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Abstract

We construct a new one-parameter family, indexed by €, of two-ended, spatially-
homogeneous black hole interiors solving the Einstein—-Maxwell-Klein—Gordon
equations with a (possibly zero) cosmological constant A and bifurcating off a
Reissner—Nordstrom-(dS/AdS) interior (¢ = 0). For all small ¢ # 0, we prove
that, although the black hole is charged, its terminal boundary is an everywhere-
spacelike Kasner singularity foliated by spheres of zero radius r. Moreover, smaller
perturbations (i.e. smaller |€|) are more singular than larger ones, in the sense that
the Hawking mass and the curvature blow up following a power law of the form
r=0€™ atthe singularity {r = 0}. This unusual property originates from a dynam-
ical phenomenon—violent nonlinear collapse—caused by the almost formation of
a Cauchy horizon to the past of the spacelike singularity {r = 0}. This phenomenon
was previously described numerically in the physics literature and referred to as
“the collapse of the Einstein—Rosen bridge”. While we cover all values of A € R,
the case A < 0 is of particular significance to the AdS/CFT correspondence. Our
result can also be viewed in general as a first step towards the understanding of the
interior of hairy black holes.

1. Introduction

The no-hair conjecture is a well-known statement in the physics literature,
broadly claiming that all stationary black holes are solely described by their mass,
angular momentum and charge (namely they belong to the Kerr—(Newman) or
the Reissner—Nordstrom family), see the review [17] and references therein. In
(electro)-vacuum, celebrated uniqueness theorems [12,33,40,41,56] preclude the
existence of asymptotically flat “hairy” black holes. However, there exists a plethora
of literature on hairy black holes for relatively exotic matter models: arguably the
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most emblematic known hairy black holes are static solutions coupled with non-
abelian gauge theories, satisfying the Einstein—Yang—Mills equations [8,9,25,58] or
the Einstein—Yang—Mills equations coupled with a Higgs or Dilaton field [9,24,59].

In the present study, we consider a typical matter model, the Einstein-Maxwell—
Klein—Gordon equations, with a cosmological constant A € R, and a scalar field
¢ obeying the linear Klein—-Gordon equation with mass m? € R — {0}:

. 1
Ricuu(8) = S R(guw + Aguv = Ty + Ty, (L.1)
1
Tﬁ]]}% =2 (gaﬂFavFﬂM _ ZFaﬂFozﬂg,uv> , VMF/LV =0, (1.2)
1
T, =2 (vmw = 5 (& VapVpe + m2|¢|2>gw) , (13)
gV, Vo = m?o. (1.4)

A uniqueness result of Bekenstein [5] precludes the existence of asymptoti-
cally flat (A = 0) hairy black holes for the above system (at least when m? > 0).
However, there has been recent significant interest in asymptotically AdS static
hairy black holes when A < 0, in connection with the AdS/CFT correspondence
[1,11,28,29,31,32]. In our main theorem below, we will consider the subject under
a dynamical perspective and study rigorously the time-evolution of characteristic
initial data consisting of a constant scalar field ¢ = € of small amplitude € # O on a
two-ended event horizon. The resulting spacetime is a one-parameter family bifur-
cating from the Reissner—Nordstrom-(dS/AdS) interior metric, which we interpret
as the interior region of a charged and static hairy black hole. We will however limit
our study to the black hole interior and not concern ourselves with the construction
of the asymptotically AdS black hole exterior (see Fig.4), since we do not want to
impose the sign of the cosmological constant in the present work.

The resulting family of metrics g we construct are charged e-perturbations of
the Reissner—Nordstrom-(dS/AdS) interior, but surprisingly do not admit a Cauchy
horizon; instead, their singularity is everywhere spacelike (Fig. 1).

Furthermore, we show that the evolution problem obeys highly nonlinear dy-
namics leading to a more violent singularity than expected.

Theorem 1. [Rough version] Fix the following characteristic initial data on bifur-
cating event horizons HT U ’H;r :

b =e (1.5)
g =grn + O(e?), (1.6)

where grn is the Reissner—Nordstrom-(dS/AdS) metric (grn) with sub-extremal
parameters (M, e, A). The Maximal Globally Hyperbolic Development (M, g¢)
of this data is a spatially-homogeneous spacetime with topology R x S?.

Then, for almost every (M, e, A, mz), there exists €g(M, e, A, mz) > 0 such
that for all 0 < |e| < €q, the spacetime (M, g¢) ends at a spacelike singularity
S := {r = 0}, where r is the area-radius of the S* sphere. Moreover:
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Fig. 1. Penrose diagram of g¢ from Theorem I, where S = {r = 0} is a spacelike singularity.
The spacetime regions R, N, EB, LB and C are introduced in Sect. 1.8. Note that £ B overlaps
with A and LB overlaps with C

i

ii.

iii.

Almost formation of a Cauchy horizon: g. is uniformly close to Reissner—
Nordstrom-(dS/AdS) locally (in Reissner—Nordstrom-(dS/AdS) time) and more-
over g, converges weakly to Reissner—Nordstrom-(dS/AdS) as € — O.
Singular power-law inflation: the Hawking mass p and the Kretschmann scalar
RKblowup at S .= {r = 0} as:

p(r) ~ b EHOE) gy pm TR0, (1.7)

andwecallb_(M, e, A, m2) # 0 the resonance parameter. ~ means equivalent
asr — 0, up to a constant.
Kasner-type behavior: near the singularity S := {r = 0}, g is uniformly close

to a Kasner-like metric gXos:

gas — _ g2 4 §20-42 )10 g2
+ FREHOED) 2 (462 4 sin (0)dyD), (1.8)
$(F) =2b_-[e+ O(eM)]-log(F 1), (1.9)

wherer_(M, e, A) > 0 is the radius of the Cauchy horizon of the unperturbed
metric (§rRN)= 8e=0-

We emphasize that we do not fix the sign of A, or of m?: if A = 0 (respectively

A > 0, A < 0), the spacetime metric g.—o from which g, bifurcates is a Reissner—
Nordstrom (respectively RN-de-Sitter, RN-anti-de-Sitter) interior metric.

