RP3. Its image is the
boundary ∂Ωρ of Ωρ in RP3 and is a disjoint union of the lines ξ2(x) for x ∈ ∂Γ.
That is, ∂Ωρ =

⊔
x∈∂Γ ξ

2(x).
(3) The group ρ(Γ) acts freely, properly discontinuously, and cocompactly on Ωρ, with

quotient homeomorphic to T 1S.
(4) For any x ∈ ∂Γ, the image ξ1x(∂Γ) of {x} × ∂Γ under the two-argument map ξ1

is the boundary of dev(x) in ξ3(x). In the expression dev(x) we view x as a leaf
of F , as in §3.2.1. The domain dev(x) is properly convex. The boundary of Ωρ

is the disjoint union of the boundaries of these domains: ∂Ωρ =
⊔

x∈∂Γ ∂dev(x),
and the domains dev(x) foliate Ωρ.

(5) For (x, y) ∈ ∂Γ(2), viewed as a leaf of G, the image dev((x, y)) is the open line
segment in dev(x) between ξ1x(y) and ξ1(x). These segments foliate Ωρ.

(6) A supporting line to ∂dev(x) at ξ2(y) ∩ ξ3(x) is ξ3(y) ∩ ξ3(x), and a supporting
line to ∂dev(x) at ξ1(x) is ξ2(x).

We will see in §3.3 that the domains dev(x) (x ∈ ∂Γ) are strictly convex and C1, so
that the supporting lines in Theorem 3.5.(6) give all supporting lines to the domains
∂dev(x). Figure 2, Right gives a sketch of ∂Ωρ and how a domain dev(x) sits in RP3.

Using the domains dev(x) above, we can make the main definition to our investigations:

Definition 3.6. Given a Hitchin representation ρ : Γ → PSL(4,R), for x ∈ ∂Γ define
sρ(x) ∈ C to be the projective equivalence class of dev(x). We call sρ the leaf map of ρ.



10 ALEXANDER NOLTE

Figure 2. Left: the developing map in terms of the hyperconvex Frenet
curve. Right: illustration of how the convex domains dev(x) sit inside of
the domain of discontinuity Ωρ in an affine chart for RP3, emphasizing the
ruling of ∂Ωρ by projective lines. Solid lines represent visible portions of
∂Ωρ, and dotted line segments represent portions of ∂Ωρ that are not visible
from the viewpoint of the illustration.

Let us briefly remark that Theorem 3.5.(3) implies that dev lifts to a developing map

d̃ev : T̃ 1S → RP3 of a projective structure on T 1S with developing image Ωρ. Guichard
and Wienhard then formalize the basic qualitative features of this projective structure
induced by Theorem 3.5.(5) in the notion of a properly convex foliated projective structure
on T 1S. The main result of [23] (Theorem 2.8) is a remarkable converse to Theorem 3.5,
namely that every properly convex foliated projective structure on T 1S is equivalent to
one of these examples by a projective equivalence that respects the foliations G and F .
This gives a correspondence between an appropriate moduli space of properly convex
foliated projective structures and the Hitchin component Hit4(S).

3.2.3. The Fuchsian Case. The case of Fuchsian representations in PSL(4,R) (described
in §3.1.2 and §4.1 of [23]) is instructive. We briefly describe it. We use the notation of
Example 3.2, so RP3 is viewed as the space of homogeneous degree 3 polynomials on R2,
considered up to scaling.

Every [f ] ∈ RP3 has three projective roots in CP1 counted with multiplicity, each
of which is contained in RP1 or is one of a conjugate pair of non-real roots. On the
other hand, polynomials on C are determined up to scale by their roots, so that RP3

parameterizes configurations of roots of real homogeneous degree 3 polynomials on R2.
There are four such combinatorial types, and the action of ι4(PSL(2,R)) on RP3 pre-

serves types. The first are the polynomials that are a cube, which are exactly the image of
ξ1. The second are polynomials with a double root that are not cubes, which are exactly
the points of the form ξ1x(y) with x ̸= y in ∂Γ. The boundary ∂Ωρ is the union of these two
types of points, i.e. of polynomials with a real root of multiplicity at least 2. We remark
that ∂Ωρ may be explicitly computed in this case using discriminants: its intersection with
an appropriate affine chart is the zero set of F (x, y, z) = 18xyz−4x3z+x2y2−4y3−27z2.
This description is amenable to computer rendering, which when carried out shows the
phenomena illustrated in Figures 2, Right and 3.
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Figure 3. Sketch of the relative positions of two convex domains dev(x)
and dev(y) in an affine chart for RP3. Note that the ruling of ∂Ωρ by lines
gives a canonical maps between the boundaries of these convex domains.

The complement of ∂Ωρ has two connected components. The first, which we shall see is
Ωρ, consists of polymomials with a conjugate pair of non-real zeroes. The second consists
of polynomials with three distinct real zeroes.

The foliations and convexity appearing in Theorem 3.5 can be seen explicitly here. Let
R2 have basis {x, y}. View the corresponding coordinate functions x and y as monomials
on R2, and their projective classes as elements of RP1. Then the hyperplane ξ3([x])
consists of the homogeneous degree 3 polynomials on R2 that are divided by x. So a
basis for ξ3([x]) is {x3, x2y, xy2}. Work in the affine chart A for ξ3([x]) that is associated
to this basis and contains all polynomials with nonzero x3-coordinate. Then the point
ξ1(x) is [1 : 0 : 0], the line A ∩ ξ2(x) is the horizontal axis [1 : a : 0] (a ∈ R), and
∂dev(x) ∩ A is the parabola given by x(x + ay)2 = [1 : 2a : a2] (a ∈ R). One may see
that e.g. the point x(x2 + y2) = [1 : 1 : 1] is in the convex region bounded by dev(x), so
Ωρ consists of homogeneous polynomials with conjugate non-real roots.

