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INTRODUCTION

These notes expand on a four-hour lecture course given in Heidelberg in March
2023, as part of the “Spring School on non-Archimedean Geometry and Eigenva-
rieties”. They are designed for graduate students and other learners. We intro-
duce Huber rings and valuation theory alongside frequent examples. The notes are
largely self-contained, though many details are given in exercises found following
each lecture.

Context. Hensel developed the p-adic numbers and their analysis in the waning
years of the 19th century. Tate’s theory of rigid analytic spaces dates to the 1960’s
[Tat71]. The p-adic numbers allow for number theory modeled on power series ex-
pansions. Tate’s theory models analytic geometry over the p-adic numbers, building
spaces such as discs, annuli, and more, along with robust definitions of their rings of
analytic functions. These models are applied to study problems in both geometry
and number theory. One original motivation was uniformizing p-adic elliptic curves
with split multiplicative reduction, now called Tate curves, via rigid analytic maps,
in analogy with complex uniformization of (all) elliptic curves over the complex
numbers.

Tate develops rigid analytic spaces using a class of rings, now called affinoid
algebras, and their maximal ideal spectra. He equips these spaces with presheaves
of functions, which he proves are actually sheaves. More precisely, the sheaves are
sheaves only for a so-called Grothendieck topology. This major caveat is responsible
for significant challenges in learning and using Tate’s theory.

Three new theories were developed starting in the late 1980’s:

(i) Raynaud’s formal models [BL93a, BL93b, BLR95a, BLR95b].
(ii) Berkovich’s analytic spaces [Ber90, Ber93].
(iii) Huber’s adic spaces [Hub93, Hub94, Hub96].
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Conrad’s four lectures at the 2007 Arizona Winter School [Con08] focused on
Tate’s theory, along with the work of Bosch-Liitkebohmert-Raynaud and Berkovich.
Our lectures in Heidelberg, and those of our colleagues Hiibner [Hiib24], Johansson
[Joh24] and Heuer [Heu24|, discuss Huber’s theory and its applications.

Why write these notes now? First, interest in adic spaces has exploded since
they became a pillar for Scholze’s perfectoid spaces [Sch12, SW20]. For instance,
the 2017 Arizona Winter School was dedicated to perfectoid spaces, and those
lectures necessarily included only a rapid introduction to adic spaces [BCKW19].
Second, eigenvarieties are the Spring School’s second topic. These are traditionally
developed as rigid analytic spaces, in Tate’s style, by Hida, Coleman and Mazur,
Buzzard, and many more. Recent works [AIP18, JN19, Gull9], however, extend
eigenvarieties to characteristic p local fields. All those works require Huber’s per-
spective.

Motivation. The first two lectures focus on spaces of valuations, on which Huber’s
theory is based. As background, we recall Tate’s spaces and how to shift into a
valuative mindset. We work over C,, the p-adic complex numbers. The field C, is
complete for the p-adic norm | — | » and algebraically closed, which makes geometry
more clear.

The fundamental ring in Tate’s theory is the Tate algebra Cp,(w). It is defined
as the ring of series

f=ap+aw+aw?+-- € Cyluw]
with the property that
(0.0.1) lim |a; ||p =0.

1—> 00

Tate models the closed unit disc over C,, as maximal ideals in C,(w). To explain,
if f€Cp(w) and |af, <1, then f(a) converges by (0.0.1). The evaluation map

(0.0.2) Cpw) 27 ¢,

therefore exists and has kernel (w — a) € max-Spec(C,p(w)). The Weierstrass
preparation theorem implies all maximal ideals arise this way. This gives a
bijection
{a e Cp|]af, <1} +— max-Spec(Cy(w)).
Maximal ideals also detect inequalities needed for analytic geometry. For in-
stance, [af, < % if and only if w — o generates a maximal ideal in the larger

ring
w w W, o .
Co(5) = (b +ba s+ ba(2) +-- | Jim [, = 0}
= {ap + ayw + asw? + --- | lim Hai"pp_i = 0}.
11— 00
The ring C,(2) = Cp(w, v)/(pw — v) is an example of a Cp-affinoid algebra. Rigid
spaces are glued from affinoid spaces, which are the maximal ideal spectra of affinoid
algebras, in analogy to how schemes are glued from the prime ideal spectral of rings.

This model for geometry faces a major technical issue. It is too easily discon-
nected. In Tate’s theory, a disc of radius p~® < 1 is given by

w
{lal, <p™°} < maX—Spec((Cp<E>).
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These cover the open unit disc {|o], < 1}. The boundary of the unit disc is
{le], = 1} +» max-Spec(Cy(w, w™ 1)) = max-Spec(C, (w, v) /(wv — 1)).

Thus, the closed unit disc decomposes

(0.0.3) {lal, < 1} = {Jal, = 13U J{lal, <p~},
s>0
with each piece being affinoid.

Why is this disconnection an issue? A naive sheaf theory would produce C,(w)
as the ring of functions on {|af, < 1}. The disconnection (0.0.3) would then say
that a series C,(w) can theoretically be defined by prescribing an analytic series
on the disc’s “boundary” {|], = 1} and, independently, a compatible collection of
series on disc {|a], < p~*} with s > 0. So, a naive sheaf theory would allow a single
series that identically vanishes on the interior of the disc and not on the boundary.
But, such a series is disallowed by the Weierstrass preparation theorem. Tate’s
solution was to use the language of Grothendieck topologies to disallow coverings
such as (0.0.3).

Huber proposes a different model of p-adic geometry. (Berkovich’s approach has
the same origin.) Returning to the evaluation maps (0.0.2), if |af, <1, we define
a (semi-)norm | — |, on C,(w) by

(0.0.4) | fla = 1f()],-

The maximal ideal (w — «) is equal to the support of | — |,, which is the set of
f such that |f|, = 0. So, Tate’s “points” are recovered directly from these norms.
However, there are more norms on C,(w). For instance, there is the Gauss norm

(005) ||a0 +aiw+ a2w2 + "Gauss = max Hal Hp

>0
This norm is special because it is a norm that gives C,(w) the structure of a
complete topological ring. It is of a different nature than | — |, in the sense its
support is {0}.

Huber’s theory goes even further. It considers more general objects called val-
uations. These satisfy the axioms of norms, except their target is not always the
non-negative real numbers. Huber models rigid analytic geometry on spaces of

continuous valuations on topological rings, such as C,(w).

Lecture contents. The first two lectures address Huber rings and their continuous
valuation spectra. By the end of the second lecture, we explain:

(i) Huber’s continuous valuation spectra and how localization theory detects
subdiscs such as {|af, < +}.
(ii) Huber’s natural model for the closed unit disc will contain at least one point
is that not naturally part of the “covering” seen in (0.0.3).
Point (i) supports comparing Huber’s theory with Tate’s. Point (ii) suggests Hu-
ber’s theory treats coverings and analytic functions differently than Tate’s.
Hibner’s initial lecture on adic spectra [Hiib24] comes between our second and
third lectures. The reader should read that first and then come back to our third
lecture, where we detail further constructions with adic spectra.
Our fourth lecture is independent from those of our colleagues. In it, we analyze
the closed unit disc, focusing on a systematic explanation of the point referred to
in (ii) above.
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1. HUBER RINGS

The primary goal of this lecture is defining Huber rings and giving their initial
properties. We emphasize examples and material on bounded-ness and localization.

1.1. Definition.

Definition 1.1.1. A Huber ring is a topological ring A that contains an open
subring Ag for which there is an ideal I C Ay such that:

(a) The topology on Agy (and thus on A) is the I-adic topology.
(b) The ideal I is finitely generated.

¢

Huber rings are called f-adic rings in the original work [Hub93]. The “-adic”
refers to condition (a) in Definition 1.1.1, while the “f-” recognizes the finiteness
assumption in part (b). The shift toward the term “Huber ring” follows the in-
troduction of perfectoid spaces and derivative works. The main benefit of the new
name is that the “f” in f-adic cannot be confused with an italicized “f”, which
frequently represents a mathematical object, such as a function.

In (a), saying A has the I-adic topology means a subset U > 0 is open if and
only if I™ C U for some n. The open sets around non-zero elements are determined
by translation, since A is a topological ring. Note, however, that I C A is an open
additive subgroup in A. It has the structure of an ideal over Ag, only.

We call Ay a ring of definition and I C A; an ideal of definition. The pair
(Ag,T) is a pair of definition. Pairs of definition are auxiliary structures. They
exist but need not be specified. Also, there is choice involved. For instance, if
(Ao, I) is a pair of definition, then so is (Ap, I™) for any n > 1.
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1.2. Examples.

Example 1.2.1. Let A be any ring and I any finitely generated ideal in A. We
equip A with the I-adic topology to make A a topological ring. Since I is finitely
generated, A is a Huber ring with pair of definition (A, I).

As a specific case, let A = Z,Jw]. Unlike Tate’s affinoid algebras, this is a power
series ring without any convergence conditions. It is noetherian and local, with
maximal ideal m = (p, w). The m-adic topology on A turns A into a Huber ring.

Example 1.2.2. The field of p-adic numbers Q,, is not covered by Example 1.2.1.
Recall Q, is a topological field with its topology defined by the p-adic norm || — |,,.

A neighborhood basis of zero is given by the open balls {|af, < p~"}. Therefore,
Ly ={a€Qpllaf, <1}

is open in Q,. Moreover, for n > 0 and o € Z,, we have

n

a€p'Ly = |af, <p™".

Therefore, the topology defined by | — | p On Zy, is the same as the topology induced
by the (principal) ideal pZ,. We have shown Q, is a Huber ring by identifying
(Zp,pZ,) as a pair of definition. It is even a Tate ring. See Section 1.3.

Example 1.2.3. A non-Archimedean field is a complete topological field K
whose topology is defined by a non-trivial non-Archimedean norm

H_||:K_>RZO'
Such K are Huber rings, just as for K = Q,. First, the subring
AOZOK::{OZEKH‘CV"S].}

is open. Second, since | — || is non-trivial, there exists « € K* such that |a| # 1.
Define @ = a*!, making sure |@| < 1. Since |@"| — 0 as n — +o0, the norm
topology on Ay is equivalent to the topology defined by the ideal wAy C Ag. There
is a wide range of choices for w. Each such choice is called a pseudo-uniformizer
for K. Examples of non-Archimedean fields include perfectoid fields discussed in
Heuer’s lectures [Heu24].

The field K = C, is important to keep in mind. By definition, C, is the com-
pletion of an algebraic closure @p of Q, with respect to the p-adic norm. The ring
Ag = Oc, is a local ring whose norm topology is defined by the principal ideal
pOc,. This is not the topology defined by the maximal ideal

mo, = {z €0, |[z], <1}.

Indeed, since C,, is algebraically closed we have m2, = mo., - Therefore, the
=P
powers of mo., do not shrink toward zero as the powers of pO¢, do.

Example 1.2.4. Let K be a non-Archimedean field with norm | — |. Define
> .
A=K(w) = {gaiw € Kfw] | Lliglo la;| = O}.

This is called a Tate algebra in one variable, in honor of its role in Tate’s rigid ana-
lytic geometry. It is a topological ring, with topology defined by a norm | —

" Gauss

= max |a|

lao + a1w + a2w® + | gouss nas
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that we first encountered in (0.0.5). This norm is called the Gauss norm, pre-
sumably because proofs that | — |, 15 multiplicative resemble proofs of Gauss’s
lemma on irreducibility of integer polynomials over the rational field. The topolog-
ical ring A is a Huber ring. A ring of definition is

Ag = Ok {w) = {Zaiwi € A|a; € Ok for all z}
i=0

={f € Al Iflganss < 1}-

An ideal of definition is

oo

= = {Zw € Al a; € w0y for all } — (S € AL Il < 11
i=0

Here, w is a pseudo-uniformizer for K as in Example 1.2.3. If | — | is a discrete

norm, then the inequality in the prior displayed equation becomes | f|¢aue < 1-

Warning 1.2.5. In these examples, we have been careful to define a topological
ring first and assert the Huber ring property second. More accurately, in each case
we first defined a ring A with a topology. Second, we left as Exercise 1.1 to check
each A was actually a topological ring. And, third, we identified a pair of definition
(AOa I)

Often you will find Huber rings A defined only using a pair of definition (Ag, I).
After all, taking a topological ring Ag and declaring Ay C A to be open is a valid
way to describe a topology on a ring A. It just may not define a topological ring!
This issue arises in practice, with rational localizations. So, we propose Exercises
1.2-1.3 as early work with topological rings.

1.3. Example: Tate rings. Tate rings are important enough that they get their
own subsection. A Tate ring is a Huber ring A in which there exist a unit w such
that @w™ — 0 as n — +o00. Such a w is called a pseudo-uniformizer, borrowing
from Example 1.2.3.

Let us examine the structure of a Tate ring A. Choose a pair of definition (Ag, I).
Since w™ — 0 as n — 400, there exists an n > 1 such that @™ € I. The element
w™ is still a pseudo-uniformizer. So, without loss of generality w € I C Ag. Now
we claim:

(a) The topology on Ay is the wAg-adic topology.

(b) Algebraically, A = Ag[L].
Thus, any choice of a pseudo-uniformizer w (in a given ring of definition) simulta-
neously controls the topological and algebraic structure of a Tate ring. For proof,
wAp is an open Ag-ideal, since it is a multiplicative translate of the open subset
Ao € A. But also w € I and so wAy C I. This proves (a). For (b), consider
any f € A. Since multiplication by f is continuous on A, there exists n such that
f@™ Ay C Ag, and therefore f € Ao[%].
1.4. Rings of definition. Huber rings are topological rings. Pairs of definition
(Ao, I) are auxiliary data. The goal of this section is illustrating the flexibility of
this data.