‘We now make a few essential remarks on our spacetime (M, g.), and announce

the outline of the introduction:

If we consider instead black holes solutions of (1.1)—(1.4) relaxing to Reissner—
Nordstrom, namely if instead of (1.5), we have the following non-hairy behavior
of the scalar field

¢ — 0 towards i in the black hole exterior,
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then the black hole interior does admit a Cauchy horizon, in complete contrast
to the spacetime (M., g¢) of Theorem I, see Sect. 1.1 and Fig.2.
Asymptotically AdS black holes play an important role in AdS/CFT, in connec-
tion to two of the most celebrated problems in the quantum aspects of gravity:
the information paradox [30,34,35] on the one hand, and the probing of the
singularity at the black hole terminal boundary on the other hand [29,31,32]
(see Sect. 1.2). For both problems, many standard results in AdS/CFT (like the
computations of entanglement entropy [30]) are considered on the Reissner—
Nordstrom-AdS spacetime, which is very specific in that it has a Cauchy hori-
zon, contrary to g.. It would be interesting to examine these results on the more
general spacetime (M., g¢) constructed in Theorem 1.

Although g, has a spacelike singularity, a Cauchy horizon almost forms, i.e.
ge 1s close to Reissner—Nordstrom-(dS/AdS) for large intermediate times (at
which a Reissner—Nordstrom metric would be “close to its Cauchy horizon”).
Moreover, we have weak convergence of g to Reissner—Nordstrom-(dS/AdS),
see Sect. 1.3.

The almost formation of the Cauchy horizon dramatically impacts the singu-
larity structure and is responsible for what we call violent nonlinear collapse,

reflected by the pbie power-law inflation rates from 1.7. Such singular

rates (note that €2 — oo, as € — 0) conjecturally do not occur for hairy

perturbations of Schwarzschild-(dS/AdS), see Sect. 1.4.

The other effect of violent nonlinear collapse is to make g. uniformly close (near

the singularity) to a Kasner metric (see Sect. 1.5) of exponents (1 — 4p2 e +

0(€3), 2b%e? + 0(€3), 2b2 €% + 0(e?)). Note that an exact Kasner metric

of exponents (1 — 4b% €2, 2b% €2, 2b*€?) (recall that b_ (M, e, A, m?) # 0)

converges (locally) to Minkowski in L? norm, but not uniformly as € — 0.

In Sect. 1.6, we discuss other results and analogies between g, and hairy black

holes for other matter models.

The author hopes that the present study will pave the way towards other inter-

esting problems such as

A. Constructing a static, asymptotically AdS black hole exterior matching with
the interior metric g.

B. Understanding the stability of the metric g. with respect to non spatially-
homogeneous perturbations.

C. Understanding the singularity inside rotating (charged or uncharged) hairy
black holes.

D. Studying similar models which admit BKL-type oscillations, a topic of great
importance in cosmology.

For further developments on the above problems, we refer the reader to Sect. 1.7.

Concerning the proof, we want to emphasize two important aspects (see Sect. 1.8

for more details):

a. The importance of distinguishing different time scales, in particular short
times in which Reissner—Nordstrom-(dS/AdS) enjoys Cauchy stability, in-
termediate times where a typical blue-shift instability kicks in and late times
where the nonlinearity dominates and monotonicity takes over, leading to
collapse to {r = 0}.
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Fig. 2. Penrose diagram of the spacetime corresponding to Theorem 1.1

b. We exploit a linear instability [42] for the Klein—-Gordon equation on
Reissner—Nordstrom-(dS/AdS). This instability is important at early/
intermediate times and relies on a scattering resonance (absent in the case
m?> = A = 0) giving b_ # 0, that occurs for almost every (but not all)
parameters (M, e, A, mz).

1.1. Comparison with Non-Hairy Black Holes Relaxing to Reissner—Nordstrom

Dafermos—Luk proved in [23] the stability of Kerr’s Cauchy horizon with re-
spect to vacuum perturbations relaxing to Kerr at a fast, integrable rate (consistent
with the fast rates one would obtain in the exterior problem [20,21]). For the model
(1.1)—(1.4), the relaxation is conjectured to occur at a slower rate if A = 0 (see
the heuristics/numerics from [10,47,48]), which is a serious obstruction to asymp-
totic stability, even in spherical symmetry. Nevertheless, the author proved that the
Reissner—Nordstrom Cauchy horizon is stable with respect to spherically symmet-
ric perturbations, providing they decay at a (slow) inverse polynomial relaxation
rate consistent with the conjectures.

