AN INVERSE SPECTRAL PROBLEM FOR NON-COMPACT
HANKEL OPERATORS WITH SIMPLE SPECTRUM

By

PATRICK GERARD, ALEXANDER PUSHNITSKI AND SERGEI TREIL*

Abstract. We consider an inverse spectral problem for a class of non-compact
Hankel operators H such that the modulus of H (restricted onto the orthogonal
complement to its kernel) has simple spectrum. Similarly to the case of compact
operators, we prove a uniqueness result, i.e., we prove that a Hankel operator from
our class is uniquely determined by the spectral data. In other words, the spectral
map, which maps a Hankel operator to the spectral data, is injective. Further, in
contrast to the compact case, we prove the failure of surjectivity of the spectral
map, i.e., we prove that not all spectral data from a certain natural set correspond to
Hankel operators. We make some progress in describing the image of the spectral
map. We also give applications to the cubic Szegé equation. In particular, we
prove that not all solutions with initial data in BMOA are almost periodic; this is
in a sharp contrast to the known result for initial data in VMOA.
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1 Introduction

1.1 Overview. In the mid-1980s, Khrushchev and Peller [16], motivated
by the spectral theory of stationary Gaussian processes, asked to describe all non-
negative self-adjoint operators that are unitarily equivalent to the modulus of a
Hankel operator I (i.e., to the operator |T'| := (I'"*T")!/?).

This problem was actively studied from the mid 1980s to early 1990s, see
[31, 32, 34, 25], until the final result was obtained by Treil [33]: any positive
semi-definite self-adjoint operator that is non-invertible and whose kernel is either
trivial or infinite-dimensional is unitarily equivalent to the modulus of a Hankel
operator. This gives a complete solution to the problem, since it is easy to see that
any Hankel operator is not invertible and cannot have a finite-dimensional kernel.

Later, motivated by problems in control theory, Megretskii, Peller and Treil
started to investigate of the analogous problem for self-adjoint Hankel operators.
The question was to describe all possible types of spectral measures and the
multiplicity functions, corresponding to self-adjoint Hankel operators.

A complete solution to this problem was given in [21] (also see [21] for the
history of the problem). The answer was slightly more complicated than for the
modulus of a Hankel operator: besides the obvious properties of non-invertibility
and the absence of a finite-dimensional kernel, some “almost symmetry” property
of the spectral multiplicity function was also required.

In both of the these problems, the spectral datum! (i.e., the type of the spec-
tral measure and the multiplicity function) does not determine the corresponding
Hankel operator uniquely: in fact, with the exception of trivial cases, there are
infinitely many self-adjoint Hankel operators with the same spectral datum.

Iwe use the convention singular: datum, plural: data.
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In the early 2010s, the interest in inverse spectral problems for Hankel opera-
tors was renewed due to the work of Gérard and Grellier [5, 6] on the cubic Szegd
equation. This is a totally non-dispersive evolution equation which is completely
integrable and possesses a Lax pair, which involves a Hankel operator (see Sec-
tion 10.1 for the details). Motivated by this, in [8] Gérard and Grellier developed a
new type of direct and inverse spectral theory for compact Hankel operators. The
Hankel operators appearing in this theory are generally not self-adjoint, and the
language of anti-linear operators gives a convenient way to represent the spectral
datum in this case.

Another new feature of this theory is that the spectral datum was constructed
from the pair of Hankel operators I and I'S, where S is the shift operator in the
Hardy space H>. In this case there is a bijection between compact Hankel operators
and the corresponding spectral data, and the class of spectral data sets correspond-
ing to the compact operators can be explicitly described. In this construction, the
evolution of the spectral datum under the cubic Szeg6 equation is very simple,
which makes the bijectivity very desirable.

The next natural step in this line of research is the study of the direct and inverse
spectral problem for non-compact Hankel operators. For a few years, the work of
two of the authors (Gérard and Pushnitski) was motivated by the conjecture that
the bijective spectral map of [8] admits a natural extension to the non-compact
case; some preliminary steps in this direction were made in [11]. One of the aims
of the present paper is to show that this conjecture is false, in some precise sense
to be explained below. For a suitable class of Hankel operators (which includes
many non-compact ones), we construct a natural extension of the spectral map of
[8] and show that it is injective, but not surjective. We also give an application to
the cubic Szegd equation, corresponding to non-compact Hankel operators. We
show that in general, solutions to this equation with the initial data in BMOA are
NOT almost-periodic, in contrast with the case of the initial data in VMOA.

An important new component of the present work is the functional model for
contractions (=operators of norm < 1) on a Hilbert space. A key ingredient to prov-
ing that a given spectral datum corresponds to some Hankel operator is checking
that a certain contraction, constructed from the spectral datum, is asymptotically
stable. (A contraction T is called asymptotically stable if 7" — 0 in the strong
operator topology as n — 00.) In the compact case, it turns out that the asymptotic
stability always holds. In the non-compact case, we show that the asymptotic
stability sometimes holds and sometimes doesn’t, depending on some spectral
properties of the contraction. Here we use some latest advances [19] from the
theory of the Clark model. A more precise discussion is postponed to Section 2.
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1.2 The structure of the paper. In this section we introduce Hankel
operators, describe the direct spectral problem and the spectral data, and present
our first main result: uniqueness. Proofs are postponed to Section 3. In Section 2,
we discuss the problem of surjectivity of the spectral map and informally describe
our main results concerning the failure of surjectivity. In Section 4 we collect
without proof some operator theoretic background (which mainly concerns the
spectral theory of contractions on Hilbert spaces and the Clark model) that is
required for the construction of the rest of the paper. Sections 5-8 are the core
of the paper; here we state and prove our main results concerning the failure of
surjectivity and the description of the image of the spectral map. In Section 9 we
describe the special case of self-adjoint Hankel operators. In Section 10 we give
an application to the cubic Szegd equation. Some technical parts of proofs are
postponed to Appendices.

1.3 Notation. For a Hilbert space X, we denote the inner product of ele-
ments f, g € X by (f, g)x; we omit the subscript X if there is no danger of confusion.
For a bounded self-adjoint operator A in X and for v € X, we denote by

(0)a :=clos span{A"v,n=0,1,2,...}

the cyclic subpace of A generated by v. We recall that A is said to have simple
spectrum if X = (v)4 for some element v € X; any such element is called cyclic
for A. We denote by p?!' the spectral measure of A corresponding to v, i.e.,

(L.1) (F(A)o, v) = /]R Fs)dp (s)

for any continuous function f.

We denote by S,,, p > 0, the standard Schatten class of compact operators; in
particular, S; is trace class and S, is the Hilbert—Schmidt class.

For a finite measure p on R, we denote L*(p) = L*(R, dp), and we usually use
the letter s to denote the independent variable in R. We denote by 1 € L?(p) the
function identically equal to one.

We denote by H?> = H*(T) the standard Hardy space of functions on the unit
circle T,

o0 o0
f=f@=>_fd, ld=1, D I’ <oc;
j=0 J=0
the above series converges in L(T). Note that this series also converges uniformly
on compact subsets of D, so f can be interpreted as an analytic function in the unit
disc . The values of f on T can be found as the non-tangential boundary
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values of this analytic function; according to classical results these non-tangential
limits exist a.e. on T. Note also that the set H* = H*°(ID) of all bounded analytic
function is a subset of H>.

We denote by {7}, the standard basis in the Hardy space H?; in particular,

we denote by z° the element of H? identically equal to one (as notation 1 is already
taken). The Szegd projection P is the orthogonal projection onto H? in L*(T),

(o] N o0 N
P: Z szkH kazk.
k=—o00 k=0

Recall that the shift operator S on H? is the multiplication by z, Sf = zf(z). f € H?,
and its adjoint (the backward shift) S* is given by
* (Z) - (O)
s =TI
Z
We refer, e.g., to [26, Appendix 2] for the definition of the classes BMOA(T) and
VMOA(T).
We shall denote by A, the, a.c., part of a self-adjoint operator A and by ~

the unitary equivalence between operators. For a linear operator A, we denote by
RanA the closure of the range of A.

1.4 Hankel operators I',. A Hankel matrix is an infinite matrix of the
form {yj+k}ﬁ=0, i.e., the entries must depend on the sum of indices. A Hankel
operator is a bounded operator in the Hardy space H?, whose matrix in the
standard basis {z¥}32, is a Hankel matrix. An equivalent alternative definition is
that a Hankel operator is a bounded operator I" in H? such that the commutation
relation

(1.2) rs=sST,

is satisfied, where S is the shift operator in H?.
For a Hankel operator I" one can define its analytic symbol « as

o0
u(z) =T’ =Y pdt.
k=0
In this paper we will skip the word analytic and use the term symbol for u. We will
also use the notation I';, to indicate the Hankel operator with the symbol u. Itis a
well-known fact [26, Theorem 1.1.2] that the operator I',, is bounded if and only
if the symbol u belongs to the class BMOA(T) of the functions of bounded mean
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oscillation. On the other hand, we have u = I',z° € H?; it will be important for us
to consider the symbol u as an element of H?.

One can give a more “analytic” formula for the Hankel operator I',. Namely,
denote by J the involution in L*(T),

Jf(2) =f(2).

Then for u € BMOA, the Hankel operator I', with the matrix {4« }ﬁi:o is defined
by
Lwf = P(ulf),

initially on the set of polynomials f € H>.

1.5 Anti-linear Hankel operators H,. Clearly, Hankel matrices { y;.« }ﬁizo
are symmetric (with respect to transposition). This can be expressed as the state-
ment that Hankel operators belong to the class of so-called complex symmetric
operators. Namely, let us denote by C the anti-linear (a.k.a. conjugate-linear)
involution in H?,

(1.3) Cf(2) =f(2);

in other words, forf(z) = 3 roy axz* we have Cf(z) = > too axz*. Then the symmetry
of Hankel matrices means that Hankel operators satisfy the identity

(1.4) r,C=Cr:,

which is exactly the definition of the so-called C-symmetric operators, cf. [4].
As it is customary in the theory of complex symmetric operators, it will be
convenient to deal with the anti-linear version of Hankel operators:

H,f =T,Cf = P(uf), f e H>.

Through the rest of the paper, we focus on anti-linear Hankel operators H,; one
exception is the discussion of the self-adjoint case, when it is more convenient to
talk about the linear version I',,. Since C satisfies

(Cf, ) =(Cg.f), fgeH,

from the symmetry property (1.4) it follows that Hankel operators (in fact, all
complex symmetric operators) satisfy the identity

(1.5) (Hf, g) = (Hug.f), fgeH.
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Note that for the anti-linear Hankel operator H,, we have
H?>=T,CT,C=T,C°T: =T,I'};

thus H? is linear, self-adjoint and positive semi-definite. Furthermore, since the
conjugation C commutes with the shift S, it follows from (1.2) that the anti-linear
Hankel operators also satisfy the commutation relation

(1.6) H,S=S"H,,

and that any bounded anti-linear operator H, on H? satisfying this commutation
relation is a Hankel operator.

By (1.6), the kernel of H, is an S-invariant subspace of H*. It follows that
Ker H,, is either trivial or infinite-dimensional. Furthermore, RanH,, is an invariant
subspace for S*.

One ot the advantages of working with the anti-linear Hankel operators H,
instead of their linear counterparts I', is that RanH, = (Ker H,)"*. Indeed,

RanH, = RanT",C = RanT", = (Ker I'})* = (Ker CT)™,

and the desired identity follows since CI'} =I',C = H,,.
We will denote by H;, the essential part of the Hankel operator H,,

Hz = HMlRanH“‘
The subspace RanH,, is invariant for H,,, and for any element f € H? we have
HMf = HIiPRanH,‘f’

where P, is the orthogonal projection onto RanH,,.

1.6 The truncated operators 1~"u and H,. Along with the Hankel oper-
ators I', and H,, we will consider their truncated versions

[,=I,S=8T,=T H,=H,S=SH,=H,.,.

S*u?

Note that 1~"u is also a Hankel operator (with symbol $*u), and its matrix is obtained
from the matrix of ', by removing the first row (or the first column).

As it turns out, under the assumptions discussed below, the spectral invariants
of the Hankel operators H,, and H,, described in Proposition 1.2 below, uniquely
determine the symbol u.

We recall that the shift operator satisfies the identities

S$*S=1, S§*=1— (79,
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where (-, )70 is the rank one projection onto constant functions in H>. From here
and from the definition of H, we get the rank one identity

(1.7) H>=H>— (-, u)u.

This identity is key to the whole inverse spectral theory of Hankel operators.

Similarly to HS, we denote by fls the essential part of H,, viz.
(18) ﬁi = ﬁ]MlRanH“;

since RanH,, is an invariant subspace for both H, and S*, it is also an invariant
subspace for H,. We should emphasize that unlike H;, the operator H;, can have a
non-trivial (one-dimensional) kernel. The rank one identity (1.7) translates to

(1.9) (HS)? = (HS* — (-, u)u.

1.7 The simplicity of the spectrum. Our main assumption on H,, and H,
in this paper is

(1.10) (H,‘j)2 and (flz)z have simple spectra.
We will denote by BMOA;,,(T) the set of all u € BMOA(T) satisfying (1.10).

Remark. On the one hand, it is very easy to construct examples of Hankel
operators that do not satisfy this assumption: it suffices to consider self-adjoint
Hankel operators with eigenvalues with multiplicity > 1. On the other hand, there
is one important particular case when the simplicity condition (1.10) holds true.
This case is most conveniently described in terms of the linear realization of Hankel
operators. By [11, Theorem 2.4], if both I',, and T'y«, are positive semi-definite,
then the simplicity condition (1.10) holds.

Our first auxiliary result (proved in Section 3) is

Theorem 1.1. Let u € BMOA;,,(T), i.e., (1.10) holds. Then u is a cyclic
element for both (H,‘j)2 and (Flﬁ)z, ie.,

<M>H§ = <M>f13 = RanH,,.

Remark. In general, RanH, # (u) 7. For example, if u = 1, then H, =0and
so {0} = RanH, # (u) o = span(u).
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1.8 Anti-linear operators with simple spectrum of modulus. Here
we discuss a “spectral theorem” for a class of anti-linear operators that have
properties mirroring those of Hankel operators. Let A be a bounded anti-linear
operator in a Hilbert space X, satisfying the identity (cf. (1.5))

(1.11) (Af, ) = (Ag.f)

for any elements f and g in the Hilbert space; we will call such operators sym-
metric anti-linear operators. Then

(Af,f) = (Af, Af) > 0,

and so A? is a (linear) positive semi-definite operator.

Recall that for a linear operator T its modulus |7| is defined as |T| := (T*T)'/?;
the operator 7*T is positive semi-definite, so its non-negative square root is well
defined. Similarly, for an anti-linear operator A satisfying (1.11) the operator A? is
positive semi-definite, so the non-negative square root is well defined, and we set
|A| := (A%)'/2; this is a linear positive semi-definite operator.

Let us assume that A% has a simple spectrum with a cyclic element ». Then

AT
1%

trivially, v is also a cyclic vector for |A| := (A%)'/2. Let p = p/4lbe the scalar spectral
measure for |A| corresponding to the vector v, see (1.1). Note that p is a finite
measure with supp p C [0, c0).

The spectral theorem for self-adjoint operators says that the operator |A]| is
unitarily equivalent to the multiplication by the independent variable s in L?(p),
and the corresponding unitary operator U : L?>(p) — X intertwining |A| and the

multiplication operator is given by

(1.12) Uf =f(lADo

(defined initially on polynomials f and extended by continuity).
The statement below can be regarded as a substitute for polar decomposition of
linear operators.

