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Abstract. We consider an inverse spectral problem for a class of non-compact
Hankel operators H such that the modulus of H (restricted onto the orthogonal
complement to its kernel) has simple spectrum. Similarly to the case of compact
operators, we prove a uniqueness result, i.e., we prove that a Hankel operator from
our class is uniquely determined by the spectral data. In other words, the spectral
map, which maps a Hankel operator to the spectral data, is injective. Further, in
contrast to the compact case, we prove the failure of surjectivity of the spectral
map, i.e., we prove that not all spectral data from a certain natural set correspond to
Hankel operators. We make some progress in describing the image of the spectral
map. We also give applications to the cubic Szegő equation. In particular, we
prove that not all solutions with initial data in BMOA are almost periodic; this is
in a sharp contrast to the known result for initial data in VMOA.
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1 Introduction

1.1 Overview. In the mid-1980s, Khrushchev and Peller [16], motivated
by the spectral theory of stationary Gaussian processes, asked to describe all non-
negative self-adjoint operators that are unitarily equivalent to the modulus of a
Hankel operator � (i.e., to the operator |�| := (�∗�)1/2).

This problem was actively studied from the mid 1980s to early 1990s, see
[31, 32, 34, 25], until the final result was obtained by Treil [33]: any positive
semi-definite self-adjoint operator that is non-invertible and whose kernel is either
trivial or infinite-dimensional is unitarily equivalent to the modulus of a Hankel
operator. This gives a complete solution to the problem, since it is easy to see that
any Hankel operator is not invertible and cannot have a finite-dimensional kernel.

Later, motivated by problems in control theory, Megretskii, Peller and Treil
started to investigate of the analogous problem for self-adjoint Hankel operators.
The question was to describe all possible types of spectral measures and the
multiplicity functions, corresponding to self-adjoint Hankel operators.

A complete solution to this problem was given in [21] (also see [21] for the
history of the problem). The answer was slightly more complicated than for the
modulus of a Hankel operator: besides the obvious properties of non-invertibility
and the absence of a finite-dimensional kernel, some “almost symmetry” property
of the spectral multiplicity function was also required.

In both of the these problems, the spectral datum1 (i.e., the type of the spec-
tral measure and the multiplicity function) does not determine the corresponding
Hankel operator uniquely: in fact, with the exception of trivial cases, there are
infinitely many self-adjoint Hankel operators with the same spectral datum.

1we use the convention singular: datum, plural: data.
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In the early 2010s, the interest in inverse spectral problems for Hankel opera-
tors was renewed due to the work of Gérard and Grellier [5, 6] on the cubic Szegő
equation. This is a totally non-dispersive evolution equation which is completely
integrable and possesses a Lax pair, which involves a Hankel operator (see Sec-
tion 10.1 for the details). Motivated by this, in [8] Gérard and Grellier developed a
new type of direct and inverse spectral theory for compact Hankel operators. The
Hankel operators appearing in this theory are generally not self-adjoint, and the
language of anti-linear operators gives a convenient way to represent the spectral
datum in this case.

Another new feature of this theory is that the spectral datum was constructed
from the pair of Hankel operators � and �S, where S is the shift operator in the
Hardy spaceH2. In this case there is a bijection between compact Hankel operators
and the corresponding spectral data, and the class of spectral data sets correspond-
ing to the compact operators can be explicitly described. In this construction, the
evolution of the spectral datum under the cubic Szegő equation is very simple,
which makes the bijectivity very desirable.

The next natural step in this line of research is the study of the direct and inverse
spectral problem for non-compact Hankel operators. For a few years, the work of
two of the authors (Gérard and Pushnitski) was motivated by the conjecture that
the bijective spectral map of [8] admits a natural extension to the non-compact
case; some preliminary steps in this direction were made in [11]. One of the aims
of the present paper is to show that this conjecture is false, in some precise sense
to be explained below. For a suitable class of Hankel operators (which includes
many non-compact ones), we construct a natural extension of the spectral map of
[8] and show that it is injective, but not surjective. We also give an application to
the cubic Szegő equation, corresponding to non-compact Hankel operators. We
show that in general, solutions to this equation with the initial data in BMOA are
NOT almost-periodic, in contrast with the case of the initial data in VMOA.

An important new component of the present work is the functional model for
contractions (=operators of norm≤ 1) on a Hilbert space. A key ingredient to prov-
ing that a given spectral datum corresponds to some Hankel operator is checking
that a certain contraction, constructed from the spectral datum, is asymptotically
stable. (A contraction T is called asymptotically stable if Tn → 0 in the strong
operator topology as n → ∞.) In the compact case, it turns out that the asymptotic
stability always holds. In the non-compact case, we show that the asymptotic
stability sometimes holds and sometimes doesn’t, depending on some spectral
properties of the contraction. Here we use some latest advances [19] from the
theory of the Clark model. A more precise discussion is postponed to Section 2.
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1.2 The structure of the paper. In this section we introduce Hankel
operators, describe the direct spectral problem and the spectral data, and present
our first main result: uniqueness. Proofs are postponed to Section 3. In Section 2,
we discuss the problem of surjectivity of the spectral map and informally describe
our main results concerning the failure of surjectivity. In Section 4 we collect
without proof some operator theoretic background (which mainly concerns the
spectral theory of contractions on Hilbert spaces and the Clark model) that is
required for the construction of the rest of the paper. Sections 5–8 are the core
of the paper; here we state and prove our main results concerning the failure of
surjectivity and the description of the image of the spectral map. In Section 9 we
describe the special case of self-adjoint Hankel operators. In Section 10 we give
an application to the cubic Szegő equation. Some technical parts of proofs are
postponed to Appendices.

1.3 Notation. For a Hilbert space X, we denote the inner product of ele-
ments f, g ∈ X by 〈f, g〉X; we omit the subscriptX if there is no danger of confusion.
For a bounded self-adjoint operator A in X and for v ∈ X, we denote by

〈v〉A := clos span{Anv, n = 0, 1, 2, . . . }
the cyclic subpace of A generated by v. We recall that A is said to have simple
spectrum if X = 〈v〉A for some element v ∈ X; any such element is called cyclic
for A. We denote by ρA

v the spectral measure of A corresponding to v, i.e.,

(1.1) 〈f (A)v, v〉 =
∫
R

f (s)dρA
v (s)

for any continuous function f .
We denote by Sp, p > 0, the standard Schatten class of compact operators; in

particular, S1 is trace class and S2 is the Hilbert–Schmidt class.
For a finite measure ρ on R, we denote L2(ρ) ≡ L2(R, dρ), and we usually use

the letter s to denote the independent variable in R. We denote by � ∈ L2(ρ) the
function identically equal to one.

We denote by H2 = H2(T) the standard Hardy space of functions on the unit
circle T,

f = f (z) =
∞∑
j=0

f̂jz
j, |z| = 1,

∞∑
j=0

|f̂j|2 < ∞;

the above series converges in L2(T). Note that this series also converges uniformly
on compact subsets of D, so f can be interpreted as an analytic function in the unit
disc D. The values of f on T can be found as the non-tangential boundary
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values of this analytic function; according to classical results these non-tangential
limits exist a.e. on T. Note also that the set H∞ = H∞(D) of all bounded analytic
function is a subset of H2.

We denote by {zm}∞m=0 the standard basis in the Hardy space H2; in particular,
we denote by z0 the element ofH2 identically equal to one (as notation � is already
taken). The Szegő projection P is the orthogonal projection onto H2 in L2(T),

P :
∞∑

k=−∞
f̂kz

k �→
∞∑
k=0

f̂kz
k.

Recall that the shift operator S on H2 is the multiplication by z, Sf = zf (z), f ∈ H2,
and its adjoint (the backward shift) S∗ is given by

S∗f (z) =
f (z)− f (0)

z
.

We refer, e.g., to [26, Appendix 2] for the definition of the classes BMOA(T) and
VMOA(T).

We shall denote by Aac the, a.c., part of a self-adjoint operator A and by �
the unitary equivalence between operators. For a linear operator A, we denote by
RanA the closure of the range of A.

1.4 Hankel operators �u. AHankel matrix is an infinite matrix of the
form {γj+k}∞j,k=0, i.e., the entries must depend on the sum of indices. A Hankel
operator is a bounded operator in the Hardy space H2, whose matrix in the
standard basis {zk}∞k=0 is a Hankel matrix. An equivalent alternative definition is
that a Hankel operator is a bounded operator � in H2 such that the commutation
relation

(1.2) �S = S∗�,

is satisfied, where S is the shift operator in H2.

For a Hankel operator � one can define its analytic symbol u as

u(z) := �z0 =
∞∑
k=0

γkz
k.

In this paper we will skip the word analytic and use the term symbol for u. We will
also use the notation �u to indicate the Hankel operator with the symbol u. It is a
well-known fact [26, Theorem 1.1.2] that the operator �u is bounded if and only
if the symbol u belongs to the class BMOA(T) of the functions of bounded mean
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oscillation. On the other hand, we have u = �uz0 ∈ H2; it will be important for us
to consider the symbol u as an element of H2.

One can give a more “analytic” formula for the Hankel operator �u. Namely,
denote by J the involution in L2(T),

Jf (z) = f (z).

Then for u ∈ BMOA, the Hankel operator �u with the matrix {ûj+k}∞j,k=0 is defined
by

�uf = P(uJf ),

initially on the set of polynomials f ∈ H2.

1.5 Anti-linearHankel operatorsHu. Clearly, Hankelmatrices {γj+k}∞j,k=0
are symmetric (with respect to transposition). This can be expressed as the state-
ment that Hankel operators belong to the class of so-called complex symmetric
operators. Namely, let us denote by C the anti-linear (a.k.a. conjugate-linear)
involution in H2,

(1.3) Cf (z) = f (z);

in otherwords, for f (z) =
∑∞

k=0 akz
k we haveCf (z) =

∑∞
k=0 akz

k. Then the symmetry
of Hankel matrices means that Hankel operators satisfy the identity

�uC = C�∗
u,(1.4)

which is exactly the definition of the so-called C-symmetric operators, cf. [4].
As it is customary in the theory of complex symmetric operators, it will be

convenient to deal with the anti-linear version of Hankel operators:

Huf = �uCf = P(uf ), f ∈ H2.

Through the rest of the paper, we focus on anti-linear Hankel operators Hu; one
exception is the discussion of the self-adjoint case, when it is more convenient to
talk about the linear version �u. Since C satisfies

〈Cf, g〉 = 〈Cg, f 〉, f, g ∈ H2,

from the symmetry property (1.4) it follows that Hankel operators (in fact, all
complex symmetric operators) satisfy the identity

(1.5) 〈Huf, g〉 = 〈Hug, f 〉, f, g ∈ H2.
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Note that for the anti-linear Hankel operator Hu we have

H2
u = �uC�uC = �uC2�∗

u = �u�
∗
u;

thus H2
u is linear, self-adjoint and positive semi-definite. Furthermore, since the

conjugation C commutes with the shift S, it follows from (1.2) that the anti-linear
Hankel operators also satisfy the commutation relation

(1.6) HuS = S∗Hu,

and that any bounded anti-linear operator Hu on H2 satisfying this commutation
relation is a Hankel operator.

By (1.6), the kernel of Hu is an S-invariant subspace of H2. It follows that
KerHu is either trivial or infinite-dimensional. Furthermore, RanHu is an invariant
subspace for S∗.

One ot the advantages of working with the anti-linear Hankel operators Hu

instead of their linear counterparts �u is that RanHu = (KerHu)⊥. Indeed,

RanHu = Ran�uC = Ran�u = (Ker�∗
u)

⊥ = (KerC�∗
u)

⊥,

and the desired identity follows since C�∗
u = �uC = Hu.

We will denote by He
u the essential part of the Hankel operator Hu,

He
u := Hu|RanHu

.

The subspace RanHu is invariant for Hu, and for any element f ∈ H2 we have

Huf = He
uPRanHu

f,

where PRanHu
is the orthogonal projection onto RanHu.

1.6 The truncated operators �̃u and H̃u. Along with the Hankel oper-
ators �u and Hu we will consider their truncated versions

�̃u = �uS = S∗�u = �S∗u, H̃u = HuS = S∗Hu = HS∗u.

Note that �̃u is also a Hankel operator (with symbol S∗u), and its matrix is obtained
from the matrix of �u by removing the first row (or the first column).

As it turns out, under the assumptions discussed below, the spectral invariants
of the Hankel operators Hu and H̃u, described in Proposition 1.2 below, uniquely
determine the symbol u.

We recall that the shift operator satisfies the identities

S∗S = I, SS∗ = I − 〈·, z0〉z0,
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where 〈·, z0〉z0 is the rank one projection onto constant functions in H2. From here
and from the definition of H̃u we get the rank one identity

(1.7) H̃2
u = H2

u − 〈 · , u〉u.

This identity is key to the whole inverse spectral theory of Hankel operators.

Similarly to He
u, we denote by H̃

e
u the essential part of H̃u, viz.

(1.8) H̃e
u := H̃u|RanHu

;

since RanHu is an invariant subspace for both Hu and S∗, it is also an invariant
subspace for H̃u. We should emphasize that unlike He

u, the operator H̃
e
u can have a

non-trivial (one-dimensional) kernel. The rank one identity (1.7) translates to

(1.9) (H̃e
u)

2 = (He
u)

2 − 〈 · , u〉u.

1.7 The simplicity of the spectrum. Ourmain assumption onHu and H̃u

in this paper is

(1.10) (He
u)

2 and (H̃e
u)

2 have simple spectra.

We will denote by BMOAsimp(T) the set of all u ∈ BMOA(T) satisfying (1.10).

Remark. On the one hand, it is very easy to construct examples of Hankel
operators that do not satisfy this assumption: it suffices to consider self-adjoint
Hankel operators with eigenvalues with multiplicity > 1. On the other hand, there
is one important particular case when the simplicity condition (1.10) holds true.
This case is most conveniently described in terms of the linear realization of Hankel
operators. By [11, Theorem 2.4], if both �u and �S∗u are positive semi-definite,
then the simplicity condition (1.10) holds.

Our first auxiliary result (proved in Section 3) is

Theorem 1.1. Let u ∈ BMOAsimp(T), i.e., (1.10) holds. Then u is a cyclic
element for both (He

u)
2 and (H̃e

u)
2, i.e.,

〈u〉H2
u
= 〈u〉

˜H2
u
= RanHu.

Remark. In general, RanH̃u 
= 〈u〉
˜H2
u
. For example, if u = 1, then H̃u = 0 and

so {0} = RanH̃u 
= 〈u〉
˜H2
u
= span(u).
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1.8 Anti-linear operators with simple spectrum of modulus. Here
we discuss a “spectral theorem” for a class of anti-linear operators that have
properties mirroring those of Hankel operators. Let A be a bounded anti-linear
operator in a Hilbert space X, satisfying the identity (cf. (1.5))

〈Af, g〉 = 〈Ag, f 〉(1.11)

for any elements f and g in the Hilbert space; we will call such operators sym-
metric anti-linear operators. Then

〈A2f, f 〉 = 〈Af,Af 〉 ≥ 0,

and so A2 is a (linear) positive semi-definite operator.
Recall that for a linear operator T itsmodulus |T| is defined as |T| := (T∗T)1/2;

the operator T∗T is positive semi-definite, so its non-negative square root is well
defined. Similarly, for an anti-linear operator A satisfying (1.11) the operator A2 is
positive semi-definite, so the non-negative square root is well defined, and we set
|A| := (A2)1/2; this is a linear positive semi-definite operator.

Let us assume that A2 has a simple spectrum with a cyclic element v. Then
trivially, v is also a cyclic vector for |A| := (A2)1/2. Let ρ = ρ|A|

v be the scalar spectral
measure for |A| corresponding to the vector v, see (1.1). Note that ρ is a finite
measure with suppρ ⊂ [0,∞).

The spectral theorem for self-adjoint operators says that the operator |A| is
unitarily equivalent to the multiplication by the independent variable s in L2(ρ),
and the corresponding unitary operator U : L2(ρ) → X intertwining |A| and the
multiplication operator is given by

(1.12) Uf = f (|A|)v
(defined initially on polynomials f and extended by continuity).

The statement below can be regarded as a substitute for polar decomposition of
linear operators.

Proposition 1.2 (Spectral Theorem for symmetric anti-linear operators). Let
A be a bounded symmetric anti-linear operator in a Hilbert space. Assume that |A|
has a simple spectrum with a cyclic element v, and let ρ = ρ|A|

v . Then there exists a
unimodular Borel function ψ such that the operator A is unitariy equivalent to its

model A in L2(ρ),

(1.13) Af (s) = sψ(s)f (s), f ∈ L2(ρ),

where the unitary operator U : L2(ρ) → X, AU = UA is given by (1.12).
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The proof is given in Section 3.

Remark 1.3. It will be seen from the proof of the proposition that the func-
tion ψ is uniquely defined as an element of L∞(ρ0), where ρ0 is the restriction of
the measure ρ to (0,∞). Note that ρ0 differs from ρ if and only if ρ has an atom
at 0. On the other hand, it is clear that the value ψ(0) is of no importance for the
action of A.

Remark. One can see from the definition (1.12) of the unitary operatorU that

X = {f (|A|)v : f ∈ L2(ρ)};
while the operators f (|A|) can be unbounded, the vector v is always in the domain
of f (|A|) for f ∈ L2(ρ). Thus, we can rewrite the representation (1.13) for the
model A as an abstract representation for A,

(1.14) Af (|A|)v = |A|ψ(|A|)f (|A|)v.