Theorem 1.1. ([60]) Consider regular spherically symmetric characteristic data
onHTUC, in» Where HT =1, +00)y X S?, converging to a sub-extremal Reissner—

Nordstrom-(dS/AdS) at the following rate: for some s > % and for all v € H™,

¢1(v) + [0l (v) S v, (1.10)

where v is a standard Eddington—Finkelstein advanced time-coordinate. Then, re-
stricting C;,, to be sufficiently short, the future domain of dependence of H* U C;,,
is bounded by a Cauchy horizon CH™, namely a null boundary emanating from i =
and foliated by spheres of strictly positive area-radius r, as depicted in Fig. 2.

e Theorem 1.1 stands in complete contrast with Theorem I: to summarize, the
Cauchy horizon is stable if ¢ decays to zero (even at a slow rate as in (1.10))
but is unstable if ¢ = € is small but does not decay.

e Note that for A = 0 and asymptotically flat Cauchy data, since by [5], Reissner—
Nordstrom is the only static solution of (1.1)—(1.4), it means that the decay of
¢ to 0 indeed quantifies the relaxation of the black hole exterior towards a



89 Page 6 of 62 Arch. Rational Mech. Anal. (2024) 248:89

Reissner—Nordstrom metric. In a slight abuse of terminology, we will say that
a (spherically symmetric) black hole relaxes to Reissner—Nordstrom when the
scalar field ¢ tends to 0 towards i ™ in black hole exterior.

e Note that the polynomial decay as in (1.10) is conjecturally sharp in the exterior
[61]if A = 0, butnotif A > 0 because the decay is exponential [37]; moreover
(1.10) is not satisfied if A < 0, as the decay is logarithmic [39].

o If we assume integrable decay for this model, i.e. s > 1 (an unrealistic assump-
tion if A = 0, in view of the conjectured rates in the exterior), then we prove
in [60] that the metric is continuously extendible at the Cauchy horizon. Under
similar assumptions, Dafermos—Luk reached the same conclusion for perturba-
tions of Kerr [23] without symmetry: since the integrable decay s > 1 becomes
a realistic assumption in the vacuum case [21,22,45], the result of Dafermos—
Luk [23] also falsifies the C*-formulation of Strong Cosmic Censorship (by
means of decay).

e Nevertheless, if % < s < 1, there is a large class of ¢-data obeying (1.10) such
that the Cauchy horizon exists, but admits a novel null contraction singular-
ity that renders the metric C%-inextendible, and ¢ is unbounded in amplitude
[43,44]. However, uniform boundedness and continuous extendibility of the
metric and ¢ hold for a sub-class of oscillating event horizon data, as proven in
[43]. Since these oscillations at the event horizon are conjectured to be generic
[38,48], the work [43] also falsifies the CO-formulation of Strong Cosmic Cen-
sorship in spherical symmetry by means of the oscillations of the perturbation
(as opposed to by means of decay).

e If we assume an averaged version of (1.10) as a lower bound (still consistent
with the conjectured rates) then we proved in [60,63] that the curvature blows
up at the Cauchy horizon and that mass inflation occurs (i.e. the Hawking mass
blows up): this shows that the metric is (future) C2-inextendible [63]. This
statement is called the C? version of the Strong Cosmic Censorship conjecture,
which is thus true for this matter model.

e Theorem 1.1 is a local result, which is independent of the topology of the
Cauchy data. It turns out that solutions of (1.1)—(1.4) with F' # 0 in spherical
symmetry are constrained to have two-ended data topology R x S?, a setting
which is not realistic to study astrophysical gravitational collapse (but may be
in other settings, see Sect. 1.2). In fact, Theorem 1.1 and all the results claimed
in this section were originally proven for the Einstein—-Maxwell-Klein—Gordon
system where the scalar field ¢ is also allowed to be charged, see [60,63].
Unlike model (1.1)—(1.4), this charged model allows for one-ended data with
topology R3 admitting a regular center and provides an acceptable model to
study spherical collapse as a global phenomenon. The one-ended collapse case
brings a striking conclusion: under the above assumptions, while a Cauchy
horizon C’H™ is present neari * (in the domain of dependence of C;,,, see Fig. 2),
it breaks down globally and a crushing singularity forms near the center, as we
prove in [62].
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Fig. 3. Penrose diagram of the Reissner—Nordstrom-AdS spacetime

1.2. Boundary Value Problem and Potential Applications to AdS/CFT

Two-ended stationary black holes (“eternal”’) play a pivotal role in the celebrated
Anti-de-Sitter/Conformal Field Theory correspondence [50], see for instance [51,
65]. In the AdS/CFT dictionary, charged black holes correspond thermodynamically
to the Grand Canonical Ensemble of N holographic theories at the boundary for
large N [13,36].

One important open problem regarding the quantum aspects of gravity is the
information paradox resulting from the apparent loss of information due to the
quantum evaporation of black holes by Hawking radiation [34,35]. Recently, the
quantum concept of entanglement entropy [30] was used in an approach [55] to
explain this paradox. Most computations in this context are, however, made on the
Reissner—Nordstrom-AdS electro-vacuum solution, which is highly non-generic,
and moreover its terminal boundary is a smooth Cauchy horizon CH;’{ U C'H'g (see
Fig.3).

In complete contrast, the terminal boundary of our charged hairy black holes
ge from Theorem I is not a Cauchy horizon, but a spacelike singularity S instead
(compared with Fig. 1). It would be interesting to construct a static, asymptotically
AdS black hole exterior corresponding to g and carry out the computations of
standard quantum quantities, such as the entanglement entropy, in this setting. The
metric asymptotics we derive (see Theorem 3.1 and below) will likely be crucial
for this task.

Another fundamental problem is the understanding of quantum effects near the
singularity located at the terminal boundary of a black hole. As it turns out, the
interior of asymptotically AdS black holes provides a simplified model to under-
stand these effects; motivated by these considerations, Hartnoll et al. [29,31,32]
studied numerically the interior of hairy black holes for various charged/uncharged
matter models, and discovered a wealth of singularities (see Sect. 1.6). In particular,
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charged hairy black holes with asymptotically AdS asymptotics are studied in the
numerical work [31]: The interior part of these black holes corresponds to g, from
Theorem I, see Sect. 1.6.1 for details.