3.3. Two Remarks on Boundaries of Leaves. In this subsection, we describe two
basic geometric features of the leaves dev(x).

Our first observation is that the ruling of the boundary of Ωρ by ξ2(x) (x ∈ ∂Γ)
gives rise to natural identifications of boundaries of leaves ∂dev(x). Geometrically, any
boundary point p of dev(x) is contained in exactly one ξ2(y) for y ∈ ∂Γ. Given another
x′ ∈ ∂Γ, the identification of boundaries maps p to the unique intersection of ξ2(y) with
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∂dev(x′) (Figure 3). The identification of boundaries ∂dev(x) → ∂dev(x′) is given by
ξ1x(t) 7→ ξ1x′(t). These identifications vary continuously in x, x′, and y as a consequence of
continuity of ξ1x(y), which follows from dual osculation in Proposition 3.4.

Our second observation concerns the structure of the boundary of ∂dev(x) for x ∈ ∂Γ:
it is strictly convex and C1. Strict convexity, in particular, is a tool that we use for some
obstructions later.

Proposition 3.7 (Basic Regularity). For all x ∈ ∂Γ, the leaf dev(x) is strictly convex
and has C1 boundary.

Proof. To show that ∂dev(x) is C1, we consider the collection D∗
x ⊂ Gr2(ξ

3(x)) of sup-
porting lines to dev(x). From standard projective geometry (e.g. [19], Lemma 4.4.1), D∗

x

is a topological circle. The path ∂Γ → D∗
x given by

y 7→

{
ξ3(y) ∩ ξ3(x)) y ̸= x

ξ2(x) y = x
(3.1)

is a continuous injection of ∂Γ ∼= S1 into D∗
x
∼= S1, and so must be surjective. See Figure

2.
Since the map of Equation (3.1) surjects D∗

x, all supporting lines to dev(x) must be of
the form ξ3(y) ∩ ξ3(x) or ξ2(x). As every point in ∂dev(x) is contained in exactly one
such line by the General Position conclusion in Proposition 3.4, all boundary points of
dev(x) have unique tangent lines. Because dev(x) is convex, this implies ∂dev(x) is C1.

Strict convexity follows from the general position property of hyperconvex Frenet curves
as follows. Supposing otherwise, ∂dev(x) must contain an interval I, contained in a line
ℓI . For any y ̸= x ∈ ∂Γ so that ξ1x(y) is in the interior of I, we must have ξ3(y)∩ξ3(x) = ℓI ,
as this is a supporting line to ∂dev(x) at a point in I. This is impossible by the general
position property of hyperconvex Frenet curves, and proves strict convexity. □

4. Proofs of the Main Theorems

In this section we prove our main theorems. The vast majority of the effort is spent
showing sρ is not constant unless the Hitchin representation ρ is Fuchsian. We begin by
setting notation in §4.1. An outline of the structure of the core of our proofs is then given
in §4.2, and the remainder of the paper is spent following this outline.

4.1. Notation, Conventions, and Definitions. Let us begin by setting up notation
to facilitate comparison of projective types of leaves.

The group SL(3,R) acts simply transitively on quadruples of points in general position
in RP2. So, by fixing a point t0 ∈ ∂Γ and a continuously varying family of 4 points

{(p1(t), p2(t), p3(t), p4(t)) | t ∈ ∂Γ} ⊂ RP3

so that pi(t) ∈ ξ3(t) (i = 1, ..., 4) and the points (p1(t), p2(t), p3(t), p4(t)) are in general
position within ξ3(t) for all t ∈ ∂Γ, we induce well-determined projective equivalences
ξ3(t) → ξ3(t0) for all t ∈ ∂Γ.
One way to produce such a normalization is to take 4 distinct points x1, ..., x4 ∈ ∂Γ and

let pi(t) (i = 1, 2, 3, 4) be the unique point of intersection between ξ2(xi) and ∂dev(t).
The continuity of the points pi(t) results in such a normalization being continuous in
the sense that the induced mappings from a reference RP2 with 4 fixed points in general
position to ξ3(t) ⊂ RP3 vary continuously.

Throughout the following, we shall once and for all fix such a normalization and view all
domains dev(t) as subsets of RP2 ∼= ξ3(t0). When relevant, we will write the map ξ3(t) →
ξ3(t0) by Nt→t0 . We denote Nt→t0(dev(t)) by Ct. At times when not doing so would make
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notation extremely cumbersome, we abuse notation to suppress the normalization used
to identify dev(t) and Ct.

Definition 4.1. Given a Hitchin representation ρ, domains Ct as above, a subset S ⊂ ∂Γ,
and a reference point t0 ∈ S, a projective equivalence of leaves over S is a function
f : S → Aut(ξ3(t0)) so that f(t)Ct0 = Ct for all t ∈ S.