Let A be a topological ring. A subset X C A is called bounded if for any open

neighborhood U 3 0, there exists an open neighborhood V' > 0 such that XV C U.
Note that X, U, and V are a priori just subsets. The condition XV C U means
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that if z € X and v € V then xv € U. If U is an additive subgroup, which is often
the case in the context of Huber rings, then the condition XV C U is equivalent to
X -V C U where X -V is the abelian group generated by XV}

The next proposition classifies rings of definition from a topological perspective.
It is repeatedly used in analyzing more refined structures in Section 1.5.

Proposition 1.4.1. If A is a Huber ring, then a subring Ag C A is a ring of
definition if and only if Ag is open and bounded.

Proof. Let A be a Huber ring and Ay a ring of definition. First, Ag is open by
definition. Second, basic open neighborhoods of zero have the form U = I"™ with
I C Ap an ideal. Since AgI™ C I™, we see that Aj is bounded (taking V = I" as
well).

We now argue the converse. Assume A is open and bounded. Choose any pair
of definition (By,J) for A. Since Ay is open, it contains a power J" of J. The
pair (Byp, J™) is also a pair of definition for A. Replacing J by J", we assume that
J C Ap.

Now choose fi,..., fq € J that generate J as a By-ideal. Define

d
I=% Aofi C Ao.
i=1
We claim (A, I) is a pair of definition for A. Since I is a finitely generated Ap-ideal,
we focus on showing the I-adic topology is the J-adic topology on A.
First, we show J2 C I. Recall J C Ay. Then,

d d d
J2=J-(O Bof)=> JfCY Aofi=1.
=1 i=1 =1

Second, we show I"™ C J for some n. This is where we use that Ay is bounded.
Indeed, since Ag is bounded and J is an ideal, we may choose n such that Ay-J" C J.
The Ag-ideal I"™ is additively generated by elements afi" --- f;¢ where ny 4+ --- +
ng =n and a € Ag. Since f"' --- fy? € J", we conclude that I C Ay - J" C J, as
claimed. O

1.5. Bounded conditions. Let A be a topological ring. This subsection intro-
duces power-bounded elements A° and topologically nilpotent elements A°°.

1.5.1. Power-bounded elements. We say f € A is power-bounded if its powers
{]‘7f7f2)f37"'}
form a bounded subset in A. It is traditional to use A° as notation:
A° ={f e Al f is power-bounded}.

For instance, if A = C,(w), then w € A°, and in fact A° = Oc,(w). (See Exercise
1.4.)

Note that f € A° demands that for any open subset U > 0, there is an open
subset V 3 0 for which V C U, and fV C U, and f?V C U, and so on. A
finite number of these containments can be arranged, since multiplication by f is
continuous on A, but the condition that f € A° is more strict.

IThe typographical difference between XV and X -V can cause problems while scanning. The
“X - V”-notation is used by Huber [Hub93]. It has stuck in many references. Beware!
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It is clear that A° is closed for multiplication. It follows from Exercise 1.5 that
A° is in fact a subring of A. If A is a Huber ring, it even equals the union of all
rings of definition. The main step in the proof is the next lemma.

Lemma 1.5.2. Let A be a Huber ring. If Ag is a ring of definition and f € A°,
then Ao[f] is a ring of definition.

Proof. Since A is a Huber ring, we only need to show Ag[f] is open and bounded,
by Proposition 1.4.1. Since Ay C Ap[f] already, the open-ness is clear. What about
boundededness? Let I C A be an ideal of definition. Since f € A°, there exists
n such that f™I™ C I for all m > 0. Since I and I™ are Ag-ideals, we see that
Ao[f]I™ C I. Then, Ay[f] is bounded by Exercise 1.5. O

Proposition 1.5.3. If A is a Huber ring, then

A= ] A
ApCA
ring of def.

So, A° is an open subring in A. It is also integrally closed in A.

Proof. Let Ag a ring of definition. Since A is bounded and closed under exponen-
tiation, we see A9 C A°. Conversely, if f € A° and Ag is any ring of definition,
then f € Ap[f]. By Lemma 1.5.2, Ag[f] is a ring of definition.

Having shown the equality in the proposition, we have that A° is open, and
we already indicated why it is a subring. The primary observation to show A° is
integrally closed is that the proof so far implies that if f € A is integral over A°,
then f is integral over some ring of definition Ay. Given this, one checks that the
finite Ag-algebra Ag[f] is open and bounded. See Exercise 1.7. O

Proposition 1.5.3 does not claim A° is bounded. See Exercise 1.9.

1.5.4. Topologically nilpotent elements. An element f € A is called topologically
nilpotent if for all open neighborhoods U > 0, we have f* € U for n > 0. The
sufficiently large “>” depends on f and U. As an example, a pseudo-uniformizer
in a Tate ring is topologically nilpotent. The formal notation is

A°° ={f € A| f is topologically nilpotent}.

Assume A is a Huber ring and Ay is a ring of definition. If f € A°° is topologically
nilpotent, then the powers of f are in the bounded union Ag U {1,..., fN} for
some N. Therefore, when A is a Huber ring we have A°° C A°. The analogue of
Proposition 1.5.3 is the following result.

Proposition 1.5.5. If A is a Huber ring, then

A% = U I.

ICA
ideal of def.

Moreover, A°° is a radical A°-ideal.

Proof. We show topologically nilpotent elements lie in ideals of definition. (The
other containment is straightforward.) Suppose f € A°°. We just explained that
A°° C A°, and so we may choose, by Proposition 1.5.3, a pair of definition (Ag, J)
such that f € Ap. Since J is open, there exists n such that f* € J. Now define
I =J+Aogf C Ag. Then, [ is a finitely generated Ag-ideal because J is. We claim
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(A, T) is a pair of definition. First, I is open since it contains J. Second, f™ € J
and fJ C J, since f € Ag. Therefore, I C J. We have shown the [-adic and
J-adic topologies coincide, finishing the claim.

As in the case of power-bounded elements, we leave the auxiliary claim that A°°
is a radical A°-ideal as Exercise 1.8. (A hint is provided.) O

Note, the proof makes clear that the notation “I C A ideal of def.” additionally
indexes over all rings rings of definition Ag, not just the ideals of definition inside
some fixed Aj.

1.6. Rational localization. We end our introduction to Huber rings by construct-
ing rational localizations. These localizations are to Huber rings and adic spaces
what ring-theoretic localizations are to all rings and schemes. That is, they are used
to construct affine subspaces of adic spaces. The reader is invited to later meditate
on this analogy in the context of the proof of the adic Nullstellensatz (Theorem
3.5.1).

Given a Huber ring A, a rational localization A(%=29") is another Huber ring de-
pending on elements g1, ..., g, s € A. Localizations appear at the start of [Hub94],
where adic spaces are defined. See also Section 3.2 and Hiibner’s lectures [Hiib24].
You cannot localize with respect to all possible choices of elements. The criterion
is that the A-ideal a = As+ Ag; + --- + Ag,. C A is open. Before we explain, here
are examples:

(i) Suppose (Ao, I) is a pair of definition and f,..., fq € I are Ap-generators.
Then, {¢1,...,9-} ={f1,..., fa} is valid with any s, since I C a.
(ii) Let A be a Tate ring. Then, the only open A-ideal is a = A. Therefore,
the condition on g1, ..., g,, s is that they generate A. See Exercise 1.10.
(ili) Suppose A = Z,[w] with the (p, w)-adic topology. Then {g,s} = {w,p} is
a valid choice, but {g, s} = {p,p} is not. See Exercise 1.11.

(iv) Localization on Cp(w) is related to C,(%) in Section 1.7.

The topological ring A(#+:2%7) is defined in two steps, first algebraically and
second topologically. We fix a pair of definition (Ag, I). This choice is ultimately
immaterial, by the universal property in Theorem 1.6.2.

(RL-1) The underlying ring is A(Z=20n) = A[1],
(RL-2) Let A" = A(£==29n) and A = Ao[£,..., L] C A’. We make Af a topo-
logical ring by giving it the I Ajj-adic topology. We then give A’ the unique

topology where Aj C A’ is open.

By (RL-1) and (RL-2), we have a ring with a topology. But remember now Warning
1.2.5! We must justify that in fact we have defined a topological ring.

Lemma 1.6.1. Let A be a Huber ring. Assume that g1,...,g.,8 € A generate an
gi,-

open A-ideal. Then A(%+=29) is a topological ring.

The proof of Lemma 1.6.1 uses that I is finitely generated over Ay, which we have
not really used until now. The only result where we explicitly used the property
was Proposition 1.4.1. However, the issue there is preserving the finitely generated
property while switching ideals of definition. The same result holds assuming only
that A satisfies Definition 1.1.1(a). (We thank Kalyani Kansal for this observation.)
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Proof of Lemma 1.6.1. The first step is a general simplification. Then, we write
out the argument only in the case that A is a Tate ring. The main reason is to
decrease the notations and to generate a proof that is simpler to recall.

For notation, define A’ = A(%=29m) A = Ag[L, ..., &]and I' = [ Aj. We give
A}, the I'-adic topology and declare A, C A’ open. If T is replaced by a different
ideal of definition in Ap, the topology on A’ does not change.

The topology on A’ is built by declaring a topological ring Aj C A’ to be open.
By Exercise 1.2, we must only show multiplication by f’ is continuous on A’, for all
f' € A’. Since I is generated by I over Ay, the explicit claim is that for all f' € A’
there exists an n such that f'I™ C Aj. If f/ = f € A, this is clear since Ay is a
topological ring for the I-adic topology. A general element of A’ is f' = f/s" for
some N. Therefore, only the case f' = % is significant. Thus, we want %I " C Aj
for some n.

We now assume that A is a Tate ring. Choose a pseudo-uniformizer w € A that
belongs to Ag. By Section 1.3, we know A = Ag[L] and we may assume I = wA,.
As mentioned in (ii) prior to the lemma, since A is a Tate ring, we are assuming
that g1, ..., gr, s generate the unit ideal. So, @ may be expressed as

(1.6.1) w=aps+aig1+ - +ag (a; €A).
Since A = Ag[X], there is a positive integer n such that a;w" "1 € A for all i. By

1
w

(1.6.1), we then have that
(162) w" € Ags + Apgr + - -+ + Aggr-

And we are done now because

%)= 4

1 1
-I" = fw"Ao g 140[ﬂ7 e
S S S S

In general, the open-ness of As+ Agy + - - -+ Ag, leads to expressions similar to
(1.6.1), with w is replaced by any one of a finite number of Ag-generators of an ideal
of definition I. The conclusion, analogous to (1.6.2), is that Ags+ Aog1 +- - -+ Aogr
is open. Fill in the details and finish the argument as Exercise 1.12. ([l

Theorem 1.6.2 (Rational localization). Let A be a Huber ring and assume that
g1,---,9r, S € A generate an open ideal of A.

(a) For (Ao, I) a fized pair of definition, A(#+=29) is a Huber ring.

(b) The natural map A — A(£==29) js initial among continuous morphisms
A — B, for B a Huber ring, for which the image of s is invertible and the
image of each g;/s is power-bounded.

Proof. We proved in Lemma 1.6.1 that A" = A(£+=2%) is a topological ring. By
construction it has a ring of definition Af = Ao[%,..., %] with finitely generated
ideal of definition I Aj,. This proves that A’ is a Huber ring, possibly depending on
the choice of (Ag,I). That choice disappears once we prove the universal property
(b), since the property itself makes no reference to (Ao, I).

For (b), the localization map ¢ : A — A’ = A[%] is continuous, since I C
171 (I Ap). Moreover, s is a unit in A’ and % is power-bounded, since it lies in the
ring of definition Af, of A’ (recall Proposition 1.5.3). Suppose ¢ : A — B is given
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as in (b). Since p(s) is invertible in B, there is a natural factorization

A—*5B
A
LJ Sy
A
at the level of A-algebras. We must check 1 is continuous. Fix an open neigh-
borhood U > 0 in B, which we assume is an additive subgroup. Since % is

power-bounded in B for all 4, there exists an open neighborhood V' 3 0 for which

iymy, _ (£G) \my,
wyy = Gy cu
for all m > 0 and all i. Since ¢ is continuous, I C <p_1(V) for some n. Since
(I')" = I" Ay is spanned by elements of the form f(£)™ ¢ A’ for f € I"™ and U is
an additive subgroup, it follows that (I")" C ¢=1(U). O

We make two complementary remarks. First, the proof clarifies that the universal
property is valid as long as B possesses a neighborhood basis of zero consisting of
additive subgroups (B is a “non-Archimedean ring”). Second, some authors assume
in Theorem 1.6.2 that ¢,..., g, generate an open ideal. There is practically no
difference, since the definitions (RL-1) and (RL-2) make A(#90) = A($hndn?),

1.7. Example: Localizing C,(w). The final section of this lecture connects ra-
tional localization on Cp(w) to the Cp-affinoid algebra C,(%). The discussion is
simplified by focusing first on Cp[w].

Consider A = C,[w] as a topological ring with the topology induced from the
Gauss norm. That is, if f =a¢+aw+ -+ a,w", then

"fHGauss = I?Zag( ”a’l ”p

Just like Cp,(w), we see A is a Tate ring with pseudo-uniformizer p € A. A ring of
definition is Ag = Oc,[w] and an ideal of definition is pOc, [w].

