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Introduction

These notes expand on a four-hour lecture course given in Heidelberg in March
2023, as part of the “Spring School on non-Archimedean Geometry and Eigenva-
rieties”. They are designed for graduate students and other learners. We intro-
duce Huber rings and valuation theory alongside frequent examples. The notes are
largely self-contained, though many details are given in exercises found following
each lecture.

Context. Hensel developed the p-adic numbers and their analysis in the waning
years of the 19th century. Tate’s theory of rigid analytic spaces dates to the 1960’s
[Tat71]. The p-adic numbers allow for number theory modeled on power series ex-
pansions. Tate’s theory models analytic geometry over the p-adic numbers, building
spaces such as discs, annuli, and more, along with robust definitions of their rings of
analytic functions. These models are applied to study problems in both geometry
and number theory. One original motivation was uniformizing p-adic elliptic curves
with split multiplicative reduction, now called Tate curves, via rigid analytic maps,
in analogy with complex uniformization of (all) elliptic curves over the complex
numbers.

Tate develops rigid analytic spaces using a class of rings, now called affinoid
algebras, and their maximal ideal spectra. He equips these spaces with presheaves
of functions, which he proves are actually sheaves. More precisely, the sheaves are
sheaves only for a so-called Grothendieck topology. This major caveat is responsible
for significant challenges in learning and using Tate’s theory.

Three new theories were developed starting in the late 1980’s:

(i) Raynaud’s formal models [BL93a, BL93b, BLR95a, BLR95b].
(ii) Berkovich’s analytic spaces [Ber90, Ber93].
(iii) Huber’s adic spaces [Hub93, Hub94, Hub96].
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Conrad’s four lectures at the 2007 Arizona Winter School [Con08] focused on
Tate’s theory, along with the work of Bosch–Lütkebohmert–Raynaud and Berkovich.
Our lectures in Heidelberg, and those of our colleagues Hübner [Hüb24], Johansson
[Joh24] and Heuer [Heu24], discuss Huber’s theory and its applications.

Why write these notes now? First, interest in adic spaces has exploded since
they became a pillar for Scholze’s perfectoid spaces [Sch12, SW20]. For instance,
the 2017 Arizona Winter School was dedicated to perfectoid spaces, and those
lectures necessarily included only a rapid introduction to adic spaces [BCKW19].
Second, eigenvarieties are the Spring School’s second topic. These are traditionally
developed as rigid analytic spaces, in Tate’s style, by Hida, Coleman and Mazur,
Buzzard, and many more. Recent works [AIP18, JN19, Gul19], however, extend
eigenvarieties to characteristic p local fields. All those works require Huber’s per-
spective.

Motivation. The first two lectures focus on spaces of valuations, on which Huber’s
theory is based. As background, we recall Tate’s spaces and how to shift into a
valuative mindset. We work over Cp, the p-adic complex numbers. The field Cp is
complete for the p-adic norm || − ||p and algebraically closed, which makes geometry
more clear.

The fundamental ring in Tate’s theory is the Tate algebra Cp⟨w⟩. It is defined
as the ring of series

f = a0 + a1w + a2w
2 + · · · ∈ CpJwK

with the property that

(0.0.1) lim
i→∞

||ai||p = 0.

Tate models the closed unit disc over Cp as maximal ideals in Cp⟨w⟩. To explain,
if f ∈ Cp⟨w⟩ and ||α||p ≤ 1, then f(α) converges by (0.0.1). The evaluation map

Cp⟨w⟩
f 7→f(α)−−−−−→ Cp(0.0.2)

therefore exists and has kernel ⟨w − α⟩ ∈ max-Spec(Cp⟨w⟩). The Weierstrass
preparation theorem implies all maximal ideals arise this way. This gives a
bijection

{α ∈ Cp | ||α||p ≤ 1} ←→ max-Spec(Cp⟨w⟩).
Maximal ideals also detect inequalities needed for analytic geometry. For in-

stance, ||α||p ≤
1
p if and only if w − α generates a maximal ideal in the larger

ring

Cp⟨
w

p
⟩ = {b0 + b1

w

p
+ b2(

w

p
)2 + · · · | lim

i→∞
||bi||p = 0}

= {a0 + a1w + a2w
2 + · · · | lim

i→∞
||ai||pp

−i = 0}.

The ring Cp⟨wp ⟩ ∼= Cp⟨w, v⟩/⟨pw − v⟩ is an example of a Cp-affinoid algebra. Rigid

spaces are glued from affinoid spaces, which are the maximal ideal spectra of affinoid
algebras, in analogy to how schemes are glued from the prime ideal spectral of rings.

This model for geometry faces a major technical issue. It is too easily discon-
nected. In Tate’s theory, a disc of radius p−s < 1 is given by

{||α||p ≤ p
−s} ↔ max-Spec(Cp⟨

w

ps
⟩).
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These cover the open unit disc {||α||p < 1}. The boundary of the unit disc is

{||α||p = 1} ↔ max-Spec(Cp⟨w,w−1⟩) = max-Spec(Cp⟨w, v⟩/⟨wv − 1⟩).
Thus, the closed unit disc decomposes

(0.0.3) {||α||p ≤ 1} = {||α||p = 1} ∪
⋃
s>0

{||α||p ≤ p
−s},

with each piece being affinoid.
Why is this disconnection an issue? A näıve sheaf theory would produce Cp⟨w⟩

as the ring of functions on {||α||p ≤ 1}. The disconnection (0.0.3) would then say

that a series Cp⟨w⟩ can theoretically be defined by prescribing an analytic series
on the disc’s “boundary” {||α||p = 1} and, independently, a compatible collection of

series on disc {||α||p ≤ p−s} with s > 0. So, a näıve sheaf theory would allow a single
series that identically vanishes on the interior of the disc and not on the boundary.
But, such a series is disallowed by the Weierstrass preparation theorem. Tate’s
solution was to use the language of Grothendieck topologies to disallow coverings
such as (0.0.3).

Huber proposes a different model of p-adic geometry. (Berkovich’s approach has
the same origin.) Returning to the evaluation maps (0.0.2), if ||α||p ≤ 1, we define

a (semi-)norm | − |α on Cp⟨w⟩ by
(0.0.4) |f |α = ||f(α)||p.

The maximal ideal ⟨w − α⟩ is equal to the support of | − |α, which is the set of
f such that |f |α = 0. So, Tate’s “points” are recovered directly from these norms.
However, there are more norms on Cp⟨w⟩. For instance, there is the Gauss norm

(0.0.5) ||a0 + a1w + a2w
2 + · · · ||Gauss = max

i≥0
||ai||p.

This norm is special because it is a norm that gives Cp⟨w⟩ the structure of a
complete topological ring. It is of a different nature than | − |α in the sense its
support is {0}.

Huber’s theory goes even further. It considers more general objects called val-
uations. These satisfy the axioms of norms, except their target is not always the
non-negative real numbers. Huber models rigid analytic geometry on spaces of
continuous valuations on topological rings, such as Cp⟨w⟩.

Lecture contents. The first two lectures address Huber rings and their continuous
valuation spectra. By the end of the second lecture, we explain:

(i) Huber’s continuous valuation spectra and how localization theory detects
subdiscs such as {||α||p ≤

1
p}.

(ii) Huber’s natural model for the closed unit disc will contain at least one point
is that not naturally part of the “covering” seen in (0.0.3).

Point (i) supports comparing Huber’s theory with Tate’s. Point (ii) suggests Hu-
ber’s theory treats coverings and analytic functions differently than Tate’s.

Hübner’s initial lecture on adic spectra [Hüb24] comes between our second and
third lectures. The reader should read that first and then come back to our third
lecture, where we detail further constructions with adic spectra.

Our fourth lecture is independent from those of our colleagues. In it, we analyze
the closed unit disc, focusing on a systematic explanation of the point referred to
in (ii) above.
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1. Huber rings

The primary goal of this lecture is defining Huber rings and giving their initial
properties. We emphasize examples and material on bounded-ness and localization.

1.1. Definition.

Definition 1.1.1. A Huber ring is a topological ring A that contains an open
subring A0 for which there is an ideal I ⊆ A0 such that:

(a) The topology on A0 (and thus on A) is the I-adic topology.
(b) The ideal I is finitely generated.

Huber rings are called f-adic rings in the original work [Hub93]. The “-adic”
refers to condition (a) in Definition 1.1.1, while the “f-” recognizes the finiteness
assumption in part (b). The shift toward the term “Huber ring” follows the in-
troduction of perfectoid spaces and derivative works. The main benefit of the new
name is that the “f” in f-adic cannot be confused with an italicized “f”, which
frequently represents a mathematical object, such as a function.

In (a), saying A has the I-adic topology means a subset U ∋ 0 is open if and
only if In ⊆ U for some n. The open sets around non-zero elements are determined
by translation, since A is a topological ring. Note, however, that I ⊆ A is an open
additive subgroup in A. It has the structure of an ideal over A0, only.

We call A0 a ring of definition and I ⊆ A0 an ideal of definition. The pair
(A0, I) is a pair of definition. Pairs of definition are auxiliary structures. They
exist but need not be specified. Also, there is choice involved. For instance, if
(A0, I) is a pair of definition, then so is (A0, I

n) for any n ≥ 1.
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1.2. Examples.

Example 1.2.1. Let A be any ring and I any finitely generated ideal in A. We
equip A with the I-adic topology to make A a topological ring. Since I is finitely
generated, A is a Huber ring with pair of definition (A, I).

As a specific case, let A = ZpJwK. Unlike Tate’s affinoid algebras, this is a power
series ring without any convergence conditions. It is noetherian and local, with
maximal ideal m = ⟨p, w⟩. The m-adic topology on A turns A into a Huber ring.

Example 1.2.2. The field of p-adic numbers Qp is not covered by Example 1.2.1.
Recall Qp is a topological field with its topology defined by the p-adic norm || − ||p.
A neighborhood basis of zero is given by the open balls {||α||p ≤ p−n}. Therefore,

Zp = {α ∈ Qp | ||α||p ≤ 1}
is open in Qp. Moreover, for n ≥ 0 and α ∈ Zp, we have

α ∈ pnZp ⇐⇒ ||α||p ≤ p
−n.

Therefore, the topology defined by || − ||p on Zp is the same as the topology induced

by the (principal) ideal pZp. We have shown Qp is a Huber ring by identifying
(Zp, pZp) as a pair of definition. It is even a Tate ring. See Section 1.3.

Example 1.2.3. A non-Archimedean field is a complete topological field K
whose topology is defined by a non-trivial non-Archimedean norm

|| − || : K → R≥0.

Such K are Huber rings, just as for K = Qp. First, the subring

A0 = OK := {α ∈ K | ||α|| ≤ 1}
is open. Second, since || − || is non-trivial, there exists α ∈ K× such that ||α|| ̸= 1.
Define ϖ = α±1, making sure ||ϖ|| < 1. Since ||ϖn|| → 0 as n → +∞, the norm
topology on A0 is equivalent to the topology defined by the ideal ϖA0 ⊆ A0. There
is a wide range of choices for ϖ. Each such choice is called a pseudo-uniformizer
for K. Examples of non-Archimedean fields include perfectoid fields discussed in
Heuer’s lectures [Heu24].

The field K = Cp is important to keep in mind. By definition, Cp is the com-

pletion of an algebraic closure Qp of Qp with respect to the p-adic norm. The ring
A0 = OCp

is a local ring whose norm topology is defined by the principal ideal
pOCp

. This is not the topology defined by the maximal ideal

mOCp
= {x ∈ OCp | ||x||p < 1}.

Indeed, since Cp is algebraically closed we have m2
OCp

= mOCp
. Therefore, the

powers of mOCp
do not shrink toward zero as the powers of pOCp do.

Example 1.2.4. Let K be a non-Archimedean field with norm || − ||. Define

A = K⟨w⟩ =

{ ∞∑
i=0

aiw
i ∈ KJwK | lim

i→∞
||ai|| = 0

}
.

This is called a Tate algebra in one variable, in honor of its role in Tate’s rigid ana-
lytic geometry. It is a topological ring, with topology defined by a norm || − ||Gauss

||a0 + a1w + a2w
2 + · · · ||Gauss = max

i≥0
||ai||
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that we first encountered in (0.0.5). This norm is called the Gauss norm, pre-
sumably because proofs that || − ||Gauss is multiplicative resemble proofs of Gauss’s
lemma on irreducibility of integer polynomials over the rational field. The topolog-
ical ring A is a Huber ring. A ring of definition is

A0 = OK⟨w⟩ =

{ ∞∑
i=0

aiw
i ∈ A | ai ∈ OK for all i

}
= {f ∈ A | ||f ||Gauss ≤ 1}.

An ideal of definition is

ϖA0 =

{ ∞∑
i=0

aiw
i ∈ A | ai ∈ ϖOK for all i

}
= {f ∈ A | ||f ||Gauss < ||ϖ||}.

Here, ϖ is a pseudo-uniformizer for K as in Example 1.2.3. If || − || is a discrete
norm, then the inequality in the prior displayed equation becomes ||f ||Gauss < 1.

Warning 1.2.5. In these examples, we have been careful to define a topological
ring first and assert the Huber ring property second. More accurately, in each case
we first defined a ring A with a topology. Second, we left as Exercise 1.1 to check
each A was actually a topological ring. And, third, we identified a pair of definition
(A0, I).

Often you will find Huber rings A defined only using a pair of definition (A0, I).
After all, taking a topological ring A0 and declaring A0 ⊆ A to be open is a valid
way to describe a topology on a ring A. It just may not define a topological ring!
This issue arises in practice, with rational localizations. So, we propose Exercises
1.2-1.3 as early work with topological rings.

1.3. Example: Tate rings. Tate rings are important enough that they get their
own subsection. A Tate ring is a Huber ring A in which there exist a unit ϖ such
that ϖn → 0 as n → +∞. Such a ϖ is called a pseudo-uniformizer, borrowing
from Example 1.2.3.

Let us examine the structure of a Tate ring A. Choose a pair of definition (A0, I).
Since ϖn → 0 as n → +∞, there exists an n ≥ 1 such that ϖn ∈ I. The element
ϖn is still a pseudo-uniformizer. So, without loss of generality ϖ ∈ I ⊆ A0. Now
we claim:

(a) The topology on A0 is the ϖA0-adic topology.
(b) Algebraically, A = A0[

1
ϖ ].

Thus, any choice of a pseudo-uniformizer ϖ (in a given ring of definition) simulta-
neously controls the topological and algebraic structure of a Tate ring. For proof,
ϖA0 is an open A0-ideal, since it is a multiplicative translate of the open subset
A0 ⊆ A. But also ϖ ∈ I and so ϖA0 ⊆ I. This proves (a). For (b), consider
any f ∈ A. Since multiplication by f is continuous on A, there exists n such that
fϖnA0 ⊆ A0, and therefore f ∈ A0[

1
ϖ ].

1.4. Rings of definition. Huber rings are topological rings. Pairs of definition
(A0, I) are auxiliary data. The goal of this section is illustrating the flexibility of
this data.

Let A be a topological ring. A subset X ⊆ A is called bounded if for any open
neighborhood U ∋ 0, there exists an open neighborhood V ∋ 0 such that XV ⊆ U .
Note that X, U , and V are a priori just subsets. The condition XV ⊆ U means
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that if x ∈ X and v ∈ V then xv ∈ U . If U is an additive subgroup, which is often
the case in the context of Huber rings, then the condition XV ⊆ U is equivalent to
X · V ⊆ U where X · V is the abelian group generated by XV .1

The next proposition classifies rings of definition from a topological perspective.
It is repeatedly used in analyzing more refined structures in Section 1.5.