Projective equivalences of leaves need not exist over a given subset S ⊂ ∂Γ. The leaf
map sρ is constant if and only if a family of projective equivalences over ∂Γ exists. We
do not assume continuity or any sort of regularity, measurability, or the like of projective
equivalences over sets S unless explicitly noted.

At times, it will be useful to consider projective equivalences of leaves as two-argument
maps between leaves seen as subsets of RP3, which the next bit of notation facilitates.

Definition 4.2. Given a projective equivalence f of leaves over S and t, t′ ∈ S, define
the projective equivalence f(t, t′) : dev(t) → dev(t′) by

f(t, t′) = N−1
t′→t0

◦ f(t′) ◦ f(t)−1 ◦Nt→t0 .

4.2. Outline of Proof that non-Fuchsian Leaf Maps are Nonconstant. Our proof
assumes that sρ is constant, so that there is a projective equivalence f over ∂Γ, and proves
that ρ is Fuchsian through obtaining constraints on the eigenvalues of ρ(Γ).

In order to get initial leverage for our arguments, we require some control on the
automorphisms of individual leaves sρ(x). The dichotomy we use to get this control is
the closed subgroup Theorem, which in our setting implies that either for every x ∈ ∂Γ
every sρ(x) has discrete projective automorphism group, or there is an x ∈ ∂Γ so that
Aut(ξ3(t0), Cx) ⊂ SL(3,R) contains a 1-parameter subgroup.

The discrete case is the most involved. In it, we first show that though f may be

everywhere discontinuous, we may modify f to obtain a continuous family f̃ of projective
equivalences over a nonempty open set U ⊂ ∂Γ, which can be enlarged using equivariance
of leaf maps. The informal idea of the phenomenon underlying why this is possible is
that all of the discontinuity of f comes from two sources: projective automorphisms of
sρ(x), and divergent families of projective equivalences At so that AtCt0 converges to Ct′

in the Hausdorff topology for some t′. This is exploited by carefully choosing countable
covers Si of ∂Γ so that f is well-behaved on each Si, then applying the Baire category
theorem to show some Si is large enough to be useful.

Next, we use a “sliding” argument to show that if γ ∈ Γ and there is a continuous
family of projective equivalences g over an appropriate open set Uγ ⊂ ∂Γ, the logarithms
of the eigenvalues of ρ(γ) are evenly spaced.
Finally, we apply the eigenvalue constraints obtained from the condition that sρ is con-

stant to show that ρ must be Fuchsian. We do this by analyzing the constraints we have
obtained on the Zariski closure of ρ(Γ) and comparing this to Guichard’s classification
of Zariski closures. The main proposition here may be thought of as a simple case of a
deep theorem of Benoist on Zariski-dense subgroups of linear groups [3]. We find that
our eigenvalue constraints are impossible unless ρ is Fuchsian.

If one leaf has non-discrete automorphism group, the closed subgroup theorem forces
this leaf to have extremely restricted structure, and in particular a rather smooth bound-
ary. This, together with the closedness of the image of sρ, reduces to the case where every
leaf is an ellipse. This is then handled similarly to the discrete case.

The discrete case is the topic of §4.3. Continuity is addressed in §4.3.1 and eigenvalue
constraints in §4.3.2. In §4.3.3 we analyze the Zariski-closure of ρ and complete the
discrete case. We show that leaf maps have closed image in §4.4. The non-discrete case
is then completed in §4.5. We explain how Theorems 1.1 and 1.2 follow in §4.6.
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4.3. The Discrete Case. In this subsection, we assume that the group Aut(ξ3(t0), Cx)
of projective automorphisms of Cx is discrete for all x ∈ ∂Γ.

4.3.1. Continuity. We contend first with the poor separation of points in C. Some intu-
ition from Benzécri’s compactness theorem is that for a domain Ω with Aut(Ω) discrete,
projective equivalences of Aut(Ω) and divergent sequences An so AnΩ → Ω in C should
be the only possible discontinuities of a family of projective equivalences. The key ob-
servation of this paragraph is that in this setting, as in these two examples, all of the
discontinuity of f comes from jumps of (locally) definite size.

It is useful to know that the domains Ct vary continuously in the Hausdorff topology.

Lemma 4.3 (Leaf Map Basics). Let ρ ∈ Hit4(S). Then Ct is continuous in t, sρ is
continuous, and if x ∈ ∂Γ we have sρ(x) = sρ(γx) for all γ ∈ Γ.

Note that orbits of the action of Γ on ∂Γ are dense, as this action is minimal. So for
all x ∈ ∂Γ, the leaf map sρ(x) is constant on the dense set Γx.

Proof. Observe that Ct varies continuously in the Hausdorff topology on domains in ξ3(t0),
since ∂Ct is parametrized by the continuous function ∂Γ → ξ3(t0) given by Nt→t0(ξt(x))
for x ∈ ∂Γ, and ξ1t (x) depends continuously on t. So sρ(t) = [Ct] ∈ C varies continuously.
For the other claim, if γ ∈ Γ we have sρ(γx) = [ρ(γ)(dev(x))], where ρ(γ)|ξ3(x) :

ξ3(x) → ξ3(γx) is induced by a linear map and hence a projective equivalence. □

We are now ready to prove the main proposition of this paragraph.

Proposition 4.4 (Modify to Continuity). Suppose that sρ has countable image and every
leaf sρ(x) has discrete automorphism group. Then sρ is constant and there is a continuous

projective equivalence f̃ of leaves over a non-empty open set U ⊂ ∂Γ.