Now localize with g = w and s = p. The hypothesis of Theorem 1.6.2 is satisfied
because s is a unit in A. As a ring,

So, A = A(%), still. But the topology is new! The original topology has a basis

around zero given by p"Oc, [w]. The new topology has a basis around zero given
by

w w w
1.7.1 " Ao[—] = p"Oc. [w, —] = p"Oc. [—].
(1.7.1) p o[p] p"Oc, [ p] p cp[p]

Here is a concrete difference. In the Gauss norm topology, w is power bounded but
not topologically nilpotent since w™ ¢ pOc, [w] for any n. Yet, in A(%) we have
p p
Therefore, w is topologically nilpotent in A(%).
We chose A to be the polynomial ring so that (1.7.1) was most clear. The
connection to affinoid algebras is via completion. The main point is that Cp,(w)
is the completion of C,w] for the Gauss norm. As Exercise 1.13, the reader can
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check that the topology on A(3) = Cp[w] is the same as the topology induced by
the norm _

/11 = max]ail ,p~",
and Cp, (%) is the completion of Cp[w] for | —[1. (The completions here are all with

respect to norms. We revisit more general completions of Huber rings in Section
3.4.)

Section 1 Exercises.

Exercise 1.1. Prove that the rings with topology described in Examples 1.2.1-1.2.4
are all topological rings.

Exercise 1.2. Let A be a ring and Ay C A a subring and I an Ag-ideal. Consider
Ap as a topological ring with the [-adic topology as in Example 1.2.1. Define
a topology on A by declaring Ay C A to be open. Show that the following are
equivalent:
(i) A is a topological ring.
(ii) For all f € A, multiplication by f is continuous on A.
(iii) For all f € A, there exists an n > 0 such that fI™ C Aj.

Exercise 1.3. These examples have the same flavor (with similar solutions). In
each, we give a ring A containing a topological ring Ag. The exercise is to check
that declaring Ayp C A to be open will not make A into a topological ring.
(a) Let Ag = Oc, with the m-adic topology. Show that declaring Oc, C C, to
be open will not make C, a topological field.
(b) Consider Z,[w] with the (p,w)-adic topology. Show that if one declares
Zpw] < Zp[[w]][%] is open, then Z, [w]][%} will not be a topological ring.
Exercise 1.4. Let A = C,(w).
(a) Show that w is power-bounded but not topologically nilpotent.
(b) Show that, in fact, A° = Oc,(w), and

A°° = mo., (w) = {Z a;w' € A | a; € mo., for all z} .

i=0
Exercise 1.5. Let A be a topological ring and X and Y subsets of A.

(a) Show that if X CY and Y is bounded, then X is bounded.

(b) Show that if A is a Huber ring and X and Y are bounded, then so is X - Y.

(¢) Suppose A is a Huber ring. Show that X C A is bounded if and only if for
any ideal of definition I, there exists an n > 1 such that XI™ C I.

Exercise 1.6. Show that if A is a Huber ring and Ay and Aj, are rings of definition,
then there exists a ring of definition Ay containing both.

Exercise 1.7. Show that if A is a Huber ring, then A° is integrally closed in A.
Hint. A sketch is given at the end of the proof of Proposition 1.5.3.

Exercise 1.8. Let A be a Huber ring.
(a) Show that f € A is topologically nilpotent if and only if there exists an
ideal of definition I C A and an integer n > 1 such that f™ € I.
(b) Show that A°° C A° is a radical A°-ideal.
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Hint. In (a), there exists n such that f™ € I and m such that f/I™ C I for all
j<n—1. Then f¥ € I for N > n(m +1). For (b), the tricky part of the ideal property
is showing A°° is closed for addition. For that, it may be helpful to note that if f, g are
topologically nilpotent, then they lie in a common ring of definition Ay (Exercise 1.6).

Exercise 1.9. Let A = Q,[e] = Q, ® Q,¢ with €2 = 0 and the p-adic topology
induced on each factor. Show that A is a Huber ring and

A° =Zp ® Qpe.
Conclude that A° need not be a ring of definition.

Exercise 1.10. Let A be a Tate ring.

(a) Show that any ideal of definition for A contains a pseudo-uniformizer.
(b) Show that if a is an open ideal of A, then a = A.

Exercise 1.11. Let A = Z,[w] with the m-adic topology where m = (w, p). This
is a Huber ring as in Example 1.2.1.

(a) Show that g3 = p and s = p is invalid for the hypotheses in Theorem 1.6.2.
(b) Try to define A(%) as in (RL-1) and (RL-2). Confirm that you do not get
a topological ring.
(c) Re-affirm directly that your objection disappears for the ring A(%).
Exercise 1.12. Let A be a Huber ring. Suppose g1, ..., g, s € A generate an open
ideal. Show that A(#-=2%) is a topological ring, as promised in Lemma 1.6.1.

Hint. A hint is given at the end of the proof of Lemma 1.6.1 in the text.

Exercise 1.13. Show that the topology on Q, [w](%) in Section 1.7 is the topology
induced on Q,[w] given by the norm

lag + ayw + - - - 4+ aqw?| = max Hai”pp*i.

2. VALUATION THEORY

The second lecture introduces valuation theory. The primary goal is discussing
continuous valuations on topological rings. One highlight is a simple criterion
(Proposition 2.7.1) for a valuation on a Huber ring to be continuous. The final
discussion will focus on the continuous valuation spectrum for the Tate algebra
Cp(w).

2.1. Definition. The symbol I refers to a totally ordered abelian group. We
write the group operation multiplicatively. By definition, I" is an abelian group
with an order relation < satisfying the following axioms.

(a) For all v1,7v2 € T, either 4 < 75 or 75 < 71, and both occur if and only if
v1 = 72 (“totally” ordered).
(b) If v € T, then 4" — v+’ preserves <.
From the first axiom, it makes sense to write y; < 72 provided v; < 72 and 1 # 2.
We always extend T' to the totally ordered monoid I" U {0}. The multiplicative
structure is given by 0-v =0 =0, for all v € I'. The order extends by 0 <  for
all vy €I
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Definition 2.1.1. Let A be a ring. A valuation on A is a function | —|: A —
T'u {0} such that |0| =0 and |1| =1, and for all f,g € A we have
Fol = I7llg (1 - | is multiplicative);
|f + gl < max{|f],|g]} (the ultrametric triangle inequality).

Note, we are using valuation as a term generalizing an ultrametric norm, as
opposed to something like the p-adic valuation v, : Q, — Z U {cc}. This is a
common choice of language in this research area. In If we were to restrict to
valuations valued in Rs(, we might prefer the terminology semi-norm. (“Semi-"
because we allow for |f| = 0 even if f # 0.) The terminology “valuation” seems
to be preferred because I' may in fact not embed into Rsg. Finally, confusion may
arise since we often consider a ring A topologized by a norm. To avoid confusion,
we reserve | — | for a valuation on A, while | — | will denote a fixed norm on A.

2.2. Examples.

Example 2.2.1. Let A be an integral domain. The trivial valuation | — |y is
1 ifa#0;
|a|triv - .
0 ifa=0.

Therefore, if A is any ring and p C A is a prime ideal, we have the trivial valuation
A—Alp Iy, {0,1} modulo p.
Example 2.2.2. Let A = Q. Some valuations on A are given by:

e The trivial valuation | — | = | — |triv-

e The valuation |—| = | — |, given by the Archimedean norm Q LniE=N R>o.

e The valuation | — | = | — |, given by an f-adic norm Q Lui’N R>¢ for a
prime £.

Ostrowski’s theorem states these are the only valuations on @Q, up to equivalence.
(See Section 2.5 below for “equivalence”).

Example 2.2.3. Let A = Q,. We already know about | — |ty and | —|,. But,
there are more. A theorem sometimes attributed to Chevalley states that if L/K is
a field extension, then a valuation on K extends to a valuation on L. See [Bou98,
Chapter VI, §3, no. 3, Proposition 5], for instance. So, each valuation on Q extends
to a valuation on Q, (in many ways). Note, this algebraic phenomenon requires
enlarging the target group I'. On Qp, the valuations | —| = [~ [ty and |—| = — [,
are distinguished (up to equivalence) as the ones that take value in a cyclic group.
The p-adic norm is distinguished as the only one that is continuous for the p-adic
topology on Q,. (Compare with Exercise 2.6, after reading a bit further.)

Example 2.2.4. Let A = C,(w) be the one-variable Tate algebra over C,. For
a € Oc,, we have a valuation

Fils

fa)],

on A. These valuations were considered in our motivation (page 3). There is also
the valuation | — |1 := | — that defines the topology on A. It is given by

” Gauss

f=ao+aw+aw® + -~ | f|l; = max ||ai”p-
>0
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We switch notation to |—|1, so that we can easily change “1” to another real number
r such that 0 < r < 1. That is, we define

i
= max |a;|, r*.
71, = max|ai,

Each | — |, is semi-norm, while each | — |, is a norm. A more exotic example is
given in Section 2.4 below.

2.3. Continuous valuations. In the examples above, Q, and C,(w) are topo-
logical rings. Huber rings are also topological. So, let us explain continuity for

valuations. Assume A Q I' U {0} is a valuation. The value group I'|_| is the
subgroup of I" generated by the non-zero |f| for f € A. If A = K is a field, then

I'\_| = |[K*|. In general, it is the smallest subgroup of I' through which | — | factors.
Now suppose A is a topological ring. We say that |—| is a continuous valuation

on A if for all v € T'|_}, the subset

(2.3.1) U, ={feAllfl<rcC4

is open in A. (The U, are open subgroups even.) In the examples above:

(i) Let A be a topological ring and p a prime ideal. The trivial valuation
modulo p is continuous if and only if p C A is open.
(ii) The p-adic norm is continuous on Q. The trivial norm is not.
(ii) The valuations | — |, and | — |, on C,{(w) are continuous.
What might a reasonable discontinuous valuation look like? Consider Cplw] C
Cp(w) with the topology induced from the Gauss norm. Then,

lag + aqw + - -+ + apw™|, = max ||ai||pri
1=0,...,n

is a valuation on C,[w] for all 0 < r < oo. However, it is continuous if and only if
r < 1. See Exercise 2.1.

2.4. An exotic example. As promised in Example 2.2.4, we give an extended
example of a valuation on Cp,(w) that is not a (semi-)norm. Define I' = R X Rsg
with the “read left to right” ordering. The technical term is lexicographic. In
symbols,
a<c = (a,b) <(c,d) (any b,d),
and
e<b = (a,e) < (a,b).
The right-hand portion of Figure 2.4.1 illustrates the order relation on T'.
Now pick a real number 0 < e < 1. We define | — |- on C,(w) by

lap + a1w + agw® + - |- = max(“ai”p,ei) erl.
>0
What does | — [;- measure? Write [f|,- = (a,b). Then, a > [a;], for all i by
definition of the lexicographic order. Since a = |a; Hp for some ¢ as well, we see
(2.4.1) a = max lail, = 11
So, the first coordinate of |f|;- is the Gauss norm of f. What about the second?

Suppose that i; < iy < --- <, are the indices where |a;, ||p = |f]1. Then, in T, we
have

(lai, 1, ™) < < (laig ™) < (lai, 1, e™) = 11~
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blk (C7 f).
(0,6) b
| ~~—
V. [ J
14 |p|1.— .1 | (Cv d)
[ ]

v

Fi1c. 2.4.1. A visualization of I' U {0} for ' = Ry x Rs¢. The right-hand
portion of the figure illustrates the generic order relation. The left-hand portion
illustrates the position of p versus w under the valuation | — |;-.

Thus, |f|;- records, in the second coordinate, the index of least degree whose
coefficient realizes the Gauss norm. We propose Exercise 2.2 to interpret | — |- as
combining the Gauss norm with the order of vanishing of polynomials modulo p.

The calculation shows | — |;- is continuous on Cp,(w). Indeed, if a,b > 0 are real
numbers, we have shown that within C,(w) we have

—h [=],—
Ut!r, ! gUv(a7bl) .

(The superscripts indicate the valuation to which the “U,”-notation is being ap-
plied.) Each UL is open, since | — |1 defines the topology on C,(w). Thus each
Ul~h- s open as well.

(a,b)
Finally, | — |;- is written with a “1~” to promote intuition that the coordinate

w is measured infinitesimally below 1. Indeed, |p|;- = (1/p,1) and |w|;- = (1,¢€).
Therefore,

(2.4.2) [pli- <|w|f- <1  (for all n).

It is as if w as squeezed between 1/{/p and 1 for all n. See Figure 2.4.1 again. We
will give another sense in which | — |;- is near to 1 in Section 2.8.

2.5. Valuation spectra. Valuation spectra are defined as equivalence classes of
valuations. Let A be any ring with valuations | — |1 and | — |2. We say that | — |1
is equivalent to | — |3 if for all f,g € A we have

Ifli < gl <= |fl2 < gl

Note that | — |; and | — |2 may take values in different abstract groups. When they
are equivalent, there is an isomorphism of value groups turning one valuation into
the other. This and another interpretation of equivalence are suggested as Exercise
2.5.

One impact of equivalence for valuation is that it turns seemingly true statements
into actually true ones. For instance, “there is only one continuous valuation on
Q,” is only true if it is understood up to equivalence. (See Exercise 2.6.) After all,
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| — ||127 and | — [, are distinct continuous valuations. Another example of equivalence
is that | — |;- depends on the choice of the parameter € only up to equivalence.
Now assume A is a topological ring. Its continuous valuation spectrum is

Cont(A) = {continuous valuations on A}/(valuation equivalence).

We suggest as Exercise 2.7 showing that whether or not a valuation |—| is continuous
depends only on | — | up to equivalence. Therefore, there is a natural inclusion
Cont(A) C Cont(Agisc), where Agisc is A with the discrete topology. The larger
space

Spv(A) := Cont(Adisc)

is called the valuation spectrum. No continuity qualification is imposed on
Spv(A). For a non-zero ring, the valuation spectrum is always non-empty, since
one always has the trivial valuation modulo a prime ideal. The non-emptiness of
Cont(A) is more subtle. See Section 4.8 for a related discussion. In the remainder
of this subsection and Section 2.6, we make formal constructions on Spv(A). The
continuous valuations return in Section 2.7.