Proposition 1.4.1. If A is a Huber ring, then a subring A0 ⊆ A is a ring of
definition if and only if A0 is open and bounded.

Proof. Let A be a Huber ring and A0 a ring of definition. First, A0 is open by
definition. Second, basic open neighborhoods of zero have the form U = In with
I ⊆ A0 an ideal. Since A0I

n ⊆ In, we see that A0 is bounded (taking V = In as
well).

We now argue the converse. Assume A0 is open and bounded. Choose any pair
of definition (B0, J) for A. Since A0 is open, it contains a power Jn of J . The
pair (B0, J

n) is also a pair of definition for A. Replacing J by Jn, we assume that
J ⊆ A0.

Now choose f1, . . . , fd ∈ J that generate J as a B0-ideal. Define

I =
d∑
i=1

A0fi ⊆ A0.

We claim (A0, I) is a pair of definition for A. Since I is a finitely generated A0-ideal,
we focus on showing the I-adic topology is the J-adic topology on A.

First, we show J2 ⊆ I. Recall J ⊆ A0. Then,

J2 = J · (
d∑
i=1

B0fi) =

d∑
i=1

Jfi ⊆
d∑
i=1

A0fi = I.

Second, we show In ⊆ J for some n. This is where we use that A0 is bounded.
Indeed, since A0 is bounded and J is an ideal, we may choose n such that A0·Jn ⊆ J .
The A0-ideal I

n is additively generated by elements afn1
1 · · · f

nd

d where n1 + · · · +
nd = n and a ∈ A0. Since f

n1
1 · · · f

nd

d ∈ Jn, we conclude that In ⊆ A0 · Jn ⊆ J , as
claimed. □

1.5. Bounded conditions. Let A be a topological ring. This subsection intro-
duces power-bounded elements A◦ and topologically nilpotent elements A◦◦.

1.5.1. Power-bounded elements. We say f ∈ A is power-bounded if its powers

{1, f, f2, f3, . . . }
form a bounded subset in A. It is traditional to use A◦ as notation:

A◦ = {f ∈ A | f is power-bounded}.
For instance, if A = Cp⟨w⟩, then w ∈ A◦, and in fact A◦ = OCp

⟨w⟩. (See Exercise
1.4.)

Note that f ∈ A◦ demands that for any open subset U ∋ 0, there is an open
subset V ∋ 0 for which V ⊆ U , and fV ⊆ U , and f2V ⊆ U , and so on. A
finite number of these containments can be arranged, since multiplication by f is
continuous on A, but the condition that f ∈ A◦ is more strict.

1The typographical difference between XV and X ·V can cause problems while scanning. The
“X · V ”-notation is used by Huber [Hub93]. It has stuck in many references. Beware!
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It is clear that A◦ is closed for multiplication. It follows from Exercise 1.5 that
A◦ is in fact a subring of A. If A is a Huber ring, it even equals the union of all
rings of definition. The main step in the proof is the next lemma.

Lemma 1.5.2. Let A be a Huber ring. If A0 is a ring of definition and f ∈ A◦,
then A0[f ] is a ring of definition.

Proof. Since A is a Huber ring, we only need to show A0[f ] is open and bounded,
by Proposition 1.4.1. Since A0 ⊆ A0[f ] already, the open-ness is clear. What about
boundededness? Let I ⊆ A0 be an ideal of definition. Since f ∈ A◦, there exists
n such that fmIn ⊆ I for all m ≥ 0. Since I and In are A0-ideals, we see that
A0[f ]I

n ⊆ I. Then, A0[f ] is bounded by Exercise 1.5. □

Proposition 1.5.3. If A is a Huber ring, then

A◦ =
⋃

A0⊆A
ring of def.

A0.

So, A◦ is an open subring in A. It is also integrally closed in A.

Proof. Let A0 a ring of definition. Since A0 is bounded and closed under exponen-
tiation, we see A0 ⊆ A◦. Conversely, if f ∈ A◦ and A0 is any ring of definition,
then f ∈ A0[f ]. By Lemma 1.5.2, A0[f ] is a ring of definition.

Having shown the equality in the proposition, we have that A◦ is open, and
we already indicated why it is a subring. The primary observation to show A◦ is
integrally closed is that the proof so far implies that if f ∈ A is integral over A◦,
then f is integral over some ring of definition A0. Given this, one checks that the
finite A0-algebra A0[f ] is open and bounded. See Exercise 1.7. □

Proposition 1.5.3 does not claim A◦ is bounded. See Exercise 1.9.

1.5.4. Topologically nilpotent elements. An element f ∈ A is called topologically
nilpotent if for all open neighborhoods U ∋ 0, we have fn ∈ U for n ≫ 0. The
sufficiently large “≫” depends on f and U . As an example, a pseudo-uniformizer
in a Tate ring is topologically nilpotent. The formal notation is

A◦◦ = {f ∈ A | f is topologically nilpotent}.
Assume A is a Huber ring and A0 is a ring of definition. If f ∈ A◦◦ is topologically
nilpotent, then the powers of f are in the bounded union A0 ∪ {1, . . . , fN} for
some N . Therefore, when A is a Huber ring we have A◦◦ ⊆ A◦. The analogue of
Proposition 1.5.3 is the following result.

Proposition 1.5.5. If A is a Huber ring, then

A◦◦ =
⋃
I⊆A

ideal of def.

I.

Moreover, A◦◦ is a radical A◦-ideal.

Proof. We show topologically nilpotent elements lie in ideals of definition. (The
other containment is straightforward.) Suppose f ∈ A◦◦. We just explained that
A◦◦ ⊆ A◦, and so we may choose, by Proposition 1.5.3, a pair of definition (A0, J)
such that f ∈ A0. Since J is open, there exists n such that fn ∈ J . Now define
I = J +A0f ⊆ A0. Then, I is a finitely generated A0-ideal because J is. We claim
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(A0, I) is a pair of definition. First, I is open since it contains J . Second, fn ∈ J
and fJ ⊆ J , since f ∈ A0. Therefore, In ⊆ J . We have shown the I-adic and
J-adic topologies coincide, finishing the claim.

As in the case of power-bounded elements, we leave the auxiliary claim that A◦◦

is a radical A◦-ideal as Exercise 1.8. (A hint is provided.) □

Note, the proof makes clear that the notation “I ⊆ A ideal of def.” additionally
indexes over all rings rings of definition A0, not just the ideals of definition inside
some fixed A0.

1.6. Rational localization. We end our introduction to Huber rings by construct-
ing rational localizations. These localizations are to Huber rings and adic spaces
what ring-theoretic localizations are to all rings and schemes. That is, they are used
to construct affine subspaces of adic spaces. The reader is invited to later meditate
on this analogy in the context of the proof of the adic Nullstellensatz (Theorem
3.5.1).

Given a Huber ring A, a rational localization A( g1,...,grs ) is another Huber ring de-
pending on elements g1, . . . , gr, s ∈ A. Localizations appear at the start of [Hub94],
where adic spaces are defined. See also Section 3.2 and Hübner’s lectures [Hüb24].
You cannot localize with respect to all possible choices of elements. The criterion
is that the A-ideal a = As+ Ag1 + · · ·+ Agr ⊆ A is open. Before we explain, here
are examples:

(i) Suppose (A0, I) is a pair of definition and f1, . . . , fd ∈ I are A0-generators.
Then, {g1, . . . , gr} = {f1, . . . , fd} is valid with any s, since I ⊆ a.

(ii) Let A be a Tate ring. Then, the only open A-ideal is a = A. Therefore,
the condition on g1, . . . , gr, s is that they generate A. See Exercise 1.10.

(iii) Suppose A = ZpJwK with the ⟨p, w⟩-adic topology. Then {g, s} = {w, p} is
a valid choice, but {g, s} = {p, p} is not. See Exercise 1.11.

(iv) Localization on Cp⟨w⟩ is related to Cp⟨wp ⟩ in Section 1.7.

The topological ring A( g1,...,grs ) is defined in two steps, first algebraically and
second topologically. We fix a pair of definition (A0, I). This choice is ultimately
immaterial, by the universal property in Theorem 1.6.2.

(RL-1) The underlying ring is A( g1,...,grs ) = A[ 1s ].
(RL-2) Let A′ = A( g1,...,grs ) and A′

0 = A0[
g1
s , . . . ,

gr
s ] ⊆ A′. We make A′

0 a topo-
logical ring by giving it the IA′

0-adic topology. We then give A′ the unique
topology where A′

0 ⊆ A′ is open.

By (RL-1) and (RL-2), we have a ring with a topology. But remember now Warning
1.2.5! We must justify that in fact we have defined a topological ring.

Lemma 1.6.1. Let A be a Huber ring. Assume that g1, . . . , gr, s ∈ A generate an
open A-ideal. Then A( g1,...,grs ) is a topological ring.

The proof of Lemma 1.6.1 uses that I is finitely generated over A0, which we have
not really used until now. The only result where we explicitly used the property
was Proposition 1.4.1. However, the issue there is preserving the finitely generated
property while switching ideals of definition. The same result holds assuming only
that A satisfies Definition 1.1.1(a). (We thank Kalyani Kansal for this observation.)
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Proof of Lemma 1.6.1. The first step is a general simplification. Then, we write
out the argument only in the case that A is a Tate ring. The main reason is to
decrease the notations and to generate a proof that is simpler to recall.

For notation, define A′ = A( g1,...,grs ), A′
0 = A0[

g1
s , . . . ,

gr
s ] and I

′ = IA′
0. We give

A′
0 the I ′-adic topology and declare A′

0 ⊆ A′ open. If I is replaced by a different
ideal of definition in A0, the topology on A′ does not change.

The topology on A′ is built by declaring a topological ring A′
0 ⊆ A′ to be open.

By Exercise 1.2, we must only show multiplication by f ′ is continuous on A′, for all
f ′ ∈ A′. Since I ′ is generated by I over A′

0, the explicit claim is that for all f ′ ∈ A′,
there exists an n such that f ′In ⊆ A′

0. If f ′ = f ∈ A, this is clear since A0 is a
topological ring for the I-adic topology. A general element of A′ is f ′ = f/sN for
some N . Therefore, only the case f ′ = 1

s is significant. Thus, we want 1
sI
n ⊆ A′

0

for some n.
We now assume that A is a Tate ring. Choose a pseudo-uniformizer ϖ ∈ A that

belongs to A0. By Section 1.3, we know A = A0[
1
ϖ ] and we may assume I = ϖA0.

As mentioned in (ii) prior to the lemma, since A is a Tate ring, we are assuming
that g1, . . . , gr, s generate the unit ideal. So, ϖ may be expressed as

(1.6.1) ϖ = a0s+ a1g1 + · · ·+ argr (ai ∈ A).

Since A = A0[
1
ϖ ], there is a positive integer n such that aiϖ

n−1 ∈ A0 for all i. By
(1.6.1), we then have that

(1.6.2) ϖn ∈ A0s+A0g1 + · · ·+A0gr.

And we are done now because

1

s
In =

1

s
ϖnA0 ⊆ A0[

g1
s
, . . . ,

gr
s
] = A′

0

In general, the open-ness of As+Ag1 + · · ·+Agr leads to expressions similar to
(1.6.1), with ϖ is replaced by any one of a finite number of A0-generators of an ideal
of definition I. The conclusion, analogous to (1.6.2), is that A0s+A0g1+ · · ·+A0gr
is open. Fill in the details and finish the argument as Exercise 1.12. □

Theorem 1.6.2 (Rational localization). Let A be a Huber ring and assume that
g1, . . . , gr, s ∈ A generate an open ideal of A.

(a) For (A0, I) a fixed pair of definition, A( g1,...,grs ) is a Huber ring.
(b) The natural map A → A( g1,...,grs ) is initial among continuous morphisms

A→ B, for B a Huber ring, for which the image of s is invertible and the
image of each gi/s is power-bounded.

Proof. We proved in Lemma 1.6.1 that A′ = A( g1,...,grs ) is a topological ring. By
construction it has a ring of definition A′

0 = A0[
g1
s , . . . ,

gr
s ] with finitely generated

ideal of definition IA′
0. This proves that A

′ is a Huber ring, possibly depending on
the choice of (A0, I). That choice disappears once we prove the universal property
(b), since the property itself makes no reference to (A0, I).

For (b), the localization map ι : A → A′ = A[ 1s ] is continuous, since I ⊆
ι−1(IA′

0). Moreover, s is a unit in A′ and
gj
s is power-bounded, since it lies in the

ring of definition A′
0 of A′ (recall Proposition 1.5.3). Suppose φ : A → B is given
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as in (b). Since φ(s) is invertible in B, there is a natural factorization

A
φ

//

ι

��

B

A′
ψ

>>

at the level of A-algebras. We must check ψ is continuous. Fix an open neigh-

borhood U ∋ 0 in B, which we assume is an additive subgroup. Since φ(gi)
φ(s) is

power-bounded in B for all i, there exists an open neighborhood V ∋ 0 for which

ψ(
gi
s
)mV = (

φ(gi)

φ(s)
)mV ⊆ U

for all m ≥ 0 and all i. Since φ is continuous, In ⊆ φ−1(V ) for some n. Since
(I ′)n = InA′

0 is spanned by elements of the form f( gis )
m ∈ A′ for f ∈ In and U is

an additive subgroup, it follows that (I ′)n ⊆ ψ−1(U). □

Wemake two complementary remarks. First, the proof clarifies that the universal
property is valid as long as B possesses a neighborhood basis of zero consisting of
additive subgroups (B is a “non-Archimedean ring”). Second, some authors assume
in Theorem 1.6.2 that g1, . . . , gr generate an open ideal. There is practically no
difference, since the definitions (RL-1) and (RL-2) make A( g1,...,grs ) = A( g1,...,gr,ss ).

1.7. Example: Localizing Cp⟨w⟩. The final section of this lecture connects ra-
tional localization on Cp⟨w⟩ to the Cp-affinoid algebra Cp⟨wp ⟩. The discussion is

simplified by focusing first on Cp[w].
Consider A = Cp[w] as a topological ring with the topology induced from the

Gauss norm. That is, if f = a0 + a1w + · · ·+ anw
n, then

||f ||Gauss = max
i≥0
||ai||p.

Just like Cp⟨w⟩, we see A is a Tate ring with pseudo-uniformizer p ∈ A. A ring of
definition is A0 = OCp

[w] and an ideal of definition is pOCp
[w].

Now localize with g = w and s = p. The hypothesis of Theorem 1.6.2 is satisfied
because s is a unit in A. As a ring,

A(
w

p
) = Cp[w][

1

p
] = Cp[w].

So, A = A(wp ), still. But the topology is new! The original topology has a basis

around zero given by pnOCp
[w]. The new topology has a basis around zero given

by

(1.7.1) pnA0[
w

p
] = pnOCp

[w,
w

p
] = pnOCp

[
w

p
].

Here is a concrete difference. In the Gauss norm topology, w is power bounded but
not topologically nilpotent since wn ̸∈ pOCp [w] for any n. Yet, in A(

w
p ) we have

wn = pn(
w

p
)n ∈ pnA0[

w

p
]

Therefore, w is topologically nilpotent in A(wp ).