Proposition 1.2 (Spectral Theorem for symmetric anti-linear operators). Let
A be a bounded symmetric anti-linear operator in a Hilbert space. Assume that |A|
has a simple spectrum with a cyclic element v, and let p = p\*! Then there exists a
unimodular Borel function w such that the operator A is unitariy equivalent to its
model A in L*(p),

(1.13) Af(s) = sp()f (s), f e L*(p),

where the unitary operator U : L*(p) — X, AU = UA is given by (1.12).
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The proof is given in Section 3.

Remark 1.3. It will be seen from the proof of the proposition that the func-
tion y is uniquely defined as an element of L°°(pg), where py is the restriction of
the measure p to (0, co0). Note that py differs from p if and only if p has an atom
at 0. On the other hand, it is clear that the value w(0) is of no importance for the
action of A.

Remark. One can see from the definition (1.12) of the unitary operator U that

X={f(ADv :f eL*(p)}

while the operators f(JA|) can be unbounded, the vector v is always in the domain
of f(JA]) for f € L*(p). Thus, we can rewrite the representation (1.13) for the
model A as an abstract representation for A,

(1.14) Af(IADv = |Alw(|ADF(IAD.

1.9 Direct spectral problem: spectral measures and unimodular
functions. Letu € BMOA;y,,(T), i.e., (1.10) is satisfied. Let us apply Proposi-
tion 1.2 to the anti-linear operators HS and HS; we will use the same cyclic vector
v = u in both cases.

For the operator H;, we get its spectral measure p = pLH‘e‘l; note that since
u € Ran H,, we have pLH'?I = plful; we will use the notation p!f«! for typographical
reasons. We also get the unitary operator U : L*(p) — RanH,f given by (1.12)
with A = H; and v = u,

(1.15) Uf =f(IHDu, f € L*(p),

SO
U*|HE|U = M,

where M is the operator of multiplication by the independent variable s in L?(p).
By Proposition 1.2 we have

(1.16) [U*HGUTf(s) = u(s)sf(s),  f € L*(p)

where ¥, is a complex-valued unimodular Borel function; we write ¥, rather
than ¥, in the above formula for consistency of notation with [7].

Similarly, defining the spectral measure p = p,ﬁ“' (again, it coincides with the
spectral measure of the operator |fI§|) and the unitary operator U:I? (p) — RanH?
by

Uf =f(HDu,  f € L*(D),
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we get that
(1.17) [U*HSUf(s) = Pu(9)sf(s), f € L*(P),

where ‘i’u is a Borel unimodular function.

To summarize: we have two measures p, p and two unimodular functions P,
and W, as spectral characteristics of the Hankel operator H,,.

Since the measure p does not have an atom at 0, by Remark 1.3 the function
Y, is unique as an element of L*>°(p). However, the measure p can have an atom
at 0, so we can only say that W, is unique as an element of L>°(pg), where py is the
restriction of p to (0, 00). Also, one can see from (1.17) that the value ‘i’u(O) does
not matter for the action of H,‘j, so we can assume that ‘i’u is unique in L*°(p).

1.10 Remarksabout the measures p and p. The measure p must satisfy

(1.18) /OOO dp(s) _

sz~
Indeed, we know that

— 0 _ gge 0 *
u=H,z _H“PRanHMZ , U'u=1,

so the representation (1.16) implies that U* maps the vector Py, H, 7% to the function
q € L*(p), q(s) = W,.(s)/s. Since ||PRm1HuzO||H2 < 112, = 1, we conclude
that ||q||L2(p) < 1, which is exactly the estimate (1.18).

The measures p and p are not independent, and p is uniquely defined by p. To
explain this, we introduce two important operators M and Min L2 (p) that will play
a key role in our construction below. We have already defined M in the previous
subsection; this is the multiplication operator by the independent variable s in L?(p).
Now consider the operator

Mz_ <,]].>]]-:M(I_ <'3q0>q0)Ma

o < 1, so the above

operator is trivially non-negative. Let us consider its (non-negative) square root

(1.19) M= O2— (-, 1))

where go(s) = 1/s. The inequality (1.18) implies that [|gol|,»

The definition of M can be equivalently rewritten as
M2 =M% — (-, 1)1,

which mirrors the rank one identity (1.9).

We can easily see that the unitary equivalence U maps the triple (M, ﬁ, 1) to
the triple (|H;|, |fI§|, u), so p is the spectral measure of the operator M with respect
to the vector 1 € L*(p). Thus p is uniquely determined by p.
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1.11 The spectral data and Uniqueness. To conclude, with each Han-
kel operator H, with u € BMOA;,,(T) we associate the following spectral
datum:

(i) The measure p with bounded support on (0, co) satisfying the normalization
(1.18) (and the measure p on [0, co), uniquely defined by p as described
above in Section 1.10).

(ii) Two unimodular functions ¥, € L*°(p) and ¥, e L>(po), where po:=pl0.00);
the functions W, and W, are unique as vectors in the corresponding L
spaces.

So, formally speaking the spectral datum for u (equivalently H,) is given by the
triple
A) = (p, Pu, P).

We do not include the measure p in the spectral data because p is determined by p,
as explained in the previous subsection.
Our first main result is

Theorem 1.4 (Uniqueness). Any symbol u € BMOA,(T) is uniquely de-
termined by the spectral datum A(u), i.e., the spectral map

(1.20) BMOA inp(T) 3 u = A(u) = (p, ¥, )
is injective.

Moreover, we will give an explicit formula for the symbol u in terms of the
spectral datum, see (2.8) and (2.9) below. The proof of Theorem 1.4 is given in
Section 3.

Recall that Ker H,, is either trivial or infinite-dimensional. It turns out that one
can easily distinguish between these two cases by looking at the spectral data.

Theorem 1.5 (Triviality of kernel). For u € BMOA;ny(T), we have Ker H,={ 0}
if and only if
(1.21) /d”gs) -1 and /d”ff) = 00

s s

This theorem was proved in [8, Theorem 4]. More precisely, in [8], it was stated
for compact H, and in slightly different terms, but the idea of the proof remains the
same. For the case of self-adjoint Hankel operators it also appeared earlier in [21,
Theorem II1.2.1]; a similar dynamical systems approach also works in the general
case.

For completeness we give a proof in the Appendix B. We note that the first
condition in (1.21) is equivalent to z° € Ran H,, and the second one is equivalent
to z° ¢ Ran H,,, see the proof.
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1.12 The self-adjoint case. Here we discuss the interesting special case
when the linear Hankel operator T',, is self-adjoint. Evidently, I',, is self-adjoint if

and only if all Fourier coefficients u; are real; if I', is self-adjoint, then so is I',.

Theorem 1.6. Let u € BMOA ;i (T); then I, is self-adjoint if and only if
both ¥, and ¥, are functions with values £1.

Moreover, in the self-adjoint case formulas (1.16), (1.17) for the action of H,
and H, can be interpreted as polar decompositions of ', and T,. In order to state
this precisely, we recall the relevant key definitions and facts.

For a bounded operator 7 on a Hilbert space, there exists a unique partial
isometry @ with the initial subspace RanT™ and the final subspace RanT such that
the polar decomposition 7 = ®|T| holds, where |T| = v/T*T. If T is self-adjoint,
then @ is also self-adjoint and commutes with |T'|. Furthermore, if the spectrum
of |T| is simple, then one can write ® = ¢(|T]), where ¢ is a Borel function with
values 1. The function ¢ is uniquely defined up to values on sets of measure zero
with respect to the spectral measure of |7|. One can also write ® = ¢(|T|) if T has
a multi-dimensional kernel but the spectrum of the restriction |T'||, ., is simple; in
this case one must set ¢(0) = 0.

We apply thistothe case T =T, or T = f,,; note that in this case |I',| = |H,|
and |T,| = |H,|.

Theorem 1.7. Let u € BMOA i (T) be such that then T, is self-adjoint.
Then the polar decompositions of T, and T, can be written as

(1.22) Ty =W (ITDITul, T = (I TuDITl,
where one should set ¥,,(0) = ‘?M(O) = 0 in case of non-trivial kernels.

The proofs of the above two theorems are given in Section 3.

1.13 'What can be said about the case of non-trivial spectral multi-
plicity? We conclude this section with remarks on the case when the simplicity
assumption (1.10) is not satisfied. What would be the natural choice for the spectral
datum in this case?

This question was answered in [7] for the case of compact Hankel operators H,,.
Observe that in this case, the measure p is purely atomic, supported on the set of
singular values of H,. The spectral datum is still the triple (p, ‘¥, ‘i‘u), but the
functions ¥, and ‘T’u (defined on the set of singular values of H, and H,, respectively)
are no longer scalar-valued but take values in the set of all finite Blaschke products.
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In [7] it is proved that the spectral map, defined in a suitable way, is injective and
surjective.

Another case was considered in [12]: all Hankel operators H,, such that the
spectrum of |H,| is finite. In a similar spirit, the spectral datum is the triple
(p, Pu, q’,,), where ¥, and ‘i‘u are functions from the spectrum of |H,| and Iflul
into the set of all inner functions, and the spectral map was proved to be injective
and surjective.

As for the general case, in [18] an abstract approach to the inverse spectral
problem for general Hankel operators was considered. The abstract spectral datum
there is similar in spirit to what is presented here, but the values of functions ¥,
and W, are unitary operators. In addition, a special anti-linear conjugation J,
commuting with both |H,| and |qu| (which is implicit in this paper), is also a part
of the spectral datum. The spectral map is injective, if one treats the spectral data
as natural equivalence classes. And similarly to the present paper, the abstract
spectral datum corresponds to a Hankel operator if and only if an appropriately
constructed operator is asymptotically stable.

For the case of compact operators, the (non-trivial) translation from the language
used in [18] to the description in [12] was provided in [18].

It is likely that the constructions of [7] and [12] can be combined to give a
description of a spectral map in the case when |H,,| has only a point spectrum. It
could also be possible to use the ideas from [18] to extend the result to the case of
a purely singular spectrum.

However, the fundamental question of transparent representation of the spectral
data in the general case when |H, | has non-trivial absolutely continuous spectrum
and non-trivial multiplicity remains a mystery.

2 The problem of surjectivity

2.1 The abstract spectral data and the problem of surjectivity.
First let us discuss

Question. What is the natural target space for the spectral map (1.20)?

Below we describe the set of triples (p, ‘P, q’), that we call the abstract spectral
data, that plays the role of the target space.

Let p be a finite Borel measure with a bounded support on (0, 00), satisfying
the normalization condition (1.18). We then define the operators M and Min L2 (p)
exactly as explained in Section 1.10, i.e., M is the multiplication by the independent
variable and

M= 02— (-, 1H1)"/2
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Let p be the spectral measure of ﬁ corresponding to the vector 1. Picking two
unimodular functions ¥ € L*°(p) and ¥ e L>(pp) (where py := plo.0)), We get
the triple

A=(p, ¥, D),

which we will call the abstract spectral datum: the word abstract here em-
phasizes the fact that this datum a priori does not have to come from a Hankel
operator. The set of all abstract spectral data is the natural target space for the
spectral map (1.20).

We arrive at the main problem addressed in this paper:

Question. Is the spectral map (1.20) surjective?

In other words, does every abstract spectral datum come from a Hankel opera-
tor?

For several years, the authors of this paper believed that the answer is “yes”. For
example, as it was proved in [8], the answer is affirmative in the case of compact
Hankel operators: in this case the measure p is a purely atomic measure with 0
being the only possible accumulation point of its support.

The other case is the so-called double positive case, treated in [11], where
both operators I',, and I, are non-negative self-adjoint operators. It was shown in
[11, Theorem 2.4] that in this case the simplicity condition (1.10) is satisfied. In
this case both unimodular functions ¥, and ‘i’u are identically equal to 1. It was
also shown in [11] that in this case any abstract spectral datum (i.e. any measure
p satisfying the normalization condition (1.18)) comes from a self-adjoint Hankel
operator I',.

2.2 Informal description of main results. In order to simplify our
discussion, we introduce the following notation. For an abstract spectral datum
A=(p, ¥, ‘I’), we will write A, € A(BMOAginp), if A, is in the range of the
spectral map (1.20), i.e., if A, is the spectral datum of some Hankel operator H,.

Here we informally describe our main results.

e The spectral map (1.20) is NOT surjective, i.e., there are abstract spectral

data with A, ¢ A(BMOA;n,).

We do not have a simple easy-to-check criterion for an abstract spectral datum
to be in A(BMOA;,,), but we come close to it.

o Foran abstract spectral datum A, we have A, € A(BMOA;,,;) if and only if

a certain contraction X*, constructed from A,, is asymptotically stable (i.e.,
(2*)* — O strongly as n — 00). See Theorem 2.1 for the precise statement.
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The asymptotic stability of X* is not easy to check. However, in many cases

we can reduce it to a more explicit condition.

e Under some mild additional assumptions (e.g., ¥ and ¥ are Holder contin-
uous at 0), we have (p, ¥, ‘I’) € A(BMOAginp) if and only if the unitary
operator

FOOPON)

has a purely singular spectrum. Here M and M are the operators in L?(p)
defined in the previous subsection.

e Using the previous result, we construct a wide range of examples of spectral
data that are (or are not) in A(BMOA;n).

2.3 Introducing the model (I, JTC, 2*). Let u € BMOA,(T). Re-
stricting the identity FIM = S*H, to the S*-invariant subspace RanH, we write

(2.1) H = (S*lRanHu)HZ'

Recall also the rank one identity (1.9). Let us map these identities to L?(p), where
p = plful by using the unitary operator U defined in (1.15). In order to do this, let
us define the anti-linear operators 3,  and the (linear) contraction X in L*(p) by
H=UHU,
2.2) H = U*HSU,
2= U (Sl ) Us T = ()

Multiplying (2.1) and (1.9) by U* on the left and by U on the right, we obtain the
identities

(2.3) H= 2K,
(2.4) F =9 — (-, 1)1
in Lz(p).

The triple (I, JTC, X*) is our model for (H;, flﬁ, S*|Rangz,); this model plays a
central role in our construction.
Rewriting (1.16), (1.17) in terms of the model operators 3, H, we obtain

(2.5) Hf = MPOVf, f e L*(p),
(2.6) Hf = MY, £ e L(p),

where ¥ = \¥,,, Y= ‘i’u and the operators M and M are as discussed in Section 1.10.
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2.4 Model coming from abstract spectral data. One can also set up
a triple (I, JT(, X*) starting from an abstract spectral datum A = (p, P, ‘i’). We
define the operators M and M as described in Section 2.1 and define the anti-linear
operators J and H by (2.5) and (2.6). In order to define X, we first note that
M2 < M2, ie.,
IMFI < IMFLL, VS e L2(p),

and therefore (see Douglas’ lemma in Section 4) the operator ﬁM‘l, defined
initially on the dense set Ran M, extends to L?(p) as a contraction. We then define
the contraction

2.7) = = POOMM ™" w(OW)
and set X = (X*)*. With these definitions, the key identities (2.3) and (2.4) are

satisfied.

2.5 Surjectivity: reduction to the asymptotic stability of X*. Let
A=(p,¥, ‘i’) be an abstract spectral datum, and let £* be as defined in (2.7). Our
first main result concerning surjectivity is

Theorem 2.1. The triple A = (p, P, W) is the spectral datum for some Hankel
operator H, with u € BMOAg;n, if and only if £* is asymptotically stable (i.e.,
2™ — 0 in the strong operator topology).