We will use x to denote an element of Spv(A). Let | — | be a choice of represen-
tative for the class z. If f € A, we define notation
(2.5.1) [f(@)] = |1l
Since the target group of | — | is not well-defined, (2.5.1) has no clear meaning.

One route, mentioned above, is solving Exercise 2.5 to see |f| is well-defined up to
ordered group isomorphism on value groups. The route we will take is to play more
loosely and agree to only use the notation (2.5.1) in situations where only the class
x, and not the choice of | — |, matters.

For instance, if z € Spv(A), then its support is defined to be

supp(z) = {f € A [|f(z)| = 0}.

The support depends only on the equivalence class « because “|f| = 07 is the same
as “|f] <10]”. It is a prime ideal, and if A is topological and = € Cont(A), then it
is closed. Prove these facts as Exercise 2.11.

The notation (2.5.1) is also used in equipping Spv(A) with a topology. For
g,s € A we define

g

(25.2) U() = {z € Spv(4) [ lg(2)] < |s(z)] # O}

Weinstein observes that this “blends features of the Zariski topology on schemes
with the topology on rigid spaces” ([BCKW19, p. 6]). Indeed, z € U(£) implies
both that s € p = supp(z) (a Zariski condition) and |g(z)| < |s(z)| (a rigid con-
dition). A basic open set for the topology on Spv(A) is, by definition, a finite
intersection

9i1,---59r - gi
Uty - ()
i=1

= {z € Spv(A) | |gi(z)| < [s(z)] # 0 for all i}.

If A is a topological ring, we equip Cont(A) C Spv(A) with the induced topology
by these basic opens.
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We have two warnings before going further. First, be careful about cancellation.
The set U($) has a condition:

S
(2.5.3) UC) = o € Spv(A) | [s(z)] # 0}
Second, we can form U (#+=29%) for any choice of g1,...,g,,s. If A is a topological
ring then a rational subset is one of the form

gi,---59r

(2l dr

(Lt

where ¢1,...,9.,8 € A are chosen to generate an open A-ideal. This is the same

condition required for rational localization of Huber rings. We return to this in
Section 3.2.

2.6. The support map. The function x — supp(z) defines a continuous function
supp : Spv(A) — Spec(A).
To see this, note that basic open sets in Spec(A) take the form

D(s) = {p € Spec(4) | s € p}
for s € A. Thus, supp~*(D(s)) = U(%).
We next describe the fibers of the support map. Let | — | be a valuation on A
and p its support. If f € A and f ¢ p, then the strong triangle inequality implies
|f+g| = |f]| for all g € p. The same holds if f € p, since p is an additive subgroup.
This shows |f| depends only on f modp € A/p and | — | factors through A/p,
on which it defines a valuation with support the zero ideal. In particular, | — |
extends to a valuation on the fraction field Frac(A/p). In summary, there is always
a commuting diagram

(2.6.1) A—1 ruqo)

A/pC—— s Frac(A/p).

The factorization only depends on | — | up to equivalence, in the sense that (2.6.1)
induces a well-defined map

(2.6.2) Spv(A) D supp ' (p) — Spv(Frac(A/p))
for each prime ideal p € Spec(A). In fact, (2.6.2) gives a homeomorphism

supp ™' (p) =+ Spv(Frac(A/p)).
The support map therefore allows us to treat Spv(A) as families of valuations over
residue fields of Spec(A).

The target of (2.6.2) is the valuation spectrum of a field. This is a space clas-
sically understood through algebra. Let K be any field. For x € Spv(K), the
subring

Ay, ={ae K ||a(z)| <1} CK
is called the valuation ring of z. Each A, is a valuation ring in the sense of
commutative algebra (see [Bou98, Chapter VI, §1, no. 2]). That is, if @ € K, then
either « € A, or a=! € A,. Any valuation ring is a local ring. In this case, one
can directly check the set of non-units in A, is equal to those o € A, such that
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|a(z)| < 1, and that this set forms an A,-ideal, written m,. According to Exercises
2.12-2.14, the association

(2.6.3) Spv(K) EinsitN {valuation subrings A C K}
is a bijection. We will use this bijection in our analysis of the closed unit disc in
Section 4.

Finally, the inclusion Cont(A) C Spv(A) endows Cont(A) with a topology as
well. The support map is, by definition, continuous when restricted to Cont(A).
However, the above analysis is purely algebraic. One of Huber’s preliminary results
on continuous valuation spectra ([Hub93, Theorem 3.1]) is an analysis of the support
fibers in Cont(A) when A is a Huber ring. We will not study that result. Instead,
in the next section we will directly analyze continuity of valuations on Huber rings,
rather than analyzing the space Cont(A) itself.

The reader may want practice manipulating Cont(—). Exercise 2.8 is recom-
mended, as are Exercises 2.9 and 2.10, where the important concept of an adic
morphism of Huber rings is explained.

2.7. Continuous valuations on Huber rings. We now focus on Huber rings.
The primary goal is explaining which valuations on Huber rings are continuous.

Let T be a totally ordered abelian group. We say v € I'U{0} is co-final in T if,
for all § € I' we have v < § for n > 0. This is similar to topological nilpotence.
Note that v = 0 is automatically co-final. It is also true that every co-final v must
be less than 1. Indeed, if 1 < v then 1 < 4™ for all n > 0. If I' C R+, then the
co-final v are indeed just the v such that v < 1.

Now suppose that | —|: A — T'U {0} is a valuation. Recall the value group I'|_,
is the smallest subgroup of T' containing the non-zero |f| for f € A. For valuations
on Huber rings, we have the following continuity criterion.

Proposition 2.7.1 (Continuity criterion). Let A be a Huber ring. Let
|—|: A—=Tu{0}
be a valuation and I'|_| be its value group. The following conditions are equivalent:

(i) | —| is continuous.
(ii) If f is topologically nilpotent, then |f| is co-final in T'|_,.
(i1i) Suppose (Ao, I) is a pair of definition and write I = Agf1 + -+ + Ao fa.
Then, for each i we have |f;| is co-final in T'\_| and |ffi| < 1 for all

f € Ap.
In particular, with notation as in (ii), suppose | — | is a valuation, each |f;| is
co-final in I'|_|, and some |f;| # 0. Then,
1
| — | is continuous <= |f| < for all f € Ay.
max(‘fﬂa ) |fd|)
Proof. First suppose | — | is continuous. If v € T'|_|, then the set

Uy={feAllfl <~}
is open in A. So, if f € A is topologically nilpotent, then f* € U, for all n > 0. In
symbols, |f|" < for all n>> 0. So, |f] is co-final in I'|_|. This shows (i) implies
(ii).
Now assume that (ii) holds. Fix the notation (Ag, I) as in (iii). The elements of
I are among the topologically nilpotent elements in A. Therefore, (ii) implies each
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| fi| is co-final in I'|_|. In fact, each g € I has co-final value |g|, which implies the
weaker conclusion that if g € I then |g| < 1. Therefore, if f € Ag and i =1,...,d,
then |f fi| < 1 because g = ff; € I. We have shown (ii) implies (iii).

Finally, we prove that (iii) implies (i) by a direct argument. Suppose that v €
I'\_|. By assumption in (iii), | f;| is co-final in T'|_) for i = 1,...,d. There are only
d-many f;, so there exists n > 0 such that |f;|™ < v for all ¢ at once. We now claim

(2.7.1) mt Ccy,.

If proven, then U, is open in A. Since v was arbitrary, we have proven (iii) implies
(i).

We now show (2.7.1). The Ap-ideal 1"+ is generated as an abelian group by
elements of the form

(2.7.2) g=rff"--- ;nd fedy, mi+---+mg=nd+1

Since U, is an additive subgroup of A, it is enough to show g € U, for such g. Now,
in (2.7.2) we have d-many m’s and they sum to nd + 1. So, m; > n + 1 for some
i. Since f € Ap we have |ff;| < 1 by (iii). Since |f;| < 1 for all j, in any case, we
can write g = f'f* where |f’| < 1. Therefore, |g| < 7, completing the proof that
(2.7.1) holds. O

We have two reasons for explaining Proposition 2.7.1. The primary reason is
that we will use the criterion to check valuations are continuous in Sections 3-4.
The secondary reason is that the criterion is only implicitly presented in Huber’s
paper [Hub93]. It is more explicit in the notes by Conrad [Conl4]|, Morel [Mor19],
and Wedhorn [Wed19]. See especially [Conl4, Corollary 9.3.3]. However, in those
sources, the criterion is established alongside arguments showing Cont(A) is a spec-
tral space if A is a Huber ring. In particular, the other references all appeal to the
theorem [Hub93, Theorem 3.1] referenced at the end of the prior section. While
learning this material, we have found it helpful to have a direct argument toward
Proposition 2.7.1, which allows for a nearly instant check on whether a valuation
is continuous.

2.8. Example: Cont(C,(w)). In the final section of our second lecture, we re-
visit continuous valuations on C,(w). We explain an instance of specialization
in Cont(C,(w)), illustrate the support map, and introduce Huber’s model for the
closed unit disc.

Let A = C,(w), which is a topological ring with the topology endowed from the
Gauss norm | — |1 = | = |gauss- The valuations on A listed in Example 2.2.4 are
continuous. We re-list them.

(i) If a € Oc,, then |f(z4)| = | f(@)], defines a point z, € Cont(A).
(i) If r <1, the r-Gauss norm | f(x,)| = | f|, defines a point x,. € Cont(A).
(iii) We also have 21— € Cont(A) given by |f(z1-)| = |f|1-, where on non-zero
f we have

lao + a1w + agw® 4 -+ ;- = I?ggi(uai”paf?i) € R>o x R,

for some choice of 0 < € < 1. See Section 2.4.
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We previously argued in (2.4.1) in Section 2.4 that | — |; and | — |- are related by

a commuting diagram

R~ x Rso U {0} anoa R~ U {0}.

(2.8.1)

Here, the horizontal projector (a,b) — a is a morphism of totally ordered abelian
groups. So, along with continuity of | — |;-, we deduce that if g, s € A, then

lgli- <lsli- #0 = |g|1 < s|]1 #0.

In terms of the topology on Cont(A), we have
g g
[=li-€UE) = |-heU)

Therefore, each open in Cont(A) that contains x;- also contains x. Said another
way, x1- lies in the closure of z; within Cont(A). This gives a new sense to the
intuition that x;- is infinitesimally close to x;.

Next, we analyze supports. It is clear that supp(z,) = (w — «). As Exercise 2.15,
the reader can check that = z, is the only point of Cont(A) with this property.
Since (w — «) € Spec(A) is a closed point, so is z, = supp~ ! ({w — «)) € Cont(A).
The closedness is one way the x, are distinguished from the Gauss point.

The remaining points of Cont(A) have generic support {0}. We analyze these
points more closely in Section 4. The point x;- is closed, while x, is non-closed
whenever r = |a|, lies in the value group of C,. Since z;- and z; have the same
support and x- lies in the closure of z1, we call z;- a vertical specialization of
x1. See Exercise 2.18 for details on this terminology. A cartoon is drawn in Figure
2.8.1.

Spec(A) {0} o (w—a)

Fic. 2.8.1. A visualization of the support map for A = C,(w). The element
a € O, is meant to have [af, =, and n is chosen so large that % >t

We also examine the continuity criterion. We may choose Oc,(w) as a ring of
definition and p as a (principal) generator of an ideal of definition. Let | — | be a
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valuation on A. Then, |p| # 0 since p is a unit. The continuity criterion Proposition

2.7.1 implies that | — | is continuous if and only if [p| is co-final in I'|_| and
(2.8.2) I < [pI™!
for all f € Oc,(w). This gives a second argument for the continuity of | — |;-.

Indeed, comparing with Figure 2.4.1, we see the following.
(a) The element |p|;- = (%, 1) is co-final in Rso X Rso.
(b) If f € Oc, (w), then [f|;- <[f[1 <1< Ip~ -

Note, our continuity check here shows that [f[;- < 1 for f € Oc,{(w). This is
strictly stronger than the requirement (2.8.2). Indeed, it suggests a modification
of x1- that makes w infinitesimally larger than 1 rather than smaller. We achieve
this by defining

2 _ . —1
lag + arw + agw” + - -+ |1+ frglgg((ﬂazﬂpﬁ ).

(Still 0 < & < 1.) The value |f|;+ measures the Gauss norm in the first coordinate
and the largest index coefficient realizing the Gauss norm in the second coordinate.
It is still a valuation and still continuous because

(28.3) 1< s = (1,e™) < (1) = [p~ 1+

We therefore have a new point 2+ € Cont(A). It lies in the closure of 1 as before.
Finally, Huber’s model for the closed unit disc is given by

D = {z € Cont(Cp(w)) | |w(z)| < 1}.

From the definitions, we see D contains z,, for each a € Oc,, it contains z, for all
0 <7 <1, and it contains x;-. There is a strict containment D C Cont(Cp,(w))
because z1+ € D by (2.8.3). One of the primary results in Huber’s [Hub93] is the
following theorem. Here we specialize to the context of D. See Theorem 3.1.1 later,
as well.

Theorem 2.8.1 (Huber). The topological space D is quasi-compact and quasi-
separated. Moreover, if g1,...,9r,8 € Cp{w) generate the unit ideal, then the ra-
tional subset U(#292) s also quasi-compact.

Note that the hypothesis in Theorem 2.8.1 is the same that appears in the
rational localization Theorem 1.6.2. Compare with Section 3.2.