We chose A to be the polynomial ring so that (1.7.1) was most clear. The
connection to affinoid algebras is via completion. The main point is that Cp⟨w⟩
is the completion of Cp[w] for the Gauss norm. As Exercise 1.13, the reader can
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check that the topology on A(wp ) = Cp[w] is the same as the topology induced by

the norm
|f | 1

p
:= max

i≥0
||ai||pp

−i,

and Cp⟨wp ⟩ is the completion of Cp[w] for |− | 1
p
. (The completions here are all with

respect to norms. We revisit more general completions of Huber rings in Section
3.4.)

Section 1 Exercises.

Exercise 1.1. Prove that the rings with topology described in Examples 1.2.1-1.2.4
are all topological rings.

Exercise 1.2. Let A be a ring and A0 ⊆ A a subring and I an A0-ideal. Consider
A0 as a topological ring with the I-adic topology as in Example 1.2.1. Define
a topology on A by declaring A0 ⊆ A to be open. Show that the following are
equivalent:

(i) A is a topological ring.
(ii) For all f ∈ A, multiplication by f is continuous on A.
(iii) For all f ∈ A, there exists an n≫ 0 such that fIn ⊆ A0.

Exercise 1.3. These examples have the same flavor (with similar solutions). In
each, we give a ring A containing a topological ring A0. The exercise is to check
that declaring A0 ⊆ A to be open will not make A into a topological ring.

(a) Let A0 = OCp
with the m-adic topology. Show that declaring OCp

⊆ Cp to
be open will not make Cp a topological field.

(b) Consider ZpJwK with the ⟨p, w⟩-adic topology. Show that if one declares
ZpJwK ⊆ ZpJwK[ 1p ] is open, then ZpJwK[ 1p ] will not be a topological ring.

Exercise 1.4. Let A = Cp⟨w⟩.
(a) Show that w is power-bounded but not topologically nilpotent.
(b) Show that, in fact, A◦ = OCp

⟨w⟩, and

A◦◦ = mOCp
⟨w⟩ =

{ ∞∑
i=0

aiw
i ∈ A | ai ∈ mOCp

for all i

}
.

Exercise 1.5. Let A be a topological ring and X and Y subsets of A.

(a) Show that if X ⊆ Y and Y is bounded, then X is bounded.
(b) Show that if A is a Huber ring and X and Y are bounded, then so is X ·Y .
(c) Suppose A is a Huber ring. Show that X ⊆ A is bounded if and only if for

any ideal of definition I, there exists an n ≥ 1 such that XIn ⊆ I.

Exercise 1.6. Show that if A is a Huber ring and A0 and A
′
0 are rings of definition,

then there exists a ring of definition A′′
0 containing both.

Exercise 1.7. Show that if A is a Huber ring, then A◦ is integrally closed in A.

Hint. A sketch is given at the end of the proof of Proposition 1.5.3.

Exercise 1.8. Let A be a Huber ring.

(a) Show that f ∈ A is topologically nilpotent if and only if there exists an
ideal of definition I ⊆ A and an integer n ≥ 1 such that fn ∈ I.

(b) Show that A◦◦ ⊆ A◦ is a radical A◦-ideal.
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Hint. In (a), there exists n such that fn ∈ I and m such that f jIm ⊆ I for all

j ≤ n− 1. Then fN ∈ I for N ≥ n(m+ 1). For (b), the tricky part of the ideal property

is showing A◦◦ is closed for addition. For that, it may be helpful to note that if f, g are

topologically nilpotent, then they lie in a common ring of definition A0 (Exercise 1.6).

Exercise 1.9. Let A = Qp[ε] = Qp ⊕ Qpε with ε2 = 0 and the p-adic topology
induced on each factor. Show that A is a Huber ring and

A◦ = Zp ⊕Qpε.

Conclude that A◦ need not be a ring of definition.

Exercise 1.10. Let A be a Tate ring.

(a) Show that any ideal of definition for A contains a pseudo-uniformizer.
(b) Show that if a is an open ideal of A, then a = A.

Exercise 1.11. Let A = ZpJwK with the m-adic topology where m = ⟨w, p⟩. This
is a Huber ring as in Example 1.2.1.

(a) Show that g1 = p and s = p is invalid for the hypotheses in Theorem 1.6.2.
(b) Try to define A(pp ) as in (RL-1) and (RL-2). Confirm that you do not get

a topological ring.
(c) Re-affirm directly that your objection disappears for the ring A(wp ).

Exercise 1.12. Let A be a Huber ring. Suppose g1, . . . , gr, s ∈ A generate an open
ideal. Show that A( g1,...,grs ) is a topological ring, as promised in Lemma 1.6.1.

Hint. A hint is given at the end of the proof of Lemma 1.6.1 in the text.

Exercise 1.13. Show that the topology on Qp[w](wp ) in Section 1.7 is the topology

induced on Qp[w] given by the norm

|a0 + a1w + · · ·+ adw
d| = max

i
||ai||pp

−i.

2. Valuation theory

The second lecture introduces valuation theory. The primary goal is discussing
continuous valuations on topological rings. One highlight is a simple criterion
(Proposition 2.7.1) for a valuation on a Huber ring to be continuous. The final
discussion will focus on the continuous valuation spectrum for the Tate algebra
Cp⟨w⟩.

2.1. Definition. The symbol Γ refers to a totally ordered abelian group. We
write the group operation multiplicatively. By definition, Γ is an abelian group
with an order relation ≤ satisfying the following axioms.

(a) For all γ1, γ2 ∈ Γ, either γ1 ≤ γ2 or γ2 ≤ γ1, and both occur if and only if
γ1 = γ2 (“totally” ordered).

(b) If γ ∈ Γ, then γ′ 7→ γγ′ preserves ≤.
From the first axiom, it makes sense to write γ1 < γ2 provided γ1 ≤ γ2 and γ1 ̸= γ2.
We always extend Γ to the totally ordered monoid Γ ∪ {0}. The multiplicative
structure is given by 0 · γ = 0 = γ · 0, for all γ ∈ Γ. The order extends by 0 < γ for
all γ ∈ Γ.
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Definition 2.1.1. Let A be a ring. A valuation on A is a function | − | : A →
Γ ∪ {0} such that |0| = 0 and |1| = 1, and for all f, g ∈ A we have

|fg| = |f ||g| (| − | is multiplicative);

|f + g| ≤ max{|f |, |g|} (the ultrametric triangle inequality).

Note, we are using valuation as a term generalizing an ultrametric norm, as
opposed to something like the p-adic valuation vp : Qp → Z ∪ {∞}. This is a
common choice of language in this research area. In If we were to restrict to
valuations valued in R>0, we might prefer the terminology semi-norm. (“Semi-”
because we allow for |f | = 0 even if f ̸= 0.) The terminology “valuation” seems
to be preferred because Γ may in fact not embed into R>0. Finally, confusion may
arise since we often consider a ring A topologized by a norm. To avoid confusion,
we reserve | − | for a valuation on A, while || − || will denote a fixed norm on A.

2.2. Examples.

Example 2.2.1. Let A be an integral domain. The trivial valuation | − |triv is

|a|triv =

{
1 if a ̸= 0;

0 if a = 0.

Therefore, if A is any ring and p ⊆ A is a prime ideal, we have the trivial valuation

A↠ A/p
|−|triv−−−−→ {0, 1} modulo p.

Example 2.2.2. Let A = Q. Some valuations on A are given by:

• The trivial valuation | − | = | − |triv.
• The valuation |−| = || − ||∞ given by the Archimedean norm Q

||−||∞−−−−→ R≥0.

• The valuation | − | = || − ||ℓ given by an ℓ-adic norm Q
||−||ℓ−−−→ R≥0 for a

prime ℓ.

Ostrowski’s theorem states these are the only valuations on Q, up to equivalence.
(See Section 2.5 below for “equivalence”).

Example 2.2.3. Let A = Qp. We already know about | − |triv and || − ||p. But,

there are more. A theorem sometimes attributed to Chevalley states that if L/K is
a field extension, then a valuation on K extends to a valuation on L. See [Bou98,
Chapter VI, §3, no. 3, Proposition 5], for instance. So, each valuation on Q extends
to a valuation on Qp (in many ways). Note, this algebraic phenomenon requires
enlarging the target group Γ. On Qp, the valuations |−| = |−|triv and |−| = || − ||p
are distinguished (up to equivalence) as the ones that take value in a cyclic group.
The p-adic norm is distinguished as the only one that is continuous for the p-adic
topology on Qp. (Compare with Exercise 2.6, after reading a bit further.)

Example 2.2.4. Let A = Cp⟨w⟩ be the one-variable Tate algebra over Cp. For
α ∈ OCp

, we have a valuation

f
|−|α7−→ ||f(α)||p

on A. These valuations were considered in our motivation (page 3). There is also
the valuation | − |1 := || − ||Gauss that defines the topology on A. It is given by

f = a0 + a1w + a2w
2 + · · ·⇝ |f |1 = max

i≥0
||ai||p.
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We switch notation to |−|1, so that we can easily change “1” to another real number
r such that 0 < r ≤ 1. That is, we define

|f |r = max
i≥0
||ai||pr

i.

Each | − |α is semi-norm, while each | − |r is a norm. A more exotic example is
given in Section 2.4 below.

2.3. Continuous valuations. In the examples above, Qp and Cp⟨w⟩ are topo-
logical rings. Huber rings are also topological. So, let us explain continuity for

valuations. Assume A
|−|−−→ Γ ∪ {0} is a valuation. The value group Γ|−| is the

subgroup of Γ generated by the non-zero |f | for f ∈ A. If A = K is a field, then
Γ|−| = |K×|. In general, it is the smallest subgroup of Γ through which |−| factors.

Now suppose A is a topological ring. We say that |−| is a continuous valuation
on A if for all γ ∈ Γ|−|, the subset

(2.3.1) Uγ = {f ∈ A | |f | < γ} ⊆ A
is open in A. (The Uγ are open subgroups even.) In the examples above:

(i) Let A be a topological ring and p a prime ideal. The trivial valuation
modulo p is continuous if and only if p ⊆ A is open.

(ii) The p-adic norm is continuous on Qp. The trivial norm is not.
(iii) The valuations | − |α and | − |r on Cp⟨w⟩ are continuous.

What might a reasonable discontinuous valuation look like? Consider Cp[w] ⊆
Cp⟨w⟩ with the topology induced from the Gauss norm. Then,

|a0 + a1w + · · ·+ anw
n|r = max

i=0,...,n
||ai||pr

i

is a valuation on Cp[w] for all 0 ≤ r < ∞. However, it is continuous if and only if
r ≤ 1. See Exercise 2.1.

2.4. An exotic example. As promised in Example 2.2.4, we give an extended
example of a valuation on Cp⟨w⟩ that is not a (semi-)norm. Define Γ = R>0×R>0

with the “read left to right” ordering. The technical term is lexicographic. In
symbols,

a < c =⇒ (a, b) < (c, d) (any b, d),

and

e < b =⇒ (a, e) < (a, b).

The right-hand portion of Figure 2.4.1 illustrates the order relation on Γ.
Now pick a real number 0 < ε < 1. We define | − |1− on Cp⟨w⟩ by

|a0 + a1w + a2w
2 + · · · |1− = max

i≥0
(||ai||p, ε

i) ∈ Γ.

What does | − |1− measure? Write |f |1− = (a, b). Then, a ≥ ||ai||p for all i by

definition of the lexicographic order. Since a = ||ai||p for some i as well, we see

(2.4.1) a = max
i≥0
||ai||p = |f |1.

So, the first coordinate of |f |1− is the Gauss norm of f . What about the second?
Suppose that i1 < i2 < · · · < in are the indices where ||aij ||p = |f |1. Then, in Γ, we

have

(||ain ||p, ε
in) < · · · < (||ai2 ||p, ε

i2) < (||ai1 ||p, ε
i1) = |f |1− .
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Fig. 2.4.1. A visualization of Γ ∪ {0} for Γ = R>0 × R>0. The right-hand
portion of the figure illustrates the generic order relation. The left-hand portion

illustrates the position of p versus w under the valuation | − |1− .

Thus, |f |1− records, in the second coordinate, the index of least degree whose
coefficient realizes the Gauss norm. We propose Exercise 2.2 to interpret | − |1− as
combining the Gauss norm with the order of vanishing of polynomials modulo p.

The calculation shows | − |1− is continuous on Cp⟨w⟩. Indeed, if a, b > 0 are real
numbers, we have shown that within Cp⟨w⟩ we have

U |−|1
a ⊆ U |−|1−

(a,b) .

(The superscripts indicate the valuation to which the “Uγ”-notation is being ap-

plied.) Each U
|−|1
a is open, since | − |1 defines the topology on Cp⟨w⟩. Thus each

U
|−|1−
(a,b) is open as well.

Finally, | − |1− is written with a “1−” to promote intuition that the coordinate
w is measured infinitesimally below 1. Indeed, |p|1− = (1/p, 1) and |w|1− = (1, ε).
Therefore,

(2.4.2) |p|1− < |w|n1− < 1 (for all n).

It is as if w as squeezed between 1/ n
√
p and 1 for all n. See Figure 2.4.1 again. We

will give another sense in which | − |1− is near to 1 in Section 2.8.

2.5. Valuation spectra. Valuation spectra are defined as equivalence classes of
valuations. Let A be any ring with valuations | − |1 and | − |2. We say that | − |1
is equivalent to | − |2 if for all f, g ∈ A we have

|f |1 ≤ |g|1 ⇐⇒ |f |2 ≤ |g|2.

Note that | − |1 and | − |2 may take values in different abstract groups. When they
are equivalent, there is an isomorphism of value groups turning one valuation into
the other. This and another interpretation of equivalence are suggested as Exercise
2.5.

One impact of equivalence for valuation is that it turns seemingly true statements
into actually true ones. For instance, “there is only one continuous valuation on
Qp” is only true if it is understood up to equivalence. (See Exercise 2.6.) After all,
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|| − ||2p and || − ||p are distinct continuous valuations. Another example of equivalence

is that | − |1− depends on the choice of the parameter ε only up to equivalence.
Now assume A is a topological ring. Its continuous valuation spectrum is

Cont(A) = {continuous valuations on A}/(valuation equivalence).

We suggest as Exercise 2.7 showing that whether or not a valuation |−| is continuous
depends only on | − | up to equivalence. Therefore, there is a natural inclusion
Cont(A) ⊆ Cont(Adisc), where Adisc is A with the discrete topology. The larger
space

Spv(A) := Cont(Adisc)

is called the valuation spectrum. No continuity qualification is imposed on
Spv(A). For a non-zero ring, the valuation spectrum is always non-empty, since
one always has the trivial valuation modulo a prime ideal. The non-emptiness of
Cont(A) is more subtle. See Section 4.8 for a related discussion. In the remainder
of this subsection and Section 2.6, we make formal constructions on Spv(A). The
continuous valuations return in Section 2.7.

We will use x to denote an element of Spv(A). Let | − | be a choice of represen-
tative for the class x. If f ∈ A, we define notation

(2.5.1) |f(x)| := |f |.

Since the target group of | − | is not well-defined, (2.5.1) has no clear meaning.
One route, mentioned above, is solving Exercise 2.5 to see |f | is well-defined up to
ordered group isomorphism on value groups. The route we will take is to play more
loosely and agree to only use the notation (2.5.1) in situations where only the class
x, and not the choice of | − |, matters.

For instance, if x ∈ Spv(A), then its support is defined to be

supp(x) = {f ∈ A | |f(x)| = 0}.