1.9 Direct spectral problem: spectral measures and unimodular
functions. Let u ∈ BMOAsimp(T), i.e., (1.10) is satisfied. Let us apply Proposi-
tion 1.2 to the anti-linear operators He

u and H̃
e
u; we will use the same cyclic vector

v = u in both cases.
For the operator He

u we get its spectral measure ρ = ρ
|He

u|
u ; note that since

u ∈ RanHu, we have ρ
|He

u|
u = ρ|Hu|

u ; we will use the notation ρ|Hu|
u for typographical

reasons. We also get the unitary operator U : L2(ρ) → RanH2
u given by (1.12)

with A = He
u and v = u,

(1.15) Uf = f (|He
u|)u, f ∈ L2(ρ),

so
U∗|He

u|U = M,

where M is the operator of multiplication by the independent variable s in L2(ρ).
By Proposition 1.2 we have

(1.16) [U∗He
uU]f (s) = �u(s)sf (s), f ∈ L2(ρ)

where �u is a complex-valued unimodular Borel function; we write �u rather
than �u in the above formula for consistency of notation with [7].

Similarly, defining the spectral measure ρ̃ = ρ|˜Hu|
u (again, it coincides with the

spectralmeasure of the operator |H̃e
u|) and the unitary operator Ũ : L2(ρ̃) → RanH2

u

by
Ũf = f (|H̃e

u|)u, f ∈ L2(ρ̃),
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we get that

(1.17) [Ũ∗H̃e
uŨ]f (s) = �̃u(s)sf (s), f ∈ L2(ρ̃),

where �̃u is a Borel unimodular function.
To summarize: we have two measures ρ, ρ̃ and two unimodular functions �u

and �̃u as spectral characteristics of the Hankel operator Hu.
Since the measure ρ does not have an atom at 0, by Remark 1.3 the function

�u is unique as an element of L∞(ρ). However, the measure ρ̃ can have an atom
at 0, so we can only say that �̃u is unique as an element of L∞(ρ̃0), where ρ̃0 is the
restriction of ρ̃ to (0,∞). Also, one can see from (1.17) that the value �̃u(0) does
not matter for the action of H̃e

u, so we can assume that �̃u is unique in L∞(ρ̃).

1.10 Remarksabout themeasuresρ and ρ̃. Themeasureρmust satisfy

(1.18)
∫ ∞

0

dρ(s)
s2

≤ 1.

Indeed, we know that

u = Huz
0 = He

uPRanHu
z0, U∗u = �,

so the representation (1.16) implies thatU∗ maps the vectorPRanHu
z0 to the function

q ∈ L2(ρ), q(s) = �u(s)/s. Since ‖PRanHu
z0‖H2 ≤ ‖z0‖H2 = 1, we conclude

that ‖q‖L2(ρ) ≤ 1, which is exactly the estimate (1.18).
The measures ρ and ρ̃ are not independent, and ρ̃ is uniquely defined by ρ. To

explain this, we introduce two important operatorsM and M̃ in L2(ρ) that will play
a key role in our construction below. We have already defined M in the previous
subsection; this is themultiplication operator by the independent variable s inL2(ρ).
Now consider the operator

M2 − 〈 · ,�〉� = M(I − 〈 · , q0〉q0)M,

where q0(s) = 1/s. The inequality (1.18) implies that ‖q0‖L2(ρ) ≤ 1, so the above
operator is trivially non-negative. Let us consider its (non-negative) square root

(1.19) M̃ := (M2 − 〈 · ,�〉�)1/2.
The definition of M̃ can be equivalently rewritten as

M̃2 = M2 − 〈·,�〉�,
which mirrors the rank one identity (1.9).

We can easily see that the unitary equivalence U maps the triple (M, M̃,�) to
the triple (|He

u|, |H̃e
u|, u), so ρ̃ is the spectral measure of the operator M̃with respect

to the vector � ∈ L2(ρ). Thus ρ̃ is uniquely determined by ρ.
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1.11 The spectral data and Uniqueness. To conclude, with each Han-
kel operator Hu with u ∈ BMOAsimp(T) we associate the following spectral
datum:
(i) The measure ρ with bounded support on (0,∞) satisfying the normalization

(1.18) (and the measure ρ̃ on [0,∞), uniquely defined by ρ as described
above in Section 1.10).

(ii) Two unimodular functions �u∈L∞(ρ) and �̃u∈L∞(ρ̃0), where ρ̃0 := ρ̃|(0,∞);
the functions �u and �̃u are unique as vectors in the corresponding L∞

spaces.
So, formally speaking the spectral datum for u (equivalently Hu) is given by the
triple

�(u) := (ρ,�u, �̃u).

We do not include the measure ρ̃ in the spectral data because ρ̃ is determined by ρ,
as explained in the previous subsection.

Our first main result is

Theorem 1.4 (Uniqueness). Any symbol u ∈ BMOAsimp(T) is uniquely de-
termined by the spectral datum �(u), i.e., the spectral map

(1.20) BMOAsimp(T) � u �→ �(u) = (ρ,�u, �̃u)

is injective.

Moreover, we will give an explicit formula for the symbol u in terms of the
spectral datum, see (2.8) and (2.9) below. The proof of Theorem 1.4 is given in
Section 3.

Recall that KerHu is either trivial or infinite-dimensional. It turns out that one
can easily distinguish between these two cases by looking at the spectral data.

Theorem1.5 (Triviality of kernel).For u∈BMOAsimp(T), we haveKerHu={0}
if and only if

(1.21)
∫

dρ(s)
s2

= 1 and
∫

dρ(s)
s4

= ∞.

This theoremwas proved in [8, Theorem4]. More precisely, in [8], it was stated
for compactHu and in slightly different terms, but the idea of the proof remains the
same. For the case of self-adjoint Hankel operators it also appeared earlier in [21,
Theorem III.2.1]; a similar dynamical systems approach also works in the general
case.

For completeness we give a proof in the Appendix B. We note that the first
condition in (1.21) is equivalent to z0 ∈ RanHu, and the second one is equivalent
to z0 /∈ RanHu, see the proof.
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1.12 The self-adjoint case. Here we discuss the interesting special case
when the linear Hankel operator �u is self-adjoint. Evidently, �u is self-adjoint if
and only if all Fourier coefficients ûj are real; if �u is self-adjoint, then so is �̃u.

Theorem 1.6. Let u ∈ BMOAsimp(T); then �u is self-adjoint if and only if

both �u and �̃u are functions with values ±1.

Moreover, in the self-adjoint case formulas (1.16), (1.17) for the action of Hu

and H̃u can be interpreted as polar decompositions of �u and �̃u. In order to state
this precisely, we recall the relevant key definitions and facts.

For a bounded operator T on a Hilbert space, there exists a unique partial
isometry � with the initial subspace RanT∗ and the final subspace RanT such that
thepolar decompositionT = �|T| holds, where |T| = √

T∗T . IfT is self-adjoint,
then � is also self-adjoint and commutes with |T|. Furthermore, if the spectrum
of |T| is simple, then one can write � = ϕ(|T|), where ϕ is a Borel function with
values±1. The function ϕ is uniquely defined up to values on sets of measure zero
with respect to the spectral measure of |T|. One can also write � = ϕ(|T|) if T has
a multi-dimensional kernel but the spectrum of the restriction |T||RanT is simple; in
this case one must set ϕ(0) = 0.

We apply this to the case T = �u or T = �̃u; note that in this case |�u| = |Hu|
and |�̃u| = |H̃u|.

Theorem 1.7. Let u ∈ BMOAsimp(T) be such that then �u is self-adjoint.
Then the polar decompositions of �u and �̃u can be written as

(1.22) �u = �u(|�u|)|�u|, �̃u = �̃u(|�̃u|)|�̃u|,

where one should set �u(0) = �̃u(0) = 0 in case of non-trivial kernels.

The proofs of the above two theorems are given in Section 3.

1.13 What can be said about the case of non-trivial spectral multi-
plicity? We conclude this section with remarks on the case when the simplicity
assumption (1.10) is not satisfied. What would be the natural choice for the spectral
datum in this case?

This question was answered in [7] for the case of compact Hankel operatorsHu.
Observe that in this case, the measure ρ is purely atomic, supported on the set of
singular values of Hu. The spectral datum is still the triple (ρ,�u, �̃u), but the
functions�u and �̃u (defined on the set of singular values ofHu and H̃u respectively)
are no longer scalar-valued but take values in the set of all finite Blaschke products.
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In [7] it is proved that the spectral map, defined in a suitable way, is injective and
surjective.

Another case was considered in [12]: all Hankel operators Hu such that the
spectrum of |Hu| is finite. In a similar spirit, the spectral datum is the triple
(ρ,�u, �̃u), where �u and �̃u are functions from the spectrum of |Hu| and |H̃u|
into the set of all inner functions, and the spectral map was proved to be injective
and surjective.

As for the general case, in [18] an abstract approach to the inverse spectral
problem for general Hankel operators was considered. The abstract spectral datum
there is similar in spirit to what is presented here, but the values of functions �u

and �̃u are unitary operators. In addition, a special anti-linear conjugation J,
commuting with both |Hu| and |H̃u| (which is implicit in this paper), is also a part
of the spectral datum. The spectral map is injective, if one treats the spectral data
as natural equivalence classes. And similarly to the present paper, the abstract
spectral datum corresponds to a Hankel operator if and only if an appropriately
constructed operator is asymptotically stable.

For the case of compact operators, the (non-trivial) translation from the language
used in [18] to the description in [12] was provided in [18].

It is likely that the constructions of [7] and [12] can be combined to give a
description of a spectral map in the case when |Hu| has only a point spectrum. It
could also be possible to use the ideas from [18] to extend the result to the case of
a purely singular spectrum.

However, the fundamental question of transparent representation of the spectral
data in the general case when |Hu| has non-trivial absolutely continuous spectrum
and non-trivial multiplicity remains a mystery.

2 The problem of surjectivity

2.1 The abstract spectral data and the problem of surjectivity.
First let us discuss

Question. What is the natural target space for the spectral map (1.20)?

Below we describe the set of triples (ρ,�, �̃), that we call the abstract spectral
data, that plays the role of the target space.

Let ρ be a finite Borel measure with a bounded support on (0,∞), satisfying
the normalization condition (1.18). We then define the operatorsM and M̃ in L2(ρ)
exactly as explained in Section 1.10, i.e.,M is themultiplication by the independent
variable and

M̃ := (M2 − 〈 · ,�〉�)1/2.
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Let ρ̃ be the spectral measure of M̃, corresponding to the vector �. Picking two
unimodular functions � ∈ L∞(ρ) and �̃ ∈ L∞(ρ̃0) (where ρ̃0 := ρ̃|(0,∞)), we get
the triple

� = (ρ,�, �̃),

which we will call the abstract spectral datum: the word abstract here em-
phasizes the fact that this datum a priori does not have to come from a Hankel
operator. The set of all abstract spectral data is the natural target space for the
spectral map (1.20).

We arrive at the main problem addressed in this paper:

Question. Is the spectral map (1.20) surjective?

In other words, does every abstract spectral datum come from a Hankel opera-
tor?

For several years, the authors of this paper believed that the answer is “yes”. For
example, as it was proved in [8], the answer is affirmative in the case of compact
Hankel operators: in this case the measure ρ is a purely atomic measure with 0
being the only possible accumulation point of its support.

The other case is the so-called double positive case, treated in [11], where
both operators �u and �̃u are non-negative self-adjoint operators. It was shown in
[11, Theorem 2.4] that in this case the simplicity condition (1.10) is satisfied. In
this case both unimodular functions �u and �̃u are identically equal to 1. It was
also shown in [11] that in this case any abstract spectral datum (i.e. any measure
ρ satisfying the normalization condition (1.18)) comes from a self-adjoint Hankel
operator �u.

2.2 Informal description of main results. In order to simplify our
discussion, we introduce the following notation. For an abstract spectral datum
�∗=(ρ,�, �̃), we will write �∗ ∈ �(BMOAsimp), if �∗ is in the range of the
spectral map (1.20), i.e., if �∗ is the spectral datum of some Hankel operator Hu.

Here we informally describe our main results.

• The spectral map (1.20) is NOT surjective, i.e., there are abstract spectral
data with �∗ /∈ �(BMOAsimp).

We do not have a simple easy-to-check criterion for an abstract spectral datum
to be in �(BMOAsimp), but we come close to it.

• For an abstract spectral datum�∗, we have�∗ ∈ �(BMOAsimp) if and only if
a certain contraction 
∗, constructed from �∗, is asymptotically stable (i.e.,
(
∗)n → 0 strongly as n → ∞). See Theorem 2.1 for the precise statement.



16 P. GÉRARD, A. PUSHNITSKI AND S. TREIL

The asymptotic stability of 
∗ is not easy to check. However, in many cases
we can reduce it to a more explicit condition.

• Under some mild additional assumptions (e.g., � and �̃ are Hölder contin-
uous at 0), we have (ρ,�, �̃) ∈ �(BMOAsimp) if and only if the unitary
operator

�̃(M̃)�(M)

has a purely singular spectrum. Here M and M̃ are the operators in L2(ρ)
defined in the previous subsection.

• Using the previous result, we construct a wide range of examples of spectral
data that are (or are not) in �(BMOAsimp).

2.3 Introducing the model (H, H̃,
∗). Let u ∈ BMOAsimp(T). Re-
stricting the identity H̃u = S∗Hu to the S∗-invariant subspace RanHu we write

(2.1) H̃e
u =

(
S∗|RanHu

)
He

u.

Recall also the rank one identity (1.9). Let us map these identities to L2(ρ), where
ρ = ρ|Hu|

u , by using the unitary operator U defined in (1.15). In order to do this, let
us define the anti-linear operatorsH, H̃ and the (linear) contraction 
 in L2(ρ) by

(2.2)

H = U∗He
uU,

H̃ = U∗H̃e
uU,


∗ = U∗
(
S∗|RanHu

)
U, 
 := (
∗)∗.

Multiplying (2.1) and (1.9) by U∗ on the left and by U on the right, we obtain the
identities

H̃ = 
∗H,(2.3)

H̃2 = H2 − 〈·,�〉�(2.4)

in L2(ρ).
The triple (H, H̃,
∗) is our model for (He

u, H̃
e
u, S

∗|RanHu
); this model plays a

central role in our construction.
Rewriting (1.16), (1.17) in terms of the model operatorsH, H̃, we obtain

Hf = M�(M)f , f ∈ L2(ρ),(2.5)

H̃f = M̃�̃(M̃)f , f ∈ L2(ρ),(2.6)

where� = �u, �̃ = �̃u and the operatorsM and M̃ are as discussed in Section 1.10.
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2.4 Model coming from abstract spectral data. One can also set up
a triple (H, H̃,
∗) starting from an abstract spectral datum � = (ρ,�, �̃). We
define the operatorsM and M̃ as described in Section 2.1 and define the anti-linear
operators H and H̃ by (2.5) and (2.6). In order to define 
, we first note that
M̃2 ≤ M2, i.e.,

‖M̃f‖ ≤ ‖Mf‖, ∀f ∈ L2(ρ),

and therefore (see Douglas’ lemma in Section 4) the operator M̃M−1, defined
initially on the dense set RanM, extends to L2(ρ) as a contraction. We then define
the contraction

(2.7) 
∗ = �̃(M̃)M̃M−1�(M)

and set 
 = (
∗)∗. With these definitions, the key identities (2.3) and (2.4) are
satisfied.

2.5 Surjectivity: reduction to the asymptotic stability of 
∗. Let
�=(ρ,�,�̃) be an abstract spectral datum, and let 
∗ be as defined in (2.7). Our
first main result concerning surjectivity is

Theorem 2.1. The triple� = (ρ,�, �̃) is the spectral datum for some Hankel

operator Hu with u ∈ BMOAsimp if and only if 
∗ is asymptotically stable (i.e.,


∗n → 0 in the strong operator topology).

2.6 Explicit formula for the symbol. One can give an explicit formula
for the symbol u in terms of the corresponding operator
∗, defined via the spectral
data of u. The following statement is logically part of the uniqueness Theorem 1.4,
but we place it here because it was convenient for us to state the uniqueness theorem
before describing the model (H, H̃,
∗).

Theorem 2.2. Let u ∈ BMOAsimp, and let 
∗ be defined by (2.2). Then u can
be found through the explicit formula

ûk = 〈(
∗)k�, q〉L2(ρ), k ≥ 0,(2.8)

or equivalently

u(z) = 〈(I − z
∗)−1
�, q〉L2(ρ), z ∈ D,(2.9)

where q ∈ L2(ρ), q(s) := �(s)/s.
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3 Proofs of preliminary results

3.1 Proof of the “spectral theorem” (Proposition 1.2). Let A be
the anti-linear operator in L2(ρ), defined by A := U∗AU, where U is the unitary
operator defined by (1.12). Then, since A trivially commutes with |A|2 = A2 and
U∗|A|U = M, whereM is the multiplication by the independent variable s in L2(ρ),
we conclude that A commutes with M2 and so with M.

Denote by C the standard conjugation acting on functions on R,

Cf (s) = f (s),

and define the linear operator B in L2(ρ) as B := CA. Since C commutes with M,
we find that B also commutes with M. Therefore, B is the multiplication by a
function g ∈ L∞(ρ),

Bf = gf ∀f ∈ L2(ρ);

note that g as an element of L∞(ρ) is unique.
For any f ∈ L2(ρ)

‖gf‖2L2(ρ) = ‖Bf‖2L2(ρ) = ‖Af‖2L2(ρ) = 〈A2f, f 〉 = 〈M2f, f 〉 =
∫
R

s2|f (s)|2dρ(s);

the second equality holds because C preserves the norm. So we conclude that
|g(s)|2 = s2 ρ-a.e., therefore it can be represented as

g(s) = sψ(s),

whereψ is a unimodular function, i.e., |ψ(s)| = 1 ρ-a.e. (the reason for the complex
conjugation is purely notational, and will be clear in a moment).