Proof. By hypothesis, we may write ∂Γ =
⊔∞

m=1 Dm with Dm sets so that for all m ∈ N
there is some projective equivalence of leaves fm over Dm with respect to a reference point
sm ∈ Dm. To begin, let us fix a right-invariant metric dP on SL(3,R) and a metric dS on
∂Γ. Note that for all s ∈ Dm, we have Aut(ξ3(t0), Cs) = fm(s)Aut(ξ

3(t0), Csm)fm(s)
−1.

To proceed, we need locally uniform control in fm(s) on the separation of Aut(ξ3(t0), Cs)
from the identity. To this end, we adopt the notation that for Λ a discrete subgroup of
a Lie group G equipped with a right-invariant metric we set κ(Λ) := inf{d(e, g) | g ∈
Λ− {e}}. Let us abbreviate conjugation by Ψg : h 7→ ghg−1. We obtain control through
the following fact, which is a straightforward consequence of right-invariance of the metric
on G. We include a proof for completeness and the convenience of the reader.

Lemma 4.5 (Discreteness is Conjugation-Stable). Let G be a Lie group and Λ < G be a
discrete subgroup. Then the function η : g 7→ κ(Ψg(Λ)) is 2-Lipschitz.

Proof. Let x, g ∈ G be arbitrary. By right-invariance of d and the triangle inequality,

|d(gxg−1, e)− d(x, e)| = |d(gx, g)− d(x, e)|
= |d(gx, g) + d(gx, e)− d(gx, e)− d(x, e)|
≤ |d(gx, g)− d(gx, e)|+ |d(gx, e)− d(x, e)|
≤ d(g, e) + d(gx, x)

= 2d(g, e).

So for g, g′ ∈ G, we have |η(gg′) − η(g′)| = |κ(Ψg(Ψg′(Λ))) − κ(Ψg′(Λ))| ≤ 2d(g, e) =
2d(gg′, g′), using the definition of η and the right-invariance of d.

□
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Now let m be given, with reference point sm ∈ Dm. By Lemma 4.5 (Discreteneness
is Conjugation-Stable), for each g ∈ SL(3,R), there exists a set Kg with the following
properties:

(1) Kg is compact and contains g in its interior,
(2) Letting κg denote inf

h∈Kg

(κ(Ψh−1(Aut(ξ3(t0), Csm)))) = inf
h∈Kg

(κ(Aut(ξ3(t0), hCsm))),

we have κg > 0,
(3) The map Kg ×Kg → SL(3,R) given by (h1, h2) 7→ h1h

−1
2 has image contained in

the ball Bκg/2(e).

Now let {Km
gi
} be a countable cover of SL(3,R) by such compact sets. Define Sm

i ⊂ ∂Γ

as f−1
m (Km

gi
). We show:

Claim. The restriction of fm to Sm
i is uniformly continuous.

Proof of Claim. Fix ϵ > 0. We must exhibit that there is some δ > 0 so that if dS(t, t
′) < δ

and fm(t), fm(t
′) ∈ Km

gi
, then dP (fm(t), fm(t

′)) < ϵ.

We first remark that the map Bκgi/2
(e)×Km

gi
→ R given by (A, h) 7→ dHaus(hCsm , AhCsm)

is continuous and has zero set exactly {e} × Km
gi

by construction of κgi . It follows

from compactness that there is an ϵ′ > 0 so that if h ∈ Km
gi
, A ∈ Bκgi/2

(e), and

dHaus(hCsm , AhCsm) < ϵ′, then A ∈ Bϵ(e).
As ∂Γ is compact, the map t 7→ Ct is uniformly continuous with respect to the Hausdorff

topology on ξ3(t0), hence there is a δ > 0 so that if dS(t, t
′) < δ, then dHaus(Ct, Ct′) < ϵ′.

So if dS(t, t
′) < δ and t, t′ ∈ Sm

i , we have

ϵ′ > dHaus(Ct, Ct′) = dHaus(Ct, fm(t
′)fm(t)

−1Ct).

As Ct = fm(t)Csm with fm(t) ∈ Km
gi

and fm(t
′)fm(t)

−1 ∈ Bκgi/2
(e), we have from

our previous observation that ϵ > dP (e, fm(t
′)fm(t)

−1) = dP (fm(t
′), fm(t)) by right-

invariance. □

The point of this claim to us is that for any i and m, there exists a continuous extension

f̃m
i of fm|Sm

i
to Sm

i . Now observe that the two maps Sm
i → C(ξ3(t0)) given by t 7→ Ct

and t 7→ f̃m
i (t)Ct0 are continuous and agree on a dense subset of Sm

i . Since C(ξ3(t0)) is
Hausdorff (§2), this shows f̃m

i (t)Ct0 = Ct for all t ∈ Sm
i . So f̃m

i is a continuous projective
equivalence of leaves over Sm

i .
Now, as Sm

i cover ∂Γ the collection {Sm
i } is a countable cover of ∂Γ by closed sets. So

by the Baire category theorem at least one Sm
i has non-empty interior. For any such i,m,

setting f̃ = f̃m
i yields the desired continuous family of projective equivalences of leaves

over an open set U .