2.6 Explicit formula for the symbol. One can give an explicit formula
for the symbol « in terms of the corresponding operator X*, defined via the spectral
data of u. The following statement is logically part of the uniqueness Theorem 1.4,
but we place it here because it was convenient for us to state the uniqueness theorem
before describing the model (I, JTC, ).

Theorem 2.2. Let u € BMOA;y,, and let T* be defined by (2.2). Then u can
be found through the explicit formula

(2.8) = (21, q)pa, k>0,
or equivalently

(2.9) uz)= (I =z2)7'1,9) 5, 2€D,

where q € L*(p), q(s) := P(s)/s.
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3 Proofs of preliminary results

3.1 Proof of the ‘‘spectral theorem’ (Proposition 1.2). Let A be
the anti-linear operator in L?(p), defined by A = U*AU, where U is the unitary
operator defined by (1.12). Then, since A trivially commutes with |A|?> = A? and
U*|A|U = M, where M is the multiplication by the independent variable s in L2(p),
we conclude that A commutes with M? and so with M.

Denote by € the standard conjugation acting on functions on R,

Cf(s) = f(s),

and define the linear operator B in L?(p) as B := €A. Since ¢ commutes with M,
we find that B also commutes with M. Therefore, B is the multiplication by a
function g € L*(p),
Bf =gf Vf eL(p):
note that g as an element of L*°(p) is unique.
For any f € L*(p)

187172, = IBF N7,y = WAF N,y = (AL S) = (VO S) = /IR SIF()Pdp(s);

the second equality holds because € preserves the norm. So we conclude that
lg(s)|> = 5% p-a.e., therefore it can be represented as

8(s) = sy(s),

where y is a unimodular function, i.e., |(s)| = 1 p-a.e. (the reason for the complex
conjugation is purely notational, and will be clear in a moment).
Using the fact that A = €B we conclude that

Af(s) = g()f (s) = sy (s)f (5) = sy ()f (),

which is exactly the conclusion of the proposition. (|

3.2 Cydclicity of u: preliminaries. To prove Theorem 1.1 we start with
a trivial observation.

Lemma 3.1. Let R = R* be a bounded self-adjoint operator, and let
R, =R+a(-,p)p, a € R, be its rank one perturbation. Then
(i) There holds (p), = (P)g -

o

(ii) If both R and R, have a simple spectrum, then there exists a vector vy € (p)x
such that the vector v = p + v, a cyclic for both R and R,,.
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Proof. The first statement is easy: by induction we find
Rlp € span{Rkp :0 <k <n},

which implies the inclusion (p), C (p) forall a € R. Since R =R, — a(-, p)p,
the converse inclusion follows.

By the statement (i), the subspace (p)  is an invariant subspace for both R and R;
since both operators are self-adjoint it is in fact reducing for both. Furthemore,
the action of the operators R and R, coincide on (p)x. Now it remains to take

v = p + vy, where v, is a cyclic vector for R | (p)z. g

In the proof of Theorem 1.1 we use the model (, JT(, 2*) introduced in Sec-
tion 2.3. Note, however, that in Section 2.3 we have used the fact that u is cyclic
for H; and ﬁl,‘j. In order to avoid a circular argument, here we start the proof by
setting up a slight modification of the same model, using another cyclic vector,
which exists by Lemma 3.1.

Thus, let v = u + v, € RanH, be the cyclic vector for both (HS)? and (HS)?,
which exists by statement (ii) (with p = u) of Lemma 3.1. Let p = plfsl be the
spectral measure of |H;| corresponding to v. Let U be the unitary operator given
by (1.12) with A = H¢,

Uf =f(IH v, f e L(p).

As in Section 2.3, we define the operators H, H and T in L*(p) by

H = U*H,U,
H = U*H°U,
2 = U (S Ik, ) Us
T = (29"

For these operators, from the definition of IEI,, and from the rank one identity (1.9)

we obtain
(3.1) H=3"H=HE,
(3.2) H2 =3 — (-, p)p,

where p = U*u. Note that U*v = 1, so U*u = y for some Borel set E C o(|H,|);
what will be essential here is that both U*v and U*u are real-valued.
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3.3 Proof of Theorem 1.1. Step 1. The action of H and H on L?(p).
By construction, v is a cyclic element for both |H},| and |HZ|, thus 1=U*visa
cyclic element for both |H| and |JH{|. By Proposition 1.2, we find

HAAHDL = |Hyw(HDFAHDL,
HFAHDL = [H(HDFIHDL
for some unimodular functions y and y and for all admissible f (i.e., f € L*(p) for
the first identity and f(]3{|)1 € L?(p) for the second one).
Step 2. Conjugations on L?(p).

Since |JH| coincides with the operator M of multiplication by the independent
variable in L*(p), we find that

g =f(HDL, if g=f(FHD1L

for any admissible f. Further, if f(x) = x*"

from (3.2) we find that

(3.3) g=fUHDL, if g =f(FHIL.

Taking linear combinations and using an approximation argument, we obtain (3.3)

, using the fact that p is real-valued,

for all admissible f. To conclude, combining with the previous step, we find that
Hg = Hp(HDg, Hg=H|w(1HDg

for all g € L*(p).

Step 3. The action of £* in L?(p).

Recall that (p)ifz is an invariant (in fact, reducing) subspace for both operators
|H| and |th| and the actions of these operators coincide on this subspace. Thus,
forall g € (p)3., we have

He = |Hw(H)g, Hg = HIp(H]g.

By (3.1), we find that (p)j:cz is an invariant subspace for ~* and the action of X*
on this subspace reduces to the multiplication by a unimodular function:

g = p(IHDy(HDg, & € (P)ie-
It follows that

ICE")"8lliz = I8llizgns 8 € (P32
for all n» > 0. On the other hand, X* is unitarily equivalent to the restriction of S*
onto its invariant subspace RanH,, and we know that (§*)" — O in the strong

operator topology as n — oo. It follows that (X£*)" — O in the strong operator
topology. We have arrived at a contradiction. (]
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3.4 Proof of Theorems 1.4 (uniqueness) and 2.2 (formula for u).
Throughout this section, we fix © € BMOA;;,,,(T) and the corresponding Hankel
operator H,,, and set p = pl«l. We use the model (H, H, ) of Section 2.3.

We first recall that by the definition (1.15) of U, we have U*u = 1. Further, as
discussed in Section 1.10, we have u = H;PRgmHuz0 and

l]*PRanH“ZO =9, q(s) = \Pu(s)/&
Thus, for £k > 0 we have

e = (u, 2 = (u, $2°) = (81, 2°) = (" Irants,tts Prants, ")
= ((Z)'U*u, U Py, 2°) = ('L, q).
Since all objects in the right-hand side are defined in terms of the spectral datum
A(u) = (p, Yy, Py), the injectivity of the map u — A(u) is proved. The proof of
Theorem 1.4 is complete. O
Multiplying both sides of (3.4) by z* and summing over k > 0 we get an explicit

formula for u,
u(z) = (I — z297 1, q)Lz(p), zeD.

The proof of Theorem 2.2 is complete. g

3.5 Self-adjoint case: proof of Theorems 1.6 and 1.7. First let us
assume that I, is self-adjoint, i.e., that all coefficients u; are real. We will prove
that both ¥,, and ‘i’u take values 1 and the polar decomposition (1.22) holds.

Letusrewrite (1.14) forA = H, |z, HoU=U in terms of the linear realization I',,.
Since I', = I'}, we have |H,| =|T'}| = |I'|, and H, = CI', = I',C (so I', commutes
with the conjugation C defined in (1.3)).

Noticing that RanI",, = RanH,, is I',-invariant, and defining

c ._ —_
1—‘u = 1—‘ulRanl"u - rMlRanHu’

we can rewrite (1.14) for A = Hj, := Hylg,y » With v = u as

(3.4) LLCf (T, Du = [T W (TS DF(TuDu,  f € L2 (p).

We have Cu = u and therefore Cf(|I')u = f(|T"S|)u (by a standard approxima-
tion from polynomials f). Using this, we can rewrite (3.4) as

LTS Du = TSP (TeDFITS D,  f € LA (p),

SO
Iy = AT = P (ITEDIT.
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The last identity gives the polar decomposition of I'§;, and since it is self-adjoint,
the operator ¥, (|I'5|) is a self-adjoint unitary operator, so ¥, takes values £1. If
we assign W, (0) := 0, we get the polar decomposition

r,= |ru|lPu(|ru|) = lIIu(ll—‘ul)ll—‘ula

where W, (|T',]) is a self-adjoint partial isometry, Ker W, (|T",|) = Ker [,.

A similar argument can be applied to ‘i’u. If Ker fﬁ = {0}, the reasoning is
exactly the same; if Ker fﬁ # {0} (which may happen), a slight modification is
needed. Namely, we need first to consider the polar decomposition of fulRanfu'
Noticing that pg is the spectral measure of the operator |fu| |Rant, With respect to
the vector u := PRanf‘M”" we then can write, assigning li’u(O) =0, that

T, = [T, P.(T.]) = Pu(T.DIT..

So W, takes values +1 and the polar decomposition for I, has the required
form (1.22).

Finally, assume that both ¥ and V¥ are real-valued, and let us prove that
the Fourier coefficients u,, are real for all m. We use formula (3.4). Denote
A =M"'"POM) and B = ‘i’(ﬁ)va. By our assumptions, both A and B are self-
adjoint, A may be unbounded, but BA is bounded (extends to a bounded operator
from a dense set). The operator

(ZH"POVOM = (BA)"B
is self-adjoint for all m > 0. Since 1 = Y(M)Mgq, we can write
iy = ()" POVOMY, q) 12 = (BA)"'Ba. q)12(y).

and since (BA)"~!B is self-adjoint, 7, is real for all m > 1. The proof of Theo-
rems 1.6 and 1.7 is complete. ([

4 Operator theoretic background

In the following sections, we will use some more specialized operator theoretic
material, related mainly to the functional model for contractions. In this section,
we collect without proof the corresponding background facts.
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4.1 Douglas Lemma. We will need the following simple fact.
Lemma 4.1. Let A, B be operators in a Hilbert space such that
KerA = KerA* = {0}
and
B*B < A*A.

Then the operator BA~L, defined on a dense set Ran A, extends to a contraction T.
The adjoint T* is given by the formula T* = (A*)™'B*; note that the boundedness
of T implies that Ran B* € Dom(A*)~!, so the above expression is defined on the
whole space.

In this paper we will often apply this lemma to self-adjoint operators M, M,
Ker M = {0}, such that M? < M?, to define contractions MM ™!, M~1M.

4.2 Inner functions, model spaces and the compressed shift. A
non-constant function & € H*(T) is called inner, if |§| = 1 a.e. on the unit circle.
For an inner function @, the model space Kj is the subspace of H*(T), defined by

Ky = H*(T) N (GH*(T))*.

We refer to [23, 3] for background on model spaces.

Beurling’s theorem states that if a non-trivial subspace K C H?(T) is invariant
for the backward shift $*, then K = Ky for some inner 6.

Let 6 be an inner function and let Py be the orthogonal projection onto Ky
in H?(T). The operator Sy = PyS on Kj is called the compressed shift. Since Ky
is an invariant subspace for §*, we have S;f = S*f for f € Kjy. It is not difficult to
compute that
4.1) I —8SpSp = (-, Pol)Ppl, I—S;Sp=(-,S5"6)S"0,

where Pyl = 1 — 6(0)6.

4.3 Contractions in a Hilbert space. Let T be a contraction in a Hilbert
space. The defect spaces of 7 and 7™ are defined as

D, :=Ran(I = T*T), D, =Ran(l —TT"),
and the defect indices of T are the (ordered) pair of numbers
(ar, GT*), (3T =dim ®T’ 6T* = dim DT*‘

In particular, the shift operator S has the defect indices (0, 1) and the compressed
shift Sy (for any inner #) has the defect indices (1, 1), see (4.1).
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A contraction T is called completely non-unitary (c.n.u.), if 7' is not unitary
on any of its invariant subspaces. The following result is known as Langer’s lemma
(see, e.g., [24, Lemma 1.2.6]).

Lemma 4.2. Let T be a contraction in a Hilbert space X. Then X can be
represented as an orthogonal sum X = X, @D Xcn, such that

T. O
T = in X, Xenus
( 0 Tcnu) in Xy @ Xenu

where T, is unitary and T¢y, is completely non-unitary.

4.4 Contractions with defect indices (0, 1) and (1, 1).

Theorem 4.3. Let T be a c.n.u. contraction with defect indices (0, 1). Then T
is unitarily equivalent to the forward shift operator S. In this case ReT has a
purely a.c. spectrum [—1, 1] of multiplicity one.

The first part follows from the Kolmogorov—Wold decomposition, see [22,
Theorem 1.1.1]. For the second part, we note that the matrix of 2Re S in the
standard basis in H*(T) is the Jacobi matrix

2ReS =

S O = O
S = O =
- O = O
S = O O

and it is well-known that the spectrum of this matrix is purely a.c., coincides with
the interval [—2, 2] and has multiplicity one (see, e.g., [30, Section 1.1.3]).
The following statement will be crucial in our construction.

Theorem 4.4. Let T be a c.n.u. contraction with defect indices (1, 1). Then
the following statements are equivalent:
(i) T*" — 0 strongly as n — oo.
(i1) T" — 0 strongly as n — oo.
(iii) The operator Re T has a purely singular spectrum.
(iv) The operator T is unitarily equivalent to the compressed shift operator Sy for
some inner function 0.

We discuss the proof in Appendix C.
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4.5 Dilations of contractions. Let7 be acontraction on a Hilbert space X.
Further, let Y be another Hilbert space such that X is a subspace of Y, let Px be the
orthogonal projection onto X in Y and let V be a bounded operator in Y. Then V
is called a dilation of 7, if for any n > 0 we have

(4.2) T'f = PxV'f, Vf e X.

Theorem 4.5 ([22, Theorem 11.6.4]). Let T be a c.n.u. contraction. Then
there exists a dilation V of T such that V is a unitary operator with a purely

a.c. spectrum.

In fact, any minimal unitary dilation (this means that the span of V"X forn > 0
is dense in Y) of a c.n.u. contraction has a purely a.c. spectrum; see [22] for details.

4.6 Trace class perturbations.

Theorem 4.6 (Kato—Rosenblum). Let A and B be self-adjoint (or unitary)
operators in a Hilbert space X such that the difference A — B is trace class. Then
the absolutely continuous parts of A and B are unitarily equivalent.

The following generalization of the Kato—Rosenblum theorem was found by
Ismagilov in [15]; see also [14, 29] for different proofs.

Theorem 4.7 (Ismagilov). Let A and B be bounded self-adjoint operators
such that AB is trace class. Then the a.c. parts of the operators A+ B and A ® B

are unitarily equivalent.

We will also need the following result on trace class perturbations, due to
M. G. Krein [17]. (Much more precise results in terms of the class of f are now
available; see, e.g., [27]).

Theorem 4.8. Let A and B be bounded self-adjoint operators in a Hilbert
space X such that the difference A — B is trace class. Let f be a differentiable
function on R such that the derivative [’ is a Fourier transform of a finite complex-
valued measure on R. Then f(A) — f(B) is also trace class.