Using the fact that A = CB we conclude that

Af (s) = g(s)f (s) = sψ(s)f (s) = sψ(s)f (s),

which is exactly the conclusion of the proposition. �

3.2 Cyclicity of u: preliminaries. To prove Theorem 1.1 we start with
a trivial observation.

Lemma 3.1. Let R = R∗ be a bounded self-adjoint operator, and let

Rα := R + α〈 · , p〉p, α ∈ R, be its rank one perturbation. Then
(i) There holds 〈p〉R = 〈p〉Rα

.

(ii) If both R and Rα have a simple spectrum, then there exists a vector v2 ∈ 〈p〉⊥R
such that the vector v = p + v2 a cyclic for both R and Rα.
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Proof. The first statement is easy: by induction we find

Rn
αp ∈ span{Rkp : 0 ≤ k ≤ n},

which implies the inclusion 〈p〉Rα
⊂ 〈p〉R for all α ∈ R. Since R = Rα − α〈 · , p〉p,

the converse inclusion follows.

By the statement (i), the subspace 〈p〉R is an invariant subspace for bothR andRα;
since both operators are self-adjoint it is in fact reducing for both. Furthemore,
the action of the operators R and Rα coincide on 〈p〉⊥R . Now it remains to take
v = p + v2, where v2 is a cyclic vector for R |〈p〉⊥R . �

In the proof of Theorem 1.1 we use the model (H, H̃,
∗) introduced in Sec-
tion 2.3. Note, however, that in Section 2.3 we have used the fact that u is cyclic
for He

u and H̃e
u. In order to avoid a circular argument, here we start the proof by

setting up a slight modification of the same model, using another cyclic vector,
which exists by Lemma 3.1.

Thus, let v = u + v2 ∈ RanHu be the cyclic vector for both (He
u)

2 and (H̃e
u)

2,
which exists by statement (ii) (with p = u) of Lemma 3.1. Let ρ = ρ|Hu|

v be the
spectral measure of |He

u| corresponding to v. Let U be the unitary operator given
by (1.12) with A = He

u,

Uf := f (|He
u|)v, f ∈ L2(ρ).

As in Section 2.3, we define the operatorsH, H̃ and 
 in L2(ρ) by

H = U∗HuU,

H̃ = U∗H̃e
uU,


∗ = U∗
(
S∗|RanHu

)
U,


 := (
∗)∗.

For these operators, from the definition of H̃u and from the rank one identity (1.9)
we obtain

H̃ = 
∗H = H
,(3.1)

H̃2 = H2 − 〈 · , p〉p,(3.2)

where p = U∗u. Note that U∗v = �, so U∗u = χE for some Borel set E ⊂ σ(|Hu|);
what will be essential here is that both U∗v and U∗u are real-valued.
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3.3 Proof of Theorem 1.1. Step 1. The action ofH and H̃ on L2(ρ).
By construction, v is a cyclic element for both |He

u| and |H̃e
u|, thus � = U∗v is a

cyclic element for both |H| and |H̃|. By Proposition 1.2, we find

Hf (|H|)� = |H|ψ(|H|)f (|H|)�,
H̃f (|H̃|)� = |H̃|ψ̃(|H̃|)f (|H̃|)�

for some unimodular functions ψ and ψ̃ and for all admissible f (i.e., f ∈ L2(ρ) for
the first identity and f (|H̃|)� ∈ L2(ρ) for the second one).

Step 2. Conjugations on L2(ρ).
Since |H| coincides with the operator M of multiplication by the independent

variable in L2(ρ), we find that

g = f (|H|)�, if g = f (|H|)�
for any admissible f . Further, if f (x) = x2n, using the fact that p is real-valued,
from (3.2) we find that

(3.3) g = f (|H̃|)�, if g = f (|H̃|)�.
Taking linear combinations and using an approximation argument, we obtain (3.3)
for all admissible f . To conclude, combining with the previous step, we find that

Hg = |H|ψ(|H|)g, H̃g = |H̃|ψ̃(|H̃|)g
for all g ∈ L2(ρ).

Step 3. The action of 
∗ in L2(ρ).
Recall that 〈p〉⊥

H2 is an invariant (in fact, reducing) subspace for both operators
|H| and |H̃| and the actions of these operators coincide on this subspace. Thus,
for all g ∈ 〈p〉⊥

H2 we have

Hg = |H|ψ(|H|)g, H̃g = |H|ψ̃(|H|)g.
By (3.1), we find that 〈p〉⊥

H2 is an invariant subspace for 
∗ and the action of 
∗

on this subspace reduces to the multiplication by a unimodular function:


∗g = ψ̃(|H|)ψ(|H|)g, g ∈ 〈p〉⊥H2.

It follows that
‖(
∗)ng‖L2(ρ) = ‖g‖L2(ρ), g ∈ 〈p〉⊥H2

for all n ≥ 0. On the other hand, 
∗ is unitarily equivalent to the restriction of S∗

onto its invariant subspace RanHu, and we know that (S∗)n → 0 in the strong
operator topology as n → ∞. It follows that (
∗)n → 0 in the strong operator
topology. We have arrived at a contradiction. �
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3.4 Proof of Theorems 1.4 (uniqueness) and 2.2 (formula for u).
Throughout this section, we fix u ∈ BMOAsimp(T) and the corresponding Hankel
operator Hu, and set ρ = ρ|Hu|

u . We use the model (H, H̃,
) of Section 2.3.
We first recall that by the definition (1.15) of U, we have U∗u = �. Further, as

discussed in Section 1.10, we have u = He
uPRanHu

z0 and

U∗PRanHu
z0 = q, q(s) = �u(s)/s.

Thus, for k ≥ 0 we have

ûk = 〈u, zk〉 = 〈u, Skz0〉 = 〈(S∗)ku, z0〉 = 〈(S∗|RanHu
)ku,PRanHu

z0〉
= 〈(
∗)kU∗u,U∗PRanHu

z0〉 = 〈(
∗)k�, q〉.
Since all objects in the right-hand side are defined in terms of the spectral datum
�(u) = (ρ,�u, �̃u), the injectivity of the map u �→ �(u) is proved. The proof of
Theorem 1.4 is complete. �

Multiplying both sides of (3.4) by zk and summing over k ≥ 0 we get an explicit
formula for u,

u(z) = 〈(I − z
∗)−1
�, q〉L2(ρ), z ∈ D.

The proof of Theorem 2.2 is complete. �

3.5 Self-adjoint case: proof of Theorems 1.6 and 1.7. First let us
assume that �u is self-adjoint, i.e., that all coefficients ûj are real. We will prove
that both �u and �̃u take values ±1 and the polar decomposition (1.22) holds.

Let us rewrite (1.14) forA = Hu|RanHu
, v = u in terms of the linear realization�u.

Since �u = �∗
u, we have |Hu| = |�∗

u| = |�u|, and Hu = C�u = �uC (so �u commutes
with the conjugation C defined in (1.3)).

Noticing that Ran�u = RanHu is �u-invariant, and defining

�e
u := �u|Ran�u

= �u|RanHu
,

we can rewrite (1.14) for A = He
u := Hu|RanHu

, with v = u as

(3.4) �e
uCf (|�e

u|)u = |�e
u|�u(|�e

u|)f (|�u|)u, f ∈ L2(ρ).

We have Cu = u and therefore Cf (|�e
u|)u = f (|�e

u|)u (by a standard approxima-
tion from polynomials f ). Using this, we can rewrite (3.4) as

�e
uf (|�e

u|)u = |�e
u|�u(|�e

u|)f (|�e
u|)u, f ∈ L2(ρ),

so
�e
u = |�e

u|�u(|�e
u|) = �u(|�e

u|)|�e
u|.
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The last identity gives the polar decomposition of �e
u, and since it is self-adjoint,

the operator �u(|�e
u|) is a self-adjoint unitary operator, so �u takes values ±1. If

we assign �u(0) := 0, we get the polar decomposition

�u = |�u|�u(|�u|) = �u(|�u|)|�u|,

where �u(|�u|) is a self-adjoint partial isometry, Ker�u(|�u|) = Ker�u.

A similar argument can be applied to �̃u. If Ker �̃e
u = {0}, the reasoning is

exactly the same; if Ker �̃e
u 
= {0} (which may happen), a slight modification is

needed. Namely, we need first to consider the polar decomposition of �̃u|Ran˜�u
.

Noticing that ρ̃0 is the spectral measure of the operator |�̃u| |Ran˜�u
with respect to

the vector ũ := PRan˜�u
u, we then can write, assigning �̃u(0) := 0, that

�̃u = |�̃u|�̃u(|�̃u|) = �̃u(|�̃u|)|�̃u|.

So �̃u takes values ±1 and the polar decomposition for �̃u has the required
form (1.22).

Finally, assume that both � and �̃ are real-valued, and let us prove that
the Fourier coefficients ûm are real for all m. We use formula (3.4). Denote
A = M−1�(M) and B = �̃(M̃)M̃. By our assumptions, both A and B are self-
adjoint, A may be unbounded, but BA is bounded (extends to a bounded operator
from a dense set). The operator

(
∗)m�̃(M̃)M̃ = (BA)mB

is self-adjoint for all m ≥ 0. Since � = �(M)Mq, we can write

ûm = 〈(
∗)m−1�̃(M̃)M̃q, q〉L2(ρ) = 〈(BA)m−1Bq, q〉L2(ρ),

and since (BA)m−1B is self-adjoint, ûm is real for all m ≥ 1. The proof of Theo-
rems 1.6 and 1.7 is complete. �

4 Operator theoretic background

In the following sections, we will use some more specialized operator theoretic
material, related mainly to the functional model for contractions. In this section,
we collect without proof the corresponding background facts.
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4.1 Douglas Lemma. We will need the following simple fact.

Lemma 4.1. Let A, B be operators in a Hilbert space such that

KerA = KerA∗ = {0}
and

B∗B ≤ A∗A.

Then the operator BA−1, defined on a dense set RanA, extends to a contraction T.
The adjoint T∗ is given by the formula T∗ = (A∗)−1B∗; note that the boundedness
of T implies that RanB∗ ⊂ Dom(A∗)−1, so the above expression is defined on the
whole space.

In this paper we will often apply this lemma to self-adjoint operators M, M̃,
KerM = {0}, such that M̃2 ≤ M2, to define contractions M̃M−1,M−1M̃.

4.2 Inner functions, model spaces and the compressed shift. A
non-constant function θ ∈ H2(T) is called inner, if |θ| = 1 a.e. on the unit circle.
For an inner function θ, themodel space Kθ is the subspace ofH2(T), defined by

Kθ = H2(T) ∩ (θH2(T))⊥.

We refer to [23, 3] for background on model spaces.
Beurling’s theorem states that if a non-trivial subspace K � H2(T) is invariant

for the backward shift S∗, then K = Kθ for some inner θ.
Let θ be an inner function and let Pθ be the orthogonal projection onto Kθ

in H2(T). The operator Sθ = PθS on Kθ is called the compressed shift. Since Kθ

is an invariant subspace for S∗, we have S∗
θ f = S∗f for f ∈ Kθ. It is not difficult to

compute that

(4.1) I − SθS
∗
θ = 〈·,Pθ�〉Pθ�, I − S∗

θSθ = 〈·, S∗θ〉S∗θ,

where Pθ� = 1− θ(0)θ.

4.3 Contractions in a Hilbert space. Let T be a contraction in a Hilbert
space. The defect spaces of T and T∗ are defined as

DT := Ran(I − T∗T), DT∗ := Ran(I − TT∗),

and the defect indices of T are the (ordered) pair of numbers

(∂T, ∂T∗), ∂T = dimDT , ∂T∗ = dimDT∗ .

In particular, the shift operator S has the defect indices (0, 1) and the compressed
shift Sθ (for any inner θ) has the defect indices (1, 1), see (4.1).
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A contraction T is called completely non-unitary (c.n.u.), if T is not unitary
on any of its invariant subspaces. The following result is known as Langer’s lemma
(see, e.g., [24, Lemma 1.2.6]).

Lemma 4.2. Let T be a contraction in a Hilbert space X. Then X can be
represented as an orthogonal sum X = Xu ⊕ Xcnu, such that

T =

(
Tu 0
0 Tcnu

)
in Xu ⊕ Xcnu,

where Tu is unitary and Tcnu is completely non-unitary.

4.4 Contractions with defect indices (0, 1) and (1, 1).

Theorem 4.3. Let T be a c.n.u. contraction with defect indices (0, 1). Then T
is unitarily equivalent to the forward shift operator S. In this case ReT has a

purely a.c. spectrum [−1, 1] of multiplicity one.

The first part follows from the Kolmogorov–Wold decomposition, see [22,
Theorem I.1.1]. For the second part, we note that the matrix of 2Re S in the
standard basis in H2(T) is the Jacobi matrix

2ReS =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠
and it is well-known that the spectrum of this matrix is purely a.c., coincides with
the interval [−2, 2] and has multiplicity one (see, e.g., [30, Section 1.1.3]).

The following statement will be crucial in our construction.

Theorem 4.4. Let T be a c.n.u. contraction with defect indices (1, 1). Then
the following statements are equivalent:

(i) T∗n → 0 strongly as n → ∞.
(ii) Tn → 0 strongly as n → ∞.

(iii) The operator ReT has a purely singular spectrum.
(iv) The operator T is unitarily equivalent to the compressed shift operator Sθ for

some inner function θ.

We discuss the proof in Appendix C.
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4.5 Dilations of contractions. LetT be a contraction on aHilbert spaceX.
Further, let Y be another Hilbert space such that X is a subspace of Y , let PX be the
orthogonal projection onto X in Y and let V be a bounded operator in Y . Then V

is called a dilation of T , if for any n ≥ 0 we have

(4.2) Tnf = PXV
nf, ∀f ∈ X.

Theorem 4.5 ([22, Theorem II.6.4]). Let T be a c.n.u. contraction. Then
there exists a dilation V of T such that V is a unitary operator with a purely

a.c. spectrum.

In fact, any minimal unitary dilation (this means that the span of VnX for n ≥ 0
is dense in Y) of a c.n.u. contraction has a purely a.c. spectrum; see [22] for details.

4.6 Trace class perturbations.

Theorem 4.6 (Kato–Rosenblum). Let A and B be self-adjoint (or unitary)

operators in a Hilbert space X such that the difference A − B is trace class. Then
the absolutely continuous parts of A and B are unitarily equivalent.

The following generalization of the Kato–Rosenblum theorem was found by
Ismagilov in [15]; see also [14, 29] for different proofs.

Theorem 4.7 (Ismagilov). Let A and B be bounded self-adjoint operators
such that AB is trace class. Then the a.c. parts of the operators A + B and A ⊕ B

are unitarily equivalent.

We will also need the following result on trace class perturbations, due to
M. G. Krein [17]. (Much more precise results in terms of the class of f are now
available; see, e.g., [27]).

Theorem 4.8. Let A and B be bounded self-adjoint operators in a Hilbert
space X such that the difference A − B is trace class. Let f be a differentiable

function on R such that the derivative f ′ is a Fourier transform of a finite complex-
valued measure on R. Then f (A) − f (B) is also trace class.

4.7 Spectral measures. We recall that for a unitary operator in a Hilbert
space, its spectralmeasure is a projection-valuedmeasure onT and for a self-adjoint
operator, its spectral measure is a projection-valued measure on R. Furthermore,
if U is unitary and ReU = (U +U∗)/2, then the spectral measure of ReU on R is
the pushforward of the spectral measure ofU on T by the map z �→ (z+ z)/2. From
here we obtain the following simple conclusion, which we will use throughout the
paper.
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Proposition 4.9. The spectrum of a unitary operator U is purely a.c. (resp.,

purely singular) if and only if the spectrum of the self-adjoint operator ReU is
purely a.c. (resp., purely singular).

5 Reduction to asymptotic stability: proof of Theo-
rem 2.1

5.1 The “only if” part. We use the model (H, H̃,
∗) of Section 2.3. If
the triple (ρ,�, �̃) is the spectral datum for some Hankel operator Hu, then by
the definition (2.2), the operator 
∗ is unitarily equivalent to the restriction of the
backward shift S∗ to the S∗-invariant subspace RanHu (this subspace may coincide
with the whole space H2(T)).

The operator S∗ is asymptotically stable, and so its restriction to any invariant
subspace is also asymptotically stable. We conclude that 
∗ is asymptotically
stable.

In the rest of this section, we prove the “if” part; this requires several steps.
Throughout the proof, we use the model of Section 2.4.

5.2 The “if” part: checking the commutation relations. Let us show
that themodel operatorsH, H̃,
∗ (defined in (2.5), (2.6), (2.7)) satisfy the relations

(5.1) H̃ = 
∗H = H
.

Using the fact that � is unimodular, we have


∗Hf = �̃(M̃)M̃M−1�(M)�(M)Mf

= �̃(M̃)M̃f = H̃f.

For any bounded Borel function � we have

(�(M)f ) = �(M)f and (�(M̃)f ) = �(M̃)f

and therefore

(
f ) = �(M)M−1M̃�̃(M̃)f .

It follows that

H
f = �(M)M
f = M̃�̃(M)f = H̃f.

We have checked (5.1).
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5.3 The “if” part: setting up the unitary equivalence. Define the
operator U : L2(ρ) → H2(T) as

(5.2) Uf (z) :=
∞∑
k=0

〈(
∗)kf, q〉zk =
∞∑
k=0

〈f,
kq〉zk, z ∈ T,

where q(s) = �(s)/s. Below we check that U is an isometry.
It follows from the definition (2.7) of 
∗ that

(5.3)


∗ = �(M)∗M−1M̃2M−1�(M) = �(M)∗M−1(M2 − 〈 · ,�〉�)M−1�(M)

= I − 〈 · , q〉q.
From here it follows that

‖f‖2 − ‖
∗f‖2 = |〈f, q〉|2.
Applying this identity to (
∗)kf and summing over k from 0 to n − 1 we get that
for any f ∈ L2(ρ) and any n ∈ N,

‖f‖2 − ‖(
∗)nf‖2 =
n−1∑
k=0

|〈f,
kq〉|2.