Having produced f̃ , we observe as remarked above that all Cx for x ∈ U are projectively
equivalent. Since the action of Γ on ∂Γ is minimal and acts with North-South dynamics,
it then follows that all Cx (x ∈ ∂Γ) are projectively equivalent. □

Using the action of Γ on ∂Γ, we may enlarge the open sets where we have continuous
families of projective equivalences.

Corollary 4.6 (Enlarge Domains). Suppose sρ is constant and every leaf sρ(x) has dis-
crete automorphism group. Let γ ∈ Γ − {e} have attracting and repelling fixed-points
γ+, γ− ∈ ∂Γ, respectively. Then there is a connected open set U containing γ+ and γ−

and a continuous projective equivalence of leaves f over U .

Proof. Proposition 4.4 (Modify to Continuity) produces an open set U ⊂ ∂Γ and a

continuous projective equivalence of leaves f̃ over U . By equivariance of dev, for any



16 ALEXANDER NOLTE

η ∈ Γ we have

Cηx = Nηx→t0(dev(ηx)) = Nηx→t0(ρ(η)dev(x)) = Nηx→t0(ρ(η)(N
−1
x→t0

(Cx))).

So defining f : ηU → SL(3,R) by

ηx 7→ Nηx→t0 ◦ ρ(η) ◦N−1
x→t0

◦ f̃(x)
gives a continuous projective equivalence of leaves over ηU . The corollary now follows
from North-South dynamics of the action of Γ on ∂Γ. □

4.3.2. Eigenvalue Constraints. The goal of this paragraph is to constrain the Jordan
canonical forms of ρ(γ) for γ ∈ Γ−{e}. We accomplish this through obtaining eigenvalue
constraints from an application of the continuity established in §4.3.1 and the closed
subgroup Theorem. Throughout this paragraph, we suppress uses of normalization maps
Nx→t0 : dev(x) → ξ3(t0) to make notation manageable.
To establish notation, for γ ∈ Γ−{e} write the eigenvalues of ρ(γ) as λ1, λ2, λ3, λ4 or-

dered with nonincreasing modulus, and denote log |λi| by ℓi for i = 1, ..., 4. The quadruple
(λ1, λ2, λ3, λ4) is defined up to negation and (ℓ1, ℓ2, ℓ3, ℓ4) is well-defined.
As ρ is Hitchin, ρ(γ) is real-diagonalizable, ℓ1 > ℓ2 > ℓ3 > ℓ4, and all λi have the same

sign (e.g. [37], discussion in proof of Theorem A). Denote the eigenlines corresponding to
λ1, λ2, λ3, λ4 by e1, e2, e3, e4, respectively. We have ξ3(γ+) = span(e1, e2, e3) and ξ3(γ−) =
span(e2, e3, e4). We show:

Proposition 4.7 (Jordan Form Constraints). Suppose that ρ is a Hitchin representation,
sρ is constant, and sρ(x) has discrete automorphism group for all x ∈ ∂Γ. Then for each
γ ∈ Γ− {e} there is a λ > 1 so that ρ(γ) is conjugate to ±diag(λ3, λ, λ−1, λ−3).

The main input is the following application of discreteness of automorphism groups of
leaves. It shows that our continuous projective equivalences of leaves commute with ρ in
an appropriate sense.

Lemma 4.8 (Commutativity Lemma). Let γ ∈ Γ− {e}. If f is a continuous projective
equivalence of leaves over a connected open set U containing γ+ for some γ ∈ Γ − {e},
then for all s ∈ U and p ∈ dev(γ+), we have

ρ(γ)(p) = [f(γs, γ+) ◦ ρ(γ) ◦ f(γ+, s)](p)

Proof. The maps {As}s∈U given by

As : dev(γ
+) → dev(γ+)

p 7→ [f(γs, γ+) ◦ ρ(γ) ◦ f(γ+, s)](p)

are a continuous family of projective equivalences of dev(γ+), and hence must be constant
by discreteness of Aut(ξ3(t0), Cγ+). At s = γ+ we have As = ρ(γ). □

We now prove Proposition 4.7.

Proof of Proposition 4.7. Let γ ∈ Γ−{e} be given. By Corollary 4.6 there is a connected
open set U containing γ+ and γ− and a continuous projective equivalence of leaves f over
U . Let I ⊂ ∂Γ be a closed interval with endpoints γ+ and γ−.
Applying the Commutativity Lemma 4.7 with s = γ− shows that the restriction of

ρ(γ) to the open set dev(γ+) coincides with

f(γ−, γ+) ◦ ρ(γ) ◦ f(γ+, γ−) = f(γ+, γ−)−1 ◦ ρ(γ) ◦ f(γ−, γ+).

Since projective equivalences are determined by their values on open sets and f(γ+, γ−)
is a projective equivalence, this implies the restrictions of ρ(γ) to ξ3(γ+) and ξ3(γ−) are
conjugate after rescaling.
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So there is a c ∈ R∗ so that c(λ1, λ2, λ3) = (λ2, λ3, λ4), and hence λ1/λ2 = λ2/λ3 =
λ3/λ4 = c. This, together with the restriction that all eigenvalues of ρ(γ) have the same
sign and ρ(γ) has determinant 1 implies that ρ(γ) is conjugate to ±diag(λ3, λ, λ−1, λ−3)
for some λ > 1. □

4.3.3. Conclusion of Discrete Case. Any Fuchsian representation ρ satisfies that for
every γ ∈ Γ − {e} the matrix ρ(γ) (γ ∈ Γ) is conjugate to a matrix of the form
diag(λ3, λ, λ−1, λ−3) for some λ > 1. To conclude, we must show that this property dis-
tinguishes Fuchsian representations. In particular, it is not possible for a non-Fuchsian
representation to take values in a collection of distinct principal PSL(2,R) subgroups of
PSL(4,R).