Lastly, we mention a soft argument in [31] ruling out smooth Cauchy horizons
(in particular, assuming a finite scalar field ¢), though in principle the result in [31]
would still be consistent with having a singular Cauchy horizon (where the scalar
field ¢ or its derivatives blow up for instance, even if the metric itself is smooth).!

1.3. Almost Formation of a Cauchy Horizon and Stability for Intermediate Times

For the purpose of this discussion, we define a time coordinate s on g¢ by 2.31.
On Reissner—Nordstrom-(dS/AdS),
s coincides with the r*-tortoise coordinate: in particular, s = r* € Rand {s = 400}
is the Cauchy horizon, {s = —oo} is the event horizon. The statements (Theorem 3.1
and Theorem 3.2) we prove can be summarized as follows:

1. the spacetime M, corresponds to s € (—00, s (€)), endingat S = {r =0} =
{Sc0(€)} and so0(€) =~ €72 < 4o00.

2. ge is uniformly close to the Reissner—Nordstrom-(dS/AdS) metric (ggy) in
amplitude for all s < €72

3. The derivatives of the g. are uniformly close to the derivatives of gry for all
IR<Y log(e_l).

4. The derivatives of the g., in particular the Hawking mass, become arbitrarily
large for log(e ™) <« s < e 2.

5. ge converges in the sense of distributions D’(Ry) to the Reissner—Nordstrom-
(dS/AdS) metric (grn) as € — 0.

6. ge does not converge uniformly to (gry), or in any Lebesgue space L? (Ry) for
p=>1

We interpret statement 2 as the almost formation of a Cauchy horizon, as s is al-
lowed to be larger than any e-independent constant, which, on Reissner—Nordstrom-
(dS/AdS), corresponds to being close to the Cauchy horizon.

Note that we roughly have three regions (see Sect. 1.8 for details): s < log(e 1),
where Cauchy stability prevails in the C' norm; log(e ') « s « €2, where C°
stability still holds, but a C 1 blow-up, characteristic of the blue-shift instability,
occurs; and lastly a region s ~ €2 where the spacelike singularity forms, see
Sect. 1.5.

Remark 1.1. Note that the convergence in distributions from statement 5 is specif-
ically expressed in the s coordinate system (defined in (2.31)). However, in the
Kasner-type coordinate T (see (1.8)), the metric converges in L"f7 to the Minkowski
metric in the € — 0 limit.

I Note that in other contexts, singular Cauchy horizons exist due to mass inflation, see
[60,63] and the discussion in Sect. 1.1.
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1.4. Violent Nonlinear Collapse and Strength of the Spacelike Singularity

Despite the weak stability up to large intermediate times of Reissner—Nordstrom-
(dS/AdS), a spacelike singularity forms at late times s ~ ¢~2. We discuss the
strength of this singularity, and compare it to the Schwarzschild metric

oM oM\ !
gs = — (1 - —) di® + <1 - —) dr? + r?[d6? + sin(0)%d¢?]. (gs)
r r

On the Schwarzschild metric (ggs), r is also the area-radius and the Hawking
mass is constant and equal to M > 0. We argue that the singularity S = {r = 0}
on g¢ is “more singular” than {r = 0} on (gs), which justifies our denomination
violent nonlinear collapse (we explain the origin of “nonlinear” later in the section)
for four reasons:

1. The Hawking mass p on g blows up as a power-law pb=he 2 +00oge ™) o
r = 0, while it is constant on (gg).

2. The Kretchsmann scalar f := Ryp,s RY7® blows up like 20> -¢ " +0(log(e™")
while it blows up like r~%on (gs)-

3. The quantity r6,o_2ﬁ ~ ¢~* s finite on g (as on (ggs)) but becomes arbitrarily
large for arbitrarily small |€].

. . b=2.e 240 (log(e™!
4. The spacetime volume of {r > rg, 0 < < 1} is of order r,” € +0(ogle™)

for small rg, as opposed to rS on (gs).

To go beyond the heuristics of this section, we refer to Theorem 3.1 for the precise
estimates that we prove.

It is also interesting to compare g. to spherically symmetric solutions in
Christodoulou’s model (i.e. (1.1)=(1.4) with F = 0, m?> = A = 0) constructed
in [15,16]; such spacetimes converge to (gs) towards i T and admit a spacelike
singularity. It has been proven recently in [2,3] that, on these spacetimes, £ and p
blow-up like »~*® with a time-dependent rate () converging to the Schwarzschild
values as t — 400, respectively 6 and 0.

In view of this, the truly surprising fact is not the power-law blow up of p,
but the e ~2-rate, which tends to +00 as |¢| — 0. Naively, one may expect that an
e-perturbation of (ggy) will give rise to O(¢€) rates at the very least, allowing to
recover (ggy) in the (strong) limit but we obtain a singular limit instead, caused
by the nonlinearity.

To understand, it is useful to look at the linear wave equation on the Schwarzschild
metric Lggy/ = 0. Solutions blow-up at r = 0 (see [27]) as

Y (r, 1) ~ A() -log(r ™).

For constant data ¥y = € on the event horizon, we get A(f) = C(M) - €, consistent
with the linearity of the equation.