Here comes the crucial point in the proof: by the asymptotic stability of 
∗, we
have that ‖(
∗)nf‖2 → 0 as n → ∞, and so

∞∑
m=0

|〈f,
mq〉|2 = ‖f‖2,

i.e., the map U : L2(ρ) → H2(T), defined in (5.2), is an isometry.

5.4 The “if” part: defining the Hankel operator. Define the opera-
tors A and Ã on H2(T) by

A := UHU∗, Ã := UH̃U∗.

We would like to check that A and Ã are Hankel operators. First we show that U
intertwines S∗ and 
∗. By the definition (5.2) of the map U, we have

U
∗f (z) =
∞∑
k=0

〈
∗f,
kq〉zk =
∞∑
k=0

〈f,
k+1q〉zk = S∗Uf (z),

and so we find that

U
∗ = S∗U(5.4)
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and by taking adjoints


U∗ = U∗S.(5.5)

Note that (5.4) implies that RanU is a S∗-invariant subspace of H2(T).
Using (5.5) and (5.1), we find

AS = UHU∗S = UH
U∗ = UH̃U∗ = Ã.

Similarly,
S∗A = S∗UHU∗ = U
∗HU∗ = UH̃U∗ = Ã.

Therefore A satisfies the commutation relation

AS = S∗A = Ã,

and so A is a Hankel operator. Setting u := Az0, we can write A = Hu and then
Ã = HuS = H̃u. It remains to prove that u ∈ BMOAsimp(T) and that the spectral
datum of u coincides with the abstract spectral datum (ρ,�, �̃).

5.5 The “if” part: concluding the proof. Denote by U the operator U
with the target space restricted to RanU, so U is a unitary operator. Here we use
the same notation as for the map (1.15); as we shall soon see, this is indeed the
same map in disguise.

Since RanH = L2(ρ), from the definition Hu = UHU∗ we find that

RanHu = RanU.

Thus, in our new notation we find

(5.6) He
u = UHU∗, H̃e

u = UH̃U∗.

Let us check that u ∈ BMOAsimp(T). By the definition of Hu, it is a bounded
operator and therefore u ∈ BMOA(T). Next, from (5.6) we find

(He
u)

2 = UH2U∗ = UM2U∗, (H̃e
u)

2 = UH̃2U∗ = UM̃2U∗;

recall that hereM is the multiplication by the independent variable in L2(ρ) and M̃
is defined by (1.19). It is obvious that M2 has a simple spectrum with the cyclic
element �. By Lemma 3.1(i), the same is true for M̃2. Thus, the simplicity of
spectrum condition (1.10) is satisfied and so u ∈ BMOAsimp(T).

Our next step is to check the identity U∗u = �. We first note that by the
definition (5.2) of U, for any f ∈ L2(ρ) we have

〈Uf, z0〉H2 = 〈f, q〉L2(ρ),
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and therefore U∗z0 = q. Further, we have

u = Huz
0 = UHU∗z0 = UHq.

Recalling formula (2.5) for the action ofH, we find that

Hq(s) = s�(s)q(s) = s�(s)�(s)/s = 1,

and so we conclude that u = U� = U� and therefore U∗u = �.
Finally, we check that the mapU coincides with the map defined by (1.15). For

f ∈ L2(ρ), we find

f (|He
u|)u = Uf (|H|)U∗u = Uf (M)� = Uf,

as required.
We conclude that for the Hankel operator Hu and the map U, satisfying (1.15),

we have the identities (5.6), where H and H̃ correspond to our abstract spectral
datum � = (ρ,�, �̃). This means that the abstract spectral datum � coincides
with the spectral datum �(u).

6 Initial results about asymptotic stability

In this section, as a warm-up, we present some easy initial results on asymptotic
stability. In what follows, (ρ,�, �̃) is an abstract spectral datum. We recall that
this means that ρ is a finite Borel measure with a bounded support on (0,∞),
satisfying the normalization condition (1.18), and � ∈ L∞(ρ) and �̃ ∈ L∞(ρ̃0) are
unimodular complex-valued functions.

6.1 The operator 
∗
0 is asymptotically stable. Let the operators M

and M̃ in L2(ρ) be as defined in Section 2.1. Recall that the operator 
∗
0 in L2(ρ)

was defined by 
∗
0 := M̃M−1. Our purpose here is to prove

Theorem 6.1. The operator 
∗
0 is asymptotically stable.

By Theorem 2.1, this implies that any spectral datum of the form (ρ,�,�) is
in �(BMOAsimp); this was one of the main results of [11].

In order to prove Theorem 6.1, we consider the symmetrization S0 of 
∗
0

S0 := M−1/2
∗
0M

1/2 = M−1/2M̃M−1/2.

Note that ‖S0‖ ≤ 1. Indeed, from 0 ≤ M̃2 ≤ M2 by the Heinz inequality we
find M̃1/2 ≤ M1/2, and therefore by Douglas’ Lemma (Lemma 4.1) the opera-
tor Q := M̃1/2M−1/2 extends from a dense set to a contraction, and its adjoint is
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given by Q∗ = M−1/2M̃1/2. Thus

(6.1) S0 = Q∗Q,

so S0 is a contraction.

Lemma 6.2. The operatorS0 is asymptotically stable.

Proof. By (6.1), the operator S0 is self-adjoint and 0 ≤ S0 ≤ I. So in order
to prove the asymptotic stability of S0, it is sufficient to show that 1 is not an
eigenvalue of S0. Let us prove this. We have

M̃ = M1/2S0M
1/2,

and therefore
M̃2 = M1/2S0MS0M

1/2.

On the other hand,

M̃2 = M2 − 〈 · ,�〉� = M1/2(M − 〈 · , b〉b),M1/2,

where b = M−1/2
�, i.e., b(s) = s−1/2.

Comparing these two representations for M̃2 and using the fact that

KerM1/2 = {0}
we find

(6.2) S0MS0 = M − 〈 · , b〉b.
Suppose f ∈ Ker(S0 − I), i.e., S0f = f . Evaluating the quadratic form of the last
identity on f , we find

〈Mf, f 〉 = 〈Mf, f 〉 − |〈f, b〉|2,
and so f ⊥ b. Substituting f ⊥ b back into (6.2), we get

S0Mf = Mf,

and soMf ∈ Ker(S0 − I).
Thus, Ker(S0 − I) is an invariant subspace of M which is orthogonal to b.

Since b is a cyclic element forM, it follows that Ker(S0 − I) = {0}. �

Corollary 6.3. The operator Q = M̃1/2M−1/2 is a strict contraction, i.e.,

‖Qx‖ < ‖x‖ ∀x 
= 0.
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Proof. By construction, Q is a contraction, ‖Qx‖≤‖x‖ for all x. Assume that
‖Qx‖=‖x‖ for some x 
=0. SinceS0 =Q∗Q, we conclude that 〈S0x, x〉=‖Qx‖2=‖x‖2.
But ‖S0‖ ≤ 1, so S0x = x, which contradicts Lemma 6.2. �

Lemma 6.4. Let bounded operators A, B, K satisfy

(6.3) KA = BK,

and let ‖B‖ ≤ 1. Assume that RanK is dense, and that the operator A is asymp-
totically stable. Then B is also asymptotically stable.

Proof. Iterating (6.3) we get that

KAn = BnK, n ∈ N.

Since A is asymptotically stable, we see that for all x ∈ RanK

(6.4) ‖Bnx‖ → 0 as n → ∞.

But ‖Bn‖ ≤ 1, so operators Bn are uniformly bounded. Since RanK is dense, the
ε/3-Theorem says that (6.4) holds for all x, i.e. B is asymptotically stable. �

Proof of Theorem 6.1. From the definition of S0 we see that

M1/2S0 = 
∗
0M

1/2,

and RanM1/2 is dense in L2(ρ). Now we apply Lemma 6.4 with K = M1/2, A = S0

and B = 
∗
0. �

6.2 Self-adjoint Hankel operators and positivity. In this subsection
we discuss the self-adjoint case, when both operators� and �̃ = �S are self-adjoint.
According to Theorem 1.6, in terms of the spectral data, this corresponds to the
case when both unimodular functions � and �̃ are real-valued.

Theorem 6.5. Let � = (ρ,�, �̃) be an abstract spectral datum such that �

and �̃ are real-valued and one of them is identically equal to 1. Then 
∗ is
asymptotically stable, i.e., � ∈ �(BMOAsimp).

This theorem gives us a complete description of the spectral data in the case of
self-adjoint Hankel operators, when one of the operators �, �̃ is non-negative.

Proof of Theorem 6.5. Let us introduce the symmetrizationS∗ of 
∗,

S∗ := M−1/2
∗M1/2 = Q∗�̃(M̃)Q�(M),
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where Q = M̃1/2M−1/2 is as in Corollary 6.3. Since � and �̃ are real-valued, the
operators�(M) and �̃(M̃) are self-adjoint. Let us prove that S∗ is asymptotically
stable.

If � ≡ 1, we have S∗ = Q∗�̃(M̃)Q, so S∗ is self-adjoint. The fact that Q is
a strict contraction (see Corollary 6.3) implies that ±1 are not eigenvalues of S∗,
so S∗ is asymptotically stable.

If �̃ ≡ 1, we get that S∗ = Q∗Q�(M). This operator is not self-adjoint, but

(6.5) (S∗)n = Q∗(Q�(M)Q∗)n−1Q�(Q),

and the operator Q�(M)Q∗ is self-adjoint. Since Q∗ is a strict contraction, the
points ±1 are not the eigenvalues of Q�(M)Q∗, so Q�(M)Q∗ is asymptotically
stable. Identity (6.5) together with Lemma 6.4 shows that S∗ is asymptotically
stable as well.

Finally, we have
M1/2S∗ = 
∗M1/2,

so by Lemma 6.4 with K = M1/2 the asymptotic stability of S∗ implies the
asymptotic stability of 
∗. �

7 Asymptotic stability and singular spectrum

In this section we present one of our key results which related the asymptotic
stability of
∗ to its spectral properties. As in the previous section, below (ρ,�, �̃)
is an abstract spectral datum, and 
∗ is the operator in L2(ρ) defined in (2.7).

7.1 Defect indices of 
∗. In what follows, the consideration of 
∗ will
proceed in two slightly different ways depending on the defect indices of 
∗. In
the following lemma we describe these two possible cases.

Lemma 7.1. Let � = (ρ,�, �̃) be an abstract spectral datum, and let 
∗ be
the operator (2.7) constructed from it.
(i) If

(7.1)
∫ ∞

0

dρ(s)
s2

= 1 and
∫ ∞

0

dρ(s)
s4

= ∞,

then the defect indices of 
∗ are (1, 0), so 
 is an isometry.

(ii) If (7.1) fails, i.e., if we have either

(7.2)
∫ ∞

0

dρ(s)
s2

= 1 and
∫ ∞

0

dρ(s)
s4

< ∞,
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or

(7.3)
∫ ∞

0

dρ(s)
s2

< 1,

then the defect indices of 
∗ are (1, 1).

Proof. We have 
∗ = �̃(M̃)
∗
0�(M), where 
∗

0 := M̃M−1. The operators
�(M) and �̃(M̃) are unitary, and so the defect indices of 
∗ and 
∗

0 coincide.
Thus, it suffices to consider the defect indices of 
∗

0.
By Theorem 6.1, the operator
∗

0 is asymptotically stable. By Theorem 2.1, this
means that the triple (ρ,�,�) is the spectral datum of some Hankel operator Hu.

(i) Suppose (7.1) is satisfied. Note that (7.1) is identical to (1.21), and so by
Theorem 1.5, we have KerHu = {0}, and therefore (see (2.2)) the operator 
∗

0

is unitarily equivalent to the backward shift S∗, and so the defect indices of 
∗

are (1, 0).
(ii) Suppose (7.1) fails. Then again by Theorem 1.5, the kernel of Hu is non-

trivial and so 
∗
0 is unitarily equivalent to the restriction of S∗ to the subspace

RanHu. By Beurling’s theorem, this subspace is a model space Kθ := H2 � θH2

for some inner function θ and so 
∗
0 is unitarily equivalent to S∗

θ , where Sθ is
the compressed shift on Kθ. It follows (see (4.1)) that the defect indices of 
∗

0

are (1, 1). �

7.2 Asymptotic stability and singular spectrum. Recall that the a.c.
spectrum of a self-adjoint or unitary operator is said to equal a Borel setE if the a.c.
part of the spectral measure is mutually absolutely continuous with the Lebesgue
measure restricted to E.

Theorem 7.2. Let the triple � = (ρ,�, �̃) be an abstract spectral datum.
(i) Assume that (7.1) holds, i.e., that 
∗ has defect indices (1, 0). Then 
∗ is

asymptotically stable iff the a.c. spectrum of Re
 is [−1, 1] with multiplicity
one.

(ii) Assume that (7.1) does not hold, i.e., that 
∗ has defect indices (1, 1). Then

∗ is asymptotically stable iff the a.c. part of Re
 is empty.

Before proceeding to the proof, we need a lemma. This lemma is one of the
central points of our argument. Below we refer to the unitary and c.n.u. parts of a
contraction according to Langer’s lemma, see Lemma 4.2.

Lemma 7.3. Let 
∗ be the operator constructed from an abstract spectral
datum. Then the unitary part of
 is either purely absolutely continuous or absent.
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Proof. We use the model (H, H̃,
) as described in Section 2.4. Let us write

L2(ρ) = Xsing ⊕ Xr,

where Xsing is the singular subspace of the unitary part of 
, and Xr is the “re-
mainder” part, i.e., the sum of the completely non-unitary subspace of 
 and the
absolutely continuous subspace of the unitary part of 
. Our aim is to show
that Xsing = {0}.

Step 1. The spectral measures associated with 
r. By construction,

r is an orthogonal sum of a unitary part 
u with the purely a.c. spectrum and a
completely non-unitary part 
cnu.

For any f ∈ Xr and any polynomial ϕ of z, we have

(7.4) ‖ϕ(
r)f‖2 = ‖ϕ(
u)fu‖2 + ‖ϕ(
cnu)fcnu‖2,
where fu and fcnu are the projections of f onto the corresponding subspaces. We
can write

‖ϕ(
u)fu‖2 =
∫
T

|ϕ(z)|2dμu
f (z),

whereμu
f is the spectral measure of 
u, associated with the vector fu. By construc-

tion, this measure is absolutely continuous.
Now let us consider the second term in the r.h.s. of (7.4). Since 
cnu is a c.n.u.

contraction, we can consider its minimal unitary dilation V , which has a purely
a.c. spectrum, see Theorem 4.5. Taking linear combinations of (4.2), we obtain

ϕ(
cnu)fcnu = Pcnuϕ(V)fcnu,

where Pcnu is the orthogonal projection onto the c.n.u. subspace of 
. This yields

‖ϕ(
cnu)fcnu‖2 = ‖Pcnuϕ(V)fcnu‖2 ≤ ‖ϕ(V)fcnu‖2 =
∫
T

|ϕ(z)|2dμcnu
f (z),

where μcnu
f is the spectral measure of V associated with the vector fcnu. By

Theorem 4.5, the measure μcnu
f is purely a.c.

Summarizing, we can write

(7.5) ‖ϕ(
r)f‖2 ≤
∫
T

|ϕ(z)|2dμf (z),

where μf = μu
f + μcnu

f is an absolutely continuous measure on T.
Step 2. A commutation relation. We have


 =

(

sing 0
0 
r

)
, H =

(
h11 h12
h21 h22

)
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with respect to our decomposition L2(ρ) = Xsing ⊕ Xr. Iterating the commutation
relation (5.1), we find


∗nH = H
n.

In our orthogonal decomposition, we can write this relation as(

∗n

sing 0
0 
∗n

r

)(
h11 h12
h21 h22

)
=

(
h11 h12
h21 h22

)(

n

sing 0
0 
n

r

)
.

If we write this as a system of four equations, one of them will read


∗n
singh12 = h12


n
r .

Taking a linear combination of these equations and taking into account the anti-
linearity of h12, we obtain

(7.6) ϕ(
sing)
∗h12 = h12ϕ(
r)

for any analytic polynomial ϕ(z) =
∑n

k=0 akz
k.

Step 3. H is diagonal. Let us choose a sequence {ϕn}∞n=1 of analytic
polynomials such that:
(i) ‖ϕn‖H∞ ≤ 1;
(ii) ϕn(z) → 0 for a.e. z ∈ T (with respect to the Lebesgue measure);
(iii) lim infn→∞|ϕn(z)| ≥ c > 0 for a.e. z ∈ T with respect to the (singular)

spectral measure of 
sing.
The existence of such polynomials ϕn is given by the following lemma.

Lemma 7.4. Let ν be a singular (regular, Borel) measure on the unit circle T.
There exists a sequence of analytic polynomials ϕn, satisfying properties (i)–(iii)
above.

Proof. Let E be the set of Lebesgue measure zero (|E| = 0), supporting ν, i.e.,
such that ν(T \E) = 0. By the regularity of ν and the Lebesgue measure there exist
increasing sequences of compacts Kn ⊂ E, Fn ⊂ T \ E such that

lim
n→∞ ν(Kn) = μ(E), lim

n→∞ |T \ Fn| = 0.

Since dist(Fn,Kn) > 0 for all n, one can choose continuous functions fn : T→ [0, 1]
such that fn|Kn ≡ 1, fn|Fn ≡ 0.