The classification of Zariski closures of Hitchin representations is useful to us here.3

For a lift of ρ in the PSL(4,R) Hitchin component to SL(4,R), the classification states
that the Zariski closure of ρ(Γ) is conjugate to a principal SL(2,R) (in which case ρ is
Fuchsian), is conjugate to Sp(4,R), or is SL(4,R).
Proposition 4.9 (Fuchsian from Eigenvalues). Suppose that ρ is lift of a PSL(4,R)
Hitchin representation to SL(4,R) so that for all γ ∈ Γ, ρ(γ) is conjugate to a matrix
of the form ±diag(λ3, λ, λ−1, λ−3) for some positive λ = λ(γ) ∈ R − {0}. Then ρ is
Fuchsian.

Proof. By the classification of Zariski closures of Hitchin representations [41], it suffices
to show that the Zariski closure of ρ(Γ) is neither SL(4,R) nor conjugate to Sp(4,R).
We begin by recalling that if a1, ..., a4 are the eigenvalues of A ∈ GL(4,R), then the

coefficients σi (i = 0, ..., 3) of the characteristic polynomial of A are the elementary
symmetric polynomials in the variables a1, ..., a4, and are all polynomials in the entries
of A. So let F (a1, a2, a3, a4) =

∏
i,j∈{1,...,4}(ai−a3j). Then F is a symmetric polynomial in

{a1, ..., a4}, and so is an element of the polynomial ring Z[σ0, ..., σ3] by the fundamental
theorem of symmetric polynomials. Consequently, F is a polynomial G in the entries of
A. As all σi are conjugation-invariant, so is G.

Note, furthermore, that if A is conjugate to a matrix of the form diag(λ3, λ, λ−1, λ−3),
then F (λ3, λ, λ−1, λ−3) vanishes. So for a Hitchin representation ρ satisfying our hypothe-
ses, the Zariski closure of ρ(Γ) is contained in the vanishing locus of G.

On the other hand, for instance, the symplectic matrix A = diag(3, 2, 1/2, 1/3) ∈
Sp(4,R) is not in the vanishing locus of G, as F (3, 2, 1/2, 1/3) ̸= 0. As G is conjugation-
invariant, this shows that the Zariski closure of ρ(Γ) cannot contain any subgroup of
SL(4,R) conjugate to Sp(4,R), which gives the claim. □

Remark. Proposition 4.9 may also be proved using a deep theorem of Benoist on limit
cones of Zariski-dense representations in linear groups ([3] Théorème 1.a.β). The proof
above uses considerably more elementary tools than Benoist’s theorem.

Let us note that Propositions 4.9 and 4.7 are sufficient to rule out the case of discrete
automorphism group:

Proposition 4.10. Suppose that ρ ∈ Hit4(S) and sρ(∂Γ) is countable. Then there is a
leaf Cx of ρ for some x ∈ ∂Γ so that Aut(ξ3(x), Cx) is not discrete.

Proof. Suppose otherwise, for contradiction. Take a PSL(4,R) Hitchin representation
ρ with sρ(∂Γ) countable and so that every leaf Cx has discrete automorphism group.
Then Proposition 4.4 (Modify to Continuity) shows sρ is in fact constant and Proposi-
tion 4.7 shows that for every γ ∈ Γ − {e} the matrix ρ(γ) has Jordan canonical form

3The classification is due to Guichard in unpublished work, and also follows from recent results of
Sambarino ([41], Corollary 1.5).
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±diag(λ3, λ, λ−1, λ−3) for some λ > 1. Then Proposition 4.9 implies ρ is Fuchsian. This
is impossible because for ρ Fuchsian, every leaf Cx is an ellipse. □

4.4. The Collection of all Leaves. Following a suggestion of Benoist, we adapt an
argument of Benzécri [6] (see also [19], proof of Theorem 4.5.6) to characterize the image of
sρ. This will be used to give a short proof in the case of non-discrete automorphism group
below. We maintain the notations of the previous section, notably the normalization maps
Nt→t0 : ξ3(t) → ξ3(t0). We also adopt the notation that Π : C∗ → C is the canonical
projection given by forgetting pointings: Π(Ω, p) = Ω.

Proposition 4.11 (Benoist). Let t ∈ ∂Γ. Then sρ(∂Γ) = ClC({[Ct]}).

Proof. From the minimality of the action of Γ on ∂Γ, the continuity of sρ, and the
observation that for γ ∈ Γ and t ∈ ∂Γ we have [sρ(t)] = [sρ(γt)], we see that sρ(∂Γ) ⊂
ClC({Ct}). So it suffices to show that sρ(∂Γ) is closed in C.
We next describe the condition we shall verify in order to prove this. To show sρ(∂Γ)

is closed in C it suffices to show that the union of the SL(3,R)-orbits of {Ct} (t ∈ ∂Γ)
is closed in C, which is equivalent to the closedness of the union of the SL(3,R)-orbits
of the preimages Π−1({gCt}) = {gCt} × (gCt) (t ∈ ∂Γ, g ∈ SL(3,R)) in C∗. This is
in turn equivalent to showing the image L of

⋃
t∈∂Γ Π

−1({sρ(t)}) under the projection
Q∗ : C∗ → C∗ is closed. By Benzécri’s compactness theorem, C∗ is a Hausdorff space and
so compact sets in C∗ are closed. As C∗ is second-countable, it suffices to verify that L is
sequentially compact. This is what we shall prove.