The support depends only on the equivalence class x because “|f | = 0” is the same
as “|f | ≤ |0|”. It is a prime ideal, and if A is topological and x ∈ Cont(A), then it
is closed. Prove these facts as Exercise 2.11.

The notation (2.5.1) is also used in equipping Spv(A) with a topology. For
g, s ∈ A we define

(2.5.2) U(
g

s
) = {x ∈ Spv(A) | |g(x)| ≤ |s(x)| ̸= 0}.

Weinstein observes that this “blends features of the Zariski topology on schemes
with the topology on rigid spaces” ([BCKW19, p. 6]). Indeed, x ∈ U( gs ) implies
both that s ̸∈ p = supp(x) (a Zariski condition) and |g(x)| ≤ |s(x)| (a rigid con-
dition). A basic open set for the topology on Spv(A) is, by definition, a finite
intersection

U(
g1, . . . , gr

s
) :=

r⋂
i=1

U(
gi
s
)

= {x ∈ Spv(A) | |gi(x)| ≤ |s(x)| ̸= 0 for all i}.

If A is a topological ring, we equip Cont(A) ⊆ Spv(A) with the induced topology
by these basic opens.
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We have two warnings before going further. First, be careful about cancellation.
The set U( ss ) has a condition:

(2.5.3) U(
s

s
) = {x ∈ Spv(A) | |s(x)| ̸= 0}.

Second, we can form U( g1,...,grs ) for any choice of g1, . . . , gr, s. If A is a topological
ring then a rational subset is one of the form

U(
g1, . . . , gr

s
)

where g1, . . . , gr, s ∈ A are chosen to generate an open A-ideal. This is the same
condition required for rational localization of Huber rings. We return to this in
Section 3.2.

2.6. The support map. The function x 7→ supp(x) defines a continuous function

supp : Spv(A)→ Spec(A).

To see this, note that basic open sets in Spec(A) take the form

D(s) = {p ∈ Spec(A) | s ̸∈ p}
for s ∈ A. Thus, supp−1(D(s)) = U( ss ).

We next describe the fibers of the support map. Let | − | be a valuation on A
and p its support. If f ∈ A and f ̸∈ p, then the strong triangle inequality implies
|f + g| = |f | for all g ∈ p. The same holds if f ∈ p, since p is an additive subgroup.
This shows |f | depends only on f mod p ∈ A/p and | − | factors through A/p,
on which it defines a valuation with support the zero ideal. In particular, | − |
extends to a valuation on the fraction field Frac(A/p). In summary, there is always
a commuting diagram

(2.6.1) A
|−|

//

����

Γ ∪ {0}

A/p

|−|
66

//� � // Frac(A/p).

|−|

OO

The factorization only depends on | − | up to equivalence, in the sense that (2.6.1)
induces a well-defined map

(2.6.2) Spv(A) ⊇ supp−1(p)→ Spv(Frac(A/p))

for each prime ideal p ∈ Spec(A). In fact, (2.6.2) gives a homeomorphism

supp−1(p)
≃−→ Spv(Frac(A/p)).

The support map therefore allows us to treat Spv(A) as families of valuations over
residue fields of Spec(A).

The target of (2.6.2) is the valuation spectrum of a field. This is a space clas-
sically understood through algebra. Let K be any field. For x ∈ Spv(K), the
subring

Ax = {α ∈ K | |α(x)| ≤ 1} ⊆ K
is called the valuation ring of x. Each Ax is a valuation ring in the sense of
commutative algebra (see [Bou98, Chapter VI, §1, no. 2]). That is, if α ∈ K, then
either α ∈ Ax or α−1 ∈ Ax. Any valuation ring is a local ring. In this case, one
can directly check the set of non-units in Ax is equal to those α ∈ Ax such that
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|α(x)| < 1, and that this set forms an Ax-ideal, written mx. According to Exercises
2.12-2.14, the association

(2.6.3) Spv(K)
x 7→Ax−−−−→ {valuation subrings A ⊆ K}

is a bijection. We will use this bijection in our analysis of the closed unit disc in
Section 4.

Finally, the inclusion Cont(A) ⊆ Spv(A) endows Cont(A) with a topology as
well. The support map is, by definition, continuous when restricted to Cont(A).
However, the above analysis is purely algebraic. One of Huber’s preliminary results
on continuous valuation spectra ([Hub93, Theorem 3.1]) is an analysis of the support
fibers in Cont(A) when A is a Huber ring. We will not study that result. Instead,
in the next section we will directly analyze continuity of valuations on Huber rings,
rather than analyzing the space Cont(A) itself.

The reader may want practice manipulating Cont(−). Exercise 2.8 is recom-
mended, as are Exercises 2.9 and 2.10, where the important concept of an adic
morphism of Huber rings is explained.

2.7. Continuous valuations on Huber rings. We now focus on Huber rings.
The primary goal is explaining which valuations on Huber rings are continuous.

Let Γ be a totally ordered abelian group. We say γ ∈ Γ∪ {0} is co-final in Γ if,
for all δ ∈ Γ we have γn < δ for n ≫ 0. This is similar to topological nilpotence.
Note that γ = 0 is automatically co-final. It is also true that every co-final γ must
be less than 1. Indeed, if 1 ≤ γ then 1 ≤ γn for all n ≥ 0. If Γ ⊆ R>0, then the
co-final γ are indeed just the γ such that γ < 1.

Now suppose that | − | : A→ Γ∪ {0} is a valuation. Recall the value group Γ|−|
is the smallest subgroup of Γ containing the non-zero |f | for f ∈ A. For valuations
on Huber rings, we have the following continuity criterion.

Proposition 2.7.1 (Continuity criterion). Let A be a Huber ring. Let

| − | : A→ Γ ∪ {0}
be a valuation and Γ|−| be its value group. The following conditions are equivalent:

(i) | − | is continuous.
(ii) If f is topologically nilpotent, then |f | is co-final in Γ|−|.
(iii) Suppose (A0, I) is a pair of definition and write I = A0f1 + · · ·+A0fd.

Then, for each i we have |fi| is co-final in Γ|−| and |ffi| < 1 for all
f ∈ A0.

In particular, with notation as in (iii), suppose | − | is a valuation, each |fi| is
co-final in Γ|−|, and some |fi| ̸= 0. Then,

| − | is continuous ⇐⇒ |f | < 1

max(|f1|, . . . , |fd|)
for all f ∈ A0.

Proof. First suppose | − | is continuous. If γ ∈ Γ|−|, then the set

Uγ = {f ∈ A | |f | < γ}
is open in A. So, if f ∈ A is topologically nilpotent, then fn ∈ Uγ for all n≫ 0. In
symbols, |f |n < γ for all n ≫ 0. So, |f | is co-final in Γ|−|. This shows (i) implies
(ii).

Now assume that (ii) holds. Fix the notation (A0, I) as in (iii). The elements of
I are among the topologically nilpotent elements in A. Therefore, (ii) implies each
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|fi| is co-final in Γ|−|. In fact, each g ∈ I has co-final value |g|, which implies the
weaker conclusion that if g ∈ I then |g| < 1. Therefore, if f ∈ A0 and i = 1, . . . , d,
then |ffi| < 1 because g = ffi ∈ I. We have shown (ii) implies (iii).

Finally, we prove that (iii) implies (i) by a direct argument. Suppose that γ ∈
Γ|−|. By assumption in (iii), |fi| is co-final in Γ|−| for i = 1, . . . , d. There are only
d-many fi, so there exists n ≥ 0 such that |fi|n < γ for all i at once. We now claim

(2.7.1) Ind+1 ⊆ Uγ .

If proven, then Uγ is open in A. Since γ was arbitrary, we have proven (iii) implies
(i).

We now show (2.7.1). The A0-ideal I
nd+1 is generated as an abelian group by

elements of the form

(2.7.2) g = ffm1
1 · · · fmd

d f ∈ A0, m1 + · · ·+md = nd+ 1.

Since Uγ is an additive subgroup of A, it is enough to show g ∈ Uγ for such g. Now,
in (2.7.2) we have d-many m’s and they sum to nd + 1. So, mi ≥ n + 1 for some
i. Since f ∈ A0 we have |ffi| < 1 by (iii). Since |fj | < 1 for all j, in any case, we
can write g = f ′fni where |f ′| < 1. Therefore, |g| < γ, completing the proof that
(2.7.1) holds. □

We have two reasons for explaining Proposition 2.7.1. The primary reason is
that we will use the criterion to check valuations are continuous in Sections 3-4.
The secondary reason is that the criterion is only implicitly presented in Huber’s
paper [Hub93]. It is more explicit in the notes by Conrad [Con14], Morel [Mor19],
and Wedhorn [Wed19]. See especially [Con14, Corollary 9.3.3]. However, in those
sources, the criterion is established alongside arguments showing Cont(A) is a spec-
tral space if A is a Huber ring. In particular, the other references all appeal to the
theorem [Hub93, Theorem 3.1] referenced at the end of the prior section. While
learning this material, we have found it helpful to have a direct argument toward
Proposition 2.7.1, which allows for a nearly instant check on whether a valuation
is continuous.

2.8. Example: Cont(Cp⟨w⟩). In the final section of our second lecture, we re-
visit continuous valuations on Cp⟨w⟩. We explain an instance of specialization
in Cont(Cp⟨w⟩), illustrate the support map, and introduce Huber’s model for the
closed unit disc.

Let A = Cp⟨w⟩, which is a topological ring with the topology endowed from the
Gauss norm | − |1 = || − ||Gauss. The valuations on A listed in Example 2.2.4 are
continuous. We re-list them.

(i) If α ∈ OCp
, then |f(xα)| = ||f(α)||p defines a point xα ∈ Cont(A).

(ii) If r ≤ 1, the r-Gauss norm |f(xr)| = |f |r defines a point xr ∈ Cont(A).
(iii) We also have x1− ∈ Cont(A) given by |f(x1−)| = |f |1− , where on non-zero

f we have

|a0 + a1w + a2w
2 + · · · |1− = max

i≥0
(||ai||p, ε

i) ∈ R>0 × R>0,

for some choice of 0 < ε < 1. See Section 2.4.



HUBER RINGS AND VALUATION SPECTRA 21

We previously argued in (2.4.1) in Section 2.4 that | − |1 and | − |1− are related by
a commuting diagram

(2.8.1) A
|−|1−

xx

|−|1

$$

R>0 × R>0 ∪ {0}
(a,b)7→a

// R>0 ∪ {0}.

Here, the horizontal projector (a, b) 7→ a is a morphism of totally ordered abelian
groups. So, along with continuity of | − |1− , we deduce that if g, s ∈ A, then

|g|1− ≤ |s|1− ̸= 0 =⇒ |g|1 ≤ |s|1 ̸= 0.

In terms of the topology on Cont(A), we have

| − |1− ∈ U(
g

s
) =⇒ | − |1 ∈ U(

g

s
).

Therefore, each open in Cont(A) that contains x1− also contains x1. Said another
way, x1− lies in the closure of x1 within Cont(A). This gives a new sense to the
intuition that x1− is infinitesimally close to x1.

Next, we analyze supports. It is clear that supp(xα) = ⟨w − α⟩. As Exercise 2.15,
the reader can check that x = xα is the only point of Cont(A) with this property.
Since ⟨w − α⟩ ∈ Spec(A) is a closed point, so is xα = supp−1(⟨w − α⟩) ∈ Cont(A).
The closedness is one way the xα are distinguished from the Gauss point.

The remaining points of Cont(A) have generic support {0}. We analyze these
points more closely in Section 4. The point x1− is closed, while xr is non-closed
whenever r = ||α||p lies in the value group of Cp. Since x1− and x1 have the same
support and x1− lies in the closure of x1, we call x1− a vertical specialization of
x1. See Exercise 2.18 for details on this terminology. A cartoon is drawn in Figure
2.8.1.

Fig. 2.8.1. A visualization of the support map for A = Cp⟨w⟩. The element
α ∈ OCp

is meant to have ||α||p = r, and n is chosen so large that 1
p > rn.

We also examine the continuity criterion. We may choose OCp⟨w⟩ as a ring of
definition and p as a (principal) generator of an ideal of definition. Let | − | be a
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valuation on A. Then, |p| ̸= 0 since p is a unit. The continuity criterion Proposition
2.7.1 implies that | − | is continuous if and only if |p| is co-final in Γ|−| and

(2.8.2) |f | < |p|−1

for all f ∈ OCp⟨w⟩. This gives a second argument for the continuity of | − |1− .
Indeed, comparing with Figure 2.4.1, we see the following.

(a) The element |p|1− = ( 1p , 1) is co-final in R>0 × R>0.

(b) If f ∈ OCp
⟨w⟩, then |f |1− ≤ |f |1 ≤ 1 < |p−1|1− .

Note, our continuity check here shows that |f |1− ≤ 1 for f ∈ OCp
⟨w⟩. This is

strictly stronger than the requirement (2.8.2). Indeed, it suggests a modification
of x1− that makes w infinitesimally larger than 1 rather than smaller. We achieve
this by defining

|a0 + a1w + a2w
2 + · · · |1+ = max

i≥0
(||ai||p, ε

−i).

(Still 0 < ε < 1.) The value |f |1+ measures the Gauss norm in the first coordinate
and the largest index coefficient realizing the Gauss norm in the second coordinate.
It is still a valuation and still continuous because

(2.8.3) 1 < |wn|1+ = (1, ε−n) < (p, 1) = |p−1|1+ .

We therefore have a new point x1+ ∈ Cont(A). It lies in the closure of x1 as before.
Finally, Huber’s model for the closed unit disc is given by

D = {x ∈ Cont(Cp⟨w⟩) | |w(x)| ≤ 1}.

From the definitions, we see D contains xα for each α ∈ OCp , it contains xr for all
0 < r ≤ 1, and it contains x1− . There is a strict containment D ⊊ Cont(Cp⟨w⟩)
because x1+ ̸∈ D by (2.8.3). One of the primary results in Huber’s [Hub93] is the
following theorem. Here we specialize to the context of D. See Theorem 3.1.1 later,
as well.

Theorem 2.8.1 (Huber). The topological space D is quasi-compact and quasi-
separated. Moreover, if g1, . . . , gr, s ∈ Cp⟨w⟩ generate the unit ideal, then the ra-
tional subset U( g1,...,grs ) is also quasi-compact.

Note that the hypothesis in Theorem 2.8.1 is the same that appears in the
rational localization Theorem 1.6.2. Compare with Section 3.2.

To illustrate Huber’s theorem, let us return to the issue of disconnection raised
on page 3. The closed unit disc D certainly separates into D = V1 ∪ V<1 where

V1 = {x ∈ D | |w(x)| = 1} and V<1 = {x ∈ D | |w(x)| < 1}.

Since |p(x)| ̸= 0 and |w(x)| < 1 on V<1, it would seem that V<1 can be written as
a union

(2.8.4) V<1 =
⋃
0<n

U(
wn

p
) = {x ∈ D | |w(x)|n < |p(x)| for n≫ 0}.

However, the point x1− ∈ D lies in a gap between V<1 and the union. This is good!
If there were not a gap, then Huber’s theorem would be contradicted by V1 together
with the “cover” of V<1 alleged in (2.8.4).
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Section 2 Exercises.

Exercise 2.1. Let Cp[w] be given the topology induced from the Gauss norm. For
0 ≤ r <∞, define

|a0 + a1w + · · ·+ amw
m|r = max

n
||an||rn.