Using the Weierstrass approximation theorem, let us choose trigonometric
polynomials pn =

∑Nn
k=−Nn

akzk such that ‖fn − pn‖L∞(T) ≤ 2−n for all n ≥ 1. Then
the analytic polynomials ϕn(z) := zNnpn(z)/2 give the desired sequence. �
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We continue the proof of Lemma 7.3. Let us substitute ϕn into (7.5). Since μf

is absolutely continuous, by conditions (i) and (ii) and the dominated convergence
theorem we find

‖ϕn(
r)f‖2 ≤
∫
T

|ϕn(z)|2dμf (z) → 0, n → ∞,

i.e., ϕn(
r) → 0 strongly. On the other hand, condition (iii) and Fatou’s Lemma
imply that for any element f ∈ Xsing we have

lim inf
n→∞ ‖ϕn(
sing)

∗f‖2 = lim inf
n→∞

∫
|ϕn|2dνf ≥

∫
c2dνf = c2‖f‖2;

here νf is the spectral measure of 
sing associated with the vector f .
Substituting ϕn into (7.6) and letting n → ∞ we then conclude that h12 = 0.

Using the symmetry condition

〈Hf, g〉 = 〈Hg, f 〉,

from here it is easy to see that h21 = 0, and so H is diagonal in the orthogonal
decomposition Xsing ⊕ Xr. Thus, H2 = M2 is also diagonal in this decomposition,
and in particular Xsing is an invariant subspace forM2.

Step 4. Concluding the proof. By (5.3), we know that 
 satisfies



∗ = I − 〈 · , q〉q, q(s) = �(s)/s.

Since 

∗ = I ⊕ 
r

∗
r , we conclude that q ∈ Xr. On the other hand, q(s) 
= 0

ρ-a.e. and so q is a cyclic element for M2. We find that Xsing is an invariant
subspace for M2, orthogonal to its cyclic element q. Thus, Xsing = {0}. The proof
is complete. �

Proof of Theorem 7.2. By Langer’s lemma (Lemma 4.2) we have

(7.7) Re
 = Re
u ⊕ Re
cnu ,

where 
u is unitary and 
cnu is completely non-unitary.
(i) Suppose (7.1) holds and so 
∗ has defect indices (1, 0).
First suppose that 
∗ is asymptotically stable. Then the unitary part of 
 is

absent, and so 
 is completely non-unitary. Then, by Theorem 4.3, 
 is unitarily
equivalent to the shift operator S and so Re
 has a purely a.c. spectrum [−1, 1]
with multiplicity one, as required.

Conversely, suppose that the a.c. spectrum of Re
 is [−1, 1] with multiplicity
one. By Lemma 7.3 and Proposition 4.9, the spectrum of Re
u is purely a.c. Next,
applying Theorem 4.3 again, we find that 
cnu is unitarily equivalent to the shift
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operator S and so Re
cnu has a purely a.c. spectrum [−1, 1] with multiplicity one.
Denoting the unitary equivalence by �, we can rewrite (7.7) for the a.c. parts as

Re S � Re
u ⊕ Re S.

Considering the multiplicity functions of the spectrum on both sides, we see that
the term Re
u must be absent from this expression. Thus, 
∗ = 
∗

cnu � S∗, and
so 
∗ is asymptotically stable.

(ii) Suppose (7.1) fails and so 
 has defect indices (1, 1).
First suppose that 
∗ is asymptotically stable. Then the unitary part of 
 is

absent, and so 
 is completely non-unitary and by Theorem 4.4 the operator Re


has a purely singular spectrum, as required.
Conversely, suppose that the a.c. spectrum of Re
 in [−1, 1] is absent. By

Lemma 7.3, the spectrum of Re
u is purely a.c.; thus, the unitary part of 
u

is absent, and so 
 is c.n.u. Applying Theorem 4.4 again, we find that 
∗ is
asymptotically stable, as required. �

8 Reduction to spectral properties of �̃(M̃)�(M)

In this section we show that under some additional assumptions the operator
∗ is
asymptotically stable if and only if the spectrumof the unitary operator �̃(M̃)�(M)
is purely singular. While at first glance this condition does not look much simpler
than the conditions in Theorem 7.2, it will allow us to easily construct examples
and counterexamples.

Below � = (ρ,�, �̃) is an abstract spectral datum and M, M̃ are the operators
in L2(ρ) constructed as in Section 2.1. We recall that the operator 
∗

0 in L
2(ρ) was

defined by 
∗
0 := M̃M−1.

8.1 Reduction is possible if I − 
0 ∈ S1. We start with the easiest case,
when the difference I − 
0 is trace class.

Theorem 8.1. Let the abstract spectral datum � = (ρ,�, �̃) be such that

I − 
0 ∈ S1. Then 
∗ is asymptotically stable if and only if the unitary operator

�̃(M̃)�(M)

has a purely singular spectrum.



38 P. GÉRARD, A. PUSHNITSKI AND S. TREIL

Remark 8.2. By Lemma 7.1, the operator 
∗
0 has defect indices either (1, 0)

or (1, 1). By Theorem 6.1, the operator 
∗
0 is asymptotically stable, and hence it

is c.n.u. By Theorems 4.3 and 4.4, we see that there are two possibilities:
(i) 
∗

0 has defect indices (1, 0), and then it is unitarily equivalent to S
∗, where S

is the shift operator in H2;
(ii) 
∗

0 has defect indices (1, 1), and then it is unitarily equivalent to S
∗
θ , where Sθ

is the compressed shift operator Sθ in a model space Kθ for some inner
function θ.

Observe that condition I − 
0 ∈ S1 is incompatible with (i), because I − S is not a
trace class operator. So the assumption I − 
0 ∈ S1 necessitates that we have (ii).

Proof of Theorem 8.1. We have

�(M)∗�̃(M̃)∗ − 
 = �(M)∗�̃(M̃)∗ − �(M)∗
0�̃(M̃)∗

= �(M)∗(I − 
0)�̃(M̃)∗ ∈ S1

and so, taking real parts,

Re(�̃(M̃)�(M))− Re
 ∈ S1.

Applying Proposition 4.9 and the Kato–Rosenblum Theorem, we find that the
spectrum of �̃(M̃)�(M) is purely singular if and only if the spectrum of Re
 is
purely singular.

Finally, as discussed in Remark 8.2, the operator 
0 has defect indices (1, 1),
and so 
 has the same defect indices. Thus Theorem 7.2(ii) applies and so the
spectrum of Re
 is purely singular if and only if 
∗ is asymptotically stable. �

8.2 Sufficient conditions for I−
0 ∈ S1. The previous theorem leads to
the natural question: how to characterize abstract spectral data which correspond
to the case I − 
0 ∈ S1? We give some sufficient conditions that guarantee this
inclusion. We start with the simplest condition.

Lemma 8.3. Let the abstract spectral datum � = (ρ,�, �̃) be such that
suppρ is separated away from 0; then I − 
0 ∈ S1.

Proof. The idea is to apply Theorem 4.8 to the operators M2 and
M̃2 = M2 − 〈 · ,�〉� ≥ 0 and the function ϕ(s) =

√
s. The function ϕ is not

sufficiently smooth to comply with the hypothesis of Theorem 4.8, but we can
modify it so that the resulting function is in C∞

0 (R).
Indeed, by assumptions σ(M2) ⊂ [a,R] with some 0 < a < R < ∞; since M̃2

is a rank one perturbation of M2, we find that σ(M̃2) ⊂ {λ0} ∪ [a,R], with some
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eigenvalue λ0 ≥ 0. It is clear that we can modify ϕ outside the set {λ0} ∪ [a,R]
such that the resulting function ϕ̃ is in C∞

0 (R). Thus, Theorem 4.8 applies to ϕ̃ and
we get

ϕ̃(M̃2) − ϕ̃(M2) = ϕ(M̃2)− ϕ(M2) = M̃ − M ∈ S1.

By assumption, the operator M is invertible, so left multiplying M − M̃ by M−1

and recalling that 
0 = M−1M̃, we get the conclusion of the lemma. �
Next, we give a slightly more precise sufficient condition. As discussed in

Remark 8.2, if I − 
0 ∈ S1, then condition (7.1) is not satisfied, which means that
either (7.2) or (7.3) holds. The following lemma says that under conditions that
are slightly stronger than (7.2) or (7.3), we have I − 
0 ∈ S1.

Lemma 8.4. Assume that for some ε > 0, we have either

(8.1)
∫ ∞

0

dρ(s)
s2

= 1,
∫ ∞

0

dρ(s)
s4+ε

< ∞

or

(8.2)
∫ ∞

0

dρ(s)
s2

< 1,
∫ ∞

0

dρ(s)
s2+ε

< ∞.

Then I − 
0 is trace class.

The proof is elementary but a little technical; it is given in Appendix A.

8.3 Reduction is possible if � and �̃ are Hölder at 0. Finally, we
turn to the case when I − 
0 is not necessarily trace class. We give a more precise
condition, whose proof is based on the application of Ismagilov’s Theorem.

Theorem 8.5. Let the abstract spectral datum � = (ρ,�, �̃) be such that the
limits �(0+) and �̃(0+) exist and that for some ε > 0 we have

sup
t>0

t−ε|�(t) − �(0+)| < ∞, sup
t>0

t−ε|�̃(t)− �̃(0+)| < ∞.

Then 
∗ is asymptotically stable if and only if the unitary operator

�̃(M̃)�(M)

has a purely singular spectrum.

We give the proof in Appendix A.
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8.4 Openquestion. The previous Theoremnaturally leads to the following
question.

Open question. For a general abstract spectral datum �, is it true that 
∗ is
asymptotically stable if and only if the spectrum of �̃(M̃)�(M) is purely singular?

At first glance, reduction to �̃(M̃)�(M) does not seem very useful since in
general it is not an easy task to decide if this operator has a purely singular
spectrum. But in concrete situations this allows us to give convenient sufficient
conditions for 
∗ to be asymptotically stable, i.e. (see Theorem 2.1) for a spectral
datum � to be in �(BMOAsimp). Most importantly, it also allows to construct
counterexamples.

8.5 Positive results.

Theorem 8.6. Let � = (ρ,�, �̃) be an abstract spectral datum. Let �#

be a differentiable unimodular complex valued function on [0,∞) such that its

derivative admits the representation

d
ds

�#(s) = s
∫ ∞

−∞
eis

2tdμ(t)

with some finite complex-valued measure μ on R. If (ρ,�, �̃) ∈ �(BMOAsimp),
then (ρ,�#�,�#�̃) ∈ �(BMOAsimp); in particular, (ρ,�#,�#) ∈ �(BMOAsimp).

Proof. By our assumptions on �#, the function s �→ �#(
√
s) satisfies the

hypothesis of Theorem 4.8. Since M̃2 − M2 is a rank one operator, it follows that

�#(M̃) − �#(M) = �#(

√
M̃2) − �#(

√
M2) ∈ S1,

and so, left-multiplying by �#(M)∗, we find

�#(M)∗�#(M̃) − I ∈ S1.

Next, denote


∗ = �̃(M̃)
∗
0�(M), 
∗

# = �#(M̃)
∗�#(M)∗;

here the operator
 corresponds to the spectral datum (ρ,�, �̃) and
# corresponds
to the spectral datum (ρ,�#�,�#�̃). We have


∗
# = �#(M)(�#(M)∗�#(M̃))
∗�#(M)∗

= �#(M)
∗�#(M)∗ + trace class operator.
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By taking real parts, it follows that

Re
# = �#(M)(Re
∗)�#(M)∗ + trace class operator.

Thus, using the Kato-Rosenblum theorem, we find that Re
# satisfies the hypoth-
esis of Theorem 7.2 if and only if Re
 satisfies them. Thus, 
∗

# is asymptotically
stable if and only if 
∗ is. Finally, if � = �̃ = 1, then by Theorem 6.1 we have
(ρ, 1, 1) ∈ �(BMOAsimp), and therefore (ρ,�#,�#) ∈ �(BMOAsimp). �

8.6 Counterexamples. If one of the functions � or �̃ is constant, then
the problem of spectral analysis of �̃(M̃)�(M) simplifies significantly and reduces
to the spectral analysis of a multiplication operator. Recall that the spectral type
of a multiplication operator is easy to determine. Namely, if M is the multiplica-
tion by the independent variable s in L2(ρ), then a spectral measure (of maximal
spectral type) of the operator �(M) is the pushforward of ρ by �; we denote this
pushforward measure by ρ ◦ (�−1).

We immediately get the following generalization of Theorem 6.5.

Theorem 8.7. Let � = (ρ,�, �̃) be an abstract spectral datum such that

I − 
0 ∈ S1 and suppose that one of the two measures ρ ◦ (�−1), ρ̃ ◦ (�̃−1) is
supported at a single point. Then � ∈ �(BMOAsimp) if and only if the other

measure is purely singular.

Proof. Suppose that ρ̃ ◦ (�̃−1) is supported at a point ζ, where |ζ| = 1. Then

�̃(M̃)�(M) = ζ�(M).

Thus, the spectrum of �̃(M̃)�(M) is singular if and only if the measure ρ ◦ (�−1)
is singular. It remains to apply Theorem 8.1.

The casewhen ρ◦(�−1) is supported at a point is considered in the sameway.�
Finally, for definiteness, we give a concrete example of a spectral data � that

is not in �(BMOAsimp).

Corollary 8.8. Let � = (ρ,�, �̃) be an abstract spectral datum, where the
measure ρ is absolutely continuous with suppρ = [a, b], 0 < a < b < ∞, and

�(s) = eis, �̃(s) = 1. Then � 
∈ �(BMOAsimp), i.e. � does not correspond to any
Hankel operator.

Remark. It is known (see [1, Propositions 9.1.11, 9.1.12]) that for a finite
measure μ without atoms on T, there exists a Borel measurable (and even contin-
uous) function F : T → [0, 1] such that the measure μ ◦ (F−1) is the Lebesgue
measure on [0, 1]. Using this fact, for any given ρ without atoms one can always
construct � such that (ρ,�, 1) /∈ �(BMOAsimp).
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9 The self-adjoint case

9.1 A counterexample for self-adjoint Hankel operators. In this
section we consider the question of surjectivity of the spectral map in the case
of self-adjoint Hankel operators �u. By Theorem 1.6, in this case the spectral
datum (ρ,�, �̃) satisfies the additional constraint that � and �̃ take values ±1.
It is reasonable to ask whether all abstract spectral datum with this additional
constraint are in �(BMOAsimp). It turns out that the answer to this is negative.
However, the corresponding counterexample is more subtle and based on a deep
result [28] of perturbation theory.

Let ρ be an absolutely continuous measure on an interval (a, b), 0<a<b<∞,
dρ(x) = w(x)dx, wherew is a strictly positive Hölder continuous function on (a, b).
Multiplying ρ by an appropriate positive constant we can ensure that the normal-
ization condition (1.18) is satisfied.

Take any s0 ∈ (a, b), and define

�(s) = �̃(s) =

⎧⎨⎩−1, s < s0,

1, s ≥ s0.

Theorem 9.1. Under the above assumptions the operator


∗ = �̃(M̃)M̃M−1�(M)

is not asymptotically stable, and so (by Theorem 2.1) (ρ,�, �̃) /∈ �(BMOAsimp).

In the rest of this section, we present the proof.

9.2 Overview of the proof. Since suppρ is separated from 0, the condi-
tion
0−I ∈ S1 is easily seen to be satisfied, see Lemma 8.3. Then by Theorem8.1,
in order to show that 
∗ is not asymptotically stable it is sufficient to show that the
absolutely continuous spectrum of operator �̃(M̃)�(M) is non-empty. Denoting
by EA the (projection-valued) spectral measure of a self-adjoint operator A, we can
write

�̃(M̃)�(M) = (I − 2E
˜M
((−∞, s0)))(I − 2E

M
((−∞, s0)))

= (I − 2E
˜M2 ((−∞, s20)))(I − 2E

M2 ((−∞, s20))),

and so the question reduces to investigating the geometry of the ranges of the two
spectral projections EM2 ((−∞, s20)) and E

˜M2 ((−∞, s20)). This question has been
studied in [28] in the general framework of scattering theory. We recall the relevant
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results of [28] in the next subsection. They assert that in our case the a.c. spectrum
of the product

E
M
((−∞, s0))E˜M

([s0,∞))E
M
((−∞, s0))

is non-empty. From here, using some general results on the geometry of two
subspaces in a Hilbert space (we use Halmos’ paper [13]) it is not difficult to
derive that the a.c. spectrum of �̃(M̃)�(M) is also non-empty.

9.3 Products of spectral projections. Herewe briefly recall some of the
results of [28], adapted to the particular case at hand. Let A0 and A1 be bounded
(for simplicity) self-adjoint operators in a Hilbert space X, such that the difference
A1 − A0 is a (negative) rank one operator:

A1 − A0 = −〈 · , ω〉ω,

where ω is a non-zero element in X.
Assume that the operators A0 and A1 have a purely absolutely continuous

spectrum on an interval (α, β). Assume also that the derivatives F′
0(s) and F′

1(s),
where

F0(s) := 〈EA0 (−∞, s)ω,ω〉, F1(s) := 〈EA1 (−∞, s)ω,ω〉,
exist for s ∈ (α, β) and are Hölder continuous functions of s. Define

(9.1) κ(s) = π2(F′
0(s))

1/2F′
1(s)(F

′
0(s))

1/2, s ∈ (α, β).

The following fact was proved in [28], see Lemma 3.2(ii) there.

Lemma 9.2. Under the above assumptions the absolutely continuous part of
the operator

(9.2) EA0
((−∞, s))EA1

([s,∞))EA0
((−∞, s))

is unitarily equivalent to the operator of multiplication by x in L2([0,κ(s)], dx).