Fix a compact set K ⊂ Ωρ so that ρ(Γ)K = Ωρ. One verifies using compactness
of K and ∂Γ that the image of K after normalization is uniformly separated from the
complement of the leaves in the sense that there is some δ > 0, independent of t ∈ ∂Γ,
so that if p ∈ K ∩ ξ3(t) then dt0(Nt→t0(p), ξ

3(t0)− Ct) > δ.
So let cn ∈ L be a sequence. For all n, choose a leaf Ctn and pn ∈ Int(Ctn) so that

Q∗((Ctn , pn)) = cn. Since ρ(Γ)K = Ωρ, after applying projective equivalences arising from
compositions of normalizations and the action of ρ(γ) (γ ∈ Γ) on Ωρ, we may arrange
for pn ∈ K ∩ Ctn . It follows from compactness of K and continuity features of our
normalization that after taking a subsequence, there is some t∞ ∈ ∂Γ and p∞ ∈ Ct∞ ∩K
so that lim

n→∞
(Ctn , pn) = (Ct∞ , p∞) in C∗. Hence Q∗(Ct∞ , p∞) ∈ L is a limit point of cn

and so L is compact, as desired. □

4.5. The Non-Discrete Case. We show:

Proposition 4.12 (Only Ellipses). Suppose there is some x ∈ ∂Γ so that sρ(x) has
non-discrete automorphism group. Then ρ is Fuchsian and sρ(y) is the ellipse for all
y ∈ ∂Γ.

Proof. Let x ∈ ∂Γ be so that Aut(ξ3(t0), Cx) is non-discrete. Then by the closed subgroup
theorem, Aut(ξ3(t0), Cx) contains a one-parameter subgroup H = {At}t∈R. Then for any
p0 ∈ ∂Cx the orbit Hp0 is entirely contained in ∂Cx.

Since fixed-points of At for t ̸= 0 are either isolated or contained in a line of fixed points
and Cx is strictly convex, it follows that ∂Cx contains a nontrivial orbit O of H, which
must be smooth. Note that O cannot have everywhere vanishing curvature, since then
O would be a line segment and Cx is strictly convex. So ∂Cx must have a C2 point of
nonvanishing curvature. It is then a standard fact (e.g. [19] Ex. 4.5.2.3) that the ellipse
[O] ∈ C is contained in the C-closure of {[Cx]}.

By Proposition 4.11, there is some y ∈ ∂Γ so [Cy] = [O]. Since the projective class
[O] of the ellipse is a closed point of C, by Lemma 4.3 (Leaf Map Basics) the preimage
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Figure 4. Some sample orbits of one-parameter subgroups of SL(3,R).

s−1
ρ ({[O]}) ⊂ ∂Γ is closed and contains a dense subset of ∂Γ, hence must be all of ∂Γ. So
for all t ∈ ∂Γ, the leaf Ct is an ellipse.
Let γ ∈ Γ − {e}. Since Cγ+ and Cγ− are ellipses and the restrictions of ρ(γ) to

ξ3(γ+) and Cγ+ is diagonalizable, the restrictions ρ(γ)|ξ3(γ+) and ρ(γ)|ξ3(γ−) of ρ(γ), must

have Jordan forms that are scalar multiples of matrices of the form diag(λγ+ , 1, λ−1
γ+)

and diag(λγ− , 1, λ−1
γ−), respectively, for some λγ+ , λγ− ∈ R∗. The first constraint implies

ℓ1 − ℓ2 = ℓ2 − ℓ3 and the second that ℓ2 − ℓ3 = ℓ3 − ℓ4. This implies ρ(γ) has Jordan
canonical form ±diag(λ3, λ, λ−1, λ−3) for some λ > 1.
Now, Proposition 4.9 (Fuchsian from Eigenvalues) shows ρ is Fuchsian. □

4.6. Deduction of Results. We end by documenting how the results claimed in the
introduction follow. We first note:

Theorem 4.13. The leaf map sρ is constant if and only if ρ is Fuchsian. If ρ is Fuchsian,
then sρ takes value the ellipse.

Proof. The Fuchsian case is shown by Guichard-Wienhard in [23]. That sρ is not constant
if ρ is not Fuchsian follows from Propositions 4.10 and 4.12. □

The main theorems follow:

Proof of Theorem 1.1. The first equivalence is Theorem 4.13. The equivalence of (2) and
(3) is given by the equivalence of constancy and countable image in Proposition 4.4. The
parts of the equivalence of (4) with (1) pertaining to Fuchsian representations follow from
standard facts about ellipses. That a closed point of C or a divisible domain occuring
as a leaf implies (2) follows from that divisible domains are closed points of C ([6] §V.3
Proposition 3, see also [19] Theorem 4.5.6) together with Lemma 4.3 (Leaf Map Basics).
Indeed, if sρ(t) is a closed point of C, by continuity and Γ-invariance of sρ (Lemma 4.3),
s−1
ρ (sρ(t)) is a closed, Γ-invariant subset of ∂Γ and hence all of ∂Γ. That a leaf having
non-discrete automorphism group implies ρ is Fuchsian follows from Proposition 4.12. □