To illustrate Huber’s theorem, let us return to the issue of disconnection raised
on page 3. The closed unit disc D certainly separates into D = V3 U V1 where

Vi={zeD]||wx)=1} and Ve ={zeD]||w(x)| <1}
Since |p(z)| # 0 and |w(z)| < 1 on Vi1, it would seem that V.q can be written as
a union
w" n
(2.8.4) Ve = U U(?) ={z € D | |w(x)|” < |p(z)| for n > 0}.
0<n

However, the point ;- € D lies in a gap between V.1 and the union. This is good!
If there were not a gap, then Huber’s theorem would be contradicted by V; together
with the “cover” of V. alleged in (2.8.4).
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Section 2 Exercises.

Exercise 2.1. Let C,[w] be given the topology induced from the Gauss norm. For
0 <r < o0, define

lag + a1w + - - + apw™|, = max |an]r™.

(a) Show that | — |, is a valuation on C,[w].
(b) Show that | — |, is continuous if and only if r < 1.

Exercise 2.2. Let f € Cy(w). Assume a = [f[1 = |a], for some o € C,,. There-

fore, a7'f € Oc,(w)* has a non-zero reduction f := a~!f mod mo., € F,[w].
Show that |f|;- = (a,e™) where n is the order of vanishing of f at w = 0.
Exercise 2.3. Let | — | : A — I’ U {0} be a valuation on a topological ring A. For
v € I'|_|, define
y={feAllfl<~}

(a) Show that if | — | is continuous, then each U, is open.

(b) Show that if | —| is non-trivial and each U, is open, then |—| is continuous.
Exercise 2.4. Let A be a topological ring. Show that | — |ty is continuous on A

if and only if A is discrete.
Exercise 2.5. Let A be a ring and | — |1,| — |2 two valuations on A. Show that
the following conditions are equivalent:
(i) | — |1 is equivalent to | — |-
(ii) supp(| — |1) = p = supp(] — |2) and the induced valuations on Frac(A/p)
have the same valuation rings.
(iii) There exists an isomorphism ¢ : I'|_}, = I\, of totally ordered abelian
groups making the following diagram commute

2N\

Loy ——— T,

Exercise 2.6. Consider the p-adic numbers Q,.

(a) Show that if | — | : Q, — I' U {0} with T cyclic, then | — | is equivalent to
either | — |ty o1 | — ||p.
(b) Show that any continuous valuation on Q, is equivalent to | — .
(c) Show that (b) also holds for C, instead of Q.
Exercise 2.7. Let | — |1 and | — |2 be equivalent valuations on a topological ring.
Show that | — | is continuous if and only if | — | is continuous.

Exercise 2.8. Let ¢ : A — B be a map of rings.

(a) Show that the induced map Spv(B) — Spv(A) is continuous.
(b) Show that A and B are topological rings and ¢ is continuous, then the
induced map Cont(B) — Cont(A) is well-defined (and continuous).

Exercise 2.9. Let A and B be Huber rings and ¢ : A — B a ring homomorphism.
We call ¢ an adic morphism if there exists a pair of definition (Ag, I) for A and
a ring of definition By for B such that ¢(Ag) C By and (Bg, »(I)Byg) is a pair of
definition for B.
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(a) Show that if ¢ is an adic morphism, then ¢ is continuous.

(b) Show that if A is a Tate ring and ¢ is continuous, then B is a Tate ring
and ¢ is adic.

(¢) Suppose ¢1,...,9r, S € A generate an open A-ideal. Show that the local-
ization map A — A(%+2%) is adic.

(d) Suppose ¢ is continuous. Show that ¢ is adic if and only if for any rings of
definitions A9 C A and By C B, if ¢(Ap) C By and I C Ay is an ideal of
definition, then ¢(I)By C By is an ideal of definition.

Exercise 2.10. Let A and B be Huber rings and ¢ : A — B an adic morphism.
Let ¢ : Cont(B) — Cont(A) be the induced map. Show that if U C Cont(A4) is a
rational subset, then ¢»~1(U) C Cont(B) is also a rational subset.
Exercise 2.11. Let A be a ring.

(a) Show that if z € Spv(A), then supp(x) is a prime ideal in A.

(b) Show that if x,y € Spv(A) and y € {x}, then supp(z) C supp(y).
(c) Assume A is a topological ring and x € Cont(A). Show that supp(zx) is
closed in A.

Exercise 2.12. Let K be a field. A valuation subring of K is a subring A C K
such that if & # 0 in K then either o € A or a™! € A. Let # € Spv(K). Define

Ay, ={a € K| |a(z)| <1}

(a) Show that A, is a valuation subring of K.

(b) Show directly that m, = {a € A, | |a(z)| < 1} is an ideal in A,, and it
consists of all the non-units in A,. Conclude that A, is a local ring.

(c) Show that y € {2} within Spv(K) if and only if A, C A,.

Exercise 2.13. Let K be afield and A C K a valuation subring. Set 'y = K*/A*.
(a) Show that T'4 is a totally ordered abelian group under the ordering
(2.8.5) aAd* < BA* <= aA C BA.
(b) Show that the function
a(z0)| aA* if a #0;
a(za)| =
A 0 if o =0,
defines a valuation z 4 € Spv(K).

Exercise 2.14. Show that the maps x — A, and A — x4 from Exercises 2.12

and 2.13 are inverse bijections between Spv(K) and the set of valuation subrings
ACK.

Exercise 2.15. Show that if € Cont(C,(w)) and supp(z) = (w — «) for some
a € Oc,, then z = z,4.

Hint. Use the criterion (ii) in Exercise 2.5 and Exercise 2.6(c).

Exercise 2.16. Let I' be a totally ordered abelian group. A subgroup A is convex
in T if, for all 1,2 € A and v € T" such that 0; < v < do, then v € A.
Assume now that A is convex in I'. Define < on I'/A by

YA <A'A <= v <46 for some § € A.
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(a) Show that < defines a total order on I'/A and I — I'/A is a morphism of
totally ordered abelian groups.
(b) Suppose that the exact sequence

1-AST5BT/A 1

is split as totally ordered abelian groups. Let s : T'/A — T be a splitting.
Show that the group isomorphism

T/Ax AT

is an isomorphism of totally ordered abelian groups when the product group
is given the lexicographic order.

Hint. In (a), convexity is only used to show the “strongly symmetric” property of an
order relation — in this case to prove that yA = 4’A if and only if both yA < ~'A and
7Y'A <AA.

Exercise 2.17. Let ¢ : I' = IV be a morphism of totally ordered abelian groups.
(a) Show that ker(p) C T is a convex subgroup.
(b) Show that im(p) C I" is a totally ordered abelian group.
(c) Show that ¢ : I'/ ker(¢) = im(p) as totally ordered abelian groups.

Exercise 2.18. Let A be a ring. For z,y € Spv(A), we say y is a vertical
specialization of z if
(i) y € {z}, and
(i) supp(y) = supp(x).
We also say that x is a vertical generization of y.
(a) Show that if z is a vertical generization of y, then there is a natural quotient
map I'y — I'; of totally ordered abelian groups.
(b) If y € Spv(A), show that
{vertical generizations of y} — {A C T, convex subgroups}
z = ker(ly - T';)
is a bijection.
(¢) Suppose A is a topological ring and y € Cont(A). Show that if z is a
vertical generization then either x € Cont(A) or z is the trivial valuation
modulo supp(y).

Hint. If supp(z) = supp(y), then z and y can be viewed as valuations on the same
field. Then, use Exercises 2.12-2.14 for (a). For (c), use Exercise 2.3.

3. CONSTRUCTIONS WITH ADIC SPECTRA

Let A be a Huber ring. This lecture focuses on the adic spectrum
(3.0.1) Spa(A, AT) = {z € Cont(A) | |f(z)| < 1for all f € AT},

which is the topic of Hiibner’s initial lecture [Hiib24].

The ring A" is a ring of integral elements, which means A* C A° and
AT is open and integrally closed in A. Proposition 1.5.3 shows A° is always a
ring of integral elements. A pair (A, AT) is called a Huber pair. We make
X = Spa(A4, A") a topological space via the inclusion X C Cont(A).
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Our initial goal in Section 3.1 is to discuss the bounds imposed on adic spectra.
In Sections 3.2-3.4, we describe how localization, tensor products, and completions
impact Huber pairs. Then, in Section 3.5, we prove that

(3.0.2) At ={feA||f(z)] <1forall x € X}

when X = Spa(4, A™).

The bulk of our energy is spent on (3.0.2). It reminds one of the statement
“I(V(I)) = I if I is a radical ideal”, which one encounters as the Nullstellensatz
in algebraic geometry. For this reason, Conrad even refers to (3.0.2) as an adic
Nullstellensatz in [Conl8, Theorem 2.25]. We observe here, in further support of
this name, that the first step in the proof we present involves localization in a way
reminiscent of the “Rabinowitsch trick” used in proofs of the Nullstellensatz.

Presenting (3.0.2) seems near optimal, in terms of satisfaction, for a proof using
only what we explained in Sections 1 and 2. It provides a chance to use rational
localization of Huber rings and we also get to introduce a technique called horizontal
specialization, which complements the vertical specializations described in Section
2.8 and Exercise 2.18.

One topic we will not address is the role of the containment A* C A°. It
is not required for (3.0.2). The containment is crucial in Huber’s study [Hub93,
Proposition 3.6] of whether or not adic spectra are empty, where he proves that
Spa(A, A*) = 0 if and only if {0} is dense in A. (Recall Spec(A) = ) if and only if
A={0}.)

3.1. Bounds on adic spectra. Our initial goal is clarifying how adic spectra
generalize the closed unit disc

D = {z € Cont(Cp(w)) | Jw(x)| < 1}.

In defining D, we impose a bound |w(z)| < 1 on only w € C,(w), while (3.0.1)
imposes bounds on all of AT. There is a difference in the style of definition. Exam-
ining the definition of rational subsets, imposing bounds on single functions, or a
short list of them, is natural. Instead of Spa(A, AT), one might consider the more
basic object

(3.1.1) Spa(A4,%) = {z € Cont(A) | |f(x)] <1 for all f € X},

where ¥ C A is any subset.

There are two basic remarks. First, sets defined as (3.1.1) present technical
challenges. Writing proofs would require learning how to track 3 while applying
algebro-topological constructions to A. It would be similar to tracking functions
that define a projective algebraic variety rather than an ideal sheaf. Second, there
is no loss of generality in focusing only on ¥ = AT where A" is open and integrally
closed in A. Indeed, for all 32, there exists an open and integrally closed ring AT D &
such that if |f(z)| <1 for all f € ¥, then |f(z)| <1 for all f € AT. See Exercises
3.1-3.2. Therefore, if 3 C A°, then

Spa(A, X)) = Spa(A, AT)

where AT is a ring of integral elements. In the case A = C,(w) and ¥ = {w}, the
relevant ring is even At = A° = O, (w). Therefore,

(3.1.2) D = {z € Cont(Cy(w)) | [w(z)| < 1} = Spa(Cy(w), Oc, (w)).

See Exercise 3.3.
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For the record, a general version of Huber’s theorem Theorem 2.8.1 is:

Theorem 3.1.1 (Huber, [Hub93, Theorem 3.5]). Let (A, AT) be a Huber pair.
Then, Spa(A, A1) is quasi-compact and quasi-separated. If g1,...,9,,5 € A gener-
ates an open A-ideal, then the rational subset U(£+=29) is quasi-compact as well.

Technically, if you look at Huber’s theorem you will find that Spa(A4, A1) is a
spectral space and that each rational subset is constructible. Spectral space were
defined by Hochster [Hoc69]. The theorem we stated is just a portion of Huber’s
theorem, since spectral spaces are, in particular, quasi-compact and quasi-separated
and, in addition, constructible subsets of quasi-compact spaces are quasi-compact.

Instead of proving this theorem, we move on to explain how constructions with
Huber rings extend to constructions with Huber pairs.

3.2. Construction: rational localization. Suppose (A, AT) is a Huber pair and
g1s---59r, 8 € A generate an open A-ideal. In Section 1.6 we defined the rational
localization

B:A(gl’“"gr),
S

The underlying ring is B = A[%] Suppose (Ag, I) is a pair of definition. A ring of
definition for B is equal to By = Ao[%,..., ], with ideal of definition J = IBy.
The Huber ring B is independent of the choice of (Ag, ). Considering AT, we
assume without loss of generality that Ag C AT. (See Exercise 3.4.) Then, we
define

g—l, cee g—r] within B.

S s

We claim BT is a ring of integral elements for B. First, A9 € AT and so
By C B*. Therefore, B is open in B. Second, B™ is integrally closed in B by
construction. Finally, we claim that BT C B°. To see this, start by noting that
for each i, we have £ € By, and By € B° by Proposition 1.5.3. By construction
of B, if Ay C A is any ring of definition, then the image of A in B is contained
in some ring of definition B{. Therefore, loc. cit. implies the image of A° in B
is contained in B°. Since AT C A°, we have shown B° contains AT[£, ... 2]
Finally, Bt C B° because B° is itself integrally closed by Proposition 1.5.3, once
again. (The integral closure step is generally required. See Exercise 3.5.)

Rational localizations are related to rational subsets, as we now explain. Suppose
that (A, AT) — (B, B*) is the natural morphism of Huber pairs implicit in the prior
paragraph. In the middle of [Hub94, Lemma 1.5(ii)], it is proven that we in fact
have a natural commuting diagram

BT = integral closure of A™|

(3.2.1) Spa(B, Bt) —— Spa(4, A™)
U(gly-;ﬁgr)

where the diagonal arrow is a homeomorphism. More precisely, the rational subsets
in Spa(B, BT) correspond bijectively with the rational subsets contained in U, via
the diagonal arrow. How difficult is the proof? Based on Sections 1 and 2, we could
prove that (3.2.1) exists, the diagonal arrow is a bijection, and that the pre-image of
a rational subset in Spa(A, A1) is rational in Spa(B, BT). See Exercise 3.6-3.7. It is
more difficult to show a rational subset in Spa(B, BT) maps onto a rational subset
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in U. The issue is that rational subsets of Spa(B, BT) are built from elements
generating an open B-ideal. After clearing denominators, there is no reason for
them to generate an open A-ideal. The proofs we know rely on knowing a priori
that U is quasi-compact, which is part of Theorem 3.1.1. The idea is explained in
Exercise 3.8.