In Section 9.5 below we take A0 = M2, A1 = M̃2, ω = � ∈ L2(ρ) and show that
the above hypotheses are satisfied and κ(s) > 0, and so the operator (9.2) has a
non-trivial absolutely continuous part. From there we will deduce that the operator
�̃(M̃)�(M) has a non-trivial absolutely continuous part. In order to do this, we
will use some Hilbert space geometry; this is discussed in the next subsection.

Remark. The focus of [28] was the connection between the a.c. spectrum
of combinations of spectral projections (9.2) (and other similar ones) and the
eigenvalues of the scattering matrix of the pair of operators A0, A1. In the case
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at hand (when A1 − A0 is a rank one operator), the scattering matrix is simply a
unimodular function on the a.c. spectrum of A0, and it can be expressed directly
in terms of κ(s). In any case, Lemma 9.2, which was an intermediate step in [28],
suffices for our purposes, and so we are not discussing the scattering matrix here.

9.4 Pairs of projections and the a.c. spectrum of �̃(M̃)�(M). Let
us start with a brief discussion of some of the construction of Halmos’ beautiful
paper [13]. LetP andQ be two orthogonal projections in aHilbert space. Following
Halmos, we will say that P and Q are in generic position, if each of the four
subspaces

(9.3) RanP ∩ RanQ, KerP ∩KerQ, RanP ∩KerQ, KerP ∩ RanQ

are trivial.

Theorem 9.3 ([13]). Let P, Q be two orthogonal projections in a generic

position. Then there exist self-adjoint positive semi-definite commuting contrac-
tions S and C, with S2 + C2 = I and KerS = KerC = {0}, such that the pair P, Q is

unitarily equivalent to the pair(
I 0
0 0

)
,

(
C2 CS

CS S2

)
.

We can now put this together with Lemma 9.2.

Lemma 9.4. Assume, in the hypothesis of Lemma 9.2, that for some s ∈ (α, β)
we have κ(s) > 0. Then the a.c. spectrum of the unitary operator

(I − 2EA0 ((−∞, s)))(I − 2EA1 ((−∞, s)))

coincides with the arc on the unit circle

{1 − 2σ2 + iσ
√
1 − σ2 : σ ∈ [−κ(s),κ(s)]}.(9.4)

In particular, this a.c. spectrum is non-empty.

Proof. Denote

P = EA0 (−∞, s), Q = EA1 (−∞, s).

These projections are not necessarily in generic position, but for our purposes it is
sufficient to consider their generic parts. Namely, let us write our Hilbert space X
as

X = X0 ⊕ Xgen,
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where X0 is the orthogonal sum of the four subspaces (9.3). It is easy to see that
each of these four subspaces is invariant for both P and Q, and therefore Xgen is
also invariant for both P and Q. Furthermore, the pair

Pgen := P|Xgen , Qgen := Q|Xgen

is in a generic position. Thus, according to Theorem 9.3, we can write

(9.5) Pgen = U

(
I 0
0 0

)
U∗, Qgen = U

(
C2 CS

CS S2

)
U∗,

where U is a unitary operator.
Since the restriction of P and Q onto each of the four subspaces (9.3) is

either 0 or I, the absolutely continuous parts of the the operators P(I − Q)P and
(I − 2Q)(I − 2P) coincide with the absolutely continuous parts of their generic
counterparts Pgen(1− Qgen)Pgen and (I − 2Qgen)(I − 2Pgen) respectively.

One can see from (9.5) that the operator S2 is unitarily equivalent to the operator

Pgen(1 −Qgen)Pgen|Xgen,

so the absolutely continuous part of S2 is unitarily equivalent to the absolutely
continuous part of P(I−Q)P, which is described by Lemma 9.2. So, the absolutely
continuous part of S2 is unitarily equivalent to themultiplication by the independent
variable x in L2([0,κ(s)], dx). Alternatively: the absolutely continuous part of S is
unitarily equivalent to the multiplication by x in L2([0,

√
κ(s)], dx).

On the other hand, according to our model (9.5), we have

U∗(I − 2Qgen)(I − 2Pgen)U =

(
−I + 2C2 −2CS

2CS I − 2S2

)
=

(
I − 2S2 −2CS
2CS I − 2S2

)
,

where we have used the identity S2 + C2 = I at the last step. The numerical matrix

B(s) :=

(
1 − 2s2 −2cs
2cs 1 − 2s2

)
, 0 < s < 1, c =

√
1 − s2 > 0

has eigenvalues λ±(s) := 1 − 2s2 ± 2is
√
1 − s2, and therefore B(s) can be decom-

posed as

B(s) = V(s)

(
λ+(s) 0
0 λ−(s)

)
V(s)∗

where V(s) = (vj,k(s))2j,k=1 is a unitary 2 × 2 matrix. The matrix V(s) can be
explicitly computed, and can be chosen so the function s �→ V(s) is continuous
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(and so measurable) on the interval (0, 1). Therefore

U∗(I − 2Qgen)(I − 2Pgen)U = B(S) = V(S)

(
λ+(S) 0
0 λ−(S)

)
V(S)∗,

where V(S) = (vj,k(S))2j,k=1. So (I − 2Qgen)(I − 2Pgen) is unitarily equivalent to the
direct sumλ+(S)⊕λ−(S). Fromherewe see that the a.c. spectrumof (I−2Q)(I−2P)
is given by the arc (9.4), and in particular it is non-empty. �

9.5 Proof of Theorem 9.1. As mentioned above, we take A0 = M2,
A1 = M̃2, ω = � ∈ X = L2(ρ), (α, β) = (a2, b2) in Lemma 9.2; we need to check
that the hypothesis of this Lemma is satisfied and κ(s) > 0. We have

F0(s) = 〈EM2 ((−∞, s))�,�〉 =
∫ √

s

−∞
dρ(s′) =

∫ √
s

−∞
w(s′)ds′,

and so the derivative

F′
0(s) =

d
ds

∫ √
s

−∞
w(s′)ds′ =

1
2
√
s
w(

√
s)

exists and (by our assumptions on w) is Hölder continuous on (a2, b2). Let us
consider F1(s). We use the standard rank one identity (which follows from the
resolvent identity)

T1(z) =
T0(z)

1 − T0(z)
,

where

T0(z) = 〈(M2 − z)−1
�,�〉, T1(z) = 〈(M̃2 − z)−1

�,�〉.
By definition, the operator T0(z) is the Cauchy transform of a Hölder continuous
function, and therefore T0(x + i0) is Hölder continuous on (α, β). Note that in our
case ImT(x + i0) > 0 on the interval (α, β), and so 1 − T0(x + i0) 
= 0 on this
interval. Further, we have

ImT1(x + i0) =
ImT0(x + i0)

|1 − T0(x + i0)|2 ,

and so the densityF′
1(s) = ImT1(s+i0) is alsoHölder continuous and non-vanishing

on (α, β).

We have checked the hypotheses of Lemma 9.2 and we have established that
κ(s) > 0 in (9.1). Using Lemma 9.4, we find that the a.c. spectrum of �̃(M̃)�(M)
is non-empty. The proof of Theorem 9.1 is complete. �
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10 Applications to the cubic Szegő equation

10.1 The cubic Szegő equation. The cubic Szegő equation is the Hamil-
tonian evolution equation

(10.1) i∂tu = P(|u|2u),
whereP is the Szegő projection, i.e., the orthogonal projection from L2(T) ontoH2.
Here u = u(t, z), t ∈ R, z ∈ T, and the projection P is taken in variable z. In this
section for typographical reasons we omit the variable z, and will be using u(t)
instead of more formal u(t, · ).

This equation was introduced in [5] where it has been proved to be wellposed
on the intersection of H2(T) with the Sobolev space Ws,2(T), for every s ≥ 1

2 .
More recently, the wellposedness was extended to BMOA(T) in [10]. In this case,
since BMO(T) ⊂ ⋂

p<∞ Lp(T), the right-hand side of (10.1) is in H2(T), so (10.1)
can be interpreted as an ODE with H2(T)-valued functions.

An important property of this equation is that it admits a Lax pair structure
involving Hankel operators Hu and H̃u, which stimulated the study of the spectral
map �, starting with functions u in H2(T) ∩W

1
2 ,2(T) and VMOA(T); see [8, 7].

Our first result is the following description of the action of the Szegő dynamics
on the set �(BMOAsimp).

Theorem 10.1. Let u0 ∈ BMOAsimp(T) with �(u0) = (ρ,�0, �̃0). Denote

by u the solution of (10.1) such that u(0) = u0. Then, for every t ∈ R, we have
u(t) ∈ BMOAsimp(T) and

�(u(t)) = (ρ, e−its2�0(s), e
its2�̃0(s)).

This result is consistent with Theorem 8.6 with �#(s) = eits
2
. The proof is given

in Sections 10.2–10.4.

An important issue in the study of the cubic Szegő equation is the long time
behavior of its solutions. Firstly let us discuss the boundedness of trajectories.
Using the Lax pair structure, one can prove that trajectories are bounded inW

1
2 ,2(T)

and in BMOA(T). However, in [7], it is proved that trajectories are generically
unbounded in Ws,2(T) for every s > 1

2 .

Secondly comes the problem of almost periodicity of the trajectories in spaces
where they are bounded. Let us recall that a function F = F(x) on the real line with
values in a Banach space X is called almost periodic if it can be approximated
(in C(R;X)) by finite linear combinations of functions of the form F(x) = eiaxψ,
where a ∈ R and ψ ∈ X.
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In [7], it is proven that every trajectory in W
1
2 ,2(T) is almost periodic. Using

the same method, a similar result holds for trajectories in VMOA(T). It is there-
fore natural to ask whether this almost periodicity holds for every trajectory in
BMOA(T). The following theorem shows that the dynamics are much richer in
this case.

Theorem 10.2. Let u0 ∈ BMOAsimp(T) with �(u0) = (ρ,�0, �̃0). Denote
by u = u(t) the solution of (10.1) such that u(0) = u0. Then, if ρ is not a pure

point measure, then the Fourier coefficient û0(t) of u(t) is not almost periodic, and
therefore u = u(t) (as a function with values in BMOA) is not almost periodic.

The proof is given in Section 10.5.

We conclude by discussing the role of the simplicity condition (1.10). In [7],
the action of the Szegő dynamics on the spectral data was described for all compact
operators Hu (without the simplicity assumption). In fact, the formula is exactly
the same as in Theorem 10.1, where �0(s) and �̃0(s) are functions with values in
the set of Blaschke products. The multiplicity of singular values seems to play a
role in the phenomenon of weak turbulence (i.e., growth of high Sobolev norms)
of solutions to the Szegő equations. More precisely, in [7], using the vicinity of
solutions with multiple spectrum, the authors construct a Gδ-dense set of initial
conditions such that the corresponding solutions are weakly turbulent.

10.2 The action of Hu(t) and H̃u(t) for smooth initial data Here we
make the first step towards the proof of Theorem 10.1: we describe the evolution
under the cubic Szegő equation for smooth initial data.

Lemma 10.3. Assume the hypothesis of Theorem 10.1 and assume in addition
that u0 is smooth: u0 ∈ C∞(T)∩H2(T). Then, using our notation (1.1) for spectral
measures, we have

(10.2) ρ
|Hu(t)|
u(t) = ρ

|Hu0 |
u0 , ρ

|˜Hu(t)|
u(t) = ρ

|˜Hu0 |
u0

for all t > 0. Furthermore, for any continuous f and any t > 0 we have

Hu(t)f (|Hu(t)|)u(t) = |Hu(t)|f (|Hu(t)|)�u0 (|Hu(t)|)eitH2
u(t)u(t),(10.3)

H̃u(t)f (|H̃u(t)|)u(t) = |H̃u(t)|f (|H̃u(t)|)�̃u0 (|H̃u(t)|)eit˜H2
u(t)u(t).(10.4)

Proof. Throughout the proof, we write u in place of u(t) if there is no danger
of confusion. For u0 ∈ C∞(T)∩H2(T), we borrow from [9] the following Lax pair
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identities,

dHu

dt
= [Bu,Hu], Bu :=

i
2
H2

u − iT|u|2 ,

dH̃u

dt
= [B̃u, H̃u], B̃u :=

i
2
H̃2

u − iT|u|2 ,

where Ta denotes theToeplitz operatorwith symbol a ∈ L∞(T), Ta : H2 → H2,

Taf = P(af ), f ∈ H2.

Then we define W = W(t), W̃ = W̃(t) to be the solutions of the following linear
ODEs on the set of bounded linear operators on H2(T),

dW
dt

= BuW,
dW̃
dt

= B̃uW̃, W(0) = W̃(0) = I.

One easily checks that W(t) and W̃(t) are unitary operators and

(10.5) Hu(t) = W(t)Hu0W(t)∗, H̃u(t) = W̃(t)H̃u0W̃(t)∗.

Consequently,

|Hu(t)| = W(t)|Hu0 |W(t)∗, |H̃u(t)| = W̃(t)|H̃u0 |W̃(t)∗.

Next, let us identify W(t)∗z0,W(t)∗u(t), W̃(t)∗u(t). We begin with W(t)∗z0:

d
dt
W(t)∗z0 = −W(t)∗Buz

0,

with

Buz
0 =

i
2
H2

uz
0 − iT|u|2z0 = − i

2
H2

uz
0.

Hence
d
dt
W(t)∗z0 =

i
2
W(t)∗H2

uz
0 =

i
2
H2

u0W(t)∗z0.

This yields

W(t)∗z0 = ei
t
2H

2
u0 z0.

Consequently,

W(t)∗u(t) = W(t)∗Hu(t)z
0 = Hu0W(t)∗z0 = Hu0e

i t2H
2
u0 z0,

and therefore, using the anti-linearity of Hu0 ,

(10.6) W(t)∗u(t) = e−i t2H
2
u0u0.
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On the other hand,

d
dt
W(t)∗W̃(t) = −W(t)∗Bu(t)W̃(t) +W(t)∗B̃u(t)W̃(t) = W(t)∗(B̃u(t) − Bu(t))W̃(t)

=
i
2
W(t)∗(H̃2

u(t) − H2
u(t))W̃(t) =

i
2
(W(t)∗W̃(t)H̃2

u0 − H2
u0W(t)∗W̃(t)).

We infer

W(t)∗W̃(t) = e−i t2H
2
u0 ei

t
2
˜H2
u0 ,

and consequently

(10.7) W̃(t)∗u(t) = e−i t2
˜H2
u0 ei

t
2H

2
u0W(t)∗u(t) = e−i t2

˜H2
u0 ei

t
2H

2
u0 e−i t2H

2
u0u0 = e−i t2

˜H2
u0u0.

Next, using (10.6) and (10.5),

〈f (|Hu(t)|)u(t), u(t)〉 = 〈W(t)∗f (|Hu(t)|)u(t),W(t)∗u(t)〉
= 〈f (|Hu0 |) e−i t2H

2
u0u0, e

−i t2H
2
u0u0〉

= 〈f (|Hu0 |)u0, u0〉

and we obtain the first one of the identities (10.2). The second one is obtained in
a similar way.

Next, since u0 ∈ BMOAsimp(T), for every continuous function f we have
(cf. (1.14))

Hu0 f (|Hu0 |)u0 = |Hu0 |�u0 (|Hu0 |)f (|Hu0 |)u0,
H̃u0 f (|H̃u0 |)u0 = |H̃u0 |�̃u0 (|H̃u0 |)f (|H̃u0 |)u0.

Then, using (10.6), (10.7) and (10.5),

W(t)∗Hu(t)f (|Hu(t)|)u(t) = Hu0 f (|Hu0 |)e−i t2H
2
u0u0

= |Hu0 |�u0 (|Hu0 |)f (|Hu0 |)ei
t
2H

2
u0u0

= W(t)∗|Hu(t)|f (|Hu(t)|)�u0 (|Hu(t)|)eitH2
u(t)u(t),

W̃(t)∗H̃u(t)f (|H̃u(t)|)u(t) = H̃u0 f (|H̃u0 |)e−i t2
˜H2
u0u0

= |H̃u0 |�̃u0 (|H̃u0 |)f (|H̃u0 |)ei
t
2
˜H2
u0u0

= W̃(t)∗|H̃u(t)|f (|H̃u(t)|)�̃u0 (|H̃u(t)|)eit˜H2
u(t)u(t),

and finally we arrive at (10.3) and (10.4). �
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10.3 Approximation argument. As the second step, we extend identities
(10.2), (10.3) and (10.4) to the general case of initial data u0 ∈ BMOAsimp. The
new difficulty here is that the operator T|u(t)|2 is unbounded, hence the unitary
operatorsW(t) and W̃(t) are more difficult to define. Therefore we prefer to use an
approximation argument.

Lemma 10.4. Let u ∈ BMOAsimp; then there exists a sequence of polynomial
functions un ∈ BMOAsimp converging to u strongly in H2(T) with a uniform bound

in the BMOA norm.

Proof. Step 1. Approximation by polynomial functions. Take
0 ≤ rn ↗ 1, and define un(z) := u(rnz), z ∈ T. Clearly un → u strongly in H2(T),
and writing Hu in a matrix form (with respect to the standard basis inH2), it is easy
to see that

‖Hun‖ ≤ ‖Hu‖.

Observe that one of the equivalent norms on BMOA is given by ‖u‖BMOA = ‖Hu‖.
It follows that

sup
n

‖un‖BMOA ≤ ‖u‖BMOA.

Functions un are analytic in the closed unit disc D, so they can be approximated by
polynomial functions uniformly in D. Since the norm in C(D) is stronger than the
norm of BMOA, we obtain approximations by polynomial functions in H2 with
the uniform bound on the BMOA norm.