(a) Show that | − |r is a valuation on Cp[w].
(b) Show that | − |r is continuous if and only if r ≤ 1.

Exercise 2.2. Let f ∈ Cp⟨w⟩. Assume a = |f |1 = ||α||p for some α ∈ Cp. There-

fore, α−1f ∈ OCp
⟨w⟩× has a non-zero reduction f := α−1f mod mOCp

∈ Fp[w].
Show that |f |1− = (a, εn) where n is the order of vanishing of f at w = 0.

Exercise 2.3. Let | − | : A→ Γ ∪ {0} be a valuation on a topological ring A. For
γ ∈ Γ|−|, define

Uγ = {f ∈ A | |f | ≤ γ}.
(a) Show that if | − | is continuous, then each Uγ is open.

(b) Show that if |−| is non-trivial and each Uγ is open, then |−| is continuous.
Exercise 2.4. Let A be a topological ring. Show that | − |triv is continuous on A
if and only if A is discrete.

Exercise 2.5. Let A be a ring and | − |1, | − |2 two valuations on A. Show that
the following conditions are equivalent:

(i) | − |1 is equivalent to | − |2.
(ii) supp(| − |1) = p = supp(| − |2) and the induced valuations on Frac(A/p)

have the same valuation rings.

(iii) There exists an isomorphism φ : Γ|−|1
≃−→ Γ|−|2 of totally ordered abelian

groups making the following diagram commute

A
|−|1

}}

|−|2

!!

Γ|−|1 φ
// Γ|−|2

Exercise 2.6. Consider the p-adic numbers Qp.
(a) Show that if | − | : Qp → Γ ∪ {0} with Γ cyclic, then | − | is equivalent to

either | − |triv or || − ||p.
(b) Show that any continuous valuation on Qp is equivalent to || − ||p.
(c) Show that (b) also holds for Cp instead of Qp.

Exercise 2.7. Let | − |1 and | − |2 be equivalent valuations on a topological ring.
Show that | − |1 is continuous if and only if | − |2 is continuous.

Exercise 2.8. Let φ : A→ B be a map of rings.

(a) Show that the induced map Spv(B)→ Spv(A) is continuous.
(b) Show that A and B are topological rings and φ is continuous, then the

induced map Cont(B)→ Cont(A) is well-defined (and continuous).

Exercise 2.9. Let A and B be Huber rings and φ : A→ B a ring homomorphism.
We call φ an adic morphism if there exists a pair of definition (A0, I) for A and
a ring of definition B0 for B such that φ(A0) ⊆ B0 and (B0, φ(I)B0) is a pair of
definition for B.
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(a) Show that if φ is an adic morphism, then φ is continuous.
(b) Show that if A is a Tate ring and φ is continuous, then B is a Tate ring

and φ is adic.
(c) Suppose g1, . . . , gr, s ∈ A generate an open A-ideal. Show that the local-

ization map A→ A( g1,...,grs ) is adic.
(d) Suppose φ is continuous. Show that φ is adic if and only if for any rings of

definitions A0 ⊆ A and B0 ⊆ B, if φ(A0) ⊆ B0 and I ⊆ A0 is an ideal of
definition, then φ(I)B0 ⊆ B0 is an ideal of definition.

Exercise 2.10. Let A and B be Huber rings and φ : A → B an adic morphism.
Let ψ : Cont(B) → Cont(A) be the induced map. Show that if U ⊆ Cont(A) is a
rational subset, then ψ−1(U) ⊆ Cont(B) is also a rational subset.

Exercise 2.11. Let A be a ring.

(a) Show that if x ∈ Spv(A), then supp(x) is a prime ideal in A.

(b) Show that if x, y ∈ Spv(A) and y ∈ {x}, then supp(x) ⊆ supp(y).
(c) Assume A is a topological ring and x ∈ Cont(A). Show that supp(x) is

closed in A.

Exercise 2.12. Let K be a field. A valuation subring of K is a subring A ⊆ K
such that if α ̸= 0 in K then either α ∈ A or α−1 ∈ A. Let x ∈ Spv(K). Define

Ax = {α ∈ K | |α(x)| ≤ 1}.

(a) Show that Ax is a valuation subring of K.
(b) Show directly that mx = {α ∈ Ax | |α(x)| < 1} is an ideal in Ax, and it

consists of all the non-units in Ax. Conclude that Ax is a local ring.
(c) Show that y ∈ {x} within Spv(K) if and only if Ay ⊆ Ax.

Exercise 2.13. LetK be a field and A ⊆ K a valuation subring. Set ΓA = K×/A×.

(a) Show that ΓA is a totally ordered abelian group under the ordering

(2.8.5) αA× ≤ βA× ⇐⇒ αA ⊆ βA.

(b) Show that the function

|α(xA)| =

{
αA× if α ̸= 0;

0 if α = 0,

defines a valuation xA ∈ Spv(K).

Exercise 2.14. Show that the maps x 7→ Ax and A 7→ xA from Exercises 2.12
and 2.13 are inverse bijections between Spv(K) and the set of valuation subrings
A ⊆ K.

Exercise 2.15. Show that if x ∈ Cont(Cp⟨w⟩) and supp(x) = ⟨w − α⟩ for some
α ∈ OCp

, then x = xα.

Hint. Use the criterion (ii) in Exercise 2.5 and Exercise 2.6(c).

Exercise 2.16. Let Γ be a totally ordered abelian group. A subgroup ∆ is convex
in Γ if, for all δ1, δ2 ∈ ∆ and γ ∈ Γ such that δ1 ≤ γ ≤ δ2, then γ ∈ ∆.

Assume now that ∆ is convex in Γ. Define ≤ on Γ/∆ by

γ∆ ≤ γ′∆ ⇐⇒ γ ≤ γ′δ for some δ ∈ ∆.
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(a) Show that ≤ defines a total order on Γ/∆ and Γ→ Γ/∆ is a morphism of
totally ordered abelian groups.

(b) Suppose that the exact sequence

1→ ∆
ι−→ Γ

π−→ Γ/∆→ 1

is split as totally ordered abelian groups. Let s : Γ/∆ → Γ be a splitting.
Show that the group isomorphism

Γ/∆×∆
(s,ι)−−−→ Γ

is an isomorphism of totally ordered abelian groups when the product group
is given the lexicographic order.

Hint. In (a), convexity is only used to show the “strongly symmetric” property of an

order relation — in this case to prove that γ∆ = γ′∆ if and only if both γ∆ ≤ γ′∆ and

γ′∆ ≤ γ∆.

Exercise 2.17. Let φ : Γ→ Γ′ be a morphism of totally ordered abelian groups.

(a) Show that ker(φ) ⊆ Γ is a convex subgroup.
(b) Show that im(φ) ⊆ Γ′ is a totally ordered abelian group.

(c) Show that φ : Γ/ ker(φ)
≃−→ im(φ) as totally ordered abelian groups.

Exercise 2.18. Let A be a ring. For x, y ∈ Spv(A), we say y is a vertical
specialization of x if

(i) y ∈ {x}, and
(ii) supp(y) = supp(x).

We also say that x is a vertical generization of y.

(a) Show that if x is a vertical generization of y, then there is a natural quotient
map Γy ↠ Γx of totally ordered abelian groups.

(b) If y ∈ Spv(A), show that

{vertical generizations of y} → {∆ ⊆ Γy convex subgroups}
x 7→ ker(Γy ↠ Γx)

is a bijection.
(c) Suppose A is a topological ring and y ∈ Cont(A). Show that if x is a

vertical generization then either x ∈ Cont(A) or x is the trivial valuation
modulo supp(y).

Hint. If supp(x) = supp(y), then x and y can be viewed as valuations on the same

field. Then, use Exercises 2.12-2.14 for (a). For (c), use Exercise 2.3.

3. Constructions with adic spectra

Let A be a Huber ring. This lecture focuses on the adic spectrum

(3.0.1) Spa(A,A+) = {x ∈ Cont(A) | |f(x)| ≤ 1 for all f ∈ A+},

which is the topic of Hübner’s initial lecture [Hüb24].
The ring A+ is a ring of integral elements, which means A+ ⊆ A◦ and

A+ is open and integrally closed in A. Proposition 1.5.3 shows A◦ is always a
ring of integral elements. A pair (A,A+) is called a Huber pair. We make
X = Spa(A,A+) a topological space via the inclusion X ⊆ Cont(A).
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Our initial goal in Section 3.1 is to discuss the bounds imposed on adic spectra.
In Sections 3.2-3.4, we describe how localization, tensor products, and completions
impact Huber pairs. Then, in Section 3.5, we prove that

(3.0.2) A+ = {f ∈ A | |f(x)| ≤ 1 for all x ∈ X}
when X = Spa(A,A+).

The bulk of our energy is spent on (3.0.2). It reminds one of the statement
“I(V (I)) = I if I is a radical ideal”, which one encounters as the Nullstellensatz
in algebraic geometry. For this reason, Conrad even refers to (3.0.2) as an adic
Nullstellensatz in [Con18, Theorem 2.25]. We observe here, in further support of
this name, that the first step in the proof we present involves localization in a way
reminiscent of the “Rabinowitsch trick” used in proofs of the Nullstellensatz.

Presenting (3.0.2) seems near optimal, in terms of satisfaction, for a proof using
only what we explained in Sections 1 and 2. It provides a chance to use rational
localization of Huber rings and we also get to introduce a technique called horizontal
specialization, which complements the vertical specializations described in Section
2.8 and Exercise 2.18.

One topic we will not address is the role of the containment A+ ⊆ A◦. It
is not required for (3.0.2). The containment is crucial in Huber’s study [Hub93,
Proposition 3.6] of whether or not adic spectra are empty, where he proves that
Spa(A,A+) = ∅ if and only if {0} is dense in A. (Recall Spec(A) = ∅ if and only if
A = {0}.)

3.1. Bounds on adic spectra. Our initial goal is clarifying how adic spectra
generalize the closed unit disc

D = {x ∈ Cont(Cp⟨w⟩) | |w(x)| ≤ 1}.
In defining D, we impose a bound |w(x)| ≤ 1 on only w ∈ Cp⟨w⟩, while (3.0.1)
imposes bounds on all of A+. There is a difference in the style of definition. Exam-
ining the definition of rational subsets, imposing bounds on single functions, or a
short list of them, is natural. Instead of Spa(A,A+), one might consider the more
basic object

(3.1.1) Spa(A,Σ) = {x ∈ Cont(A) | |f(x)| ≤ 1 for all f ∈ Σ},
where Σ ⊆ A is any subset.

There are two basic remarks. First, sets defined as (3.1.1) present technical
challenges. Writing proofs would require learning how to track Σ while applying
algebro-topological constructions to A. It would be similar to tracking functions
that define a projective algebraic variety rather than an ideal sheaf. Second, there
is no loss of generality in focusing only on Σ = A+ where A+ is open and integrally
closed in A. Indeed, for all Σ, there exists an open and integrally closed ring A+ ⊇ Σ
such that if |f(x)| ≤ 1 for all f ∈ Σ, then |f(x)| ≤ 1 for all f ∈ A+. See Exercises
3.1-3.2. Therefore, if Σ ⊆ A◦, then

Spa(A,Σ) = Spa(A,A+)

where A+ is a ring of integral elements. In the case A = Cp⟨w⟩ and Σ = {w}, the
relevant ring is even A+ = A◦ = OCp⟨w⟩. Therefore,
(3.1.2) D = {x ∈ Cont(Cp⟨w⟩) | |w(x)| ≤ 1} = Spa(Cp⟨w⟩,OCp⟨w⟩).
See Exercise 3.3.
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For the record, a general version of Huber’s theorem Theorem 2.8.1 is:

Theorem 3.1.1 (Huber, [Hub93, Theorem 3.5]). Let (A,A+) be a Huber pair.
Then, Spa(A,A+) is quasi-compact and quasi-separated. If g1, . . . , gr, s ∈ A gener-
ates an open A-ideal, then the rational subset U( g1,...,grs ) is quasi-compact as well.

Technically, if you look at Huber’s theorem you will find that Spa(A,A+) is a
spectral space and that each rational subset is constructible. Spectral space were
defined by Hochster [Hoc69]. The theorem we stated is just a portion of Huber’s
theorem, since spectral spaces are, in particular, quasi-compact and quasi-separated
and, in addition, constructible subsets of quasi-compact spaces are quasi-compact.

Instead of proving this theorem, we move on to explain how constructions with
Huber rings extend to constructions with Huber pairs.

3.2. Construction: rational localization. Suppose (A,A+) is a Huber pair and
g1, . . . , gr, s ∈ A generate an open A-ideal. In Section 1.6 we defined the rational
localization

B = A(
g1, . . . , gr

s
).

The underlying ring is B = A[ 1s ]. Suppose (A0, I) is a pair of definition. A ring of
definition for B is equal to B0 = A0[

g1
s , . . . ,

gr
s ], with ideal of definition J = IB0.

The Huber ring B is independent of the choice of (A0, I). Considering A+, we
assume without loss of generality that A0 ⊆ A+. (See Exercise 3.4.) Then, we
define

B+ = integral closure of A+[
g1
s
, . . . ,

gr
s
] within B.

We claim B+ is a ring of integral elements for B. First, A0 ⊆ A+ and so
B0 ⊆ B+. Therefore, B+ is open in B. Second, B+ is integrally closed in B by
construction. Finally, we claim that B+ ⊆ B◦. To see this, start by noting that
for each i, we have gi

s ∈ B0, and B0 ⊆ B◦ by Proposition 1.5.3. By construction
of B, if A′

0 ⊆ A is any ring of definition, then the image of A′
0 in B is contained

in some ring of definition B′
0. Therefore, loc. cit. implies the image of A◦ in B

is contained in B◦. Since A+ ⊆ A◦, we have shown B◦ contains A+[ g1s , . . . ,
gr
s ].

Finally, B+ ⊆ B◦ because B◦ is itself integrally closed by Proposition 1.5.3, once
again. (The integral closure step is generally required. See Exercise 3.5.)

Rational localizations are related to rational subsets, as we now explain. Suppose
that (A,A+)→ (B,B+) is the natural morphism of Huber pairs implicit in the prior
paragraph. In the middle of [Hub94, Lemma 1.5(ii)], it is proven that we in fact
have a natural commuting diagram

(3.2.1) Spa(B,B+)

∼=
''

// Spa(A,A+)

U( g1,...,grs )

OO

where the diagonal arrow is a homeomorphism. More precisely, the rational subsets
in Spa(B,B+) correspond bijectively with the rational subsets contained in U , via
the diagonal arrow. How difficult is the proof? Based on Sections 1 and 2, we could
prove that (3.2.1) exists, the diagonal arrow is a bijection, and that the pre-image of
a rational subset in Spa(A,A+) is rational in Spa(B,B+). See Exercise 3.6-3.7. It is
more difficult to show a rational subset in Spa(B,B+) maps onto a rational subset
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in U . The issue is that rational subsets of Spa(B,B+) are built from elements
generating an open B-ideal. After clearing denominators, there is no reason for
them to generate an open A-ideal. The proofs we know rely on knowing a priori
that U is quasi-compact, which is part of Theorem 3.1.1. The idea is explained in
Exercise 3.8.

3.3. Construction: tensor products (of Tate rings). In this section, we ex-
plain tensor products B ⊗A C when A is a Tate ring. We extend the construction
to Tate–Huber pairs (Huber pairs with first entry a Tate ring).