3.3. Construction: tensor products (of Tate rings). In this section, we ex-
plain tensor products B ® 4 C' when A is a Tate ring. We extend the construction
to Tate—Huber pairs (Huber pairs with first entry a Tate ring).

Suppose that A is a Tate ring and B and C are Huber rings with continuous

ring morphisms A % B and A % c. Then, B and C are also Tate rings because
the image of a pseudo-uniformizer for A under a continuous ring morphism is a
pseudo-uniformizer in the target. See Exercise 2.9.

We form R := B ®4 C algebraically, and now we make it a topological ring.
Choose rings of definitions By € B and Cy C C. Since ¢~ *(Bg) N ~1(Cp) is an
open subring, it contains a ring of definition Ay (Exercise 3.4). We define

Ry = img(Bo @ Ao Co—> B®y O)

Now choose w € Ay, a pseudo-uniformizer for A. We equip Ry with the wRy-adic
topology, making Ry into a topological ring. We make R a ring with a topology
by declaring R, is open in R. We leave it as Exercise 3.9 that this makes R into
a topological ring, which is indeed a Tate ring. We dealt with a similar situation
in Section 1.6 with rational localizations. A universal property confirms that the
definition of R does not depend on the choices made. Namely, the A-algebra maps

d®1:B— R
1®id: C — R

are continuous, and they are initial with respect to pairs of continuous A-algebras
maps B — S and C — S.
Extending to Tate-Huber pairs goes like this. If we start with (A, A™T) 2

(B,Bt) and (A4, A™T) 2 (C,C7), we may define
RT = the integral closure of img(B* @4+ C* - B®4 C) C R.

This makes RT integrally closed in R. In the construction, we could have assumed
By € BT and Cy C CT from the start, and so 4g C AT. Thus RT is open. It is
left as Exercise 3.10 that the image of B° ® 40 C° is contained in R°, from which
the containment Rt C R° follows.

The difficulty when A is not a Tate ring is defining the topological ring structure
on R. To do this in general one imposes the condition that A — B and A — C
are adic morphisms of Huber rings, as in Exercise 2.9. In another direction, an
anonymous referee points out that future students may learn how to apply Clausen
and Scholze’s theory of condensed mathematics and analytic rings to streamline
the construction of tensor products.

3.4. Construction: completions. The goal here is defining the completion of a
Huber ring. The delicate point is that completions are topologically defined with
respect to the underlying abelian group, so the algebraic structure of ring needs to
be constructed by hand.
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Let A be a Huber ring and (A, I) a pair of definition. The additive subgroups
I,12,I3,... are a neighborhood basis of zero in A. They are also ideals in Ag. We
can form the ring-theoretic completion

Ao = lim Ap/I",

which becomes a complete topological ring. Recall, topologically, the quotient ring
Ap/T™ is discrete and then Ay is given the subspace topology via the inclusion

n=1
Since the ideal I is finitely generated, it is a theorem (see [Sta23, Tag 05GG]) that
this topology on Ag coincides with the topology defined by the ideal T4y C Ay,
and
Ap = 1im Ay /T" Ay
Replacing Ay by A, the only choice we have for forming the completion is

(3.4.1) A=lmA/I" = [ A/
n n=1

This is a complete topological group. The individual factors A/I™ are not rings,
but A can be given the structure of a topological ring in three steps.

(i) It is clear that A is an Zl\g—module. But, one can also show ;15 CAis open
and 1/4?) acts by continuous module operations on A.

(ii) There is a natural A-module structure on A. For f € A, the continuity
of the multiplication by f on A makes f : A/I""" — A/I"T! well-defined
for some n > 1 depending on f, uniform in r. A module structure is thus
induced on the projective limit over r.

(iii) Since A is dense in A and ;1?) is open, there is an additive decomposition
A= A+;l?). One defines the structure of a ring on A by using the previous
module structures and then forcing the distributive law to hold.

The details are outlined as Exercise 3.11. - .

Since Ag is open in A and the topology on Ay is the IAp-adic topology, we
conclude that A is a Huber ring. The continuous morphism A — A is initial for
maps A — B with B complete. So, Ais independent of the initial choice of pair of
definition (Ag, I).

If (A, A™) is a Huber pair, we can go back to the start and assume that Ag C A™.
Then, we form the completion

At =lim AT /1",
A
This defines an open subring of A. Unlike the constructions in Sections 3.2-3.3,
the ring At s already integrally closed and so we get a Huber pair (X, //ljr) In
addition one can confirm directly that (;1?) = (A)°, so the property “AT = A°” is
preserved by completions. See Exercise 3.12.



30 JOHN BERGDALL

Finally, since A is the completion of A, the natural map Cont(A) — Cont(A) is
a bijection. It induces, when (A, AT) is a Huber pair, a canonical map

(3.4.2) Spa(A, A*) — Spa(4, AT)

that is also bijective. Huber proves (3.4.2) is a homeomorphism [Hub93, Proposition
3.9]. The difficulties are similar to those we discussed with rational localization
already.

3.5. Identifying A*. The remaining goal in this lecture is showing that rings of
integral elements are intrinsic to adic spectra, just as radical ideals are intrinsic to
closed subsets of affine schemes.

Theorem 3.5.1 (The adic Nullstellensatz). Let A be a Huber ring. Suppose that
AT C A is open and integrally closed. Then,

(3.5.1) AT ={feA||f(x)] <1 for all z € Spa(A, AT)}.

By definition, A" is contained in the right-hand side of (3.5.1). To prove the
theorem, we need to prove that if f € A but f ¢ AT, then there exists a continuous
valuation z on A such that |f(z)] > 1 and |g(z)| <1 for all g € A*.

The argument occurs in three steps. In the first step, we reduce to the case where
f is a unit in A. This is where we use that A* is integrally closed. In the second step,
we construct a candidate valuation zg, without imposing a continuity condition.
The construction is pure algebra, including a brutal extension of a valuation from
one field to a larger field. The extension is so uncontrolled that arguing directly for
continuity is hopeless. Therefore, in the third step, we replace xy by a continuous
valuation =, while preserving the bounds imposed on f and g € AT. This is where
the openness of AT is used. The replacement step is based on a process called
horizontal specialization. Properties of horizontal specialization will be given
as exercises, but note that it is a fundamental technique in Huber’s papers. Seeing
the proof of Theorem 3.5.1 may inspire the reader to study original sources more
carefully.

The proof we give of Theorem 3.5.1 is essentially the same as in [Hub93, Lemma
3.3(1)] and [Conl4, Theorem 10.3.6]. The main difference is that, in the third step,
we argue for continuity directly from Proposition 2.7.1, whereas other proofs refer
to a result [Hub93, Theorem 3.1] that recognizes Cont(A) within Spv(A).

For Sections 3.6, 3.7, and 3.8, we reserve A for a fixed Huber ring, AT for an
open and integrally closed subring, and f an element of A such that f & AT.

3.6. Nullstellensatz: The reduction step. We seek z € X = Spa(4, AT) with
|f(z)| > 1. In principle, we can limit our search to the open subset U(%) ={z ¢
X | 1< |f(x)]}. In terms of rings, we focus on B = A(%) and BT, which we define
to be the integral closure of A"‘[%] in A(%) Note B is a Huber ring, since {1, f}
generate the unit ideal in A. By the argument in Section 3.2, Bt C B is open and
integrally closed.

We claim that f ¢ BY. Indeed, if f € BT, then f is integral over A*[%].
Clearing denominators in A[%], we find a polynomial relation f™+gf™ t+... =0
in A, with coefficients g € A*. This is impossible because A% is integrally closed
and f € AT. So, f & BT.

Finally, if # € Spa(B, BT) and |f(z)| > 1, then its image in Spa(4, AT) satisfies
the same inequality. Replacing (A4, AT) with (B, B*), we will now assume that
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(i) fis a unit in A, and
(i) ;€ AT but f& AT,

3.7. Nullstellensatz: The algebraic argument. This part of the argument is
pure algebra. We assume (i) and (ii). We will construct zo € Spv(A) such that
lg(z0)] <1 for all g € AT while |f(z0)| > 1.

By (ii), the element % € AT is not a unit. Choose a prime p C At with % € p.
By (i), f 4s a unit in A. Therefore % is definitely not nilpotent in A, . So, choose
a minimal prime q in A" such that q C p and % ¢ q. We consider then the
localizations A7 C Ag. A prime ideal of (the non-zero ring) A, contracts to a
prime Q of A such that Q N At C q. Equality holds since q is minimal among
primes in AT. We now have a ring extension A*/q C A/Q that gives rise to a field
extension

(3.7.1) K = Frac(A"/q) C Frac(A/Q) = K.

We now reference commutative algebra and valuation theory. Focusing first just
on K*, [Mat89, Theorem 10.2] implies that we may construct a valuation subring
R* C K7t such that

At /g C RY C KT and mp+ N AT /q =p/q.

As explained in Section 2.6 and Exercises 2.12-2.14, there is a unique z+ € Spv(K™)
with A,+ = RT. We view 27 € Spv(K™') = supp—*(q) C Spv(AT). We then
observe:

(a) Since AT /q C A, we have [g(zT)| < 1forall g € AT,

(b) Since % ¢ q, we have 0 < |%(x+)| Yet, % mod ¢ € mg+ and so |%(x+)| < 1.

Bringing K into the discussion, Chevalley’s theorem [Bou98, Chapter VI, §3, no. 3,
Proposition 5] says the inclusion K+ C K induces a surjection Spv(K) — Spv(K ™).
Therefore, we choose

xo € Spv(K) = supp }(Q) C Spv(A4)

that lifts 2. If g € AT, then |g(zo)| = |g(z7)| < 1 by (a). Since f € AX, we have
|f(z0)] > 1 by (b). This completes the construction of zg.

3.8. Nullstellensatz: The specialization maneuver. So far, we have zo €
Spv(A) such that |f(zo)| > 1, while |g(zo)] < 1 for all g € AT. Now we re-
place zp € Spv(A) by x € Cont(A) without altering the constraints. The rest of
the argument relies on AT being open in A.

As preparation, we examine how close x( is to being continuous. Let Ty be the
value group of xy. By Proposition 2.7.1, the continuity of zg depends on whether
or not |h(xg)| is co-final in I'y for h € A°°. Consider s € A with |s(zg)| # 0 and
h € A°°. Since AT is open in A and h is topologically nilpotent we have h"sf € AT
as n — 00. So, |[h"sf(xg)] <1 as n — oo. Since |s(xg)| # 0 and |f(zo)| > 1 we see

(3.8.1) ol™ < @) < oo

Strictly speaking, this does not show |h(xg)| is co-final in I'g, but it is close and we
will end up using the estimate (3.8.1). We now adjust x¢ in three steps.

(n>0).



32 JOHN BERGDALL

(I) Let T'y C T’y be the subgroup generated by all |s(zg)| > 1 for s € A. The

general element of I'y is
[t (o)
|s(zo)]
where that s,t € A and |s(xo)|, |t(z0)| > 1.
(IT) Let T'y C 'y be the convex closure of I'y. This is the subgroup of elements
in Ty that lie between two elements of I';. See Exercise 3.13. If § € T,
then (I) implies there exists s,t € A with |s(x0)|, |[t(xo)| > 1 such that
]
[s(zo)| ~ |s(zo)]

(III) We now define x € Spv(A). For s € A, set
if Ty;
(o) = {s(azon if |s(x0)| € Tu;

0 otherwise.

(3.8.2) <.

(3.8.3)

We leave as Exercise 3.14 that this is a valuation on A. In fact, it is the
most extreme case of a process called horizontal specialization. The
same formula defines a valuation if T'; is replaced by any convex subgroup

A C Ty containing IT';.
We now argue that [g(z)| < 1for g € AT and |f(z)| > 1 and that z is continuous.
1. In (3.8.3), we see |s(x)| < |s(xo)| for all s € A. Given |g(zo)| < 1 for

g € A*, we therefore also have |g(z)| <1 for g € AT.

2. On the other hand, |f(xo)| € Ty € Ty. So, |f(z)| = |f(x0)| > 1.

3. Finally, suppose h € A°° and 6 € I'; is arbitrary. By (3.8.1) and (3.8.2) we
may choose s € A such that |s(xg)| # 0 and

(@) < [h(zo)|” < —— <5 (n>>0).
|s(@o)|

So, |h(z)] is co-final in Ty, and = is continuous by Proposition 2.7.1.
Section 3 Exercises.

Exercise 3.1. Let A be a Huber ring.

(a) Show that if z € Cont(A) and f € A°°, then |f(z)] < 1.
(b) Show that if AT is a ring of integral elements, then A°° C AT,

Exercise 3.2. Let A be a Huber ring and ¥ C A any subset. Define
Spa(A,X) = {z € Cont(A) | |f(z)] <1 forall f € X}.
Let A* be the integral closure in A of the subring generated by ¥ and A°°.
(a) Show that AT is open and integrally closed.
(b) Show that Spa(A,Y) = Spa(A, A™).
Exercise 3.3. Show that
Spa(Cp(w), O, (w)) = {z € Cont(Cp(w)) | [w(z)| < 1}.

Exercise 3.4. Let A be a Huber ring and B C A an open subring. Show that
there exists a ring of definition Ay of A that is contained in B.