However, in the evolution (g., ¢ = €) of the data of Theorem I we have, near
the singularity S = {r = 0},

de(r) =~ e log(r™ 1), (1.11)
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which is aradically different rate! The main explanation behind (1.11) is a nonlinear
estimate that we prove on g,

dr 1
— ~—€. , 1.12
Is € -r (1.12)

to be compared with % ~—M-r—ton (gs) (with the same s defined by (2.31)). The
striking fact, is that (1.12) is a remnant of the Reissner—Nordstrom Cauchy hori-
zon stability for intermediate times (the phenomenon we explained in Sect. 1.3)!
This explains our claim that the violent nonlinear collapse phenomenon only oc-
curs for nonlinear perturbations of charged black holes, and not perturbations of
Schwarzschild. The numerics of [29], where data are set as in Theorem I replacing
(grnN) by (gs) (equivalently assuming F = 0), tend to confirm this expectation.

Further details on this nonlinear collapse dynamics and the role of the different
phenomena are given in Sect. 1.8.

1.5. Kasner-Like Behavior and Convergence in LP Spaces

We recall the Kasner metric a solution of the Einstein-scalar-field system, i.e.
(1.1)~(1.4), with F = 0, m?> = 0:

8Kas = —d* + TPreddp? + FPrdx® + TP dy?,
¢ (@) = py - log@1); (1.13)
Prad + px + py =1, Pra+pi+py+2p5=1. (114

The Kasner solution has been used in cosmology as a model of anisotropic Big
Bang singularity, in the presence of a so-called stiff fluid (here the scalar field ¢).
In a recent breakthrough, Fournodavlos—Rodnianski—Speck [26] proved that, under
a sub-criticality condition on the exponents from (1.14), the family (1.13) is stable
against perturbations, with no symmetry assumptions and that the near-singularity
dynamics are dominated by monotonic blow-up.

Remark 1.2. Relation 1.14 may seem unfamiliar, because of the factor 2 in front
of pé. This is due to our definition in (1.3) (adopted in the majority of works in
the black hole interior [15,16,18,46,49]...), as opposed to the standard definition
in cosmology where the factor 2 is absent in (1.3); see, for instance [26].

Anisotropic Kantowski-Sachs metrics We study spherically symmetric metrics
of the form

ge = —2%(s)(ds* — dt?) + r*(s)dog, (1.15)

where dog is the standard metric on S? and r is a scalar function called the area-
radius, which is geometrically well-defined in the spherically-symmetric class.
Metrics of the form (1.15) are called Kantowski-Sachs cosmologies and are used
to model an anisotropic but spatially-homogeneous universe.

More generally, is also possible to consider spatially-homogeneous cosmologies
with a 2-surface (other than S?) of constant curvature k € {—1,0, 1} (HZ, T2,
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S? respectively). Our main result will also apply to these cases, with only minor
modifications in the proof. We will, however, not pursue that route and stick to
Kantowski-Sachs cosmologies.

Monotonic blow-up due to the scalar field Our collapse from an almost Cauchy
horizon to a spacelike singularity is caused by purely nonlinear dynamics driven
by monotonicity. More specifically, the Einstein Eq. (2.22) give a relation where
the scalar field dominates and acts as a monotonic source for the lapse Q2 from
(1.15):

d? do\>
o [oe@d] 0 =—2( 25 )+ 1.16
= [log@) ] @ (ds)+ (1.16)

As we shall explain in Sect. 1.8, (1.16) gives rise to a Kasner-type behavior, as
given right below, once the lower order terms ... have been quantitatively controlled.
We emphasize however that the sharp asymptotics of the —2(’3—?)2 are necessary
for the proof (not only its sign!).

Uniform estimates near a (quasi)-Kasner metric Note that, as stated, the Kasner
exponents are constants, but there exists generalization of (1.13) where the expo-
nents are allowed to depend on x, y and p (but not on 7). Formally, our metric
ge, written as (1.8), corresponds (up to errors that converge uniformly to zero as
€ — 0) to a Kasner metric of exponents p;qq = 1 — 4p? . €2, Dx =Py = 2b% €2,
Pp =2b_-€e(uptoa O (€?) error), which satisfy (1.14) to order O (€*). Never-
theless, the 0(63) error are actually time-dependent (see Theorem 3.11), so (1.8)
is not necessarily an exact Kasner metric (although the time-dependence in the
Kasner exponents is lower order in €). Our uniform estimates are only valid in a
Kasner-time coordinate 7 (thus, do not contradict the convergence in distribution
to Reissner—Nordstrom-(dS/AdS) in the other time coordinate s from Sect.1.3)
defined so that the metric takes the product form

ge = —dT? + Q*(D)di* + r*(F)dog, (1.17)

8
where g does not involve d7. This form is often called the synchronous gauge (i.e.
unitary lapse with zero shift).

Comparison between the proper time and the area-radius The spacelike sin-
gularity S = {r = 0} corresponds to {T = 0}. Another consequence of the almost
stability of the Reissner—Nordstrom-(dS/AdS) Cauchy horizon is an important dis-
crepancy between the area-radius r (from (1.15)) and the proper time 7 (from
(1.17))

-\ 57 +00og(e ™) o
T(r) ~ (—) - , or equivalently r(£) ~ r_(M, e, A) - £20=€+0(),
The above relation also explains immediately how we find Kasner exponents of the
form (1 — O(e?), O(e?), 0(€?)).