Suppose that A is a Tate ring and B and C are Huber rings with continuous

ring morphisms A
φ−→ B and A

ψ−→ C. Then, B and C are also Tate rings because
the image of a pseudo-uniformizer for A under a continuous ring morphism is a
pseudo-uniformizer in the target. See Exercise 2.9.

We form R := B ⊗A C algebraically, and now we make it a topological ring.
Choose rings of definitions B0 ⊆ B and C0 ⊆ C. Since φ−1(B0) ∩ ψ−1(C0) is an
open subring, it contains a ring of definition A0 (Exercise 3.4). We define

R0 := img(B0 ⊗A0 C0 → B ⊗A C).

Now choose ϖ ∈ A0, a pseudo-uniformizer for A. We equip R0 with the ϖR0-adic
topology, making R0 into a topological ring. We make R a ring with a topology
by declaring R0 is open in R. We leave it as Exercise 3.9 that this makes R into
a topological ring, which is indeed a Tate ring. We dealt with a similar situation
in Section 1.6 with rational localizations. A universal property confirms that the
definition of R does not depend on the choices made. Namely, the A-algebra maps

id⊗ 1 : B → R

1⊗ id : C → R

are continuous, and they are initial with respect to pairs of continuous A-algebras
maps B → S and C → S.

Extending to Tate–Huber pairs goes like this. If we start with (A,A+)
φ−→

(B,B+) and (A,A+)
ψ−→ (C,C+), we may define

R+ = the integral closure of img(B+ ⊗A+ C+ → B ⊗A C) ⊆ R.

This makes R+ integrally closed in R. In the construction, we could have assumed
B0 ⊆ B+ and C0 ⊆ C+ from the start, and so A0 ⊆ A+. Thus R+ is open. It is
left as Exercise 3.10 that the image of B◦ ⊗A◦ C◦ is contained in R◦, from which
the containment R+ ⊆ R◦ follows.

The difficulty when A is not a Tate ring is defining the topological ring structure
on R. To do this in general one imposes the condition that A → B and A → C
are adic morphisms of Huber rings, as in Exercise 2.9. In another direction, an
anonymous referee points out that future students may learn how to apply Clausen
and Scholze’s theory of condensed mathematics and analytic rings to streamline
the construction of tensor products.

3.4. Construction: completions. The goal here is defining the completion of a
Huber ring. The delicate point is that completions are topologically defined with
respect to the underlying abelian group, so the algebraic structure of ring needs to
be constructed by hand.
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Let A be a Huber ring and (A0, I) a pair of definition. The additive subgroups
I, I2, I3, . . . are a neighborhood basis of zero in A. They are also ideals in A0. We
can form the ring-theoretic completion

Â0 = lim←−
n

A0/I
n,

which becomes a complete topological ring. Recall, topologically, the quotient ring

A0/I
n is discrete and then Â0 is given the subspace topology via the inclusion

Â0 ↪→
∞∏
n=1

A0/I
n.

Since the ideal I is finitely generated, it is a theorem (see [Sta23, Tag 05GG]) that

this topology on Â0 coincides with the topology defined by the ideal IÂ0 ⊆ Â0,
and

Â0
∼= lim←−

n

Â0/I
nÂ0.

Replacing A0 by A, the only choice we have for forming the completion is

(3.4.1) Â = lim←−
n

A/In ↪→
∞∏
n=1

A/In.

This is a complete topological group. The individual factors A/In are not rings,

but Â can be given the structure of a topological ring in three steps.

(i) It is clear that Â is an Â0-module. But, one can also show Â0 ⊆ Â is open

and Â0 acts by continuous module operations on Â.

(ii) There is a natural A-module structure on Â. For f ∈ A, the continuity
of the multiplication by f on A makes f : A/In+r → A/Ir+1 well-defined
for some n ≥ 1 depending on f , uniform in r. A module structure is thus
induced on the projective limit over r.

(iii) Since A is dense in Â and Â0 is open, there is an additive decomposition

Â = A+ Â0. One defines the structure of a ring on Â by using the previous
module structures and then forcing the distributive law to hold.

The details are outlined as Exercise 3.11.
Since Â0 is open in Â and the topology on Â0 is the IÂ0-adic topology, we

conclude that Â is a Huber ring. The continuous morphism A → Â is initial for

maps A→ B with B complete. So, Â is independent of the initial choice of pair of
definition (A0, I).

If (A,A+) is a Huber pair, we can go back to the start and assume that A0 ⊆ A+.
Then, we form the completion

Â+ = lim←−
n

A+/In.

This defines an open subring of Â. Unlike the constructions in Sections 3.2-3.3,

the ring Â+ is already integrally closed and so we get a Huber pair (Â, Â+). In

addition one can confirm directly that (̂A◦) = (Â)◦, so the property “A+ = A◦” is
preserved by completions. See Exercise 3.12.
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Finally, since Â is the completion of A, the natural map Cont(Â)→ Cont(A) is
a bijection. It induces, when (A,A+) is a Huber pair, a canonical map

(3.4.2) Spa(Â, Â+)→ Spa(A,A+)

that is also bijective. Huber proves (3.4.2) is a homeomorphism [Hub93, Proposition
3.9]. The difficulties are similar to those we discussed with rational localization
already.

3.5. Identifying A+. The remaining goal in this lecture is showing that rings of
integral elements are intrinsic to adic spectra, just as radical ideals are intrinsic to
closed subsets of affine schemes.

Theorem 3.5.1 (The adic Nullstellensatz). Let A be a Huber ring. Suppose that
A+ ⊆ A is open and integrally closed. Then,

(3.5.1) A+ = {f ∈ A | |f(x)| ≤ 1 for all x ∈ Spa(A,A+)}.
By definition, A+ is contained in the right-hand side of (3.5.1). To prove the

theorem, we need to prove that if f ∈ A but f ̸∈ A+, then there exists a continuous
valuation x on A such that |f(x)| > 1 and |g(x)| ≤ 1 for all g ∈ A+.

The argument occurs in three steps. In the first step, we reduce to the case where
f is a unit in A. This is where we use that A+ is integrally closed. In the second step,
we construct a candidate valuation x0, without imposing a continuity condition.
The construction is pure algebra, including a brutal extension of a valuation from
one field to a larger field. The extension is so uncontrolled that arguing directly for
continuity is hopeless. Therefore, in the third step, we replace x0 by a continuous
valuation x, while preserving the bounds imposed on f and g ∈ A+. This is where
the openness of A+ is used. The replacement step is based on a process called
horizontal specialization. Properties of horizontal specialization will be given
as exercises, but note that it is a fundamental technique in Huber’s papers. Seeing
the proof of Theorem 3.5.1 may inspire the reader to study original sources more
carefully.

The proof we give of Theorem 3.5.1 is essentially the same as in [Hub93, Lemma
3.3(i)] and [Con14, Theorem 10.3.6]. The main difference is that, in the third step,
we argue for continuity directly from Proposition 2.7.1, whereas other proofs refer
to a result [Hub93, Theorem 3.1] that recognizes Cont(A) within Spv(A).

For Sections 3.6, 3.7, and 3.8, we reserve A for a fixed Huber ring, A+ for an
open and integrally closed subring, and f an element of A such that f ̸∈ A+.

3.6. Nullstellensatz: The reduction step. We seek x ∈ X = Spa(A,A+) with
|f(x)| > 1. In principle, we can limit our search to the open subset U( 1f ) = {x ∈
X | 1 ≤ |f(x)|}. In terms of rings, we focus on B = A( 1f ) and B

+, which we define

to be the integral closure of A+[ 1f ] in A(
1
f ). Note B is a Huber ring, since {1, f}

generate the unit ideal in A. By the argument in Section 3.2, B+ ⊆ B is open and
integrally closed.

We claim that f ̸∈ B+. Indeed, if f ∈ B+, then f is integral over A+[ 1f ].

Clearing denominators in A[ 1f ], we find a polynomial relation fm+gfm−1+ · · · = 0

in A, with coefficients g ∈ A+. This is impossible because A+ is integrally closed
and f ̸∈ A+. So, f ̸∈ B+.

Finally, if x ∈ Spa(B,B+) and |f(x)| > 1, then its image in Spa(A,A+) satisfies
the same inequality. Replacing (A,A+) with (B,B+), we will now assume that
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(i) f is a unit in A, and
(ii) 1

f ∈ A
+ but f ̸∈ A+.

3.7. Nullstellensatz: The algebraic argument. This part of the argument is
pure algebra. We assume (i) and (ii). We will construct x0 ∈ Spv(A) such that
|g(x0)| ≤ 1 for all g ∈ A+ while |f(x0)| > 1.

By (ii), the element 1
f ∈ A

+ is not a unit. Choose a prime p ⊆ A+ with 1
f ∈ p.

By (i), f is a unit in A. Therefore 1
f is definitely not nilpotent in A+

p . So, choose

a minimal prime q in A+ such that q ⊆ p and 1
f ̸∈ q. We consider then the

localizations A+
q ⊆ Aq. A prime ideal of (the non-zero ring) Aq contracts to a

prime Q of A such that Q ∩ A+ ⊆ q. Equality holds since q is minimal among
primes in A+. We now have a ring extension A+/q ⊆ A/Q that gives rise to a field
extension

(3.7.1) K+ = Frac(A+/q) ⊆ Frac(A/Q) = K.

We now reference commutative algebra and valuation theory. Focusing first just
on K+, [Mat89, Theorem 10.2] implies that we may construct a valuation subring
R+ ⊆ K+ such that

A+/q ⊆ R+ ⊆ K+ and mR+ ∩A+/q = p/q.

As explained in Section 2.6 and Exercises 2.12-2.14, there is a unique x+ ∈ Spv(K+)
with Ax+ = R+. We view x+ ∈ Spv(K+) ∼= supp−1(q) ⊆ Spv(A+). We then
observe:

(a) Since A+/q ⊆ A+
x , we have |g(x+)| ≤ 1 for all g ∈ A+.

(b) Since 1
f ̸∈ q, we have 0 < | 1f (x

+)|. Yet, 1
f mod q ∈ mR+ and so | 1f (x

+)| < 1.

Bringing K into the discussion, Chevalley’s theorem [Bou98, Chapter VI, §3, no. 3,
Proposition 5] says the inclusion K+ ⊆ K induces a surjection Spv(K)↠ Spv(K+).
Therefore, we choose

x0 ∈ Spv(K) ∼= supp−1(Q) ⊆ Spv(A)

that lifts x+. If g ∈ A+, then |g(x0)| = |g(x+)| ≤ 1 by (a). Since f ∈ A×, we have
|f(x0)| > 1 by (b). This completes the construction of x0.

3.8. Nullstellensatz: The specialization maneuver. So far, we have x0 ∈
Spv(A) such that |f(x0)| > 1, while |g(x0)| ≤ 1 for all g ∈ A+. Now we re-
place x0 ∈ Spv(A) by x ∈ Cont(A) without altering the constraints. The rest of
the argument relies on A+ being open in A.

As preparation, we examine how close x0 is to being continuous. Let Γ0 be the
value group of x0. By Proposition 2.7.1, the continuity of x0 depends on whether
or not |h(x0)| is co-final in Γ0 for h ∈ A◦◦. Consider s ∈ A with |s(x0)| ̸= 0 and
h ∈ A◦◦. Since A+ is open in A and h is topologically nilpotent we have hnsf ∈ A+

as n→∞. So, |hnsf(x0)| ≤ 1 as n→∞. Since |s(x0)| ̸= 0 and |f(x0)| > 1 we see

(3.8.1) |h(x0)|n ≤
1

|s(x0)||f(x0)|
<

1

|s(x0)|
(n≫ 0).

Strictly speaking, this does not show |h(x0)| is co-final in Γ0, but it is close and we
will end up using the estimate (3.8.1). We now adjust x0 in three steps.
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(I) Let Γ1 ⊆ Γ0 be the subgroup generated by all |s(x0)| ≥ 1 for s ∈ A. The
general element of Γ1 is

|t(x0)|
|s(x0)|

where that s, t ∈ A and |s(x0)|, |t(x0)| ≥ 1.
(II) Let Γ1 ⊆ Γ0 be the convex closure of Γ1. This is the subgroup of elements

in Γ0 that lie between two elements of Γ1. See Exercise 3.13. If δ ∈ Γ1,
then (I) implies there exists s, t ∈ A with |s(x0)|, |t(x0)| ≥ 1 such that

(3.8.2)
1

|s(x0)|
≤ |t(x0)|
|s(x0)|

≤ δ.

(III) We now define x ∈ Spv(A). For s ∈ A, set

(3.8.3) |s(x)| =

{
|s(x0)| if |s(x0)| ∈ Γ1;

0 otherwise.

We leave as Exercise 3.14 that this is a valuation on A. In fact, it is the
most extreme case of a process called horizontal specialization. The
same formula defines a valuation if Γ1 is replaced by any convex subgroup
∆ ⊆ Γ0 containing Γ1.

We now argue that |g(x)| ≤ 1 for g ∈ A+ and |f(x)| > 1 and that x is continuous.

1. In (3.8.3), we see |s(x)| ≤ |s(x0)| for all s ∈ A. Given |g(x0)| ≤ 1 for
g ∈ A+, we therefore also have |g(x)| ≤ 1 for g ∈ A+.

2. On the other hand, |f(x0)| ∈ Γ1 ⊆ Γ1. So, |f(x)| = |f(x0)| > 1.
3. Finally, suppose h ∈ A◦◦ and δ ∈ Γ1 is arbitrary. By (3.8.1) and (3.8.2) we

may choose s ∈ A such that |s(x0)| ̸= 0 and

|h(x)|n ≤ |h(x0)|n <
1

|s(x0)|
≤ δ (n≫ 0).

So, |h(x)| is co-final in Γ1, and x is continuous by Proposition 2.7.1.

Section 3 Exercises.

Exercise 3.1. Let A be a Huber ring.

(a) Show that if x ∈ Cont(A) and f ∈ A◦◦, then |f(x)| < 1.
(b) Show that if A+ is a ring of integral elements, then A◦◦ ⊆ A+.

Exercise 3.2. Let A be a Huber ring and Σ ⊆ A any subset. Define

Spa(A,Σ) = {x ∈ Cont(A) | |f(x)| ≤ 1 for all f ∈ Σ}.
Let A+ be the integral closure in A of the subring generated by Σ and A◦◦.

(a) Show that A+ is open and integrally closed.
(b) Show that Spa(A,Σ) = Spa(A,A+).

Exercise 3.3. Show that

Spa(Cp⟨w⟩,OCp
⟨w⟩) = {x ∈ Cont(Cp⟨w⟩) | |w(x)| ≤ 1}.

Exercise 3.4. Let A be a Huber ring and B ⊆ A an open subring. Show that
there exists a ring of definition A0 of A that is contained in B.

Exercise 3.5. Let (A,A+) be a Huber pair and (B,B+) its rational localization
with respect to g1, . . . , gr, s. Show by example that A+[ g1s , . . . ,

gd
s ] ̸= B+, possibly.
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Exercise 3.6. Let A be a Huber ring and assume g1, . . . , gr, s ∈ A generate an
open A-ideal. Let B = A( g1,...,grs ). Given a ring of integral elements A+, define the
corresponding Huber pair (B,B+) as in Section 3.2.

(a) Show that the natural map Spa(B,B+)→ Spa(A,A+) factors through the
rational subset U( g1,...,grs ) ⊆ Spa(A,A+).

(b) Show that the natural map Spa(B,B+)→ U( g1,...,grs ) is a bijection.
(c) Show that the preimage of a rational subset in Spa(A,A+) is a rational

subset in Spa(B,B+).