4.7 Spectral measures. We recall that for a unitary operator in a Hilbert
space, its spectral measure is a projection-valued measure on T and for a self-adjoint
operator, its spectral measure is a projection-valued measure on R. Furthermore,
if U is unitary and Re U = (U + U*)/2, then the spectral measure of Re U on R is
the pushforward of the spectral measure of U on T by the map z — (z+z)/2. From
here we obtain the following simple conclusion, which we will use throughout the

paper.
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Proposition 4.9. The spectrum of a unitary operator U is purely a.c. (resp.,
purely singular) if and only if the spectrum of the self-adjoint operator Re U is
purely a.c. (resp., purely singular).

S Reduction to asymptotic stability: proof of Theo-
rem 2.1

5.1 The ‘‘only if”’ part. We use the model (3, UTC, 2*) of Section 2.3. If
the triple (p, P, q‘) is the spectral datum for some Hankel operator H,, then by
the definition (2.2), the operator £* is unitarily equivalent to the restriction of the
backward shift $* to the S*-invariant subspace RanH,, (this subspace may coincide
with the whole space H*(T)).

The operator S* is asymptotically stable, and so its restriction to any invariant
subspace is also asymptotically stable. We conclude that X* is asymptotically
stable.

In the rest of this section, we prove the “if”” part; this requires several steps.
Throughout the proof, we use the model of Section 2.4.

5.2 The“if” part: checking the commutation relations. Letusshow
that the model operators H, I, £* (defined in (2.5), (2.6), (2.7)) satisfy the relations
(5.1) H=S"H=HEZ.

Using the fact that ¥ is unimodular, we have
THE = POOMM ™ PO POVOMSf
= POVOMS = Hf.
For any bounded Borel function ® we have
(@) = ®Of and  (POVDS) = DOV

and therefore

(Zf) = PAOOM ™ MPONf.

It follows that
HIf = POOMEf = MPONf = Hf.

We have checked (5.1).
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5.3 The “if” part: setting up the unitary equivalence. Define the
operator U : L?(p) — H*(T) as

(5.2) W@ =D (EWha)d =) (e, zeT,
k=0 k=0

where g(s) = WY(s)/s. Below we check that U is an isometry.
It follows from the definition (2.7) of ¥* that

5.3) T3F = PO MMM WO = PO M O = (-, DM~ W)
. =1 _'<': Q>Q-
From here it follows that

IFI2 = 112 = 1(f g)1*

Applying this identity to (X*)*f and summing over k from O to n — 1 we get that
for any f € L?(p) and any n € N,

n—1
LI = Y71 = DI )P
k=0

Here comes the crucial point in the proof: by the asymptotic stability of X*, we
have that ||(Z*)"f||> = 0 as n — oo, and so

S IE ) = IfII,

m=0

i.e., the map U : L?(p) — H*(T), defined in (5.2), is an isometry.

5.4 The “if” part: defining the Hankel operator. Define the opera-
tors A and A on H*(T) by

A= UHU, A= UKU*.

We would like to check that A and A are Hankel operators. First we show that U
intertwines S* and X*. By the definition (5.2) of the map U, we have

UZf(z) =D (2% Zhq) =D (£ 2 g)2h = S*Uf (@),
k=0 k=0

and so we find that

54 Uz* =s*u
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and by taking adjoints
(5.5) U =U*S.

Note that (5.4) implies that Ran U is a S*-invariant subspace of H*(T).
Using (5.5) and (5.1), we find

AS = UFU*S = UHZU* = UHU* = A.
Similarly, N B
S*A = STUHU" = UZ*HU* = UHU* = A.
Therefore A satisfies the commutation relation
AS=S"A = A,

and so A is a Hankel operator. Setting u := Az°, we can write A = H, and then
A=H,S = qu. It remains to prove that u € BMOA;,,(T) and that the spectral
datum of u coincides with the abstract spectral datum (p, ¥, V).

5.5 The “if”’ part: concluding the proof. Denote by U the operator U
with the target space restricted to RanU, so U is a unitary operator. Here we use
the same notation as for the map (1.15); as we shall soon see, this is indeed the
same map in disguise.

Since RanJ = L?(p), from the definition H, = UHU* we find that

RanH, = RanU.
Thus, in our new notation we find
(5.6) HS = UKU*, HS=UHU".

Let us check that u € BMOA;,,,(T). By the definition of H,, it is a bounded
operator and therefore u € BMOA(T). Next, from (5.6) we find

(H®)? = UKAU* = UMPU*, (H9)? = UK2U* = UMU*;

recall that here M is the multiplication by the independent variable in L?(p) and M
is defined by (1.19). It is obvious that M? has a simple spectrum with the cyclic
element 1. By Lemma 3.1(i), the same is true for M2. Thus, the simplicity of
spectrum condition (1.10) is satisfied and so u € BMOA 4 (T).

Our next step is to check the identity U*u = 1. We first note that by the
definition (5.2) of U, for any f € L?*(p) we have

<uf, ZO>H2 = (fa CI>L2(/J)’
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and therefore U*z° = g. Further, we have
u=H,2" = UHUZ® = UHq.
Recalling formula (2.5) for the action of 3, we find that
Hq(s) = s¥(s)q(s) = s¥(s)¥(s)/s = 1,

and so we conclude that u = UL = U1 and therefore U*u = 1.
Finally, we check that the map U coincides with the map defined by (1.15). For
f € L*(p), we find

JUHDu = UF(IHDU u = UFVO1 = Uf,

as required.

We conclude that for the Hankel operator H,, and the map U, satisfying (1.15),
we have the identities (5.6), where JH{ and H correspond to our abstract spectral
datum A = (p, ¥, ‘i’). This means that the abstract spectral datum A coincides
with the spectral datum A (u).

6 Initial results about asymptotic stability

In this section, as a warm-up, we present some easy initial results on asymptotic
stability. In what follows, (p, ¥, ‘i’) is an abstract spectral datum. We recall that
this means that p is a finite Borel measure with a bounded support on (0, c0),
satisfying the normalization condition (1.18), and ¥ € L*°(p) and Ye L™ (po) are
unimodular complex-valued functions.

6.1 The operator X; is asymptotically stable. Let the operators M
and M in L?(p) be as defined in Section 2.1. Recall that the operator X5 in L?(p)
was defined by =g := MM™!. Our purpose here is to prove

Theorem 6.1. The operator X is asymptotically stable.

By Theorem 2.1, this implies that any spectral datum of the form (p, 1, 1) is
in A(BMOAy;y,); this was one of the main results of [11].
In order to prove Theorem 6.1, we consider the symmetrization G, of X

S = M2 e M2 = M2 on 12,

Note that |G|l < 1. Indeed, from 0 < M2 < M2 by the Heinz inequality we
find M2 < M!2, and therefore by Douglas’ Lemma (Lemma 4.1) the opera-
tor Q := M!/2M~1/2 extends from a dense set to a contraction, and its adjoint is
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given by Q" = M~1/2\(1/2. Thus

(6.1) So =00,
so Sy is a contraction.

Lemma 6.2. The operator S is asymptotically stable.

Proof. By (6.1), the operator & is self-adjoint and 0 < &y < I. So in order
to prove the asymptotic stability of Sy, it is sufficient to show that 1 is not an
eigenvalue of &y. Let us prove this. We have

M = MV2SM 2,

and therefore

M? = MY2EMSM 2,
On the other hand,

Mz = M2 - < > ]1>]1 = Ml/z(M - < > b>b)9 Ml/za

where b = M~V/21, i.e., b(s) = s~/2.
Comparing these two representations for M? and using the fact that

KerM!/? = {0}
we find
(6.2) SoM&So =M — (-, b)b.

Suppose f € Ker(Gg — 1), i.e., Sqf =f. Evaluating the quadratic form of the last
identity on f, we find

MEf) = (MLS) = 1)1,
and sof L b. Substituting f L b back into (6.2), we get

SoMf = M/,

and so Mf € Ker(&g — I).
Thus, Ker(&y — I) is an invariant subspace of M which is orthogonal to b.
Since b is a cyclic element for M, it follows that Ker(&y — I) = {0}. O

Corollary 6.3. The operator Q = M2M=V2 is a strict contraction, i.e.,

1Qx]l < [lx]| Vx #O0.
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Proof. By construction, Q is a contraction, ||Qx|| < ||x|| for all x. Assume that
| @x||=||x|| for some x#0. Since &y=Q*Q, we conclude that (Sx, x) = || Qx||*= ||x||%
But || Syl < 1, so Sgx = x, which contradicts Lemma 6.2. ]

Lemma 6.4. Let bounded operators A, B, K satisfy
(6.3) KA = BK,

and let |B|| < 1. Assume that Ran K is dense, and that the operator A is asymp-
totically stable. Then B is also asymptotically stable.

Proof. Iterating (6.3) we get that
KA"=B"K, neN.
Since A is asymptotically stable, we see that for all x € RanK
(6.4) IB"x|| > 0 asn — oo.

But ||B"|| < 1, so operators B" are uniformly bounded. Since Ran K is dense, the
&/3-Theorem says that (6.4) holds for all x, i.e. B is asymptotically stable. ([l

Proof of Theorem 6.1. From the definition of Gy we see that
M2, = M2,

and Ran M!/? is dense in L?(p). Now we apply Lemma 6.4 with K = M!/2, A = &,
and B = X. 4

6.2 Self-adjoint Hankel operators and positivity. In this subsection
we discuss the self-adjoint case, when both operators I and [ =TI Sare self-adjoint.
According to Theorem 1.6, in terms of the spectral data, this corresponds to the
case when both unimodular functions ¥ and W are real-valued.

Theorem 6.5. Let A = (p, ¥, ‘f’) be an abstract spectral datum such that ¥
and ¥ are real-valued and one of them is identically equal to 1. Then X* is
asymptotically stable, i.e., A € A(BMOAg;yp).

This theorem gives us a complete description of the spectral data in the case of
self-adjoint Hankel operators, when one of the operators I', I is non-negative.

Proof of Theorem 6.5. Let us introduce the symmetrization G* of X*,

S* = M2 N 1/2 = Q*q’(,ﬁ)Q‘P(M),
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where Q = M!/2M~1/2 is as in Corollary 6.3. Since ¥ and ¥ are real-valued, the
operators W (M) and ‘i‘(fﬁ) are self-adjoint. Let us prove that G* is asymptotically
stable.

If ¥ = 1, we have &* = Q*‘i‘(ﬁ)Q, so &* is self-adjoint. The fact that Q is
a strict contraction (see Corollary 6.3) implies that =1 are not eigenvalues of G*,
so & is asymptotically stable.

F¥P=1,we get that G* = Q* QW(M). This operator is not self-adjoint, but

(6.5) (&%) = Q" (@YD )" Q¥(Q),

and the operator Q¥Y(M)Q* is self-adjoint. Since Q is a strict contraction, the
points +1 are not the eigenvalues of QW(M)Q*, so Q¥ (M)Q* is asymptotically
stable. Identity (6.5) together with Lemma 6.4 shows that G* is asymptotically
stable as well.
Finally, we have
MV2&* = M2,

so by Lemma 6.4 with K = M!/? the asymptotic stability of &* implies the
asymptotic stability of Z*. O

7 Asymptotic stability and singular spectrum

In this section we present one of our key results which related the asymptotic
stability of X* to its spectral properties. As in the previous section, below (p, ¥, V)
is an abstract spectral datum, and X* is the operator in L?(p) defined in (2.7).

7.1 Defect indices of X*. In what follows, the consideration of X* will
proceed in two slightly different ways depending on the defect indices of X£*. In
the following lemma we describe these two possible cases.

Lemma 7.1. Let A = (p, P, ‘i’) be an abstract spectral datum, and let Z* be

the operator (2.7) constructed from it.

@ If

(7.1 /00 dp(s) =1 and /oo dp(s) = 00,
0 0

52 s4

then the defect indices of X* are (1,0), so X is an isometry.
(i) If (7.1) fails, i.e., if we have either

(7.2) /Oo dpgs) =1 and /Oo dpff) < o0,
0 N 0 Ky
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or

(71.3) /Ooo aps) _

2

then the defect indices of £* are (1, 1).

Proof. We have X* = {Iv‘(ﬁ)ZS‘P(M), where X§ := MM-!. The operators
PY(M) and lI’(AJ\/[/) are unitary, and so the defect indices of £* and X coincide.
Thus, it suffices to consider the defect indices of Xj.

By Theorem 6.1, the operator Xf is asymptotically stable. By Theorem 2.1, this
means that the triple (p, 1, 1) is the spectral datum of some Hankel operator H,,.

(1) Suppose (7.1) is satisfied. Note that (7.1) is identical to (1.21), and so by
Theorem 1.5, we have Ker H, = {0}, and therefore (see (2.2)) the operator Xj
is unitarily equivalent to the backward shift $*, and so the defect indices of X*
are (1, 0).

(ii) Suppose (7.1) fails. Then again by Theorem 1.5, the kernel of H,, is non-
trivial and so Xj is unitarily equivalent to the restriction of S* to the subspace
RanH,. By Beurling’s theorem, this subspace is a model space Ky := H> © OH?
for some inner function 6 and so Xj is unitarily equivalent to S}, where Sy is
the compressed shift on K. It follows (see (4.1)) that the defect indices of X
are (1, 1). ]

7.2 Asymptotic stability and singular spectrum. Recall that the a.c.
spectrum of a self-adjoint or unitary operator is said to equal a Borel set E if the a.c.
part of the spectral measure is mutually absolutely continuous with the Lebesgue
measure restricted to E.

Theorem 7.2. Let the triple A = (p, Y, ‘f’) be an abstract spectral datum.

(1) Assume that (7.1) holds, i.e., that £* has defect indices (1,0). Then X* is
asymptotically stable iff the a.c. spectrum of Re Z is [—1, 1] with multiplicity
one.

(i1) Assume that (7.1) does not hold, i.e., that £* has defect indices (1, 1). Then
X* is asymptotically stable iff the a.c. part of Re X is empty.

Before proceeding to the proof, we need a lemma. This lemma is one of the
central points of our argument. Below we refer to the unitary and c.n.u. parts of a
contraction according to Langer’s lemma, see Lemma 4.2.

Lemma 7.3. Let X* be the operator constructed from an abstract spectral
datum. Then the unitary part of Z is either purely absolutely continuous or absent.
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Proof. We use the model (H, JT(, 2) as described in Section 2.4. Let us write
LZ(P) = Xsing @ X,

where Xy is the singular subspace of the unitary part of X, and X, is the “re-
mainder” part, i.e., the sum of the completely non-unitary subspace of X and the
absolutely continuous subspace of the unitary part of X. Our aim is to show
that Xgine = {0}.

Step 1. The spectral measures associated with X.. By construction,
X, is an orthogonal sum of a unitary part X, with the purely a.c. spectrum and a
completely non-unitary part X .

For any f € X, and any polynomial ¢ of z, we have

(7.4) lp(ZfI? = lp(Zfull? + lo(Eenu)fena I

where f,, and f.,, are the projections of f onto the corresponding subspaces. We
can write

lo(S0fll? = /T 0@ IPdii ),

where pf is the spectral measure of X, associated with the vector f;. By construc-
tion, this measure is absolutely continuous.

Now let us consider the second term in the r.h.s. of (7.4). Since X, is a c.n.u.
contraction, we can consider its minimal unitary dilation V, which has a purely
a.c. spectrum, see Theorem 4.5. Taking linear combinations of (4.2), we obtain

(p(zcnu)fcnu = Pcnuq)(v)fcnua

where Py, is the orthogonal projection onto the c.n.u. subspace of X. This yields

lp(Zcna)fenull® = 1Penu@(Vferu 1> < Nl o(V)fenull” = /T lo()Pdp ™ (2),

where u7™ is the spectral measure of V associated with the vector fenu. By

Theorem 4.5, the measure x ;™ is purely a.c.