Exercise 3.5. Let (A, AT) be a Huber pair and (B, BY) its rational localization
with respect to g1,...,gr,s. Show by example that AT[£, ... 4] £ BF possibly.
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Exercise 3.6. Let A be a Huber ring and assume ¢,...,¢.,8 € A generate an
open A-ideal. Let B = A(#=24x). Given a ring of integral elements A", define the
corresponding Huber pair (B B*) as in Section 3.2.
(a) Show that the natural map Spa(B, B*) — Spa(A, A1) factors through the
rational subset U(%=24) C Spa(A, A™T).
(b) Show that the natural map Spa(B, BY) — U(£=242) is a bijection.
(c) Show that the preimage of a rational subset in Spa(A, AT) is a rational
subset in Spa(B, BT).

Exercise 3.7. Let A be a Huber ring and assume that gq,...,g., s € A generate
an open A-ideal. Let B = A(%+=29) Define

U= U(LS"QT) = {z € Cont(A) | |g;(x)| < |s(x)| # 0 for all j}.
Show that the natural map Cont(B) — Cont(A) does not always factor through U.
Exercise 3.8. Let A be a Huber ring and I an ideal of definition. Assume U is
quasi-compact in Spa(A4, AT) and s € A such that |s(z)| # 0 on U.
(a) Show that if x € U, then there exists n such that |f(z)| < |s(z)| for all
felm
(b) Suppose that g1, ..., g, is any list of elements of A. Show that there exists

elements f1,..., fqg € I such that the ideal generated by ¢1, ..., 9r, f1,---, fa
is open in A and

U(glv';gwgr) _ U(glv"‘vg’r‘;flv"'vfd)’

(c) Show that the map in part (a) of Exercise 3.6 maps rational subsets to
rational subsets.

Exercise 3.9. Let A, B, and C be Tate rings and assume there are continuous
ring morphisms A — B and A — C.
(a) Show that R = B ®4 C with the topology defined in Section 3.3 is a
topological ring.
(b) Show that R is a Tate ring.
(c¢) Verify the universal property of the tensor product R with respect to pairs
of continuous map B — S and C — S.

Hint. See Exercise 1.2 for part (a).

Exercise 3.10. Let A — B be a continuous morphism of Tate rings.

(a) Show that the natural map A° — B factors through B°.
(b) Suppose in addition that A — C is a continuous morphism of Tate rings.
Show that the natural map B°® 40 C° — B® 4 C factors through (B 4C)°.

Exercise 3.11. Let A be a Huber ring and (A, I) a pair of definition. Define
=limA/I" D Ay = lim Ay /I™.
e e

(a) Show that Ay C A is open.

(b) Show that if f € Ay, then multiplication by f is continuous on A.

(c) If fe Aand g = (g;) € A, show there exists n such that (fgn,fgn_H, o)
has well-defined image in A. Show that § g +— fg is continuous on A



34 JOHN BERGDALL

(d) Show that if § € A then § = go + f for some go € Agand f € A
(e) Given g=go+ f € Aand h = hy + k € A as in part (d), show

gh = Goho + fho + Gok + fk
is well-defined in E, and it makes A a topological ring.

Exercise 3.12. Let (A, A1) be a Huber pair.

(a) Show that the completion At is integrally closed in A.
(b) Let B = A. Show that A° = B°.

Exercise 3.13. Suppose that I' is a totally ordered abelian group. Convex sub-
groups of ' were defined in Exercise 2.16. This exercise shows that if A C T', then
A is always contained in a smallest convex subgroup A called the convex closure
of A within I'. Namely, define

A={yeTl|§ <v <6 for some d7,52 € A}.

(a) Show that A is a subgroup of I'.
(b) Show that A is a convex.

(¢) Show that
A= ﬂ Ao.

T'DApDA
Ag convex

Exercise 3.14. Let A be aring and | —|: A — T'U {0} a valuation. Assume that
A C T is a convex subgroup that contains |f| for all f € A such that |f| > 1.

(a) Show that
mA{m it |f] € A,

0  otherwise,

is a valuation on A.
(b) Show that | — |a lies in the closure of | — | within Spv(A).

4. THE CLOSED UNIT DISC

In this lecture, we analyze the closed unit disc
D = Spa(Cy(w), Oc, (w)).

The reader looking for a complete analysis can consult [Conl4, Section 11]. Our
focus will be more narrow and perhaps prepare the learner for a more detailed
treatment.

First, we broadly discuss how to distinguish points in D. We have studied D
in Example 2.2.4 and Sections 2.4 and 2.8. We revisit those discussions. Second,
we focus on the Gauss point z1 € D. We saw in Section 2.8 that x;- lies in the
closure, but we will systematically produce many similar points. The main theorem
(Theorem 4.7.3) exactly describes the closure of z; within D.
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4.1. The Huber ring C,(w). We begin by reviewing C,(w) as a Huber ring.
First, recall C, is complete and algebraically closed. Its ring of integers is

Oc, ={aeCp|af, <1}.
The maximal ideal mo, =~ consists of those a with ], < 1. The residue field is
Ep = Zp/mzp = Ocp/mocp .

Second, the one-variable Tate algebra Cp,(w) is a principal ideal domain. Up to
scalar, the irreducible elements are the linear polynomials w — a with a € Oc,.
Thus,
Spec(Cp(w)) = {{0}} U{(w —a) [a € Cy}.

This is a consequence of the Weierstrass preparation theorem, which says that
any f € C,(w) factors uniquely as f = p#Pu where 4 is an integer and P € C,[w]
is a monic polynomial and u € Oc, (w)*.

The topology on C,(w) is the one induced by the Gauss norm. Thus Cp,(w) is
a Tate ring with pseudo-uniformizer p. The following is a specific instance of the
continuity criterion for valuations on C,(w).

Proposition 4.1.1. Let z € Spv(Cp(w)) with value group T'y. The following are
equivalent:

(i) The point x belongs to D.

(ii) We have |p(x)| is co-final in 'y and |f(x)| <1 for all f € Oc,{w).

Proof. By Proposition 2.7.1, if x € Cont(C,(w)), then |p(x)| is co-final in T';. If =
also lies in D, then of course |f(x)| <1 for all f € Oc,(w). Therefore (i) implies
(ii).

Now suppose z is a valuation and (ii) holds. First, since |p(z)| is co-final in T',
we have [p(z)| < 1. Second, if f € Oc,(w), then |f(z)| <1 by assumption and so

[f(@) <1 < |p(a)| 7"
Thus = € Cont(C,(w)) by Proposition 2.7.1. Of course, once z is continuous, it lies

in D by assumption. Therefore (ii) implies (i). O

4.2. Classical and “disc” points. Proposition 4.1.1 simplifies checking whether
valuations on Cp(w) lie in D. Or, at least, it practically reduces a supposition
“xr € D” to simply checking x defines a valuation. Let us tally several points of D,
called classical and (nested, perhaps) disc points.

4.2.1. Classical points. Let a € Oc,. Then there is a point z, € D given by
[f(za)| = £ ()],

for all f € Cp(w). This defines a valuation since the p-adic norm is a valuation. It
is the only © € D with supp(z) = (w — a). See Exercise 2.15.

4.2.2. Disc points. Suppose 0 <7 <1 and a € Oc,. We define
Dy(a)={d € Oc, | |a =], <r}.

This is the closed disc of radius r centered at a. If f € C,(w), it has a series
expansion
f =0 +bi(w—a)+by(w—a)>+---
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with lim b; = 0. We define =, € D according to
11— 00

|f (o) = max [b:l,7" € Rzo.

Given z, , is a valuation, it lies in D by Proposition 4.1.1. Indeed |p(zq,-)| = % is
co-final in R+ and if b; € Oc, for all 4, then |f(z4,)| < 1, clearly. We leave as
Exercise 4.1 to check that z,, is a valuation and

|f(@ar)| = sup )||f(0/)||p~

a’€Dy(a
S0, Zo,r depends only on D, (), rather than a. We write xp = 24, if D = D, («).

4.2.3. Nested discs. Suppose that De : Dg O Dy D Dy D --- is a sequence of discs
in Oc,. Then, we define

|f(zp,)| = Zig£|f($D,,)|-

Admitting this defines a valuation, it is continuous by Proposition 4.1.1. Discussing
why this is a valuation is not a priority in this lecture. See [Conl4, Section 11.3],
instead. We at least point out there are three possible behaviors:
e The intersection (-, D; may be a single point a € Oc,. Then, xp, = 4.
e The intersection ﬂi;o D; may be another disc D. Then, xp, = zp.
e The intersection ﬂi;o D; may be empty! This option is available because
C, is a metric field that is not spherically complete. In that case, zp,
is a valuation we have not yet constructed, but on which we will not dwell.

4.3. Review of valuation rings. Points in D are classified, in part, by their
valuation rings and residue fields. So, we review the constructions from Section 2.6
and Exercises 2.12-2.14.

Let K be a field. A subring A C K is a valuation ring if, given o € K* | either
a or a~ ! belong to A. If A is a valuation ring, the non-zero principal fractional
ideals {aA | a € K*} are totally ordered by inclusion. In fact, a — aA defines a
bijection

KX /A" & {aA|ae K*}.

Therefore, the group 'y = K*/A* is naturally a totally ordered abelian group. In
terms of cosets, this order is «AX < BAX if and only if B! € A.

The natural function K — I'4 U {0} defines a valuation on K. We write x4 for
its equivalence class. One of the exercises mentioned is to show z4 <> A defines a
bijection between Spv(K) and the set of valuation subrings of K. The inverse is

z— Ay ={ae K||afz)] <1}
The ring A, has a maximal ideal m,. Its residue field is A, /m,.

4.4. High-level classification of points in D. Points in D are often classified
into “types” called Types 1-5. See [Sch12, Example 2.20] or [BCKW19, p. 7-8].
Here, we describe the classification without proof, augmented by listing auxiliary
data. For each z € D, we look at its support supp(x), its value group I',, and its
residue field A, /m,.

Warning 4.4.1. The residue fields A, /m, are all characteristic p fields. They are
different than any kind of residue field gotten by viewing x € D as a point in a
C,-rigid analytic variety. Those geometric residue fields arise from the structure
sheaf over D. They are all characteristic zero fields.
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We will additionally indicate whether x € D is closed, and then we will finally
list the Type. The result is compiled in Table 4.4.1. All but the bottom row of the
table has been explained in Section 4.2.

’ Name ‘ supp(x) ‘ r, ‘ Am/mz ‘ Closed? Type
o (w—a) pY F, Closed 1
xa T —_—
(re pQ) {0} P2 I, (t) Non-closed 2
(rx;’;@) {0} pUr® C RX F, Closed 3
Zp, 0 _
(ND; = 0) {0} p F, Closed 4
(re pQ) {0} P x(3) Fy Closed 5

TABLE 4.4.1. Classification of points in the closed unit disc D.

The classical points z, are the Type 1 points. The second and third rows
list the disc points z,,, but the data is separated according to whether or not
rep?=|Ck Hp. When 7 lies in p@, the point z,.,. is not closed in D. We have
already seen this phenomenon at the Gauss point xo1 = x1. In this case, we also
see the valuation ring residue field is a transcendental extension of F,. The field
generator t is, essentially, the reduction of the coordinate function on the boundary
of the rational disc. These phenomena do not occur for disc points of radius not in
the value group of C,,. For those points, instead, the value group is larger than that
of C,. The fourth row shows the data for the nested disc points that are neither
true disc points nor classical points.

The final row indicates a type of point that we have not yet seen. These points are
parametrized by \ € P! (Fp). They comprise the non-trivial points in the closure of
Za,r Whenever r € pY. Their value group is a product group with the lexicographic
order. Two examples of such points are xg)l = z;- and 253 = z1+ from Section
2.8, with the caveat that if (a,7) = (0,1), then we do not allow A = oo in Table
4.4.1, since x1+ ¢ D. (See Exercise 4.7 for these calculations.)

The goal of Sections 4.6 and 4.7 is to explain the final row, to make precise the
construction of 3, for A € A'(F,). We will discover these points while simulta-
neously showing they form the non-trivial points in the closure of the Gauss point
within D. Before that, we sketch a cartoon of D that is meant to suggest the :13371’s
exist.

4.5. A schematic drawing, focused on the Gauss point. We pause to draw a
cartoon. We will sketch what D looks like near the Gauss point « = x¢,1. Versions
of this picture are drawn in other places, for instance [Conl4, Section 11.3] or
[Sch12, Example 2.20]. We have no intention of giving mathematical meaning to
these drawings. That is why we have abstract algebra!

There are four steps to create our drawing. They are shown sequentially in
Figure 4.5.1 and explained in writing now.
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— ol =7 —

' \ Al e hh;:.‘ "

w| =1

Fi1Gc. 4.5.1. Drawing of the closed unit disc D from the perspective of the Gauss
point.

First, we plot the Gauss point xy ; and the classical point xy, which we perceive
as the origin of D. For now, both points are drawn as simple black dots, even
though xg; is non-closed in D. We connect these points with a ray Ry. The points
of the ray are the disc points xy, with 0 <7 < 1. The horizontal scale r measures
|w| over D.

Second, we add the classical point z,. As explained in Section 4.2, disc points
depend only on physical discs. Since D1 (0) = D1 (p), we see that xg1 = zp,1. There
is no new Gauss point to consider from x,,’s perspective. Analogous to the first step,
we draw the ray connecting z, to the Gauss point. The two rays overlap because

1
r=Tp, <= — <71
p

Zo

)

Overlap is drawn as a thicker, fuzzier, line. The process can be repeated for z,,
with a € moe, - For each z,, its ray to the Gauss point intersects Ry starting at
Zo,|al,, -

Third, if o« € Og , then D,(a) # D(0) for all r < 1. Therefore, the ray from x4
to the Gauss point intersects Ry only at xg 1. The corresponding points z, somehow
lie on the boundary of D. Of course, different x,’s can have intersecting rays.
Indeed, the fundamental principle we are repeatedly using is that if o, o/ € Oc,,
then

a=d modmo. <= D,(a)=D,(a) for some r <1
<~ R,NRy 2 {01}

(Here R, is the ray connecting z, to the Gauss point.)
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Finally, we zoom in on the Gauss point. We find rays parametrized by

p)-

Zooming in with higher and higher magnification will eventually omit any given
classical point and any given disc point not equal to the Gauss point. But it will
never omit x;-, which lies in the closure of the Gauss point by Section 2.8. To
turn this picture into mathematics, we are going to explain how to place ;- in a
Al (Fp)—parametrized set of points, forming the non-trivial points in the closure of
the Gauss point.