Step 2. Approximation by polynomial functions in BMOAsimp. Denote
byPN the vector space of polynomial functions of degree atmostN, and byPN,simp

the subset of u ∈ PN satisfying the simplicity of spectrum condition (1.10). To
complete the proof of the lemma, it suffices to show that PN,simp is dense in PN .
Given u ∈ PN , we observe that the range of Hu is contained in PN . It follows
that u ∈ PN,simp whenever the (N + 1) vectors u,H2

u(u), . . . ,H
2N
u (u) are linearly

independent, or equivalently whenever the Gram determinant

GN(u) := det〈H2k
u (u),H2�

u (u)〉0≤k,�≤N

is not zero. Since GN(u) is a polynomial function of the real parts and of the
imaginary parts of the Fourier coefficients of u, the set {GN 
= 0} is either empty
or a dense open subset of PN . Therefore we are reduced to proving that PN,simp

is not empty. Consider u(z) := zN−1 + zN . The matrix of the linear Hankel operator
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�u = �∗
u in the basis {zk, k = 0, . . . ,N} of PN ⊃ Ran�u is⎛⎜⎜⎜⎜⎜⎜⎝

0 0 · 1 1
0 · 1 1 0
· · · · ·
1 1 0 · 0
1 0 · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Consequently, �u and so Hu are injective on PN . Moreover, since

H2
u = �uCC�∗

u = �u�
∗
u = �2

u,

one can check that the matrix of H2
u in the same basis is three-diagonal, viz.

H2
u(z

0) = 2z0 + z,

H2
u(z

k) = zk−1 + 2zk + zk+1, if 1 ≤ k ≤ N − 1,

H2
u(z

N) = zN−1 + zN.

From these formulae, we infer, via an induction argument on k, that there exist real
numbers ck,j such thatH2k

u (z0) = zk +
∑

j<k ck,jz
j for k = 0, . . . ,N. We conclude that

the vectors H2k
u (z0), k = 0, . . . ,N, are linearly independent, and, applying Hu, that

H2k
u (u), k = 0, . . . ,N, are linearly independent, or that u ∈ PN,simp. �
Before proceeding, for the purposes of clarity we state a (well-known) simple

fact as a lemma.

Lemma 10.5. Let u, un ∈ BMOA, n ∈ N, with supn‖un‖BMOA < ∞, and
assume that ‖un − u‖H2 → 0 as n → ∞. Then we have the strong convergence

Hun → Hu, H̃un → H̃u and f (|Hun |) → f (|Hu|), f (|H̃un |) → f (|H̃u|) for any
continuous function f .

Proof. For any m ≥ 0 we have

Huz
m = HuS

mz0 = (S∗)mHuz
0 = (S∗)mu

and therefore ‖Hunz
m−Huzm‖H2 →0 as n→0. It follows that ‖Hunp− Hup‖H2 →0

for all polynomials p. The uniform bound on ‖un‖BMOA is equivalent to the
uniform bound on the operator norms of Hun , and so by the “ε/3-argument”
we conclude that Hun → Hu strongly. It follows that H2

un → H2
u strongly, and

therefore f (H2
un) → f (H2

u) for any continuous function f . Since |Hu| =
√
H2

u , we
also obtain f (|Hun |) → f (|Hu|) for any continuous f .

Finally, since H̃u = HS∗u and ‖S∗un → S∗u‖H2 → 0 with the uniform bound on
the BMO norms of S∗un, we obtain the corresponding statements for H̃un . �
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We also quote a corollary of the main result of [10] on the continuous depen-
dence of the solution to the cubic Szegő equation on the initial data.

Proposition 10.6 ([10, Theorem 1]). Suppose u0, u0,n ∈ BMOA, n ≥ 1 are

such that ‖u0 − u0,n‖H2 → 0 and supn‖u0,n‖BMOA < ∞. Let u(t), un(t) be the
solutions to (10.1) with the initial data u(0) = u0, un(0) = u0,n. Then for any t > 0,
we have ‖un(t) − u(t)‖H2 → 0 as n → ∞. Furthermore, the BMO norm is

preserved by the Szegő dynamics, i.e.,

‖u(t)‖BMOA = ‖u0‖BMOA, t > 0.

Now we are ready to extend Lemma 10.3 to non-smooth initial data.

Lemma 10.7. Assume the hypothesis of Theorem 10.1. Then for any contin-
uous f relations (10.2), (10.3) and (10.4) hold true.

Proof. Using Lemma 10.4, for a given u0 ∈ BMOAsimp we construct a se-
quence of polynomial functions u0,n ∈ BMOAsimp converging to u0 in H2(T) and
uniformly bounded in BMO norm. For each u0,n, the conclusion of Lemma 10.3
holds. Our purpose is to pass to the limit n → ∞ in (10.2), (10.3) and (10.4).

Step 1. Convergence of measures: passing to the limit in (10.2). For
each n, we write (10.2) in the weak form as

〈f (|Hun(t)|)un(t), un(t)〉 = 〈f (|Hun(0)|)un(0), un(0)〉,(10.8)

〈f (|H̃un(t)|)un(t), un(t)〉 = 〈f (|H̃un(0)|)un(0), un(0)〉
for any continuous function f . By Lemma 10.5, we can pass to the limit n → ∞
in the right-hand side. Similarly, by Proposition 10.6 combined with Lemma 10.5,
we can pass to the limit in the left-hand side. We obtain the desired relations (10.2),
expressed in the weak form.

Direction of further proof. For every n, we have the identities (10.3) and
(10.4):

Hun(t)f (|Hun(t)|)un(t) = |Hun(t)|f (|Hun(t)|)�un(0)(|Hun(t)|)eitH2
un(t)un(t),(10.9)

H̃un(t)f (|H̃un(t)|)un(t) = |H̃un(t)|f (|H̃un(t)|)�̃un(0)(|H̃un(t)|)eit˜H2
un(t)un(t).(10.10)

Our aim is to pass to the limit here as n → ∞.
In order to motivate the next step, let us make the following remark. Assume

that �un(0) was a continuous function independent of n. Then we could pass to the
limit in (10.9) by Lemma 10.5. Unfortunately, this assumption is not true and so
we need to use a roundabout argument; we will pass to the limit in the right-hand
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sides of (10.9) and (10.10) by considering the weak forms of these identities. But
first we need to establish the weak convergence of spectral measures multiplied by
the factors �un(0) and �̃un(0) appearing in the right-hand sides.

Step 2. Convergence of measures multiplied by �, �̃. At t = 0 by
Lemma 10.5 we have for every continuous function f

Hun(0)f (|Hun(0)|)un(0) → Hu(0)f (|Hu(0)|)u(0).
Since both un(0) and u(0) are in BMOAsimp, we can write this as

(10.11) �un(0)(|Hun(0)|)f (|Hun(0)|)un(0) → �u(0)(|Hu(0)|)f (|Hu(0)|)u(0),
and similarly we obtain

�̃un(0)(|H̃un(0)|)f (|H̃un(0)|)un(0) → �̃u(0)(|H̃u(0)|)f (|H̃u(0)|)u(0).
Taking the inner product of (10.11) with un(0) and observing that

‖un(0)− u(0)‖H2 → 0,

we find

(10.12)
∫ ∞

0
�un(0)(s)f (s) dρn(s) →

∫ ∞

0
�u(0)(s)f (s) dρ(s),

where ρn = ρ
|Hun (0)|
un(0) and ρ = ρ

|Hu(0)|
u(0) . Similarly, we obtain∫ ∞

0
�̃un(0)(s)f (s) dρ̃

n(s) →
∫ ∞

0
�̃u(0)(s)f (s) dρ̃(s),

where ρ̃n = ρ
|˜Hun (0)|
un(0) and ρ̃ = ρ

|˜Hu(0)|
u(0) .

Step 3. Passing to the limit in (10.9), (10.10). We will pass to the limit
in (10.9); the second identity (10.10) can be treated similarly. Fix t > 0 and denote

v(t) := Hu(t)f (|Hu(t)|)u(t), w(t) := |Hu(t)|f (|Hu(t)|)�u(0)(|Hu(t)|)eitH2
u(t)u(t);

our aim is to prove that v(t) = w(t). By Proposition 10.6 and Lemma 10.5, we have

vn(t) := Hun(t)f (|Hun(t)|)un(t) → Hu(t)f (|Hu(t)|)u(t) = v(t)

in H2, and therefore
〈vn(t), un(t)〉 → 〈v(t), u(t)〉.

On the other hand, by (10.9) and (10.8),

〈vn(t), un(t)〉 = 〈|Hun(t)|f (|Hun(t)|)�un(0)(|Hun(t)|)eitH2
un(t)un(t), un(t)〉

= 〈|Hun(0)|f (|Hun(0)|)�un(0)(|Hun(0)|)eitH2
un(0)un(0), un(0)〉

=
∫ ∞

0
s�un(0)(s)f (s)e

its2dρn(s).
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Using (10.12), followed by (10.2) (which was established at the first step of the
proof), we find

〈vn(t), un(t)〉 →
∫ ∞

0
s�u(0)(s)f (s)e

its2dρ(s) = 〈w(t), u(t)〉.

Putting this together, we obtain

〈v(t), u(t)〉 = 〈w(t), u(t)〉.
Changing f into fg, the above identity implies that the orthogonal projection of v(t)
onto 〈u(t)〉H2

u(t)
equals w(t). Since v(t) and w(t) have the same norm, we conclude

that these two vectors are equal. �

10.4 The simplicity of spectrum; concluding the proof of Theo-
rem 10.1. It remains to prove that u(t) ∈ BMOAsimp for every t ∈ R. This is a
consequence of the following lemma.

Lemma 10.8. Let u ∈ BMOA(T) be such that

(10.13) Hu(〈u〉H2
u
) ⊂ 〈u〉H2

u
, H̃u(〈u〉˜H2

u
) ⊂ 〈u〉

˜H2
u
.

Then u ∈ BMOAsimp.

Proof. Recall that, since H̃2
u = H2

u − 〈·, u〉u, we have 〈u〉
˜H2
u
= 〈u〉H2

u
= 〈u〉.

Denote
Z := RanHu ∩ 〈u〉⊥;

our aim is to prove that Z = {0}. By definition, we haveHu(Z) ⊂ Z and H̃u(Z) ⊂ Z.
Moreover every h ∈ Z can be written as

h = lim
n→∞Huhn, hn := Hu(H

2
u +

1
n )

−1h ∈ Z.

Consequently, S∗h = limn→∞ H̃uhn ∈ Z and

〈h, z0〉 = lim
n→∞〈Huhn, z

0〉 = lim
n→∞〈Huz

0, hn〉 = lim
n→∞〈u, hn〉 = 0.

We conclude that S∗(Z) ⊂ Z and Z ⊥ z0, hence Z ⊥ zn for every n, and finally
Z = {0}. �

Proof of Theorem 10.1. By Lemma 10.7, we have the inclusions (10.13)
for u = u(t). It follows that u(t) ∈ BMOAsimp. The first relation in (10.2) shows that
the measure ρ = ρ

|Hu(t)|
u(t) is independent of t. Relations (10.3) and (10.4) show that

the dynamics of the unimodular functions � and �̃ is as claimed in the statement
of the theorem. �
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10.5 Proof of Theorem 10.2. By Theorem 2.2 (see (2.8)), we have

ûk(t) = 〈(
(t)∗)k�, q(t)〉L2(ρ),

where 
(t) is given by (2.7) with functions �, �̃ replaced by

�u(t)(s) = e−its2�0(s) and �̃u(t)(s) = eits
2
�̃0(s)

respectively, and the function q(t) = q(t, · ) is given by
q(t, s) = �u(t)(s)/s = eits

2
�0(s)/s.

In particular, we get for k = 0 that

û0(t) = 〈�, q(t)〉L2(ρ) =
∫
R

e−its2 �0(s)
s

dρ(s).

That means the function û0(t) is the Fourier transform of the image (pushforward)
of the complex measure (of bounded variation)

�0(s)
s

dρ(s)

under the map s �→ s2. Therefore, Theorem 10.2 follows from the following
lemma.

Lemma 10.9. Let μ be a complex Borel measure on R of bounded variation

such that the Fourier transform

μ̂(t) =
∫
R

e−itλ dμ(λ)

is an almost periodic function. Then μ is pure point.

Proof. We decompose μ as the sum of a pure point measure and a diffuse
measure

μ =
∞∑
j=1

ajδ(λ − λj) + μd,

where
∑∞

j=1 |aj| < ∞ and μd({λ}) = 0 for every λ ∈ R. Then

μ̂(t) =
∞∑
j=1

aje
−iλjt + μ̂d(t),

and the almost periodicity of μ̂ implies the almost periodicity of μ̂d. For every
T > 0, the Fubini theorem yields

1
2T

∫ T

−T
|μ̂d(t)|2 dt =

∫
R

∫
R

sinT(λ − λ′)
T(λ − λ′)

dμd(λ)dμd(λ
′).
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As T → +∞, the integrand in the right-hand side tends to 0 for every λ 
= λ′.
Since μd does not see points, μd ⊗ μd does not see the diagonal. Therefore the
dominated convergence theorem implies that the right-hand side tends to 0. The
almost periodic function μ̂d satisfies

1
2T

∫ T

−T
|μ̂d(t)|2 dt → 0

as T → +∞, hence it is identically 0. From the injectivity of the Fourier transfor-
mation, this implies μd = 0, hence μ is pure point. �

Appendix A Proofs of the reductions to the spectral
properties of �̃(M̃)�(M)

Here we give the proofs of two technical statements: Lemma 8.4 and Theorem 8.5.

A.1 Sufficient conditions for 
0 − I ∈ S1 in terms of ρ.

Proof of Lemma 8.4. We start with the formula

M =
2
π

∫ ∞

0
M2(M2 + t2I)−1 dt =

2
π

∫ ∞

0
(I − t2(M2 + t2I)−1)dt;

if M is a non-negative real number, this is a trivial identity, and if M is a positive
semi-definite self-adjoint operator, it suffices to combine the scalar identity with
the spectral representation of M. Of course, the same identity holds for M̃.

The operator M̃2 = M2 − 〈 · ,�〉� is a rank one perturbation of M, so by the
standard resolvent identity

(M̃2 + t2I)−1 = (M2 + t2I)−1 +
1

�(−t2)
〈 · , (M2 + t2I)−1

�〉(M2 + t2I)−1
�,

where � is the perturbation determinant,

�(−t2) = 1− 〈(M2 + t2I)−1
�,�〉 = 1−

∫ ∞

0

dρ(s)
s2 + t2

,

we get that

(A.1) M̃ = M − 2
π

∫ ∞

0

t2

�(−t2)
〈 · , (M2 + t2I)−1

�〉(M2 + t2I)−1
� dt.

Recall that 
∗
0 = M̃M−1. Multiplying (A.1) by M−1 on the right, we find that
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I − 
∗
0 can be represented as an integral of rank one operators:

(A.2)

I − 
∗
0 =

2
π

∫ ∞

0

t2

�(−t2)
〈 · ,M−1(M2 + t2I)−1

�〉(M2 + t2I)−1
� dt

=
2
π

∫ ∞

0

t2

�(−t2)
〈 · , at〉bt dt,

at(s) := s−1(s2 + t2)−1, bt(s) := (s2 + t2)−1.

First assume (8.2). Then

�(−t2) ≥ �(0) = 1 −
∫ ∞

0

dρ(s)
s2

> 0.

We estimate the norms of at and bt as follows:

‖at‖2 =
∫ ∞

0
s−2(s2 + t2)−2dρ(s) ≤ t−4

∫ ∞

0
s−2dρ(s) = Ct−4, t > 0,

‖bt‖2 =
∫ ∞

0
(s2 + t2)−2dρ(s) ≤ t−2+ε

∫ ∞

0
s−2−εdρ(s) = Ct−2+ε, 0 < t < 1,

‖bt‖2 =
∫ ∞

0
(s2 + t2)−2dρ(s) ≤ t−4

∫ ∞

0
dρ(s) = Ct−4, t > 1.

Then

‖I − 
∗
0‖S1 ≤ C

∫ ∞

0
t2‖at‖‖bt‖dt ≤ C

∫ 1

0
t2t−2t−1+ε/2dt + C

∫ ∞

1
t2t−4dt < ∞.

Next, assume (8.1). Then

(A.3)
�(−t2) =

∫ ∞

0

dρ(s)
s2

−
∫ ∞

0

dρ(s)
s2 + t2

= t2
∫ ∞

0

dρ(s)
s2(s2 + t2)

≥ t2
∫ ∞

0
s−4dρ(s) = ct2.

We estimate the norms of at and bt as follows:

‖at‖2 =
∫ ∞

0
s−2(s2 + t2)−2dρ(s) ≤ t−2+ε

∫ ∞

0
s−4−εdρ(s) = Ct−2+ε, t > 0,

‖bt‖2 =
∫ ∞

0
(s2 + t2)−2dρ(s) ≤

∫ ∞

0
s−4dρ(s) = C, 0 < t < 1,

‖bt‖2 =
∫ ∞

0
(s2 + t2)−2dρ(s) ≤ t−4

∫ ∞

0
dρ(s) = Ct−4, t > 1.

Then

‖I − 
∗
0‖S1 ≤ C

∫ ∞

0
‖at‖‖bt‖dt ≤ C

∫ 1

0
t−1+ε/2dt + C

∫ ∞

1
t−1+ε/2t−2dt < ∞.

The proof is complete. �
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A.2 Trace class inclusions for (I − 
∗
0)M

ε. In this subsection we prove
preliminary statements that will be used below in the proof of Theorem 8.5.

Lemma A.1. For any ε > 0, the operator (I − 
∗
0)M

ε is trace class.

Proof. We may assume 0 < ε < 1. As in (A.2), we represent (I − 
∗
0)M

ε as
an integral of rank one operators:

(I − 
∗
0)M

ε =
2
π

∫ ∞

0

t2

�(−t2)
〈 · , at〉bt dt,

at(s) = s−1+ε(s2 + t2)−1, bt(s) = (s2 + t2)−1.