Summarizing, we can write

(7.5) lp(Zf1I? < /TI(/)(Z)Izd/Jf(Z),

cnu

where sy = up + pu5
Step 2. A commutation relation. We have

S = 2sing 0 , I = h]] h12
0 pIN hor hxp

is an absolutely continuous measure on T.
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with respect to our decomposition L*(p) = Xging @ X;. Iterating the commutation
relation (5.1), we find
SHH = HE".

In our orthogonal decomposition, we can write this relation as

Tie O hyy hiz _ hi hi) (26, O
0 =) \ha hxp ha1 ha 0o X
If we write this as a system of four equations, one of them will read

PN h12 = h122;’.

sing

Taking a linear combination of these equations and taking into account the anti-
linearity of /;,, we obtain

(7.6) P(Zging) " hi2 = hipp(Z))

for any analytic polynomial ¢(z) = > j_, axz".
Step 3. H is diagonal. Let us choose a sequence {¢,};2, of analytic
polynomials such that:
@ lonllae < 1;
(i) ¢,(z) = O for a.e. z € T (with respect to the Lebesgue measure);
(iii) liminf, ., |@,(z)| = ¢ > O for a.e. z € T with respect to the (singular)
spectral measure of Zge.

The existence of such polynomials ¢, is given by the following lemma.

Lemma 7.4. Letv be a singular (regular, Borel) measure on the unit circle T.
There exists a sequence of analytic polynomials ¢,, satisfying properties (i)—(iii)
above.

Proof. Let E be the set of Lebesgue measure zero (|E| = 0), supporting v, i.e.,
such that v(T \ £) = 0. By the regularity of v and the Lebesgue measure there exist
increasing sequences of compacts K,, C E, F,, C T \ E such that

lim v(K,) = u(E), lim |T\ F,|=0.
n—oo n—0oo

Since dist(F},, K,,) > 0 for all n, one can choose continuous functions f,, : T — [0, 1]
such that f,,|x, = 1, fulr, = 0.

Using the Weierstrass approximation theorem, let us choose trigonometric
polynomials p,, = &—NW arz* such that ||f,, — p,ll 1oy < 27" forall n > 1. Then

the analytic polynomials ¢,(z) := z""p,(z)/2 give the desired sequence. O
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We continue the proof of Lemma 7.3. Let us substitute ¢, into (7.5). Since uy
is absolutely continuous, by conditions (i) and (ii) and the dominated convergence
theorem we find

lpn(ZDfII* < /El(Pn(Z)lzdﬂf(Z) — 0, n— oo,

i.e., ,(Z;) — 0 strongly. On the other hand, condition (iii) and Fatou’s Lemma
imply that for any element ' € X;,, we have

liminfl,(Zne)'f I = liminf [ lo, Py > [ vy = IfIP

here vy is the spectral measure of X, associated with the vector f.
Substituting ¢,, into (7.6) and letting n — oo we then conclude that 7, = 0.
Using the symmetry condition

(3 ) = (Hg. f),

from here it is easy to see that s;; = 0, and so JH is diagonal in the orthogonal
decomposition Xging ® X,. Thus, H2 = M2 is also diagonal in this decomposition,
and in particular X, is an invariant subspace for M2,

Step 4. Concluding the proof. By (5.3), we know that X satisfies

S =1—(-,q)q, q(s) = P()/s.

Since ZX* = 1@ XX}, we conclude that ¢ € X;. On the other hand, g(s) # 0
p-a.e. and so ¢ is a cyclic element for M?. We find that Xging 1S an invariant
subspace for M2, orthogonal to its cyclic element g. Thus, Xing = {0}. The proof
is complete. (]

Proof of Theorem 7.2. By Langer’s lemma (Lemma 4.2) we have
(7.7) ReX=ReX, ®Re X ..,

where X, is unitary and Z.,, is completely non-unitary.

(i) Suppose (7.1) holds and so £* has defect indices (1, 0).

First suppose that X* is asymptotically stable. Then the unitary part of X is
absent, and so X is completely non-unitary. Then, by Theorem 4.3, X is unitarily
equivalent to the shift operator S and so Re X has a purely a.c. spectrum [—1, 1]
with multiplicity one, as required.

Conversely, suppose that the a.c. spectrum of Re X is [—1, 1] with multiplicity
one. By Lemma 7.3 and Proposition 4.9, the spectrum of Re X, is purely a.c. Next,
applying Theorem 4.3 again, we find that X, is unitarily equivalent to the shift
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operator S and so Re X, has a purely a.c. spectrum [—1, 1] with multiplicity one.
Denoting the unitary equivalence by ~, we can rewrite (7.7) for the a.c. parts as

ReS ~Re X, ®ReS.

Considering the multiplicity functions of the spectrum on both sides, we see that
the term Re X, must be absent from this expression. Thus, * = X% ~ §*, and
so X* is asymptotically stable.

(ii) Suppose (7.1) fails and so Z has defect indices (1, 1).

First suppose that X* is asymptotically stable. Then the unitary part of X is
absent, and so X is completely non-unitary and by Theorem 4.4 the operator Re
has a purely singular spectrum, as required.

Conversely, suppose that the a.c. spectrum of Re £ in [—1, 1] is absent. By
Lemma 7.3, the spectrum of Re X, is purely a.c.; thus, the unitary part of X,
is absent, and so X is c.n.u. Applying Theorem 4.4 again, we find that £* is
asymptotically stable, as required. (]

8 Reduction to spectral properties of ‘?(ﬁ)‘I’(M)

In this section we show that under some additional assumptions the operator X* is
asymptotically stable if and only if the spectrum of the unitary operator ‘I’(fMV)‘P(M)
is purely singular. While at first glance this condition does not look much simpler
than the conditions in Theorem 7.2, it will allow us to easily construct examples
and counterexamples.

Below A = (p, V¥, ‘i‘) is an abstract spectral datum and M, M are the operators
in L2(p) constructed as in Section 2.1. We recall that the operator X} in L*(p) was
defined by £¥ 1= MM~

8.1 Reduction is possible if /] — X; € S;. We start with the easiest case,
when the difference I — X is trace class.

Theorem 8.1. Let the abstract spectral datum A = (p, Y, ‘i’) be such that
I — Xy €8. Then X* is asymptotically stable if and only if the unitary operator

FOO)POV)

has a purely singular spectrum.
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Remark 8.2. By Lemma 7.1, the operator X has defect indices either (1, 0)
or (1, 1). By Theorem 6.1, the operator Xj is asymptotically stable, and hence it
is c.n.u. By Theorems 4.3 and 4.4, we see that there are two possibilities:

(i) XZ§ has defect indices (1, 0), and then it is unitarily equivalent to S*, where S
is the shift operator in H?;

(i) X; has defectindices (1, 1), and then it is unitarily equivalent to S;, where Sy
is the compressed shift operator Sy in a model space Ky for some inner
function 6.

Observe that condition I — X € S; is incompatible with (i), because I — S is not a
trace class operator. So the assumption I — Xy € S| necessitates that we have (ii).

Proof of Theorem 8.1. We have
PO PN — T = POV PO)* — PO)* ZoPOMN)*
= ¥(OW)*(I — Zo)POD)" € S
and so, taking real parts,
Re(POV)P(M)) — Re = € S;.

Applying Proposition 4.9 and the Kato—Rosenblum Theorem, we find that the
spectrum of ‘I’(fMV)‘P(M) is purely singular if and only if the spectrum of Re X is
purely singular.

Finally, as discussed in Remark 8.2, the operator X has defect indices (1, 1),
and so X has the same defect indices. Thus Theorem 7.2(ii) applies and so the
spectrum of Re X is purely singular if and only if £* is asymptotically stable. [J

8.2 Sufficient conditions for / — Xy € S;. The previous theorem leads to
the natural question: how to characterize abstract spectral data which correspond
to the case I — Xy € S;? We give some sufficient conditions that guarantee this
inclusion. We start with the simplest condition.

Lemma 8.3. Let the abstract spectral datum A = (p, P, ‘i‘) be such that
supp p is separated away from O; then [ — X € S;.

Proof. The idea is to apply Theorem 4.8 to the operators M? and
M2 = M2 — (-,1)1 > 0 and the function ¢(s) = v/s. The function ¢ is not
sufficiently smooth to comply with the hypothesis of Theorem 4.8, but we can
modify it so that the resulting function is in Cg°(R).

Indeed, by assumptions ¢(M?) C [a, R] with some 0 < a < R < oo; since M2
is a rank one perturbation of M2, we find that o(M2) C {40} U [, R], with some
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eigenvalue 19 > 0. It is clear that we can modify ¢ outside the set { 19} U [a, R]
such that the resulting function ¢ is in C5°(R). Thus, Theorem 4.8 applies to ¢ and
we get

POC) — V) = p(M?) — p(M*) =M — M € S;.

By assumption, the operator M is invertible, so left multiplying M — M by M~!
and recalling that £, = M~'M, we get the conclusion of the lemma. (]

Next, we give a slightly more precise sufficient condition. As discussed in
Remark 8.2, if I — Xy € S, then condition (7.1) is not satisfied, which means that
either (7.2) or (7.3) holds. The following lemma says that under conditions that
are slightly stronger than (7.2) or (7.3), we have I — Xy € S;.

Lemma 8.4. Assume that for some ¢ > 0, we have either

(8.1) /Oo dpgs)zl, /Oo daif) < 00
0 N 0 §oTe

or

(8.2) /OO Wy, /OO W) o
0 s 0 N

Then I — X is trace class.
The proof is elementary but a little technical; it is given in Appendix A.
8.3 Reduction is possible if ¥ and ¥ are Holder at 0. Finally, we

turn to the case when I — X is not necessarily trace class. We give a more precise
condition, whose proof is based on the application of Ismagilov’s Theorem.

Theorem 8.5. Let the abstract spectral datum A = (p, VY, ‘i‘) be such that the
limits ¥Y(0,) and ¥(0,) exist and that for some & > 0 we have

sup 18| W(1) — W(0,)| < oo, supr ¢ |P(r) — P(0,)| < .

>0 >0

Then X* is asymptotically stable if and only if the unitary operator
OOV
has a purely singular spectrum.

We give the proof in Appendix A.
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8.4 Openquestion. The previous Theorem naturally leads to the following
question.

Open question. For a general abstract spectral datum A, is it true that X* is
asymptotically stable if and only if the spectrum of PODYM) is purely singular?

At first glance, reduction to ‘i‘(ﬁ)‘I’(M) does not seem very useful since in
general it is not an easy task to decide if this operator has a purely singular
spectrum. But in concrete situations this allows us to give convenient sufficient
conditions for £* to be asymptotically stable, i.e. (see Theorem 2.1) for a spectral
datum A to be in A(BMOA;,,). Most importantly, it also allows to construct
counterexamples.

8.5 Positive results.

Theorem 8.6. Let A = (p, ¥, q‘) be an abstract spectral datum. Let WYy
be a differentiable unimodular complex valued function on [0, 00) such that its
derivative admits the representation

d

Pu(s) = s / e du(r)
ds —oo

with some finite complex-valued measure u on R. If (p, P, q’) € A(BMOA;p),
then (p, V4V, ¥4'¥) € A(BMOAinp), in particular, (p, Vg, ¥y) € A(BMOAGmp).

Proof. By our assumptions on W, the function s — Wa(4/s) satisfies the
hypothesis of Theorem 4.8. Since M? — M? is a rank one operator, it follows that

By (D) — Wy = 4}/ 3) — By(VAE) € 8.
and so, left-multiplying by Wx(M)*, we find
POV (M) — 1 € Sy.
Next, denote
== PODZHPOM),  Tf = PO PO

here the operator X corresponds to the spectral datum (p, P, q’) and X4 corresponds
to the spectral datum (p, W4V, ¥4¥). We have

25 = Y OVD (V)" Py (VD) T V)
= (M) Z*Wu(M)* + trace class operator.
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By taking real parts, it follows that
Re X4 = P2 (M)(Re Z*)Wx(M)* + trace class operator.

Thus, using the Kato-Rosenblum theorem, we find that Re X4 satisfies the hypoth-
esis of Theorem 7.2 if and only if Re X satisfies them. Thus, X} is asymptotically
stable if and only if X* is. Finally, if ¥ = ¥ = 1, then by Theorem 6.1 we have
(p, 1, 1) € A(BBMOAg;np), and therefore (p, Wy, ¥4) € A(BMOAGmp). ]

8.6 Counterexamples. If one of the functions ¥ or ¥ is constant, then
the problem of spectral analysis of POVD)POW) simplifies significantly and reduces
to the spectral analysis of a multiplication operator. Recall that the spectral type
of a multiplication operator is easy to determine. Namely, if M is the multiplica-
tion by the independent variable s in L?(p), then a spectral measure (of maximal
spectral type) of the operator ¥(M) is the pushforward of p by ¥; we denote this
pushforward measure by p o (P~1).

We immediately get the following generalization of Theorem 6.5.

Theorem 8.7. Let A = (p, P, ‘i’) be an abstract spectral datum such that
I — X0 € S and suppose that one of the two measures p o (¥~!), po (‘I’_l) is
supported at a single point. Then A € ABMOAgn) if and only if the other
measure is purely singular.

Proof. Suppose that p o (P 1y is supported at a point ¢, where || = 1. Then
POVD)POM) = POW).
Thus, the spectrum of li’(ﬁ)‘l’(?\/[) is singular if and only if the measure p o (¥~!)

is singular. It remains to apply Theorem 8.1.
The case when po(W~!) is supported at a point is considered in the same way. [J

Finally, for definiteness, we give a concrete example of a spectral data A that
is not in A(BMOAinp).

Corollary 8.8. Let A = (p, VP, ‘i‘) be an abstract spectral datum, where the
measure p is absolutely continuous with supp p = [a,b], 0 < a < b < oo, and
Y(s) = e”, li’(s) = 1. Then A ¢ A(BMOA;y,,), i.e. A does not correspond to any
Hankel operator.

Remark. It is known (see [1, Propositions 9.1.11, 9.1.12]) that for a finite
measure x without atoms on T, there exists a Borel measurable (and even contin-
uous) function F : T — [0, 1] such that the measure x o (F~!) is the Lebesgue
measure on [0, 1]. Using this fact, for any given p without atoms one can always
construct ¥ such that (p, ¥, 1) ¢ A(BMOA;np).
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9 The self-adjoint case

9.1 A counterexample for self-adjoint Hankel operators. In this
section we consider the question of surjectivity of the spectral map in the case
of self-adjoint Hankel operators I',. By Theorem 1.6, in this case the spectral
datum (p, ¥, ‘I’) satisfies the additional constraint that ¥ and ¥ take values 1.
It is reasonable to ask whether all abstract spectral datum with this additional
constraint are in A(BMOA;,p). It turns out that the answer to this is negative.
However, the corresponding counterexample is more subtle and based on a deep
result [28] of perturbation theory.

Let p be an absolutely continuous measure on an interval (a, b), 0 <a <b < oo,
dp(x) = w(x)dx, where w is a strictly positive Holder continuous function on (a, b).
Multiplying p by an appropriate positive constant we can ensure that the normal-
ization condition (1.18) is satisfied.

Take any sg € (a, b), and define

~ -1, s <0,
P(s) =Y(s) =
1, s > 50.