Convergence to Minkowski in the L? norm The particular case where p,qq = 1,
Px = py = py = 0in 1.13 corresponds (locally) to the Minkowski metric. If
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(Prads Pxs Py Pg) = (I + rad(€), ax(€), ay(€), ag(€)), and araa(€), ax(€),
ay(€),ap(e) tend to 0 as € — 0, the corresponding Kasner metric (1.13) converges
in L? ([0, 64];) to Minkowski, for any p < +o00; however, the convergence is not
uniform. We will also show that g, converges to Minkowski as well in L? ([0, 64];)
norm (in particular, it follows from Theorem 3.3). It is important to note that this
convergence of the metric components expressed using T coordinates (proper time)
is consistent with the convergence of the metric components in coordinates s to
another limit (namely the Reissner—Nordstrom interior) mentioned in Sect. 1.3.
To summarize our analysis from Theorem 3.3 gives us

(8e)ap = 8Kas + QSZZlf =m+ E(ﬁg

where g is formally (1.13) with Kasner parameters (prqq, px, Py, pg) = (1 —

4b% - €2,2b% - €2,2b2 - €2,2b_ - €) + O(€?), m is the Minkowski metric, Gggi‘f
converges to 0 in L*°([0, €*1;) and Efﬂ converges2 to 0 in L? ([0, €*];) for any

1 < p < —+oo.

Spatially-homogeneous perturbation of a Schwarzschild-(dS/AdS) spacetime
In Theorem I, we assume that the spacetime g.—o from which g, bifurcates is a
Reissner—Nordstrom-(dS/AdS) metric, with a non-trivial Maxwell field. A natural
question is to ask what happens in the limiting case where the Maxwell field is
zero, meaning when gc—o is the Schwarzschild-(dS/AdS) metric (gs). Note that
(gs), under a coordinate change, has the same asymptotics (as r — 0) as (1.13)
with ¢ = 0 and exponents (prad, Px, Py) = (—%, %, %). In the absence of a
Maxwell field or angular momentum, there is no “mitigating factor” to collapse,’
and it is reasonable to expect that the metric will admit a spacelike singularity, and
that as e — 0, the space-time would converge in a weak sense to the unperturbed

(gs)-

Remark 1.3. If this expectation is true, then in the uncharged case, the stationary
Schwarzschild-AdS black hole has a stable singularity S with respect to the hairy
non-decaying perturbations ¢. Theorem I showed that in the charged case, in con-
trast, the stationary Reissner—Nordstrom-AdS interior solution is not stable, since
the Cauchy horizon of the black hole is destroyed by arbitrarily small perturbations
and replaced by a spacelike singularity.

While the uncharged analogue of g. is not covered in our work, numerics
[29] support the above expectations. They also suggest the following important
differences between F' = 0 and the charged case from Theorem I:

i. The Kasner exponents are bounded away from 0 (with respect to €) in the
uncharged case, and p,q,q < O.

2 The convergence is implicitly understood to occur for the components of Qizzlf ,E 53 in
a Kasner-type frame, see Theorem 3.3.
3 In contrast to the data considered in Theorem I, for which the emergence of a spacelike

singularity at late time is more surprising.
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ii. As a consequence, uncharged collapse is not violent (in the sense of Sect. 1.4),
contrary to the charged case.

iii. ¢ with data e blows up at the singularity as ¢ ~ € - log(r ') as in the linear
theory on (gs) (see Sect. 1.4).

iv. The background metric (gs) is Cauchy-stable for small €, and there no bifurca-
tion in the stability analysis.

We recall that points i, ii, iii, iv are in sharp contrast with Theorem I (the charged
case), see Sect. 1.3 and 1.4.

1.6. Comparison with Other Matter Models and Other Results in the Interior

In this section, we mention prior results addressing the interior of a black hole
that is not converging to Schwarzchild, Reissner—Nordstrom, or Kerr. Most of these
works are based on either heuristics, or numerics.

1.6.1. Numerics on Spatially-Homogeneous Perturbations of the Reissner—
Nordstréom-AdS Interior The metric g, from Theorem I was previously in-
vestigated in an interesting numerical work [31]. The numerical results corroborate
entirely Theorem I; they also consider the case of non-small perturbations (which
are not covered by Theorem I) and suggest, that even in this case, a Kasner-like
singularity forms. [31] was preceded by numerics in the uncharged case [29] (al-
ready mentioned in Sect. 1.5) and succeeded by numerics [32] studying spatially-
homogeneous perturbations of Reissner—Nordstrom-AdS in which the scalar field
itself carries a charge (same model as in [60-63]). In the charged scalar field
case, these numerics suggest intriguing intermediate time oscillations impacting
the late-time Kasner singularity, see Sect. 1.7.

1.6.2. Spatially-Homogeneous Einstein—Yang—Mills—Higgs Interior Solutions
The Einstein—SU (2)-(magnetic)- Yang—Mills have long been known to admit (non-
singular) particle-like asymptotically flat solutions [4,57], which are moreover
static and spherically symmetric. An equally striking result is the mathematical
construction [58] of a discrete, infinite family of (asymptotically flat) so-called col-
ored black holes which thus falsify the no-hair conjecture for the SU (2)- Yang—Mills
matter model (see also [8] for pioneering numerics).

The interior of such black holes is spatially-homogeneous with topology R x S?,
i.e. corresponds to a Kantowski—Sachs cosmology analogous to our spacetime
from Theorem I. Numerical studies in the interior of such black holes [9,25]
have highlighted oscillations and sophisticated dynamics, in which power law mass
inflation/Kasner-type behavior alternates with the almost formation of a Cauchy
horizon (analogous to the one discussed in Sect. 1.3).

The Einstein—SU (2)-Yang—Mills-Higgs model, in which a massive scalar field
analogous to (1.4) is added, has also been studied numerically [24,25,58]. These
studies suggest that the dynamics are drastically changed by the Higgs field which
suppresses the oscillations, and the singularity is spacelike with a power-law mass
inflation,

(r) ~log(r ™), p(r)~r*, (1.18)
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for some A > 1, which is consistent the behavior (1.7, 1.11) of g, in our model.
However, in these numerics, it is not clear how the constant A relates to the size
of the initial data, and whether the violent nonlinear collapse scenario that we
put forth applies or not (recall that in our case, data proportional to € give a rate
Ae) ~ 6’2).