First assume that ∫ ∞

0

dρ(s)
s2

< 1.

Then �(−t2) ≥ �(0) > 0. We estimate the norms of at and bt as follows:

‖at‖2 =
∫ ∞

0
s−2+2ε(s2 + t2)−2dρ(s) ≤ (t2)−2+ε

∫ ∞

0
s−2+2ε(s2 + t2)−εdρ(s)

≤ t−4+2ε
∫ ∞

0
s−2+2εs−2εdρ(s) = Ct−4+2ε, t > 0,

‖bt‖2 =
∫ ∞

0
(s2 + t2)−2dρ(s) ≤ t−2

∫ ∞

0
s−2dρ(s) = Ct−2, 0 < t < 1,

‖bt‖2 =
∫ ∞

0
(s2 + t2)−2dρ(s) ≤ t−4

∫ ∞

0
dρ(s) = Ct−4, t > 1.

Then

‖(I − 
∗
0)M

ε‖S1 ≤
∫ ∞

0
t2‖at‖‖bt‖dt

≤ C
∫ 1

0
t2t−2+εt−1dt + C

∫ ∞

1
t2t−2+εt−2dt < ∞.

Now consider the case ∫ ∞

0

dρ(s)
s2

= 1.

For t > 1, as in (A.3), we have �(−t2) ≥ ct2 and the above estimates for ‖at‖
and ‖bt‖ will do. For 0 < t < 1 we need to be more careful. We write

t−2�(−t2) =
∫ t

0

dρ(s)
s2(s2 + t2)

+
∫ ∞

t

dρ(s)
s2(s2 + t2)

≥ 1
2t2

∫ t

0

dρ(s)
s2

+
1
2

∫ ∞

t

dρ(s)
s4

.

Next,

‖bt‖2 =
∫ ∞

0

dρ(s)
(s2 + t2)2

=
∫ t

0

dρ(s)
(s2 + t2)2

+
∫ ∞

t

dρ(s)
(s2 + t2)2

≤ 1
t2

∫ t

0

dρ(s)
s2

+
∫ ∞

t

dρ(s)
s4
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and similarly

‖at‖2 =
∫ ∞

0

s2εdρ(s)
s2(s2 + t2)2

=
∫ t

0

s2εdρ(s)
s2(s2 + t2)2

+
∫ ∞

t

s2εdρ(s)
s2(s2 + t2)2

≤ 1
t4−2ε

∫ t

0

dρ(s)
s2

+
1

t2−2ε

∫ ∞

t

dρ(s)
s4

= t−2+2ε
(
1
t2

∫ t

0

dρ(s)
s2

+
∫ ∞

t

dρ(s)
s4

)
.

Integrating, we find

‖(I − 
∗
0)M

ε‖S1 ≤ 2
π

∫ 1

0

t2

�(−t2)
‖at‖‖bt‖dt + C

∫ ∞

1
‖at‖‖bt‖dt

≤ 2
∫ 1

0
t−1+εdt + C

∫ ∞

1
t−2+εt−2dt < ∞.

The proof is complete. �

LemmaA.2. For any ε > 0, the operatorsMε(I−
∗
0), M̃

ε(I−
∗
0), (I−
∗

0)M̃
ε

are trace class.

Proof. Taking adjoints in the previous lemma, we find Mε(I − 
0) ∈ S1 for
any ε > 0. Since


0

∗
0 = I − 〈 · , q0〉q0, q0(s) = 1/s,

we have
Mε(I − 
∗

0) = Mε(
0 − I)
∗
0 + rank one operator,

and soMε(I − 
∗
0) is trace class.

Next, from M̃2 ≤ M2 by Heinz inequality we have M̃2ε ≤ M2ε for any
0 < ε < 1, and so by Lemma 4.1, M̃εM−ε is a bounded operator. Therefore
the operators

M̃ε(I − 
∗
0) = (M̃εM−ε)(Mε(I − 
∗

0))

and
M̃ε(I − 
0) = (M̃εM−ε)(Mε(I − 
0))

are trace class. �

A.3 Proof of Theorem 8.5 (reduction to a.c. part of �̃(M̃)�(M)). We
denote

c = �̃(0+)�(0+), W = �̃(M̃)�(M).

First we prove a lemma.
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Lemma A.3. Under the hypothesis of Theorem 8.5, we have

(A.4) 
∗ = c
∗
0 − cI +W + trace class operator,

and the products

(A.5) (
∗
0− I)(W−cI), (W−cI)(
∗

0− I), (
0− I)(W−cI), (W−cI)(
0− I)

are trace class.

Proof. First let us prove that the operators

(�(M)− �(0+)I)(I − 
∗
0), (I − 
∗

0)(�(M)− �(0+)I),

(�̃(M̃) − �̃(0+)I)(I − 
∗
0), (I − 
∗

0)(�̃(M̃) − �̃(0+)I)

are trace class. The first two inclusions follow from Lemmas A.1 and A.2 by
writing

�(M)− �(0+)I = Mεϕ(M) = ϕ(M)Mε,

where

ϕ(t) = t−ε(�(t)− �(0+)), ϕ ∈ L∞.

The second two inclusions are obtained in the same way from Lemma A.2.
Now consider the four operator products (A.5). For the first one, we have

(
∗
0 − I)(�̃(M̃)�(M)− �̃(0+)�(0+)I)

=(
∗
0 − I)(�̃(M̃) − �̃(0+)I)�(M) + �̃(0+)(


∗
0 − I)(�(M)− �(0+)I),

where the right-hand side is trace class by the first part of the proof. The other
three operators are considered in the same way.

Let us prove (A.4). We have


∗ = �̃(M̃)
∗
0�(M)

= �̃(M̃)(
∗
0 − I)�(M) +W

= �̃(0+)(

∗
0 − I)�(M) + (�̃(M̃) − �̃(0+))(


∗
0 − I)�(M) +W

= �̃(0+)(

∗
0 − I)�(0+) + �̃(0+)(


∗
0 − I)(�(M)− �(0+))

+ (�̃(M̃) − �̃(0+))(

∗
0 − I)�(M) +W

= c(
∗
0 − I) +W + trace class operator,

where we have used the first part of the proof at the last step. �
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Proof of Theorem 8.5. Now let us give the proof of Theorem 8.5. We
shall denote by Aac the a.c. part of a self-adjoint operator A and by � the unitary
equivalence between operators.

From Lemma A.3 it follows that

Re(
∗ − cI) = Re(c
∗
0 − cI) + Re(W − cI) + trace class operator

and

Re(c
∗
0 − cI) Re(W − cI) ∈ S1, Re(W − cI) Re(c
∗

0 − cI) ∈ S1.

Applying Ismagilov’s theorem and the Kato-Rosenblum theorem (see Section 4),
we find

(Re(
∗ − cI))ac � (Re(c
∗
0 − cI))ac ⊕ (Re(W − cI))ac.

Shifting all operators here by Re c, this simplifies to

(A.6) (Re
∗)ac � (Re(c
∗
0))ac ⊕ (ReW)ac.

This is our key formula. The rest of the proof proceeds slightly differently,
depending on the defect indices of 
∗.

The case of defect indices (1, 1). Recall that in this case by Theorem 4.4
(applied to c
∗

0), Re(c

∗
0) has a purely singular spectrum. By (A.6), it follows that

(Re
∗)ac � (ReW)ac.

Now by Theorem 7.2(ii), 
∗ is asymptotically stable iff the spectrum of ReW is
singular. Applying Proposition 4.9, we see that this is true iff the spectrum ofW is
singular. The proof in this case is complete.

The case of defect indices (1, 0). In this case, the proof is similar but we
have to look at the multiplicity of the a.c. spectrum.

Here 
∗
0 � S∗ and so Re(c
∗

0) � Re(cS∗), where Re(cS∗) (which is a Jacobi
matrix) has a purely a.c. spectrum [−1, 1] of multiplicity one. From (A.6) we find

(A.7) (Re
∗)ac � (Re(cS∗))ac ⊕ (ReW)ac.

Looking at the multiplicity function of the a.c. spectrum and applying Theo-
rem 7.2(i), we find that 
∗ is asymptotically stable if and only if the second term
in (A.7) disappears, i.e., if and only if the spectrum of W is singular. The proof is
complete. �
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Appendix B Proof of Theorem 1.5

Denote for brevity R = RanHu. We first prove that KerHu = {0} is equivalent
to z0 ∈ R \ R.

Assume that KerHu = {0}. Then R = H2 and so, of course, z0 ∈ R; we need
to prove that z0 /∈ R. Suppose z0 ∈ R; then z0 = Huw for some w ∈ H2. Denote
ψ = zw; then Huψ = HuSw = S∗Huw = 0, and so ψ ∈ KerHu, which contradicts
our assumption.

Assume that KerHu 
= {0}. Suppose z0 ∈ R; we need to check that z0 ∈ R. By
Beurling’s theorem,KerHu = ϕH2 for some inner functionϕ. Since z0 ∈ R, we have
z0 ⊥ KerHu = ϕH2 and so z0 ⊥ ϕ. Then ϕ = Sw for some inner function w. We
have 0 = Huϕ = HuSw = S∗Huw, soHuw is a constant function. This constant func-
tion is non-zero, because otherwise we would have w ∈ KerHu = ϕH2 = zwH2,
which is impossible. Thus, normalizingw if necessary, we find that z0 = Huw, and
so z0 ∈ R.

Next, we prove that z0 ∈ R is equivalent to the first condition in (1.21). Indeed,
z0 ∈ R is equivalent to

∫ ∞
0 dρ|Hu|

z0 (s) = 1. Since

dρ|Hu|
u (s) = dρ|Hu|

Huz0
(s) = s2dρ|Hu|

z0 (s),

this is equivalent to
∫ ∞
0 s−2dρ|Hu|

u (s) = 1, which is the first condition in (1.21).
Finally, suppose z0 ∈ R; let us prove that z0 /∈ R is equivalent to the second

condition in (1.21). If z0 = Huw with w ∈ H2, then

dρ|Hu|
z0 (s) = dρ|Hu|

Huw
(s) = s2dρ|Hu|

w (s),

and so ∫ ∞

0
s−4dρ|Hu|

u (s) =
∫ ∞

0
s−2dρ|Hu|

z0 (s) =
∫ ∞

0
dρ|Hu|

w (s) < ∞.

Conversely, if
∫ ∞
0 s−4dρ|Hu|

u (s) < ∞, then u = H2
uw for some w ∈ H2. It follows

that
Hu(z

0 − Huw) = u− H2
uw = 0,

and so z0 − Huw ∈ KerHu. Since by assumption z0 ∈ R, we have z0 − Huw = 0,
so z0 ∈ R. The proof of Theorem 1.5 is complete. �

Appendix C Proof of Theorem 4.4

While it is probably possible to give an “elementary” proof of Theorem 4.4,
bypassing the Sz.-Nagy–Foiaş functional model, we prefer a more “high brow”
approach, since it highlights a lot of interesting connections.
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C.1 Functionalmodel for c.n.u. contractionswith defect indices (1, 1).
Let us recall some known facts about the Sz.-Nagy–Foiaş functional model for
contractions, focussing on the case of defect indices (1, 1).

Any c.n.u. contraction T is unitarily equivalent to its functional model,
which is completely determined by the so-called characteristic function θ of the
operator T . This characteristic function θ is generally an operator-valued one; but
in the case of defect indices (1, 1) it is a scalar-valued strictly contractive (i.e.,
|θ(0)| < 1) analytic function in the unit disc D.

If the characteristic function θ of T is an inner function, then the model space
for T is the space Kθ defined above in Section 4.2, and the operator T is unitarily
equivalent to the compressed shift Sθ.

If θ is not inner, then the model is more complicated; in particular, in this case
the model space consists of vector-valued functions with values in L2. However,
we do not need the complete description of the model here: we only need the
following well-known fact.

Proposition C.1. Let T be a c.n.u. contraction with defect indices (1, 1), and
let θ be its characteristic function.

(i) If θ is inner, then both T and T∗ are asymptotically stable.
(ii) If θ is not inner, then neither T nor T∗ are asymptotically stable.

This proposition follows, for example, from [22, Proposition VI.3.5]. In this
proposition T ∈ C·0 means that T∗ is asymptotically stable, and T ∈ C0· means
that T is asymptotically stable. Note that for scalar-valued functions the notion of
inner and ∗-inner functions coincide.

Of course, part (i) of Proposition C.1 follows directly from the fact that both
the compressed shift Sθ and its adjoint S∗

θ are asymptotically stable; this is an easy
exercise.

C.2 Rank one unitary extensions and characteristic function. For
a contraction T with defect indices (1, 1) there exists a rank one perturbationK such
that the operator V = T + K (which we will call a rank one unitary extension
of T) is unitary.

To construct such V , it suffices to notice that T acts unitarily from (DT∗)⊥

onto (DT )
⊥, and therefore it maps the one-dimensional defect space DT∗ onto the

defect spaceDT . Replacing the action of T onDT∗ by a unitary operator fromDT∗

to DT yields the desired rank one unitary extension V . Clearly, such an extension
is not unique and any two such extensions differ by a rank one operator.
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For a unitary operator V in a Hilbert space, a subspace E is called ∗-cyclic if
the linear span of the set {VnE : n ∈ Z} is dense in our Hilbert space. If V = T +K
is a rank one unitary extension of a contraction T with defect indices (1, 1), then
we can say that T = V − K is a rank one perturbation of the unitary operator V .

Let b ∈ RanK be a unit norm vector. It is a simple exercise (see, e.g., [19,
Section 1] or [20, Section 1]) to show that T can be represented as

(C.1) T = V + (γ − 1)〈 · ,V∗b〉b

with γ ∈ D.

It is also not hard to see that if span{b} = RanK is ∗-cyclic for V and |γ| < 1,
then T is c.n.u. For the formal proof see [20, Lemma 1.4], where a more general
case of finite rank perturbations was treated. We mention that in our case the
matrix � from [20] reduces to a scalar |γ| < 1.

On the other hand, if RanK is not a ∗-cyclic subspace for V , then trivially T
is not c.n.u. Indeed, in this case the subspace (span{Vnb : n ∈ Z})⊥ is a reducing
subspace for both V and T , and T coincides with V there.

Combining these facts, we get the following statement.

Proposition C.2. Let T be a c.n.u. contraction with defect indices (1, 1), and
let V = T + K be a rank one unitary extension of T. Then RanK is a ∗-cyclic
subspace for V.

Finally, the following well-known statement relates the spectral properties of a
rank one unitary extension and the characteristic function of a c.n.u. contraction.

Proposition C.3. Let T be a c.n.u. contraction with defect indices (1, 1), and
let V = T + K be a rank one unitary extension of V. Then the characteristic
function θ of T is inner if and only if V has a purely singular spectrum.

Remark. The choice of the extension V is not important. Indeed, if V1 and V2

are two such extensions, then V1 − V2 is a rank one operator, and so by the Kato–
Rosenblum theorem, V1 has a purely singular spectrum if and only if V2 has the
same property.

Proof of Proposition C.3. D. Clark [2] has described all rank one unitary
extensions of the compressed shift Sθ; in particular, he showed that all these
extensions have a purely singular spectrum. This proves that if the characteristic
function θ is inner, then all rank one unitary extensions have a purely singular
spectrum.
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To prove the converse, we compute the characteristic function of the operator
T = Tγ given by (C.1). For the case γ = 0 the characteristic function θ = θ0 is given
by the relation

(C.2)
1 + θ0(z)
1 − θ0(z)

=
∫
T

1 + zξ

1 − zξ
dρV

f (ξ),

where ρV
f is the spectral measure of V , corresponding to the unit vector b. For

γ 
= 0 the corresponding characteristic functions θ = θγ can be computed as a linear
fractional transformation of θ0,

(C.3) θγ =
θ0 − γ

1 − γθ0
,

see [19, Section 2.4] for the details. One can see immediately from (C.2) that θ0 is
inner if and only if the measure ρV

f is purely singular. Identity (C.3) implies that
the same holds for all θγ. �

C.3 Proof of Theorem 4.4. It is convenient to introduce one more equiv-
alent condition:
(v) Any rank one unitary perturbation V of T has purely singular spectrum.

The statement (iv) means that the characteristic function of T is inner, see Sec-
tion C.1.

Equivalence of (i) ⇐⇒ (ii) ⇐⇒ (iv) follows from Proposition C.1.
Equivalence (v) ⇐⇒ (iv) follows from Proposition C.3.
To show that (v) ⇐⇒ (iii), let us notice that ReV and V have a purely singular

spectrum simultaneously, see Proposition 4.9. But ReT is a finite rank perturbation
of ReV , so the Kato–Rosenblum Theorem implies the desired equivalence.

The proof of Theorem 4.4 is complete. �
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CNRS, UMR 8628, FRANCE
email: patrick.gerard@universite-paris-saclay.fr

Alexander Pushnitski
DEPARTMENT OF MATHEMATICS
KING’S COLLEGE LONDON

STRAND, LONDON, WC2R 2LS, UK
email: alexander.pushnitski@kcl.ac.uk

Sergei Treil
DEPARTMENT OF MATHEMATICS
BROWN UNIVERSITY

PROVIDENCE, RI 02912, USA
email: treil@math.brown.edu

(Received November 14, 2022 and in revised form August 24, 2023)


	Introduction
	The problem of surjectivity
	Proofs of preliminary results
	Operator theoretic background
	Reduction to asymptotic stability: proof of Theorem 2.1
	Initial results about asymptotic stability
	Asymptotic stability and singular spectrum
	Reduction to spectral properties of  Psi Psi
	The self-adjoint case
	Applications to the cubic Szego equation
	Proofs of the reductions to the spectral properties of  Psi Psi
	Proof of Theorem 1.5
	Proof of Theorem 4.4
	References