Theorem 9.1. Under the above assumptions the operator
T = POOMM P (OM)
is not asymptotically stable, and so (by Theorem 2.1) (p, ¥, ‘i’) ¢ A(BMOA imp).

In the rest of this section, we present the proof.

9.2 Overview of the proof. Since supp p is separated from 0, the condi-
tion £yg—1 € S is easily seen to be satisfied, see Lemma 8.3. Then by Theorem 8.1,
in order to show that X* is not asymptotically stable it is sufficient to show that the
absolutely continuous spectrum of operator PODPM) is non-empty. Denoting
by E, the (projection-valued) spectral measure of a self-adjoint operator A, we can
write

PODPOM) = (I — 2E5:((—00, s0)I — 2E, (=00, 50)))
= (I = 2E5((—00, sp))U — 2E,((—00, 53))),
and so the question reduces to investigating the geometry of the ranges of the two

spectral projections Ey 2 ((—oo0, s(z))) and E5z, ((—o0, s%)). This question has been
studied in [28] in the general framework of scattering theory. We recall the relevant
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results of [28] in the next subsection. They assert that in our case the a.c. spectrum
of the product

Ey (=00, 50) E5([s0, 00))E (=00, $0))

is non-empty. From here, using some general results on the geometry of two
subspaces in a Hilbert space (we use Halmos’ paper [13]) it is not difficult to
derive that the a.c. spectrum of Y(M)W¥(M) is also non-empty.

9.3 Products of spectral projections. Here we briefly recall some of the
results of [28], adapted to the particular case at hand. Let Ay and A; be bounded
(for simplicity) self-adjoint operators in a Hilbert space X, such that the difference
A] — Ap is a (negative) rank one operator:

Al _A0= —<',CI)>CI),

where w is a non-zero element in X.

Assume that the operators Ag and A; have a purely absolutely continuous
spectrum on an interval (a, f). Assume also that the derivatives F{(s) and F(s),
where

Fo(s) := (Ep(—00, ), w), Fi(s) := (Ea, (—00, $)w, ),

exist for s € (a, f) and are Holder continuous functions of s. Define
9.1) w(s) = B> (Fy(s)' PF{ (O F()'2, s € (@, B).
The following fact was proved in [28], see Lemma 3.2(ii) there.

Lemma 9.2. Under the above assumptions the absolutely continuous part of
the operator

9.2) E, (00, )E, ([s, 00))E, (=00, 5))
is unitarily equivalent to the operator of multiplication by x in L*([0, (s)], dx).

In Section 9.5 below we take Ag = M2, A; = M2, @ = 1 € L*(p) and show that
the above hypotheses are satisfied and »(s) > 0, and so the operator (9.2) has a
non-trivial absolutely continuous part. From there we will deduce that the operator
‘i‘(ﬁ)‘I’(M) has a non-trivial absolutely continuous part. In order to do this, we
will use some Hilbert space geometry; this is discussed in the next subsection.

Remark. The focus of [28] was the connection between the a.c. spectrum
of combinations of spectral projections (9.2) (and other similar ones) and the
eigenvalues of the scattering matrix of the pair of operators Ag, A;. In the case
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at hand (when A; — Ag is a rank one operator), the scattering matrix is simply a
unimodular function on the a.c. spectrum of Ay, and it can be expressed directly
in terms of s(s). In any case, Lemma 9.2, which was an intermediate step in [28],
suffices for our purposes, and so we are not discussing the scattering matrix here.

9.4 Pairs of projections and the a.c. spectrum of ‘i‘(ﬁ)‘P(M). Let
us start with a brief discussion of some of the construction of Halmos’ beautiful
paper [13]. Let P and Q be two orthogonal projections in a Hilbert space. Following
Halmos, we will say that P and Q are in generic position, if each of the four
subspaces

9.3) RanPNRanQ, KerPNKerQ, RanPNKerQ, KerP NRanQ
are trivial.

Theorem 9.3 ([13]). Let P, Q be two orthogonal projections in a generic
position. Then there exist self-adjoint positive semi-definite commuting contrac-
tions 8 and C, with 8% + @> = I and Ker 8 = Ker € = {0}, such that the pair P, Q is
unitarily equivalent to the pair

I 0 > C8
0 0)° es 8§ )°
We can now put this together with Lemma 9.2.

Lemma 9.4. Assume, in the hypothesis of Lemma 9.2, that for some s € (a, )
we have »(s) > 0. Then the a.c. spectrum of the unitary operator

(I = 2Ep,((=00, $))I — 2E4,((—00, 5)))
coincides with the arc on the unit circle
(9.4) {1 =26"+ioV1 — 02 : 6 € [—(s), ()]}
In particular, this a.c. spectrum is non-empty.
Proof. Denote
P=E;(—00,5), Q=E4(—00,s).

These projections are not necessarily in generic position, but for our purposes it is
sufficient to consider their generic parts. Namely, let us write our Hilbert space X
as

X =Xo D Xgen,
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where Xy is the orthogonal sum of the four subspaces (9.3). It is easy to see that
each of these four subspaces is invariant for both P and Q, and therefore X, is
also invariant for both P and Q. Furthermore, the pair

Pgen = Pnge“a Qgen = Qngen

is in a generic position. Thus, according to Theorem 9.3, we can write

I 0\ . e es8\ .,
9.5) Pgen =U <0 0) U, Qgen =U (GS 82> U,

where U is a unitary operator.

Since the restriction of P and Q onto each of the four subspaces (9.3) is
either O or /, the absolutely continuous parts of the the operators P(I — Q)P and
(I — 20)({ — 2P) coincide with the absolutely continuous parts of their generic
counterparts Pgen(1 — Qgen)Pgen and (I — 2Qgen)(I — 2Pge,) respectively.

One can see from (9.5) that the operator 8 is unitarily equivalent to the operator

Pgen(l - Qgen)Pgenl)(gena

so the absolutely continuous part of 82 is unitarily equivalent to the absolutely
continuous part of P(I — Q)P, which is described by Lemma 9.2. So, the absolutely
continuous part of 8 is unitarily equivalent to the multiplication by the independent
variable x in L*([0, 5(s)], dx). Alternatively: the absolutely continuous part of § is
unitarily equivalent to the multiplication by x in L?([0, v/»<(s)], dx).

On the other hand, according to our model (9.5), we have

—1+2€2  —268 ) ~ <1 282 —208 )

U*(I —2Qeen)I — 2Pgern)U =
( Qgen)( gen) ( 2€8 I — 282 208 1 —128?

where we have used the identity 8 + €% = I at the last step. The numerical matrix

1 —-2s> —2cs
B(s):=< 908 1_232>, 0<s<1l,c=V1—-82>0

has eigenvalues A.(s) := 1 —2s> &+ 2isv/1 — 2, and therefore B(s) can be decom-

posed as
_ Ju(s) 0 .
B(s) = V(s) < 0 i_(s)> V(s)

where V(s) = (vj’k(s))j%k=1 is a unitary 2 x 2 matrix. The matrix V(s) can be
explicitly computed, and can be chosen so the function s — V(s) is continuous
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(and so measurable) on the interval (0, 1). Therefore

18 0 .
U™ (I = 204e0)(I — 2Pyen)U = B(S) = V() < é ) h (8)> V(S)”,

where V(8) = (Uj,k(s)),%kﬁ- So (I — 2Qgen)( — 2Pyep) is unitarily equivalent to the
directsum A4, (8)®A_(S). From here we see that the a.c. spectrum of (/ —2Q)(I —2P)
is given by the arc (9.4), and in particular it is non-empty. (]

9.5 Proof of Theorem 9.1. As mentioned above, we take Ag = M?,
A =M?>, w=1 e X = L*(p), (a, B) = (a*, b*) in Lemma 9.2; we need to check
that the hypothesis of this Lemma is satisfied and s(s) > 0. We have

Vs Vs
Fo(s) = (Epp((—o0, s)1, 1) = / dp(s) =/ w(s)ds’,

and so the derivative

1
s w(V/s)

exists and (by our assumptions on w) is Holder continuous on (a?, b?). Let us

/ d \/S / /
Fo(s) = ds/ w(s)ds' = 5

consider Fi(s). We use the standard rank one identity (which follows from the
resolvent identity)
To(2)
T\(z) = ,
1(2) | — To(2)
where
Toz) = (M* —2)7'1,1), Ti@)= (M —27'1,1).

By definition, the operator Ty(z) is the Cauchy transform of a Holder continuous
function, and therefore 7Ty(x + i0) is Holder continuous on (a, £). Note that in our
case ImT(x + i0) > O on the interval (a, £), and so 1 — Ty(x + i0) # O on this
interval. Further, we have

Im To(x + i0)

Im Ty (x + i0) = 11— Tyt 4 )P

and so the density F'|(s) = Im 7', (s+i0) is also Holder continuous and non-vanishing
on (a, f).

We have checked the hypotheses of Lemma 9.2 and we have established that
2#(s) > 0in (9.1). Using Lemma 9.4, we find that the a.c. spectrum of q’(ﬁ)‘P(M)
is non-empty. The proof of Theorem 9.1 is complete. (]
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10 Applications to the cubic Szeg6é equation
10.1 The cubic Szego equation. The cubic Szeg6 equation is the Hamil-
tonian evolution equation

(10.1) i = P(|ul*u),

where P is the Szeg6 projection, i.e., the orthogonal projection from L?(T) onto H>.
Here u = u(t,z), t € R, z € T, and the projection P is taken in variable z. In this
section for typographical reasons we omit the variable z, and will be using u(r)
instead of more formal u(z, -).

This equation was introduced in [5] where it has been proved to be wellposed
on the intersection of H?(T) with the Sobolev space W*2(T), for every s > ;
More recently, the wellposedness was extended to BMOA(T) in [10]. In this case,
since BMO(T) c N L7(T), the right-hand side of (10.1) is in H*(T), so (10.1)
can be interpreted as an ODE with H?(T)-valued functions.

p <oo

An important property of this equation is that it admits a Lax pair structure
involving Hankel operators H, and H,,, which stimulated the study of the spectral
map A, starting with functions u in H2(T) N W2+(T) and VMOA(T); see [8, 7].

Our first result is the following description of the action of the Szegé dynamics
on the set A(BMOA;,p).

Theorem 10.1. Let uy € BMOA i, (T) with A(ug) = (p, Yo, q’o). Denote
by u the solution of (10.1) such that u(0) = ug. Then, for every t € R, we have
u(t) € BMOA ;i (T) and

A@(D) = (p, e Wy(s), e Ty (s)).

This result is consistent with Theorem 8.6 with Wx(s) = ¢™’. The proof is given
in Sections 10.2-10.4.

An important issue in the study of the cubic Szegd equation is the long time
behavior of its solutions. Firstly let us discuss the boundedness of trajectories.
Using the Lax pair structure, one can prove that trajectories are bounded in W2(T)

and in BMOA(T). However, in [7], it is proved that trajectories are generically
1

’-

Secondly comes the problem of almost periodicity of the trajectories in spaces

unbounded in W*?(T) for every s >

where they are bounded. Let us recall that a function ' = F(x) on the real line with
values in a Banach space X is called almost periodic if it can be approximated
(in C(R; X)) by finite linear combinations of functions of the form F(x) = e/ y,
wherea € R and y € X.
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In [7], it is proven that every trajectory in W5’2(T) is almost periodic. Using
the same method, a similar result holds for trajectories in VMOA(T). It is there-
fore natural to ask whether this almost periodicity holds for every trajectory in
BMOA(T). The following theorem shows that the dynamics are much richer in
this case.

Theorem 10.2. Let uy € BMOAn,(T) with A(ug) = (p, Yo, ‘i’o). Denote
by u = u(t) the solution of (10.1) such that u(0) = uy. Then, if p is not a pure
point measure, then the Fourier coefficient uy(t) of u(t) is not almost periodic, and

therefore u = u(t) (as a function with values in BMOA ) is not almost periodic.

The proof is given in Section 10.5.

We conclude by discussing the role of the simplicity condition (1.10). In [7],
the action of the Szeg6 dynamics on the spectral data was described for all compact
operators H, (without the simplicity assumption). In fact, the formula is exactly
the same as in Theorem 10.1, where Wy(s) and ‘i‘o(s) are functions with values in
the set of Blaschke products. The multiplicity of singular values seems to play a
role in the phenomenon of weak turbulence (i.e., growth of high Sobolev norms)
of solutions to the Szegd equations. More precisely, in [7], using the vicinity of
solutions with multiple spectrum, the authors construct a Gs-dense set of initial
conditions such that the corresponding solutions are weakly turbulent.

10.2 The action of H,; and flu(t) for smooth initial data Here we
make the first step towards the proof of Theorem 10.1: we describe the evolution
under the cubic Szeg6 equation for smooth initial data.

Lemma 10.3. Assume the hypothesis of Theorem 10.1 and assume in addition
that ug is smooth: uy € C°(T)NH?(T). Then, using our notation (1.1) for spectral
measures, we have

Huol _ Hil ool Hul
(10.2) pu(t)U = Pug s pu(t)() = Puy

forall t > 0. Furthermore, for any continuous f and any t > 0 we have

(10.3) Houof ([ Houoy Dut(t) = 1Hugo) [ (1 Hu ) Wy (| Huy N o u(0),
(10.4) Hoyof (| Houo) D) = 1 Hooy [ (1 H oy ) Wty (Huy e ™ o u ).

Proof. Throughout the proof, we write u in place of u(t) if there is no danger
of confusion. For uy € C*®(T) N H*(T), we borrow from [9] the following Lax pair
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identities,
dH i .
dtu =[B,, H,], B, = ZHI% — lT|u|2,
i, - i
dtu = [Bua Hu]a Bu = 2H3 - lTlulz,

where T, denotes the Toeplitz operator with symbol a € L*(T), T, : H> — H?,
T = P(af), f e H.

Then we define W = W(z), W = W(l) to be the solutions of the following linear
ODEs on the set of bounded linear operators on H>(T),

dw AW~ ~ _
=B,W, =B,W, W()=W(O) =1
r it ) )

One easily checks that W(7) and W(t) are unitary operators and
(10.5) Hyo = WOH, W@,  Hyup = W(OH,W(@)*.
Consequently,

|Hu| = WOIH W@, |Huol = WO Hi W)

Next, let us identify W(£)*z°, W()*u(z), W(t)*u(t). We begin with W(#)*z%:

d
W()*2° = —W()*B,2°,
dt 0’z 0Bz

with ) .
l l
B, = 2H§z° —iT)p2’ = —2H§z°,
Hence 4 ) )
l l
W)’ = _We)*H?> = _H> W()*Z .
gt )z 5 (t)*H, o, )z

This yields
W(t)*zo — ei;HfOZO‘

Consequently,
W) u(t) = W(t)* Huy2® = Hyy W(0)*2° = H, &' 20,
and therefore, using the anti-linearity of H,,,

(10.6) W) u(t) = e 1Moy,
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On the other hand,

d * Y1) * 17 * 7y 17 */ D 17
dt W(@)*W(t) = =W(@)*Buy W) + W(2)"Buiy W(1) = W(#)" (Buwy — Bu)) W(2)
i */ 17 1/ i Y1/ 7 * Y17
=, W) (Hiy = Hi )W) = , (WO WO H, — Hi W W)).
We infer
W) W(t) = e+l

and consequently
(10.7) WD) u(t) = e~ > Foe i W) u(r) = e+ el Mo e =My = e /2o .
Next, using (10.6) and (10.5),

(F(Hu) Du(®), u(@®)) = (W@ f(|Huw Du®), W@ u(@))
= <f(|Hu0 D e_iéH'%o Ugp, e_iéH'%o u0>
= <f(|Hu0|)u09 M0>
and we obtain the first one of the identities (10.2). The second one is obtained in

a similar way.