1.7. Directions for Further Studies

In this section, we provide open problems that our new Theorem I has prompted,
and their underlying motivation.

1.7.1. Extensions of Theorem I for the Same Matter Model We define the tem-
perature 7" of a Reissner—Nordstrom black hole as T (M, e, A) := 2K the surface
gravity of the event horizon. T (M, e, A) > 0 for sub-extremal parameters, and
T (M, e, A) = 0 corresponds to an extremal Reissner—Nordstrom black hole. The-
orem I applies to perturbations of a sub-extremal Reissner—Nordstrom black hole
with fixed parameters (M, e, A) hence T =~ 1. Choosing e-dependent parameters
(M, e, A) allows us to formulate

Open problem i. Study spacetimes as in Theorem I assuming that the parameters
depend on € and are extremal at the limit in the sense that T (M, ec, A¢) — 0 as
e — 0.

The numerics [31] suggest that the important scaling is W‘;ﬁ , meaning that our
spacetime g, for which |¢|3+ = € and T = 1, should be similar to a spacetime
with data |@|jpy+ >~ 1 and T =~ e~ L. If this is true, then the spacetime with data
[pl g+ = €2 and T =~ e (which is extremal at the limit e — 0) behaves in the same
way as ge

Another natural possible direction to extend Theorem I is to relax the smallness
assumption on the data ¢:

Open problem ii. Study spacetimes as in Theorem I for large data i.e. without
assuming that € is small.

We emphasize that the resolution of this problem does not follow immediately
from the techniques of Theorem I. Nevertheless, numerics [31] suggest that, even
in the case of large perturbations, the singularity is still spacelike.

Lastly, recall that Theorem I only applies to almost every but not all parameters
(M, e, A, m?). This is because, for discrete values of mass m? (so-called non-
resonant masses, see Sect. 1.8.2), b_(M, e, A, mz) = 0 and ¢ “degenerates in the
linear theory”. It would be interesting to understand the singularity of g, in this
case.

Open problem iii. Study spacetimes as in Theorem I for exceptional (M, e, A, m?)
suchthatb_(M, e, A, mz) =0.
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Fig. 4. Penrose diagram of the asymptotically AdS two-ended black hole resolving Open
Problem iv

We emphasize that, from the point of view of genericity, these exceptional
values, which form a set of zero measure (in fact, the zero set of a holomorphic
function on C*) are most likely irrelevant. The case b_ = 0 is discussed in Section
3.2 in [31], and it is argued numerically that the black hole terminal boundary is
a Cauchy horizon for at least countably many values of the parameters. This is
consistent with Theorem I, and would indicate that the statement for “almost all
parameters” in Theorem I cannot be improved into “for all parameters”.

1.7.2. Static Black Hole Exteriors with AdS Boundary Conditions As we
explained in Sect. 1.2, our spacetime (M., g¢) finds potential applications to the
AdS/CFT theory. The idea is to prescribe boundary data on an asymptotically AdS
boundary in the black hole exterior, which we must also construct. This construction
should be much simpler in the exterior, in the absence of any singularity (as opposed
to the interior where the question of stability is more subtle, and varies at different
time scales, see Sect. 1.3 and 1.4). Based on the numerics from [31], the following
problem seems reasonable to formulate and accessible:

Open problem iv. Construct a static two-ended black hole exterior with appropri-
ate data on the AdS boundary, such that the spacetime (M., g¢) in Theorem I is
the corresponding black hole interior, as depicted in Fig. 4.

Numerics [29,31] indicate that indeed, the metric g is the black hole interior region
corresponding to an asymptotically AdS black hole with the following asymptotics
towards the AdS boundary {r = oo}:

8¢ 1
¢(r) = +o asr — 00.

,
JER e W R e

Here §¢ # 0 is a small constant, and m? < 0. This corresponds to a choice of
Neumann boundary conditions; see [64].




89 Page 16 of 62 Arch. Rational Mech. Anal. (2024) 248:89

1.7.3. Stability of g. with Respect to Non-Homogeneous Perturbations After
solving Open Problem iv and obtaining the metric g, covering both the black hole
interior and exterior with AdS boundary conditions, a natural (and more demanding)
problem to ask is the question of stability of g..

Open problem v. Study the stability of g against small non-static perturbations
for the initial/boundary value problem.

Nonlinear stability problems with AdS boundary conditions are notoriously
difficult, despite recent remarkable progress in spherical symmetry [52-54] (in the
direction of instability, however). A more accessible question in the direction of
Open Problem v is to first study only perturbations of the interior, for instance
concrete data of the following form on the event horizon, with f (v, 6, ¢) — 0 as
v — +00:

P+ (v,0,90) =€+ e f(v,0,9). (1.19)

In particular, in the case where f (v, 0, ¢) = f(v) is spherically symmetric,
it seems reasonable to expect that the quantitative methods of the present paper
can be generalized to yield the stability of the interior region of g, at least if f
converges sufficiently fast to 0. The non spherically-symmetric is expectedly more
difficult, even though the recent breakthrough [26] proving the stability of Kasner
for positive exponents (hence including the exponents that we obtain, see Sect. 1.5)
could help in this direction, at least close enough to the singularity.