Exercise 3.7. Let A be a Huber ring and assume that g1, . . . , gr, s ∈ A generate
an open A-ideal. Let B = A( g1,...,grs ). Define

U = U(
g1, . . . , gr

s
) = {x ∈ Cont(A) | |gj(x)| ≤ |s(x)| ̸= 0 for all j}.

Show that the natural map Cont(B)→ Cont(A) does not always factor through U .

Exercise 3.8. Let A be a Huber ring and I an ideal of definition. Assume U is
quasi-compact in Spa(A,A+) and s ∈ A such that |s(x)| ̸= 0 on U .

(a) Show that if x ∈ U , then there exists n such that |f(x)| ≤ |s(x)| for all
f ∈ In.

(b) Suppose that g1, . . . , gr is any list of elements of A. Show that there exists
elements f1, . . . , fd ∈ I such that the ideal generated by g1, . . . , gr, f1, . . . , fd
is open in A and

U(
g1, . . . , gr

s
) = U(

g1, . . . , gr, f1, . . . , fd
s

).

(c) Show that the map in part (a) of Exercise 3.6 maps rational subsets to
rational subsets.

Exercise 3.9. Let A, B, and C be Tate rings and assume there are continuous
ring morphisms A→ B and A→ C.

(a) Show that R = B ⊗A C with the topology defined in Section 3.3 is a
topological ring.

(b) Show that R is a Tate ring.
(c) Verify the universal property of the tensor product R with respect to pairs

of continuous map B → S and C → S.

Hint. See Exercise 1.2 for part (a).

Exercise 3.10. Let A→ B be a continuous morphism of Tate rings.

(a) Show that the natural map A◦ → B factors through B◦.
(b) Suppose in addition that A → C is a continuous morphism of Tate rings.

Show that the natural map B◦⊗A◦C◦ → B⊗AC factors through (B⊗AC)◦.

Exercise 3.11. Let A be a Huber ring and (A0, I) a pair of definition. Define

Â = lim←−
n

A/In ⊇ Â0 = lim←−
n

A0/I
n.

(a) Show that Â0 ⊆ Â is open.

(b) Show that if f̃ ∈ Â0, then multiplication by f̃ is continuous on Â.

(c) If f ∈ A and g̃ = (gj) ∈ Â, show there exists n such that (fgn, fgn+1, . . . )

has well-defined image in Â. Show that g̃ 7→ fg̃ is continuous on Â.
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(d) Show that if g̃ ∈ Â then g̃ = g̃0 + f for some g̃0 ∈ Â0 and f ∈ A.
(e) Given g̃ = g̃0 + f ∈ Â and h̃ = h̃0 + k ∈ Â as in part (d), show

g̃h̃ = g̃0h̃0 + fh̃0 + g̃0k + fk

is well-defined in Â, and it makes Â a topological ring.

Exercise 3.12. Let (A,A+) be a Huber pair.

(a) Show that the completion Â+ is integrally closed in Â.

(b) Let B = Â. Show that Â◦ = B◦.

Exercise 3.13. Suppose that Γ is a totally ordered abelian group. Convex sub-
groups of Γ were defined in Exercise 2.16. This exercise shows that if ∆ ⊆ Γ, then
∆ is always contained in a smallest convex subgroup ∆ called the convex closure
of ∆ within Γ. Namely, define

∆ = {γ ∈ Γ | δ1 ≤ γ ≤ δ2 for some δ1, δ2 ∈ ∆}.

(a) Show that ∆ is a subgroup of Γ.
(b) Show that ∆ is a convex.
(c) Show that

∆ =
⋂

Γ⊇∆0⊇∆
∆0 convex

∆0.

Exercise 3.14. Let A be a ring and | − | : A→ Γ ∪ {0} a valuation. Assume that
∆ ⊆ Γ|−| is a convex subgroup that contains |f | for all f ∈ A such that |f | ≥ 1.

(a) Show that

|f |∆ =

{
|f | if |f | ∈ ∆;

0 otherwise,

is a valuation on A.
(b) Show that | − |∆ lies in the closure of | − | within Spv(A).

4. The closed unit disc

In this lecture, we analyze the closed unit disc

D = Spa(Cp⟨w⟩,OCp⟨w⟩).

The reader looking for a complete analysis can consult [Con14, Section 11]. Our
focus will be more narrow and perhaps prepare the learner for a more detailed
treatment.

First, we broadly discuss how to distinguish points in D. We have studied D
in Example 2.2.4 and Sections 2.4 and 2.8. We revisit those discussions. Second,
we focus on the Gauss point x1 ∈ D. We saw in Section 2.8 that x1− lies in the
closure, but we will systematically produce many similar points. The main theorem
(Theorem 4.7.3) exactly describes the closure of x1 within D.
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4.1. The Huber ring Cp⟨w⟩. We begin by reviewing Cp⟨w⟩ as a Huber ring.
First, recall Cp is complete and algebraically closed. Its ring of integers is

OCp = {α ∈ Cp | ||α||p ≤ 1}.

The maximal ideal mOCp
consists of those α with ||α||p < 1. The residue field is

Fp ∼= Zp/mZp

∼= OCp
/mOCp

.

Second, the one-variable Tate algebra Cp⟨w⟩ is a principal ideal domain. Up to
scalar, the irreducible elements are the linear polynomials w − α with α ∈ OCp

.
Thus,

Spec(Cp⟨w⟩) = {{0}} ∪ {⟨w − α⟩ | α ∈ Cp}.
This is a consequence of the Weierstrass preparation theorem, which says that
any f ∈ Cp⟨w⟩ factors uniquely as f = pµPu where µ is an integer and P ∈ Cp[w]
is a monic polynomial and u ∈ OCp⟨w⟩×.

The topology on Cp⟨w⟩ is the one induced by the Gauss norm. Thus Cp⟨w⟩ is
a Tate ring with pseudo-uniformizer p. The following is a specific instance of the
continuity criterion for valuations on Cp⟨w⟩.

Proposition 4.1.1. Let x ∈ Spv(Cp⟨w⟩) with value group Γx. The following are
equivalent:

(i) The point x belongs to D.
(ii) We have |p(x)| is co-final in Γx and |f(x)| ≤ 1 for all f ∈ OCp

⟨w⟩.

Proof. By Proposition 2.7.1, if x ∈ Cont(Cp⟨w⟩), then |p(x)| is co-final in Γx. If x
also lies in D, then of course |f(x)| ≤ 1 for all f ∈ OCp⟨w⟩. Therefore (i) implies
(ii).

Now suppose x is a valuation and (ii) holds. First, since |p(x)| is co-final in Γx,
we have |p(x)| < 1. Second, if f ∈ OCp

⟨w⟩, then |f(x)| ≤ 1 by assumption and so

|f(x)| ≤ 1 < |p(x)|−1.

Thus x ∈ Cont(Cp⟨w⟩) by Proposition 2.7.1. Of course, once x is continuous, it lies
in D by assumption. Therefore (ii) implies (i). □

4.2. Classical and “disc” points. Proposition 4.1.1 simplifies checking whether
valuations on Cp⟨w⟩ lie in D. Or, at least, it practically reduces a supposition
“x ∈ D” to simply checking x defines a valuation. Let us tally several points of D,
called classical and (nested, perhaps) disc points.

4.2.1. Classical points. Let α ∈ OCp . Then there is a point xα ∈ D given by

|f(xα)| = ||f(α)||p
for all f ∈ Cp⟨w⟩. This defines a valuation since the p-adic norm is a valuation. It
is the only x ∈ D with supp(x) = ⟨w − α⟩. See Exercise 2.15.

4.2.2. Disc points. Suppose 0 < r ≤ 1 and α ∈ OCp
. We define

Dr(α) = {α′ ∈ OCp
| ||α− α′||p ≤ r}.

This is the closed disc of radius r centered at α. If f ∈ Cp⟨w⟩, it has a series
expansion

f = b0 + b1(w − α) + b2(w − α)2 + · · ·
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with lim
i→∞

bi = 0. We define xα,r ∈ D according to

|f(xα,r)| = max
i≥0
||bi||pr

i ∈ R≥0.

Given xα,r is a valuation, it lies in D by Proposition 4.1.1. Indeed |p(xα,r)| = 1
p is

co-final in R>0 and if bi ∈ OCp
for all i, then |f(xα,r)| ≤ 1, clearly. We leave as

Exercise 4.1 to check that xα,r is a valuation and

|f(xα,r)| = sup
α′∈Dr(α)

||f(α′)||p.

So, xα,r depends only on Dr(α), rather than α. We write xD = xα,r if D = Dr(α).

4.2.3. Nested discs. Suppose that D• : D0 ⊇ D1 ⊇ D2 ⊇ · · · is a sequence of discs
in OCp

. Then, we define
|f(xD•)| = inf

i≥0
|f(xDi

)|.

Admitting this defines a valuation, it is continuous by Proposition 4.1.1. Discussing
why this is a valuation is not a priority in this lecture. See [Con14, Section 11.3],
instead. We at least point out there are three possible behaviors:

• The intersection
⋂
i≥0Di may be a single point α ∈ OCp

. Then, xD• = xα.

• The intersection
⋂
i≥0Di may be another disc D. Then, xD• = xD.

• The intersection
⋂
i≥0Di may be empty! This option is available because

Cp is a metric field that is not spherically complete. In that case, xD•

is a valuation we have not yet constructed, but on which we will not dwell.

4.3. Review of valuation rings. Points in D are classified, in part, by their
valuation rings and residue fields. So, we review the constructions from Section 2.6
and Exercises 2.12-2.14.

Let K be a field. A subring A ⊆ K is a valuation ring if, given α ∈ K×, either
α or α−1 belong to A. If A is a valuation ring, the non-zero principal fractional
ideals {αA | α ∈ K×} are totally ordered by inclusion. In fact, α 7→ αA defines a
bijection

K×/A× ↔ {αA | α ∈ K×}.
Therefore, the group ΓA = K×/A× is naturally a totally ordered abelian group. In
terms of cosets, this order is αA× ≤ βA× if and only if αβ−1 ∈ A.

The natural function K → ΓA ∪ {0} defines a valuation on K. We write xA for
its equivalence class. One of the exercises mentioned is to show xA ↔ A defines a
bijection between Spv(K) and the set of valuation subrings of K. The inverse is

x 7→ Ax = {α ∈ K | |α(x)| ≤ 1}.
The ring Ax has a maximal ideal mx. Its residue field is Ax/mx.

4.4. High-level classification of points in D. Points in D are often classified
into “types” called Types 1-5. See [Sch12, Example 2.20] or [BCKW19, p. 7-8].
Here, we describe the classification without proof, augmented by listing auxiliary
data. For each x ∈ D, we look at its support supp(x), its value group Γx, and its
residue field Ax/mx.

Warning 4.4.1. The residue fields Ax/mx are all characteristic p fields. They are
different than any kind of residue field gotten by viewing x ∈ D as a point in a
Cp-rigid analytic variety. Those geometric residue fields arise from the structure
sheaf over D. They are all characteristic zero fields.
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We will additionally indicate whether x ∈ D is closed, and then we will finally
list the Type. The result is compiled in Table 4.4.1. All but the bottom row of the
table has been explained in Section 4.2.

Name supp(x) Γx Ax/mx Closed? Type

xα ⟨w − α⟩ pQ Fp Closed 1

xα,r
(r ∈ pQ) {0} pQ Fp(t) Non-closed 2

xα,r
(r ̸∈ pQ) {0} pQrZ ⊆ R× Fp Closed 3

xD•

(∩Di = ∅)
{0} pQ Fp Closed 4

xλα,r
(r ∈ pQ) {0} pQ × ( 12 )

Z Fp Closed 5

Table 4.4.1. Classification of points in the closed unit disc D.

The classical points xα are the Type 1 points. The second and third rows
list the disc points xα,r, but the data is separated according to whether or not
r ∈ pQ = ||C×

p ||p. When r lies in pQ, the point xα,r is not closed in D. We have

already seen this phenomenon at the Gauss point x0,1 = x1. In this case, we also

see the valuation ring residue field is a transcendental extension of Fp. The field
generator t is, essentially, the reduction of the coordinate function on the boundary
of the rational disc. These phenomena do not occur for disc points of radius not in
the value group of Cp. For those points, instead, the value group is larger than that
of Cp. The fourth row shows the data for the nested disc points that are neither
true disc points nor classical points.

The final row indicates a type of point that we have not yet seen. These points are
parametrized by λ ∈ P1(Fp). They comprise the non-trivial points in the closure of
xα,r whenever r ∈ pQ. Their value group is a product group with the lexicographic
order. Two examples of such points are x00,1 = x1− and x∞0,1 = x1+ from Section
2.8, with the caveat that if (α, r) = (0, 1), then we do not allow λ = ∞ in Table
4.4.1, since x1+ ̸∈ D. (See Exercise 4.7 for these calculations.)

The goal of Sections 4.6 and 4.7 is to explain the final row, to make precise the
construction of xλ0,1 for λ ∈ A1(Fp). We will discover these points while simulta-
neously showing they form the non-trivial points in the closure of the Gauss point
within D. Before that, we sketch a cartoon of D that is meant to suggest the xλ0,1’s
exist.

4.5. A schematic drawing, focused on the Gauss point. We pause to draw a
cartoon. We will sketch what D looks like near the Gauss point x = x0,1. Versions
of this picture are drawn in other places, for instance [Con14, Section 11.3] or
[Sch12, Example 2.20]. We have no intention of giving mathematical meaning to
these drawings. That is why we have abstract algebra!

There are four steps to create our drawing. They are shown sequentially in
Figure 4.5.1 and explained in writing now.
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Fig. 4.5.1. Drawing of the closed unit disc D from the perspective of the Gauss
point.

First, we plot the Gauss point x0,1 and the classical point x0, which we perceive
as the origin of D. For now, both points are drawn as simple black dots, even
though x0,1 is non-closed in D. We connect these points with a ray R0. The points
of the ray are the disc points x0,r with 0 ≤ r ≤ 1. The horizontal scale r measures
|w| over D.

Second, we add the classical point xp. As explained in Section 4.2, disc points
depend only on physical discs. Since D1(0) = D1(p), we see that x0,1 = xp,1. There
is no new Gauss point to consider from xp’s perspective. Analogous to the first step,
we draw the ray connecting xp to the Gauss point. The two rays overlap because

x0,r = xp,r ⇐⇒
1

p
≤ r.

Overlap is drawn as a thicker, fuzzier, line. The process can be repeated for xα
with α ∈ mOCp

. For each xα, its ray to the Gauss point intersects R0 starting at
x0,||α||p .

Third, if α ∈ O×
Cp
, then Dr(α) ̸= Dr(0) for all r < 1. Therefore, the ray from xα

to the Gauss point intersects R0 only at x0,1. The corresponding points xα somehow
lie on the boundary of D. Of course, different xα’s can have intersecting rays.
Indeed, the fundamental principle we are repeatedly using is that if α, α′ ∈ OCp

,
then

α ≡ α′ mod mOCp
⇐⇒ Dr(α) = Dr(α

′) for some r < 1

⇐⇒ Rα ∩Rα′ ⊋ {x0,1}.

(Here Rα is the ray connecting xα to the Gauss point.)
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Finally, we zoom in on the Gauss point. We find rays parametrized by

OCp/mOCp
∼= Fp = A1(Fp).