Next, since ug € BMOA;;,,(T), for every continuous function f we have
(cf. (1.14))

Hyof ((Huy Dito = [Hug Poog (1 Hoig D (1 HLy Dt
Hyof ((Houy Dito = [Hug Pty (1 Hug D (1 Hoy Dt

Then, using (10.6), (10.7) and (10.5),

W ()" Huof (HuoDt(0) = Hoof (1 Hug e ™2 01

= |y | W (Hug DF (1 Hy D™ 01

= WO | Huio [ (1 Huo)) P ( Huio D™ 0 (),
W ()" Huof (1Huo Dt = Hof (1 De ™+ 01

= 1Huy | Wy (Hug DF (1 Hoy D™ 01

= W) | Huo f (Ho]) Py (i D oou(r),

and finally we arrive at (10.3) and (10.4). ]
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10.3 Approximation argument. As the second step, we extend identities
(10.2), (10.3) and (10.4) to the general case of initial data up € BMOA;y,,. The
new difficulty here is that the operator T, is unbounded, hence the unitary
operators W(r) and W(t) are more difficult to define. Therefore we prefer to use an
approximation argument.

Lemma 10.4. Let u € BMOAiy; then there exists a sequence of polynomial
Sunctions u, € BMOA;nm, converging to u strongly in H?(T) with a uniform bound
in the BMOA norm.

Proof. Step 1. Approximation by polynomial functions. Take
0 < r, 2 1, and define u,(z) := u(r,z), z € T. Clearly u,, — u strongly in H*(T),
and writing H,, in a matrix form (with respect to the standard basis in H?), it is easy
to see that

1 Hu, |l < 11Hull-

Observe that one of the equivalent norms on BMOA is given by ||u|smoa = [|Hyll-
It follows that

sup [lunllgpon < el gpon-
n

Functions u,, are analytic in the closed unit disc D, so they can be approximated by
polynomial functions uniformly in D. Since the norm in C(D) is stronger than the
norm of BMOA, we obtain approximations by polynomial functions in H? with
the uniform bound on the BMOA norm.

Step 2. Approximation by polynomial functions in BMOA;,,,. Denote
by &y the vector space of polynomial functions of degree at most NV, and by Py simp
the subset of u € Py satisfying the simplicity of spectrum condition (1.10). To
complete the proof of the lemma, it suffices to show that Py smp is dense in Py.
Given u € &y, we observe that the range of H, is contained in &y. It follows
that u € Py gimp Whenever the (N + 1) vectors u, H2(u), . .., H2V(u) are linearly
independent, or equivalently whenever the Gram determinant

Gn(u) := det(H*(u), H* (1)) o<i.c<n

is not zero. Since Gy(u) is a polynomial function of the real parts and of the
imaginary parts of the Fourier coefficients of u, the set { Gy # 0} is either empty
or a dense open subset of &y. Therefore we are reduced to proving that Zy gimp
is not empty. Consider u(z) := zV~! +z". The matrix of the linear Hankel operator
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I', = T’} in the basis (X, k=0,...,N}of Zy DRanT,is

00 - 11
0O - 110
110 -0
1 0 - 00

Consequently, I';, and so H, are injective on &?y. Moreover, since
H}=T,CCI;=T,T:=T%,
one can check that the matrix of H?2 in the same basis is three-diagonal, viz.

HA) =2 +2,
HX (M =1+ 28+, ifl<k<N-—1,
Hﬁ(ZN) — ZN—l +ZN-

From these formulae, we infer, via an induction argument on k, that there exist real
numbers ¢y ; such that H*(z%) = z* + i<k cr;7 fork =0, ..., N. We conclude that
the vectors Hﬁk(zo), k=0,...,N, are linearly independent, and, applying H,,, that
Hﬁk(u), k=0,...,N, are linearly independent, or that u € &y simp. [

Before proceeding, for the purposes of clarity we state a (well-known) simple
fact as a lemma.

Lemma 10.5. Let u,u, € BMOA, n € N, with sup,|lu,|smoa < 0o, and
assume that ||u,, — u| 2 — 0 as n — oo. Then we have the strong convergence
H, — H, H, — H, and f(H,) = f(H), f(H,D = fQH.) for any
continuous function f.

Proof. For any m > 0 we have
H," =H,S8"" = (§")"H,2" = (§")"u

and therefore ||H,, 7" —H,z" ||y — 0as n— 0. Itfollows that | H, p — H,p|lz=— 0
for all polynomials p. The uniform bound on ||u,|lsmoa is equivalent to the
uniform bound on the operator norms of H, , and so by the “g/3-argument”
we conclude that H,, — H, strongly. It follows that H2 — H? strongly, and
therefore f(H2 ) —> f(Hz) for any continuous function f. Slnce |H,| = \/H2 we
also obtain f(|H,,|) — f(|H,|) for any continuous f.

Finally, since H, = Hg., and ||S*u, — S*ul| 2 — 0 with the uniform bound on
the BMO norms of S*u,, we obtain the corresponding statements for Flun. (]
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We also quote a corollary of the main result of [10] on the continuous depen-
dence of the solution to the cubic Szegd equation on the initial data.

Proposition 10.6 ([10, Theorem 1]). Suppose ug, uy,, € BMOA, n > 1 are
such that ||ug — uo,|lgpz — 0 and sup,|lup ,llBMoa < 00. Let u(t), u,(t) be the
solutions to (10.1) with the initial data u(0) = ug, u,(0) = ug . Then for anyt > 0,
we have ||u,(t) — u(®)|lgz > 0 as n —» oo. Furthermore, the BMO norm is
preserved by the Szego dynamics, i.e.,

lu(®llemoa = lluollBmoa, ¢ > 0.
Now we are ready to extend Lemma 10.3 to non-smooth initial data.

Lemma 10.7. Assume the hypothesis of Theorem 10.1. Then for any contin-
uous f relations (10.2), (10.3) and (10.4) hold true.

Proof. Using Lemma 10.4, for a given uy € BMOA;,, we construct a se-
quence of polynomial functions ug, € BMOA;y, converging to uq in H?(T) and
uniformly bounded in BMO norm. For each u,, the conclusion of Lemma 10.3
holds. Our purpose is to pass to the limit # — oo in (10.2), (10.3) and (10.4).

Step 1. Convergence of measures: passing to the limit in (10.2). For
each n, we write (10.2) in the weak form as

(10.8) (F(H. () Dtn(2), 1 (£)) = (F(1Hu0)D1tn(0), 14,(0)),
(F(H. () Dt (1), 1 (£)) = (F(|1Ho0)D1tn(0), 14,(0))

for any continuous function f. By Lemma 10.5, we can pass to the limit n — c0
in the right-hand side. Similarly, by Proposition 10.6 combined with Lemma 10.5,
we can pass to the limit in the left-hand side. We obtain the desired relations (10.2),
expressed in the weak form.

Direction of further proof. For every n, we have the identities (10.3) and
(10.4):

(10.9) Hy,oof ((Hy, o Dun(t) = |Hy, 1) V(lHun(t)|)lPu,,(O)(|Hu,,(t)DeitH'f”(')Mn(t)a
(10.10)  Huyof (1Huy oy Dttn(0) = 1oyl (L H oy 0y) P 0) 1y 00D in0 1, (0.

Our aim is to pass to the limit here as n — oo.

In order to motivate the next step, let us make the following remark. Assume
that ¥,, (o) was a continuous function independent of n. Then we could pass to the
limit in (10.9) by Lemma 10.5. Unfortunately, this assumption is not true and so
we need to use a roundabout argument; we will pass to the limit in the right-hand
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sides of (10.9) and (10.10) by considering the weak forms of these identities. But
first we need to establish the weak convergence of spectral measures multiplied by
the factors W, and P, (o) appearing in the right-hand sides.

Step 2. Convergence of measures multiplied by YV, Y. Atr=0 by
Lemma 10.5 we have for every continuous function f

Hy, 0 (1Hu,0) Dutn(0) = Hyorf (|Huco) u(0).
Since both u,,(0) and u(0) are in BMOA;n,, we can write this as
(10.11) o, ) (I Hy,0) D (1Hou,0)D1n(0) = ¥ o) (1Huo) Df (|1 Huoy Du(0),
and similarly we obtain
W0 IHuy ) (Huy ) Ditn(0) = Py (|Huoy D (1Hoo) Du(0).
Taking the inner product of (10.11) with u,(0) and observing that
4,(0) — u(O)[| = — O,
we find

(10.12) A%mwmmwelwmwmmm

where p,, = pﬁ‘g;“)' and p = p%;()‘”l. Similarly, we obtain

/0 W, 0)(8)f () dp” (S)—>/O W) ($)f () dp(s),

~ H, ~_ |H,
where p, = an(gg‘”l and p = pL(o(;’)l.

Step 3. Passing to the limit in (10.9), (10.10). We will pass to the limit
in (10.9); the second identity (10.10) can be treated similarly. Fix # > 0 and denote

() = Huof (HuoDu(0), () = [Huto [f (Ho]) W0y (| Huo e ™0 u(e);
our aim is to prove that v(#) = w(¢). By Proposition 10.6 and Lemma 10.5, we have
0n(?) := Hy,(of ([Hu, (0 Dutn(t) = Hyohf (|Hury Du(®) = 0(2)
in H?, and therefore
(n(8), un(1)) = (0(8), u(?)).
On the other hand, by (10.9) and (10.8),
(0n (D), a(0)) = (1 Huy ) If (Haty ) Pt 0) | it D™ o010, (1), 10,0))
= (|0 I (H oy 0) ) Pty 0y (| Hoy 0y DE™i50 14,(0), 14,(0))

:A‘wmmwmwmmy
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Using (10.12), followed by (10.2) (which was established at the first step of the
proof), we find

(vn(), un()) — /0 sPu0)(S)($)e™ dp(s) = (w(®), u(®)).
Putting this together, we obtain

(0(0), u(t)) = (w(t), u(?)).

Changing f into fg, the above identity implies that the orthogonal projection of v ()
onto {(u(t)) 12, equals w(?). Since v(¢) and w(f) have the same norm, we conclude
that these two vectors are equal. ([l

10.4 The simplicity of spectrum; concluding the proof of Theo-
rem 10.1. It remains to prove that u(z) € BMOA;y,, for every t € R. This is a
consequence of the following lemma.

Lemma 10.8. Let u € BMOAC(T) be such that
(10.13) H(0)) C (), Hu({u) ) € ().
Then u € BMOA .
Proof. Recall that, since H> = H2 — (-, u)u, we have (g = (W = (u).

Denote
Z :=RanH, N (u)*;

our aim is to prove that Z = {0}. By definition, we have H,(Z) C Z and Hu(Z) CcZ.
Moreover every h € Z can be written as

h= lim Hh,, h,=HJ(H,+)'heZz
n— 00
Consequently, S*h = lim,,_, o Huhn € Z and
(h,2°) = nIHEO(HMh"’ 2 = nli)ngo(Huzo, hy) = nli>n<>IO<u’ h,) = 0.

We conclude that $*(Z) € Z and Z L 7°, hence Z L 7" for every n, and finally
Z={0}. 0

Proof of Theorem 10.1. By Lemma 10.7, we have the inclusions (10.13)
for u = u(t). It follows that u(t) € BMOA;n,,. The firstrelation in (10.2) shows that
the measure p = p%“;’)l is independent of 7. Relations (10.3) and (10.4) show that
the dynamics of the unimodular functions ¥ and ¥ is as claimed in the statement

of the theorem. O
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10.5 Proof of Theorem 10.2. By Theorem 2.2 (see (2.8)), we have
(D) = (2O, g(0)) 2,
where X () is given by (2.7) with functions ‘P, ¥ replaced by
P ($) = e Wo(s)  and Wy (s) = ™ Po(s)
respectively, and the function g(¢) = ¢(¢, -) is given by

q(t, 5) = Yu () /s = € Wo(s)/s.

In particular, we get for £ = O that

_ e P
to(1) = (L, (D)) 2, = /Re ! (;(s)dp(s).

That means the function () is the Fourier transform of the image (pushforward)
of the complex measure (of bounded variation)

%s(s) dp(s)

2

under the map s +—> s°. Therefore, Theorem 10.2 follows from the following

lemma.

Lemma 10.9. Let u be a complex Borel measure on R of bounded variation
such that the Fourier transform

i) = / e du(2)
R
is an almost periodic function. Then u is pure point.

Proof. We decompose p as the sum of a pure point measure and a diffuse
measure

= Zajé(/l - i]) + Ua,
j=1

where Z - lajl < oo and py({4}) =0 forevery 4 € R. Then

o0
A = ae™" + i (1),

j=1
and the almost periodicity of z implies the almost periodicity of zi,. For every
T > 0, the Fubini theorem yields

1 sinT(A — ,
o | iaorai= [ [ 004 e
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As T — +00, the integrand in the right-hand side tends to O for every A & 1.
Since u, does not see points, ug ® u, does not see the diagonal. Therefore the
dominated convergence theorem implies that the right-hand side tends to 0. The
almost periodic function i, satisfies

1 T 2
uq(0|° dt 0
T /_T|/ld( )|~ dt —

as T — +o00, hence it is identically 0. From the injectivity of the Fourier transfor-
mation, this implies @4 = 0, hence u is pure point. (]

Appendix A Proofs of the reductions to the spectral
properties of Y (M)¥Y(M)

Here we give the proofs of two technical statements: Lemma 8.4 and Theorem 8.5.

A.1 Sufficient conditions for X, — I € S; in terms of p.

Proof of Lemma 8.4. We start with the formula
2 [ a0 2l 2 [ 22 | 2 —1
M= MM+t dt = I —r(M-+r2D)” Hdr,
7T Jo T Jo

if M is a non-negative real number, this is a trivial identity, and if M is a positive
semi-definite self-adjoint operator, it suffices to combine the scalar identity with
the spectral representation of M. Of course, the same identity holds for M.

The operator M2 = M2 — (-, 1)1 is a rank one perturbation of M, so by the
standard resolvent identity

M +2D ' =P+ 2D+ (-, O+~ ")V + 2D,

A(—1?)

where A is the perturbation determinant,

_ < dp(s)

2\ _ 2,2 1 _

A(=)=1—= (M= +¢1) ]1,]1)_1—/0 242

we get that

(A.1) ﬁ:m-z/oo a (-, +2D "D+ 2D 1 ar
‘ mJo A2 '

Recall that X§ = MM-L, Multiplying (A.1) by M~! on the right, we find that
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I — X§ can be represented as an integral of rank one operators:
2 (> 7 L2 4 271 2, 2 -1
I— X5 = S MT M+ DT LYM+ )T 1 de
0 ﬂ/o -y ( I )

(A.2) 2
_71'/0 NS

a(s) =s" 1+ b(s) = (*+ )7L
First assume (8.2). Then
<
p(s) -

A(—r*) > A(0)=1 —/ 5 > 0.
0 R
We estimate the norms of a, and b, as follows:
lla.|I? = / sT2(S2+ ) 2dp(s) < / s 2dp(s)=Cr™, >0,
0 0
16,11 = / (s> + ) 2dp(s) < 17HF / s %dp(s)=Cr 2, 0<r<]1,
0 0
b = [ ) dp) < / dp(s)=Cr*, 1> 1.
0 0
Then
00 1 0o
1= Z3lls, < C/ la || ||b;||dt < C/ t2z—2t—‘+€/2dz+c/ £t 4dt < oo.
0 0 1

Next, assume (8.1). Then
At = / dp(s) / dp(s)
0 0

52 §2+ 12

o0 d o
= t2/ Ps) > t2/ s_4dp(s) =i’
0 0

s2(s2 +12) ~

(A3)

We estimate the norms of a, and b, as follows:
lla:|I? = / sTAS +2)2dp(s) < 17 / s™4%dp(s) = C2*, 1> 0,
0 0
1B = / (P42 2dp) < |5 Tdp=C 0 <r <1,
0 0
1B = / (5% + ) 2dp(s) < 1~ / dp(s)=Cr, 1> 1.
0 0
Then
[e9) 1 [e9)
Il — Zglls, < C/ la: |l 1b;]|dt < c/ z—1+8/2dz+c/ 1224 < 0.
0 0 1

The proof is complete. O
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A.2 Trace class inclusions for (/ — Zj)M?. In this subsection we prove
preliminary statements that will be used below in the proof of Theorem 8.5.