&l

O(Cp/mocp = Fp = A1(

4.6. The key valuation ring construction. This section complements the re-
view of valuation rings in Section 4.3. Let K be a field, and let A C K be a
valuation subring with maximal ideal m. To keep notations clear, let L = A/m.
Denote by 7 : A — L the natural quotient map.

Suppose B C A is also a valuation subring of K. Then, m C B. Indeed, if z € m
is non-zero then = ! ¢ A and therefore x=! & B. Since B is a valuation ring,
we conclude # € B as claimed. Thus, B = B/m makes sense and is a valuation
subring of L. We leave it as Exercise 4.2 to check the converse, i.e. that if BCLis
a valuation subring of L then 7=1(B) C A is a valuation subring of K. Admitting
that, we get inverse bijections

(4.6.1) {valuation rings B C A} <— {valuation subrings B C L}
B~ B/m
7 Y(B) < B.
Suppose we have a pair B <+ B under (4.6.1). Write 2 € Spv(K) for the valuation
corresponding to A, write y € Spv(K) for the one corresponding to B, and A €

Spv(L) for the one determined by B. As Exercise 4.2, check the following statement
as well:

(a) The three value groups are arranged in a natural exact sequence
(4.6.2) 1=-Ty—=»Ty—=T;—1
(b) Within Spv(K) we have the specialization relation y € {x}.

Example 4.6.1. We will use (4.6.1) to construct y € Spv(K) from A € Spv(L).
The relevant L is L = F,(w), so let us describe Spv(L) in that case.

Let A € P(F,). For f € F,(w), write ordy f for the order of vanishing of f at
w = \.? We thus get a valuation | — |y : F,(w) — R>o by

1
IfIx = (?Ord* I

The value group is I'y = (3)%. Ostrowski’s theorem is that the non-trivial elements
of Spv(F,(w)) are represented by the | — [1’s. The proof is recalled as Exercise 4.3.

2Recall, ordeo f = deg(f).
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4.7. The closure of the Gauss point. We can now describe the closure of the
Gauss point in D. We begin with two lemmas.

Lemma 4.7.1. Let A be a Tate ring. For x,y € Cont(A), the following are equiv-
alent:

(i) The point y lies in the closure {x}.
(i) We have supp(z) = supp(y) and A, C A,.

Proof. We will show that if y € {x}, then supp(y) C supp(z). This is where the
Tate condition on A is used. The rest of (i) implies (ii), and all of (ii) implies (i)
are left as Exercise 4.4. (The Tate condition can also be weakened. See Exercise
46.)

Since A is a Tate ring, we may choose a pseudo-uniformizer w € A. Since y is a
continuous valuation, |w(y)| is co-final in the value group I'y. Therefore,

fesupp(y) <= |f(y)|=0
= [f(y)] < =" (y)] (for all n).

The same equivalences hold if x replaces y. Yet, if y € @ then, by definition,

f@ <=y = |f(2)] < [="()],

for all n. Therefore, supp(y) C supp(z). O

For the remainder of this section, we let © = z91 € D. Let K = Frac(Cp(w))
and let A, C K be the valuation ring of x, with maximal ideal m, and residue field
L. Our second lemma determines the field L,. Note that

Oc,(w) € Az ={f € K| [f(x)] <1}.

This containment is strict because = belongs to A, but not Og, (w). More generally,
A, contains (w— ) ™! for any o € Og,, and none of those elements lie in O¢, (w).
These examples are the only essential difference at the level of residue fields.

Lemma 4.7.2. The inclusion Oc, (w) C A, induces an isomorphism Fp(w) = L,.

Proof. Note that m, N Oc, (w) = mo, (w). Therefore,

Fplw] = Oc, [w]/mo,, [w] = Oc, (w)/mo., (w) C L,

which extends to F,(w) C L,. We claim this inclusion is an equality.
To start, by Weierstrass preparation any fraction f/g € K can be expressed as

f_r
9 Q

where P,Q € C,[w] and u € Oc, (w)*. We may multiply Q by a non-zero scalar so
that @ € Oc,[w] but not mo,. [w]. Then, scale P by the same factor.

Suppose now f/g € A,. Since u € Oc, (w)*, we have |u(z)| = 1. Therefore,
|P(2)] < |Q(x)].

Since @ € Oc, [w], we also have P € Oc,[w] by definition of z. Thus P/Q mod m, €
F,(w). Since u mod m, € F,[w], we find f/g mod m, € F,(w), as claimed. O

Uu,
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It seems the discussion in this section and the previous one gives bijections

PY(F,) <+ {B C F,(w) a valuation subring} (Example 4.6.1)
+ {B C L, a valuation subring} (Lemma 4.7.2)
< {A, € A, a valuation subring of K} (Section 4.6)
=y {x} (Lemma 4.7.1).

However, there is one caveat. For A € P!(F,) we get a point z3, € Spv(Cp(w))
via the first three bijections, and xé‘yl € @ within the valuation spectrum, by the

proof of Lemma 4.7.1. However, we need to show 13371 is actually continuous!

Theorem 4.7.3.
(a) Each a3, is a continuous valuation on Cp(w).
(b) If X # oo, then a3, € D.
(c) Within D we have {zg1} = {wo1} U{zd, | A € AL (Fy)}.

Proof. The majority of the proof is an explicit analysis in support of (a).

Let 7 : A, — L, be the natural projection map. Note F,(w) = L, by Lemma
4.7.2 and, in this identification, 7(Oc,) C F,. For A € P'(F,) we let By C L, be
the valuation ring arising from A in Example 4.6.1. By direct examination, F, C B
and therefore Oc, C 7 1(B,).

The value group of z is identified as K*/AX by Section 4.3. Let y =
and A, C A, be its valuation ring. The prior paragraph shows that Oc, C
Therefore, the value group K* /A fits into a diagram

A
Lo,1
Ay

Yy
Cr —L— KX /A

) JOF —Z KX /A

The diagonal arrow is injective because the bottom arrow is. Thus, the exact
sequence
1 =Ty — K*/A; — K* /A7 —1

in (4.6.2) is split as totally ordered abelian groups. From Example 4.6.1, the kernel
is 'y = (%)Z. Moreover, part (b) of Exercise 2.16 implies the ordering on

T, =T, x (%)Z
is the lezicographic order. The analysis in Section 2.8 now shows y defines a con-
tinuous valuation. This completes the proof of (a).

For (b) we need to see that Oc, (w) C A, if and only if XA # co. By the bijection
in Section 4.6, it is equivalent to see that F,[w] C By if and only if X # co. But that
is clear by definition of the A-adic valuation on F,(w). Finally, (c) follows from (a)
and (b), together with the overall discussion preceding the theorem statement. O

The reader can work as Exercise 4.7 that the splitting used to prove (a) gives
rise to identifications x871 = ;- and x5 = @1+ as in Section 2.8. We also outline,
as Exercise 4.8, the adjustments required to adapt the process to other points of
D. Namely, for r <1 and a € Oc,, we see in Section 4.4 that x, . is a non-closed
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point when r lies in the value group of C,. In fact, the closure will be in bijection
with P1(F,). (The exception in Theorem 4.7.3(b) disappears.)

The analysis of all the points in D is incomplete, since we did not say anything
at all about Type 3 or 4 points in Table 4.4.1. The reader who wants all the details
can see [Conl4, Section 11]. Or, note that if C, is replaced by a non-Archimedean
field whose value group is R+ and which is spherically complete, then the only
points that exist are Types 1, 2, and 5. Type 3 points become Type 2 and Type
4 points become Type 1. From this perspective, the introduction of the Type 5
points is really the heart of the adic unit disc beyond the classical and rational disc
points.

4.8. Final comments. What might the reader look at next? In Lemma 4.7.1, we
realized every point in the closure of the Gauss point in D has generic support {0}.
This is a more general phenomenon, occurring at analytic points on adic spectra.
We introduce this notion in Exercises 4.5 and 4.6.

The reader would do well to understand the notion of analytic points, next. The
Lemma 4.7.1 we proved implicitly uses that every point on an adic specturm of
a Tate ring is analytic. Analytic points are used more generally to analyze adic
spectra. A good target theorem for a learner would be [Hub93, Proposition 3.6] on
whether Spa(A, AT) is empty or not. We discussed this on page 26. It is plausible
to unwind the argument of that result using the tools outlined in these notes (cf.
[Conl4, Section 11.6] and [Morl9, Section I11.4.4]). In doing so, the reader will need
to follow the construction of certain spaces Spv(A4,I) of “valuations with support
conditions” introduced by Huber. The benefit of doing so would be that these
spaces with support conditions, and specialization arguments as in Section 3.8, are
crucially applied in proving Huber’s Theorem 3.1.1 on the geometric structure of
Spa(A4, A™T).

The other option, hopefully one the reader has already begun, is plowing ahead
with the sheaf theory on adic spaces and perfectoid spaces outlined in the sibling
lectures [Hiib24, Joh24, Heu24]. It is completely plausible for users of Huber’s
theory of adic spaces to never truly need to study the proof of Theorem 3.1.1, as
long as their intuition is guided by enough examples (as Section 4 tries to illustrate).

Section 4 Exercises.

Exercise 4.1. Let a € Oc, and r a real number with 0 < r < 1. For f € Cp(w)
we write

f=bo+bi(w—a)+by(w—a)?+---

with b; € C, converging to zero as ¢ — co. Let
| (@ar)] = maxc o]

(a) Show that z,, defines a (continuous) valuation on C,(w).
(b) Show that
fre=sup o [f(a)],
a’€D, (o)

is continuous on C,(w).
(¢) Show that

[f(@ar)l = sup [f(a)],

a’€D,(a)
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Hint. Once (a) and (b) are shown, (c) can be checked directly on polynomials. It may
be helpful to study the case r € |C| = p? first and do the general case as a limiting
process.

Exercise 4.2. Let K be a field and A C K a valuation ring with maximal ideal m.
Let L = A/m be the residue field of A and 7 : A — L be the natural projection.

(a) Show that if B C L is a valuation subring, then B = 77 1(B) C A is a
valuation subring of K as well.

(b) By Exercise 2.13, the valuation rings A, B, and B correspond to valuations
on K, K, and L. Show that the corresponding value groups sit in a natural
exact sequence

1=>TIg—=>Ip—>Ta—1

(c) Let za4,zp € Spv(K) be the valuations corresponding to A and B, respec-
tively. Show that zp € {x4} within Spv(K).

Exercise 4.3. Suppose that F is an algebraically closed field. For A € P!(F) define
| = |x: F(w) = Rxo by

1
lfIx = (?Ordw:*m-

(Note that |f|e = 279 for f € Flw].)
(a) Show that | — | is a valuation for all \.

Now suppose F(w) =y {0} is any valuation and [af <1 for all « € F. (This

condition on the scalars is automatic if /' = F, because every non-zero element of
F, is a root of unity.)
(b) If |w| > 1, show that |ag + a1w + - - - + apw™| = Jw|™ for all ag,...,a, € F
with a, # 0. Conclude that | — | is equivalent to | — |-
(¢) Now suppose |w| < 1.
e Show that p = {f € Flw] | |f(w)| < 1} is a prime ideal in F[w].
e Show that if p = {0}, then | — | is equivalent to | — |tyiv-
e Show that if p = (w — A), then | — | is equivalent to | — |.
Exercise 4.4. Let A be any ring. Let x,y € Spv(A4).

(a) Suppose that y € {z}. Show that supp(z) C supp(y).

(b) Show that if supp(x) = supp(y) and A, C A,, then y € {z}.
Exercise 4.5. Let A be a Huber ring and z € Cont(A). Recall, supp(z) C A is
always a closed prime ideal. We call z analytic if supp(z) is not open in A. Show
that the following are equivalent for x € Cont(A):

(i) The point z is analytic.

(ii) There exists f € A°° such that |f(x)| # 0.

(iii) For any ideal of definition I there exists f € I such that |f(x)| # 0.

Exercise 4.6. Let A be a topological ring. Show that if 2 € Cont(4) is analytic
and y € Cont(A) lies in {x}, then supp(y) = supp(z). Therefore, if z is analytic,
then its only specializations are vertical. (See Exercise 2.18.)

Exercise 4.7. Let A € P*(F,). Consider z3, constructed in Section 4.7. Show
that

IA 1
Cp(w) —= Rso x Ry U{0}
can be defined by the following recipe:
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o First, [p(z5,) = (5,1).
e Second, if f € Oc,(w) and f € Fy[w] is its reduction modulo me,. , then

(@)l = (F11 1 f13)-

Conclude that x871 =1z~ and g% = T+.

Exercise 4.8. Let a € Oc, and 8 € mp, . Let r = | 3|, <1. Let z = x4, be the
disc point given in Section 4.2.

(a) Show that ¢t = 3% € A, and there is a natural isomorphism F,(t)

IR

Ay /my. B
(b) Show that the containment Oc, (w) C A, has image F, in A, /m,.
(¢) Show that inside D, the closure of z is given by

{Tar} ={Ta,} U {xg,r | A e P! (Fp)}a

for points xé’r constructed via the mechanism of Section 4.6.
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