Zooming in with higher and higher magnification will eventually omit any given
classical point and any given disc point not equal to the Gauss point. But it will
never omit x1− , which lies in the closure of the Gauss point by Section 2.8. To
turn this picture into mathematics, we are going to explain how to place x1− in a
A1(Fp)-parametrized set of points, forming the non-trivial points in the closure of
the Gauss point.

4.6. The key valuation ring construction. This section complements the re-
view of valuation rings in Section 4.3. Let K be a field, and let A ⊆ K be a
valuation subring with maximal ideal m. To keep notations clear, let L = A/m.
Denote by π : A→ L the natural quotient map.

Suppose B ⊆ A is also a valuation subring of K. Then, m ⊆ B. Indeed, if x ∈ m
is non-zero then x−1 ̸∈ A and therefore x−1 ̸∈ B. Since B is a valuation ring,
we conclude x ∈ B as claimed. Thus, B = B/m makes sense and is a valuation
subring of L. We leave it as Exercise 4.2 to check the converse, i.e. that if B ⊆ L is
a valuation subring of L then π−1(B) ⊆ A is a valuation subring of K. Admitting
that, we get inverse bijections

{valuation rings B ⊆ A} ≃←→ {valuation subrings B ⊆ L}(4.6.1)

B 7→ B/m

π−1(B)←[ B.

Suppose we have a pair B ↔ B under (4.6.1). Write x ∈ Spv(K) for the valuation
corresponding to A, write y ∈ Spv(K) for the one corresponding to B, and λ ∈
Spv(L) for the one determined by B. As Exercise 4.2, check the following statement
as well:

(a) The three value groups are arranged in a natural exact sequence

(4.6.2) 1→ Γλ → Γy → Γx → 1.

(b) Within Spv(K) we have the specialization relation y ∈ {x}.

Example 4.6.1. We will use (4.6.1) to construct y ∈ Spv(K) from λ ∈ Spv(L).
The relevant L is L ∼= Fp(w), so let us describe Spv(L) in that case.

Let λ ∈ P1(Fp). For f ∈ Fp(w), write ordλ f for the order of vanishing of f at

w = λ.2 We thus get a valuation | − |λ : Fp(w)→ R≥0 by

|f |λ = (
1

2
)ordλ f .

The value group is Γλ = ( 12 )
Z. Ostrowski’s theorem is that the non-trivial elements

of Spv(Fp(w)) are represented by the | − |λ’s. The proof is recalled as Exercise 4.3.

2Recall, ord∞ f = deg(f).
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4.7. The closure of the Gauss point. We can now describe the closure of the
Gauss point in D. We begin with two lemmas.

Lemma 4.7.1. Let A be a Tate ring. For x, y ∈ Cont(A), the following are equiv-
alent:

(i) The point y lies in the closure {x}.
(ii) We have supp(x) = supp(y) and Ay ⊆ Ax.

Proof. We will show that if y ∈ {x}, then supp(y) ⊆ supp(x). This is where the
Tate condition on A is used. The rest of (i) implies (ii), and all of (ii) implies (i)
are left as Exercise 4.4. (The Tate condition can also be weakened. See Exercise
4.6.)

Since A is a Tate ring, we may choose a pseudo-uniformizer ϖ ∈ A. Since y is a
continuous valuation, |ϖ(y)| is co-final in the value group Γy. Therefore,

f ∈ supp(y) ⇐⇒ |f(y)| = 0

⇐⇒ |f(y)| ≤ |ϖn(y)| (for all n).

The same equivalences hold if x replaces y. Yet, if y ∈ {x} then, by definition,

|f(y)| ≤ |ϖn(y)| =⇒ |f(x)| ≤ |ϖn(x)|,

for all n. Therefore, supp(y) ⊆ supp(x). □

For the remainder of this section, we let x = x0,1 ∈ D. Let K = Frac(Cp⟨w⟩)
and let Ax ⊆ K be the valuation ring of x, with maximal ideal mx and residue field
Lx. Our second lemma determines the field Lx. Note that

OCp⟨w⟩ ⊆ Ax = {f ∈ K | |f(x)| ≤ 1}.

This containment is strict because 1
w belongs to Ax but notOCp

⟨w⟩. More generally,

Ax contains (w− α)−1 for any α ∈ OCp
, and none of those elements lie in OCp

⟨w⟩.
These examples are the only essential difference at the level of residue fields.

Lemma 4.7.2. The inclusion OCp⟨w⟩ ⊆ Ax induces an isomorphism Fp(w) ∼= Lx.

Proof. Note that mx ∩ OCp⟨w⟩ = mOCp
⟨w⟩. Therefore,

Fp[w] ∼= OCp
[w]/mOCp

[w] ∼= OCp
⟨w⟩/mOCp

⟨w⟩ ⊆ Lx,

which extends to Fp(w) ⊆ Lx. We claim this inclusion is an equality.
To start, by Weierstrass preparation any fraction f/g ∈ K can be expressed as

f

g
=
P

Q
u,

where P,Q ∈ Cp[w] and u ∈ OCp
⟨w⟩×. We may multiply Q by a non-zero scalar so

that Q ∈ OCp
[w] but not mOCp

[w]. Then, scale P by the same factor.

Suppose now f/g ∈ Ax. Since u ∈ OCp
⟨w⟩×, we have |u(x)| = 1. Therefore,

|P (x)| ≤ |Q(x)|.

Since Q ∈ OCp
[w], we also have P ∈ OCp

[w] by definition of x. Thus P/Q mod mx ∈
Fp(w). Since u mod mx ∈ Fp[w], we find f/g mod mx ∈ Fp(w), as claimed. □
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It seems the discussion in this section and the previous one gives bijections

P1(Fp)↔ {B ⊆ Fp(w) a valuation subring} (Example 4.6.1)

↔ {B ⊆ Lx a valuation subring} (Lemma 4.7.2)

↔ {Ay ⊆ Ax a valuation subring of K} (Section 4.6)

↔ y ∈ {x} (Lemma 4.7.1).

However, there is one caveat. For λ ∈ P1(Fp) we get a point xλ0,1 ∈ Spv(Cp⟨w⟩)
via the first three bijections, and xλ0,1 ∈ {x} within the valuation spectrum, by the

proof of Lemma 4.7.1. However, we need to show xλ0,1 is actually continuous!

Theorem 4.7.3.

(a) Each xλ0,1 is a continuous valuation on Cp⟨w⟩.
(b) If λ ̸=∞, then xλ0,1 ∈ D.

(c) Within D we have {x0,1} = {x0,1} ∪ {xλ0,1 | λ ∈ A1(Fp)}.

Proof. The majority of the proof is an explicit analysis in support of (a).
Let π : Ax → Lx be the natural projection map. Note Fp(w) ∼= Lx by Lemma

4.7.2 and, in this identification, π(OCp
) ⊆ Fp. For λ ∈ P1(Fp) we let Bλ ⊆ Lx be

the valuation ring arising from λ in Example 4.6.1. By direct examination, Fp ⊆ Bλ
and therefore OCp

⊆ π−1(Bλ).

The value group of x is identified as K×/A×
x by Section 4.3. Let y = xλ0,1

and Ay ⊆ Ax be its valuation ring. The prior paragraph shows that OCp ⊆ Ay.
Therefore, the value group K×/A×

y fits into a diagram

C×
p

y
//

����

K×/A×
y

����

C×
p /O×

Cp

≃
x

//

99

K×/A×
x .

The diagonal arrow is injective because the bottom arrow is. Thus, the exact
sequence

1→ Γλ → K×/A×
y → K×/A×

x → 1

in (4.6.2) is split as totally ordered abelian groups. From Example 4.6.1, the kernel
is Γλ ∼= ( 12 )

Z. Moreover, part (b) of Exercise 2.16 implies the ordering on

Γy ∼= Γx × (
1

2
)Z

is the lexicographic order. The analysis in Section 2.8 now shows y defines a con-
tinuous valuation. This completes the proof of (a).

For (b) we need to see that OCp
⟨w⟩ ⊆ Ay if and only if λ ̸=∞. By the bijection

in Section 4.6, it is equivalent to see that Fp[w] ⊆ Bλ if and only if λ ̸=∞. But that

is clear by definition of the λ-adic valuation on Fp(w). Finally, (c) follows from (a)
and (b), together with the overall discussion preceding the theorem statement. □

The reader can work as Exercise 4.7 that the splitting used to prove (a) gives
rise to identifications x00,1 = x1− and x∞0,1 = x1+ as in Section 2.8. We also outline,
as Exercise 4.8, the adjustments required to adapt the process to other points of
D. Namely, for r < 1 and α ∈ OCp

, we see in Section 4.4 that xα,r is a non-closed
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point when r lies in the value group of Cp. In fact, the closure will be in bijection

with P1(Fp). (The exception in Theorem 4.7.3(b) disappears.)
The analysis of all the points in D is incomplete, since we did not say anything

at all about Type 3 or 4 points in Table 4.4.1. The reader who wants all the details
can see [Con14, Section 11]. Or, note that if Cp is replaced by a non-Archimedean
field whose value group is R>0 and which is spherically complete, then the only
points that exist are Types 1, 2, and 5. Type 3 points become Type 2 and Type
4 points become Type 1. From this perspective, the introduction of the Type 5
points is really the heart of the adic unit disc beyond the classical and rational disc
points.

4.8. Final comments. What might the reader look at next? In Lemma 4.7.1, we
realized every point in the closure of the Gauss point in D has generic support {0}.
This is a more general phenomenon, occurring at analytic points on adic spectra.
We introduce this notion in Exercises 4.5 and 4.6.

The reader would do well to understand the notion of analytic points, next. The
Lemma 4.7.1 we proved implicitly uses that every point on an adic specturm of
a Tate ring is analytic. Analytic points are used more generally to analyze adic
spectra. A good target theorem for a learner would be [Hub93, Proposition 3.6] on
whether Spa(A,A+) is empty or not. We discussed this on page 26. It is plausible
to unwind the argument of that result using the tools outlined in these notes (cf.
[Con14, Section 11.6] and [Mor19, Section III.4.4]). In doing so, the reader will need
to follow the construction of certain spaces Spv(A, I) of “valuations with support
conditions” introduced by Huber. The benefit of doing so would be that these
spaces with support conditions, and specialization arguments as in Section 3.8, are
crucially applied in proving Huber’s Theorem 3.1.1 on the geometric structure of
Spa(A,A+).

The other option, hopefully one the reader has already begun, is plowing ahead
with the sheaf theory on adic spaces and perfectoid spaces outlined in the sibling
lectures [Hüb24, Joh24, Heu24]. It is completely plausible for users of Huber’s
theory of adic spaces to never truly need to study the proof of Theorem 3.1.1, as
long as their intuition is guided by enough examples (as Section 4 tries to illustrate).

Section 4 Exercises.

Exercise 4.1. Let α ∈ OCp
and r a real number with 0 < r ≤ 1. For f ∈ Cp⟨w⟩

we write

f = b0 + b1(w − α) + b2(w − α)2 + · · ·
with bi ∈ Cp converging to zero as i→∞. Let

|f(xα,r)| = max
i≥0
||bi||ri.

(a) Show that xα,r defines a (continuous) valuation on Cp⟨w⟩.
(b) Show that

f 7→ sup
α′∈Dr(α)

||f(α′)||p

is continuous on Cp⟨w⟩.
(c) Show that

|f(xα,r)| = sup
α′∈Dr(α)

||f(α′)||p.
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Hint. Once (a) and (b) are shown, (c) can be checked directly on polynomials. It may

be helpful to study the case r ∈ ||C×
p ||p = pQ first and do the general case as a limiting

process.

Exercise 4.2. Let K be a field and A ⊆ K a valuation ring with maximal ideal m.
Let L = A/m be the residue field of A and π : A→ L be the natural projection.

(a) Show that if B ⊆ L is a valuation subring, then B = π−1(B) ⊆ A is a
valuation subring of K as well.

(b) By Exercise 2.13, the valuation rings A, B, and B correspond to valuations
on K, K, and L. Show that the corresponding value groups sit in a natural
exact sequence

1→ ΓB → ΓB → ΓA → 1.

(c) Let xA, xB ∈ Spv(K) be the valuations corresponding to A and B, respec-

tively. Show that xB ∈ {xA} within Spv(K).

Exercise 4.3. Suppose that F is an algebraically closed field. For λ ∈ P1(F ) define
| − |λ : F (w)→ R≥0 by

|f |λ = (
1

2
)ordw=λ(f).

(Note that |f |∞ = 2− deg(f), for f ∈ F [w].)
(a) Show that | − |λ is a valuation for all λ.

Now suppose F (w)
|−|−−→ Γ ∪ {0} is any valuation and |α| ≤ 1 for all α ∈ F . (This

condition on the scalars is automatic if F = Fp because every non-zero element of

Fp is a root of unity.)

(b) If |w| > 1, show that |a0 + a1w + · · ·+ anw
n| = |w|n for all a0, . . . , an ∈ F

with an ̸= 0. Conclude that | − | is equivalent to | − |∞.
(c) Now suppose |w| ≤ 1.

• Show that p = {f ∈ F [w] | |f(w)| < 1} is a prime ideal in F [w].
• Show that if p = {0}, then | − | is equivalent to | − |triv.
• Show that if p = ⟨w − λ⟩, then | − | is equivalent to | − |λ.

Exercise 4.4. Let A be any ring. Let x, y ∈ Spv(A).

(a) Suppose that y ∈ {x}. Show that supp(x) ⊆ supp(y).

(b) Show that if supp(x) = supp(y) and Ay ⊆ Ax, then y ∈ {x}.
Exercise 4.5. Let A be a Huber ring and x ∈ Cont(A). Recall, supp(x) ⊆ A is
always a closed prime ideal. We call x analytic if supp(x) is not open in A. Show
that the following are equivalent for x ∈ Cont(A):

(i) The point x is analytic.
(ii) There exists f ∈ A◦◦ such that |f(x)| ̸= 0.
(iii) For any ideal of definition I there exists f ∈ I such that |f(x)| ̸= 0.

Exercise 4.6. Let A be a topological ring. Show that if x ∈ Cont(A) is analytic

and y ∈ Cont(A) lies in {x}, then supp(y) = supp(x). Therefore, if x is analytic,
then its only specializations are vertical. (See Exercise 2.18.)

Exercise 4.7. Let λ ∈ P1(Fp). Consider xλ0,1 constructed in Section 4.7. Show
that

Cp⟨w⟩
xλ
0,1−−→ R>0 × R>0 ∪ {0}

can be defined by the following recipe:
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• First, |p(xλ0,1)| = ( 1p , 1).

• Second, if f ∈ OCp⟨w⟩ and f̄ ∈ Fp[w] is its reduction modulo mOCp
, then

|f(xλ0,1)| = (|f |1, |f̄ |λ).

Conclude that x00,1 = x1− and x∞0,1 = x1+ .

Exercise 4.8. Let α ∈ OCp
and β ∈ mOCp

. Let r = ||β||p < 1. Let x = xα,r be the
disc point given in Section 4.2.

(a) Show that t = w−α
β ∈ Ax and there is a natural isomorphism Fp(t) ∼=

Ax/mx.
(b) Show that the containment OCp⟨w⟩ ⊆ Ax has image Fp in Ax/mx.
(c) Show that inside D, the closure of x is given by

{xα,r} = {xα,r} ∪ {xλα,r | λ ∈ P1(Fp)},

for points xλα,r constructed via the mechanism of Section 4.6.
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