Lemma A.1. For any ¢ > 0, the operator (I — Z§)M? is trace class.

Proof. We may assume 0 < ¢ < 1. Asin (A.2), we represent (I — Z;)M? as
an integral of rank one operators:

(I — THM? 2 / i (-, a)b, dt
— = -.a
0 7 Jo f ( t2) s Ut t B

a(s) =s 1+ )7 b(s) =P+

[

2

First assume that

Then A(—7%) > A(0) > 0. We estimate the norms of @, and b, as follows:
||Clz||2 - / S—2+2£‘(S2 + t2)—2dp(s) S (t2)—2+£‘ / S_2+28(52 + t2)—£dp(s)
0 0
< t—4+2£/ s—2+2£s—2£dp(s) — Cl_4+28, > 0,
0

16,)1* = /0 (s> + 1) 2dp(s) < 172 /O s2dp(s)=Cr 2, 0<t<l,

b= [+ <t [Cdp =t o
0 0
Then
I = S, < /O a1 de

1 [e9)
< C/ 2 e + C/ 2 2dr < oo.
0 1

dp(s) _
[,

For t > 1, as in (A.3), we have A(—7%) > ct* and the above estimates for ||a||
and ||b;]] will do. For 0 < t < 1 we need to be more careful. We write

2a o [t dp® /°° dp(s) 1 /’ dp(s) 1 /°° dp(s)
oA t)_/osz(s2+t2)+ 1 s2(s2+1‘2)22t2 0o s2 T o5t

Next,

Now consider the case

b = * dp(s) _/’ dp(s) +/°° dp(s)
0

(s2+1)2  Jo (52 +12)2 (s2 +12)2

L [ dp(s) < dp(s)
<
- 72 /0 52 +/, st
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and similarly

» oo Szgdp(S) B t SZedp(s) oo Szgdp(S)
lladll” = | =/, +
t

s2(s2 + I2)2 s2(s2 + t2)2 s2(s2 + I2)2

1 [tdp(s) 1 [*dp(s)
= t4—23/0 S2 + t2—23/t S4

e (1 [T dp(s)  dp(s)
:t22<l‘2/0 52 +/z 54 )

Integrating, we find

. . 2 1 12 oo
1= zpnels < > [, Do ladlibdarec [ adioar
1 00
< 2/ 1 edr + C/ 722 dr < oo
0 1
The proof is complete. (]

Lemma A.2. Foranye > 0, the operators M¢(I —X(), ,3\7[8(1— 5, (I— Z(’;),MVS

are trace class.

Proof. Taking adjoints in the previous lemma, we find M*(I — X) € S; for
any ¢ > 0. Since

2025 =1—(-,q0)90, qo(s)=1/s,

we have
M — Z5) = M?(Zp — I) X + rank one operator,

and so M?(I — Xj) is trace class.

Next, from M? < M? by Heinz inequality we have M?* < M?® for any
0 <& <1, and so by Lemma 4.1, M*M~¢ is a bounded operator. Therefore
the operators

M = Z5) = VEMTHMU — Zp))

and

ME(I — 2o) = (MEM )M — o))

are trace class. O

A.3 Proof of Theorem 8.5 (reduction to a.c. part of ‘i’(,ﬁ)‘I‘(M)). We
denote
c=P(0,)P0,), W=PO)¥M).

First we prove a lemma.
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Lemma A.3. Under the hypothesis of Theorem 8.5, we have
(A4) X* =X — cl + W+ trace class operator,
and the products
(AS) (Zg—DH(W—=cD), W—=c)(Z5—1), (Zo—DW—=cI), (W—c)(Zo—1)
are trace class.

Proof. First let us prove that the operators

(YO — YO)DU = Zp), T — Zp) (PO — ¥(O0.)D),
(PO0 = POIDUI = Z5), (I = ZHCPAD — H(O0)1)
are trace class. The first two inclusions follow from Lemmas A.1 and A.2 by
writing
YD) — (001 = Mp(M) = p(MNOM”,
where
(1) = (P(1) — P(0,), ¢ eL™

The second two inclusions are obtained in the same way from Lemma A.2.
Now consider the four operator products (A.5). For the first one, we have

(2§ — DOPODEOM) — P(0,)¥(0,)])
=(Z§ — DPOD) — PONDYO) + P0.)(Zf — DOPOD) — ¥(O0)D),
where the right-hand side is trace class by the first part of the proof. The other

three operators are considered in the same way.
Let us prove (A.4). We have

= = PO W)
= POV(ZE — DPOD) + W
= P(0.)(Z5 — DPOD) + (POD) — PONNEG — DY) + W
= P(0.)(Z§ — DW(0,) + P(0.)(Z§ — D(FM) — ¥(0,))
+ (PO — PO — DPOVD) + W

=c(Zy —I) + W + trace class operator,

where we have used the first part of the proof at the last step. (|
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Proof of Theorem 8.5. Now let us give the proof of Theorem 8.5. We
shall denote by A, the a.c. part of a self-adjoint operator A and by =~ the unitary
equivalence between operators.

From Lemma A.3 it follows that
Re(X* — cI) =Re(cZj — cI) + Re(W — cI) + trace class operator
and
Re(cXf —cl)Re(W —cl) € S;, Re(W — cl)Re(cZ} — cI) € Sy.

Applying Ismagilov’s theorem and the Kato-Rosenblum theorem (see Section 4),
we find

Re(Z* — cD))ae = (Re(cZf — cI))ac D (Re(W — c))ye.

Shifting all operators here by Re c, this simplifies to
(A.6) (Re Z*)ac ~ (Re(c ES))ac @ (Re W)y

This is our key formula. The rest of the proof proceeds slightly differently,
depending on the defect indices of X*.

The case of defect indices (1, 1). Recall that in this case by Theorem 4.4
(applied to ¢ X(), Re(c Xy) has a purely singular spectrum. By (A.6), it follows that

(Re X)ae = (Re W),

Now by Theorem 7.2(ii), £* is asymptotically stable iff the spectrum of Re W is
singular. Applying Proposition 4.9, we see that this is true iff the spectrum of W is
singular. The proof in this case is complete.

The case of defect indices (1, 0). In this case, the proof is similar but we
have to look at the multiplicity of the a.c. spectrum.

Here Xj ~ S$* and so Re(cXj) =~ Re(cS™), where Re(cS*) (which is a Jacobi
matrix) has a purely a.c. spectrum [—1, 1] of multiplicity one. From (A.6) we find

(A7) (Re Z)ac = (Re(cS™))ac @ (Re W)y

Looking at the multiplicity function of the a.c. spectrum and applying Theo-
rem 7.2(i), we find that X£* is asymptotically stable if and only if the second term
in (A.7) disappears, i.e., if and only if the spectrum of W is singular. The proof is
complete. (]
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Appendix B Proof of Theorem 1.5

Denote for brevity R = Ran H,. We first prove that Ker H, = {0} is equivalent
toz’ € R\ R.

Assume that Ker H, = {0}. Then R = H? and so, of course, z° € R; we need
to prove that z° ¢ R. Suppose z° € R; then z° = H,w for some w € H?. Denote
w = zw; then H,yw = H,Sw = S*H,w = 0, and so y € Ker H,, which contradicts
our assumption.

Assume that Ker H, # {0}. Suppose z° € R; we need to check that z° € R. By
Beurling’s theorem, Ker H,, = pH? for some inner function ¢. Since z° € R, we have
2 1L KerH, = pH? and so 2° L ¢. Then ¢ = Sw for some inner function w. We
have0 = H,p = H,Sw = S*H,w, so H,w is a constant function. This constant func-
tion is non-zero, because otherwise we would have w € Ker H, = pH? = zwH?,
which is impossible. Thus, normalizing w if necessary, we find that z° = H,w, and
soz’ e R.

Next, we prove that z° € R is equivalent to the first condition in (1.21). Indeed,
7Y € R is equivalent to fo dp'H“|(s) = 1. Since

dpl!(s) = dplyy(s) = s*dply“ (),

this is equivalent to [ s~2dp!f«!(s) = 1, which is the first condition in (1.21).
Finally, suppose z° € R; let us prove that z° ¢ R is equivalent to the second
condition in (1.21). If z2° = H,w with w € H?, then

dpli*(s) = dpjjiy(s) = s*dp}"(s),

and so

| s tapiior = [T 2apto = [ apties) <
0 0 0

Conversely, if [;~s™*dp!fI(s) < oo, then u = H2w for some w € H?. It follows
that
H,(* — Hw)=u—H>w=0,

and so z° — H,w € Ker H,. Since by assumption z° € R, we have z° — H,w = 0,
so z° € R. The proof of Theorem 1.5 is complete. ([

Appendix C Proof of Theorem 4.4

While it is probably possible to give an “elementary” proof of Theorem 4.4,
bypassing the Sz.-Nagy—Foias functional model, we prefer a more “high brow”
approach, since it highlights a lot of interesting connections.
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C.1 Functional model for c.n.u. contractions with defectindices (1, 1).
Let us recall some known facts about the Sz.-Nagy—Foiag functional model for
contractions, focussing on the case of defect indices (1, 1).

Any c.n.u. contraction 7 is unitarily equivalent to its functional model,
which is completely determined by the so-called characteristic function € of the
operator 7. This characteristic function 4 is generally an operator-valued one; but
in the case of defect indices (1, 1) it is a scalar-valued strictly contractive (i.e.,
|8(0)| < 1) analytic function in the unit disc D.

If the characteristic function 6 of T is an inner function, then the model space
for T is the space Ky defined above in Section 4.2, and the operator T is unitarily
equivalent to the compressed shift Sy.

If @ is not inner, then the model is more complicated; in particular, in this case
the model space consists of vector-valued functions with values in L?>. However,
we do not need the complete description of the model here: we only need the
following well-known fact.

Proposition C.1. Let T be a c.n.u. contraction with defect indices (1, 1), and
let 0 be its characteristic function.
(1) If 0 is inner, then both T and T* are asymptotically stable.
(i1) If 0 is not inner, then neither T nor T* are asymptotically stable.

This proposition follows, for example, from [22, Proposition V1.3.5]. In this
proposition 7 € C.o means that 7* is asymptotically stable, and T € Cy. means
that 7' is asymptotically stable. Note that for scalar-valued functions the notion of
inner and *-inner functions coincide.

Of course, part (i) of Proposition C.1 follows directly from the fact that both
the compressed shift Sy and its adjoint S} are asymptotically stable; this is an easy
exercise.

C.2 Rank one unitary extensions and characteristic function. For
a contraction 7 with defectindices (1, 1) there exists a rank one perturbation K such
that the operator V = T + K (which we will call a rank one unitary extension
of T) is unitary.

To construct such V, it suffices to notice that T acts unitarily from (DT*)L
onto (D,)*, and therefore it maps the one-dimensional defect space D, onto the
defect space D,.. Replacing the action of T on D, by a unitary operator from D,
to D, yields the desired rank one unitary extension V. Clearly, such an extension
is not unique and any two such extensions differ by a rank one operator.
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For a unitary operator V in a Hilbert space, a subspace E is called x-cyclic if
the linear span of the set { V''E : n € Z} is dense in our Hilbert space. If V=T +K
is a rank one unitary extension of a contraction 7 with defect indices (1, 1), then
we can say that 7 = V — K is a rank one perturbation of the unitary operator V.

Let » € RanK be a unit norm vector. It is a simple exercise (see, e.g., [19,
Section 1] or [20, Section 1]) to show that T can be represented as

(C.1) T=V+(@y—1)(-,Vbb

with y € D.

It is also not hard to see that if span{b} = Ran K is *-cyclic for V and |y| < 1,
then T is c.n.u. For the formal proof see [20, Lemma 1.4], where a more general
case of finite rank perturbations was treated. We mention that in our case the
matrix I from [20] reduces to a scalar |y| < 1.

On the other hand, if Ran K is not a *-cyclic subspace for V, then trivially T
is not c.n.u. Indeed, in this case the subspace (span{ V"b : n € Z})* is a reducing
subspace for both V and T, and T coincides with V there.

Combining these facts, we get the following statement.

Proposition C.2. Let T be a c.n.u. contraction with defect indices (1, 1), and
let V. =T + K be a rank one unitary extension of T. Then RanK is a *-cyclic
subspace for V.

Finally, the following well-known statement relates the spectral properties of a
rank one unitary extension and the characteristic function of a c.n.u. contraction.

Proposition C.3. Let T be a c.n.u. contraction with defect indices (1, 1), and
let V. = T + K be a rank one unitary extension of V. Then the characteristic

function 8 of T is inner if and only if V has a purely singular spectrum.

Remark. The choice of the extension V is not important. Indeed, if V| and V,
are two such extensions, then V| — V; is a rank one operator, and so by the Kato—
Rosenblum theorem, V; has a purely singular spectrum if and only if V; has the
same property.

Proof of Proposition C.3. D. Clark [2] has described all rank one unitary
extensions of the compressed shift Sy; in particular, he showed that all these
extensions have a purely singular spectrum. This proves that if the characteristic
function @ is inner, then all rank one unitary extensions have a purely singular
spectrum.
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To prove the converse, we compute the characteristic function of the operator
T =T, givenby (C.1). For the case y = 0 the characteristic function 6 = 6 is given
by the relation

(C.2)

O [T,
T

1—00(z) 1—2z£

where pj‘f is the spectral measure of V, corresponding to the unit vector b. For
y # 0 the corresponding characteristic functions @ = 6, can be computed as a linear
fractional transformation of 6,

_Oo—y

(€3) SR

see [19, Section 2.4] for the details. One can see immediately from (C.2) that 6 is
inner if and only if the measure p}/ is purely singular. Identity (C.3) implies that
the same holds for all 6, . O

C.3 Proof of Theorem 4.4. Itis convenient to introduce one more equiv-
alent condition:

(v) Any rank one unitary perturbation V of T has purely singular spectrum.
The statement (iv) means that the characteristic function of 7T is inner, see Sec-
tion C.1.

Equivalence of (i) < (ii) < (iv) follows from Proposition C.1.

Equivalence (v) < (iv) follows from Proposition C.3.

To show that (v) <= (iii), let us notice that Re V and V have a purely singular
spectrum simultaneously, see Proposition 4.9. But Re 7 is a finite rank perturbation
of Re V, so the Kato—Rosenblum Theorem implies the desired equivalence.

The proof of Theorem 4.4 is complete. g
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