Proof of Theorem 1.2. Combine Theorem 4.13 with Lemma 4.3 (Leaf Map Basics). □

Proof of Theorem 1.3. For ρ non-Fuchsian, that sρ(∂Γ) is a non-point closed subset of C
is Theorem 1.1 and Proposition 4.11. That sρ(∂Γ) is minimal among closed sets follows
from the characterization in Proposition 4.11 that sρ(∂Γ) is the closure of any point in
sρ(∂Γ). This proves the Theorem for C(RP2).
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The result for C(RPn) for n ≥ 3 reduces to the n = 2 case by a classical characterization
of C(RPn)-closures of convex hulls due to Benzécri ([6] §V.3, Proposition 4), as follows.
Let Ω ∈ C(RPn) be a convex domain so that the closure in C(RPn) of {[Ω]} is a minimal
closed subset of C(RPn) that is not a point. Let Ω′ be a convex domain in RPn+1 formed
as the convex hull in an affine chart A of an inclusion of Ω in the intersection with A of
a copy P of RPn ⊂ RPn+1 and a point p ∈ A − P . Then Benzécri’s proposition implies
the closure of {[Ω′]} in C(RPn+1) is a minimal closed subset in C(RPn+1) that is not a
point. □

Proof of Corollary 1.4. This follows from the standard fact (e.g. [19] Ex. 4.5.2.3) that
if Ω is a properly convex domain in RP2 with a C2 boundary point of nonvanishing
curvature, then the C-closure of {[Ω]} contains the ellipse. If ρ ∈ Hit4(S), then since
sρ has closed image, this implies that if any leaf sρ contains a C2 boundary point with
nonzero curvature then there is a leaf sρ(y) projectively equivalent to the ellipse. We
conclude ρ is Fuchsian by Theorem 1.1. □

The proof of Corollary 1.5 is similar to that of Corollary 1.4.
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space. Ann. Sci. Éc. Norm. Supér., 41(3):437–469, 2008.
[31] François Labourie. Cyclic surfaces and Hitchin components in rank 2. Ann. of Math., 185(1):1–58,

2017.
[32] Qiongling Li. Harmonic maps for Hitchin representations. Geom. Funct. Anal., 29(2):539–560, 2019.
[33] John Loftin. Affine spheres and convex RPn-manifolds. Amer. J. Math., 123(2):255–274, 2001.
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[35] Vladmir Marković, Nathaniel Sagman, and Peter Smillie. Unstable minimal surfaces in Rn and in

products of hyperbolic surfaces, 2022. arxiv:2206.02938.
[36] Alexander Nolte. Canonical maps from spaces of higher complex structures to Hitchin components,

2022. arxiv:2204.04732.
[37] Rafael Potrie and Andrés Sambarino. Eigenvalues and entropy of a Hitchin representation. Invent.

Math., 209(3):885–925, 2017.
[38] Beatrice Pozzetti and Andrés Sambarino. Lipschitz limit sets revisited: Hilbert entropy and non-

differentiability, 2022. hal-03898485.
[39] Nathaniel Sagman and Peter Smillie. Unstable minimal surfaces in symmetric spaces of non-compact

type, 2022. arxiv:2208.04885.
[40] Andrés Sambarino. On entropy, regularity and rigidity for convex representations of hyperbolic

manifolds. Math. Ann., 364(1-2):453–483, 2016.
[41] Andrés Sambarino. Infinitesimal Zariski closures of positive representations, 2020. arxiv:2012.10276.
[42] Anna Wienhard. An invitation to higher Teichmüller theory. In Proceedings of the International

Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, volume 2, pages 1013–
1039. World Sci. Publ., Hackensack, NJ, 2018.

[43] Tengren Zhang and Andrew Zimmer. Regularity of limit sets of Anosov representations, 2017.
arxiv:1903.11021.

[44] Andrew Zimmer. Projective Anosov representations, convex cocompact actions, and rigidity. J.
Differential Geom., 119(3):513–586, 2021.

[45] Andrew Zimmer. A higher-rank rigidity theorem for convex real projective manifolds. Geom. Topol.,
27(7):2899–2936, 2023.

Rice University, Houston TX, USA
Email address : alex.nolte@rice.edu

https://arxiv.org/abs/2109.14768
https://arxiv.org/abs/2206.02938
https://arxiv.org/abs/2204.04732
https://hal.science/hal-03898485
https://arxiv.org/abs/2208.04885
https://arxiv.org/abs/2012.10276
https://arxiv.org/abs/1903.11021

	1. Introduction
	1.1. Outline of Proof of Theorem 1.1.
	1.2. Context and Related Results

	2. Properly Convex Domains in RP2
	2.1. Spaces of Properly Convex Sets

	3. Properly Convex Foliated Projective Structures and Hitchin Representations
	3.1. Hitchin Representations
	3.2. Properly Convex Foliated Projective Structures
	3.3. Two Remarks on Boundaries of Leaves

	4. Proofs of the Main Theorems
	4.1. Notation, Conventions, and Definitions.
	4.2. Outline of Proof that non-Fuchsian Leaf Maps are Nonconstant
	4.3. The Discrete Case
	4.4. The Collection of all Leaves
	4.5. The Non-Discrete Case
	4.6. Deduction of Results

	References