We must also point out an important connection: solving Open Problem v, even
in spherical symmetry, will yield valuable insight on spacelike singularities even
inside the non-hairy black holes of Fig.2 that converge to Reissner—Nordstrom.
First, recall that, despite Theorem 1.1 asserting the existence of a non-empty Cauchy
horizon CH™ for such black holes, it is conjectured that there additionally exists
a spacelike singularity S = {r = 0} as soon as the scalar field amplitude is large
enough in the two-ended case [19].4

By the domain of dependence, such a spacelike singularity will emerge from
event horizon data which are locally identical to the data allowed by Open Prob-
lem v. Thus, it is enough to glue’ event horizon data corresponding to Open Prob-
lem v on a compact set to decaying-in-time asymptotic tails for ¢ as needed for
Theorem 1.1 to construct alarge class of two-ended black holes with both a spacelike
singularity S = {r = 0} quantitatively described by Theorem 3.1 (more precisely,
its analogue upon a successful resolution of Open Problem v) and a null Cauchy
horizon CH*.

4 In the more realistic one-ended case corresponding to gravitational collapse, the situation
is even more drastic: a singularity S = {r = 0} must always exist [62]. Studying this case,
however, requires the scalar field to be charged, and thus to generalize Theorem 3.1 to the
charged model. Solving Open Problem v in this context will thus yield valuable insights on
spacelike singularities in gravitational collapse.

5 However, the null constraint forbid gluing scalar field data ¢ = € on a compact set to
the decaying-in-time tail needed for Theorem 1.1.
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1.7.4. Rotating Hairy Black Holes A remarkable mathematical construction of a
one-parameter family of rotating hairy black hole exteriors namely stationary, two-
ended asymptotically flat solutions of the Einstein—Klein—Gordon system (1.1)-
(1.4) (with F = 0) that bifurcate off the Kerr metric has been carried out by
Chodosh—Shlapentokh—Rothman [14]. Nevertheless, the interior of such hairy black
holes has never been studied, and it is not known whether a Cauchy horizon exists
as for the Kerr metric, or if it is replaced by a spacelike singularity as for g.. This
prompts the following problem:

Open problem vi. Characterize the singularity inside the Chodosh—Shlapentokh-
Rothman hairy black holes.

We plan to return to this problem in a future work.

1.7.5. Other Matter Models

Models where the singularity is conjectured to be Kasner-like We already
mentioned in detail in Sect. 1.5 the case of perturbations of Schwarzschild-(dS/AdS)
and the main difference compared to the setting of Theorem I, together with the nu-
merics [29] suggesting that the singularity is Kasner-like. This leads us to formulate
the

Open problem vii. Study spatially-homogeneous perturbations of Schwarzschild-
(dS/AdS) black holes.

As we explained in Sect. 1.6.2, the Einstein equations coupled with the SU(2)-
Yang—Mills—Higgs equations also admit spatially-homogeneous black hole interi-
ors, and numerics [24,25,58] suggest a Kasner-like singularity.

Open problem viii. Study spatially-homogeneous solutions for the Einstein-SU(2)-
Yang—-Mills—Higgs equations.

Models where oscillations are conjectured As we explained in Sect. 1.6.2, without
a Higgs field, numerics suggest that the Einstein-SU(2)-Yang—Mills black holes
admit a chaotic behavior in the interior [9,25]. We are hopeful that the methods we
developed in the present paper could also be adapted to address the following:

Open problem ix. Study spatially-homogeneous solutions for the Einstein-SU(2)-
Yang—Mills equations.

More closely related to our work is the generalization of Theorem I with the
same data but for a more general model where the scalar field is allowed to be
charged. In this case, the coupling with the Maxwell field is non trivial, and sourced
by the charged scalar field. (This model was studied by the author [43,44,60,61,
63], in a different setting where the scalar field decays to zero, instead of being a
small constant (see Sect. 1.1)). Numerics [32] suggest very interesting dynamics
in a certain parameter range for this system, in which oscillations precede the
formation of a Kasner-like singularity with p,,q4 < 0 (different from our scenario,
recall Sect. 1.5) which is then inverted to a Kasner-like singularity with p,,q > 0,
a phenomenon the authors of [32] call “Kasner-inversion”. Interestingly, similar
Kasner inversions also play an important role in the standard cosmological picture
given by the BKL scenario [6,7].
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Open problem x. Study data as in Theorem 1 for the Einstein—Maxwell-charged—
Klein—Gordon equations.

It would be extremely interesting to adapt the methods of the present paper to
the setting of a charged scalar field, a problem we hope to return to in the future.

1.8. Strategy of the Proof

1.8.1. Set-up of the Problem and General Description of the Strategy The
data described in Theorem I give rise to a spatially-homogeneous spacetime M, =
R x S? x 0,74 (M, e, A)],, which we can describe as a superposition of R x S?
cylinders with variable area-radius ». The EMKG system (1.1)—(1.4) then reduces
to a coupled system of nonlinear ODEs (see Sect.2.4), that we analyze in physical
space.

One of the main ideas behind the proof is to divide the spacetime into regions
of the form {ri,r(€) < r < rgyp(€)} (or “epochs” since r is a timelike coordinate
in the interior). We will express these epochs using a time-coordinate s (see (2.31)
for a precise definition) which is monotonic with respect to r (that is, % < 0).
s € (—00, s0o(€)) can be thought of as a generalization of the standard r* € R
coordinate on Reissner—Nordstrom. The data ¢ = € # 0 is posed on the event

horizon H* := {s = —oo} (Sect.2.3) and we split the spacetime into (see Fig. 1)

1. thered-shiftregion R := {—oc0 < s < —A(M, e, A, m2)},for A(M,e, A, mz)
> 0 sufficiently large.

2. the no-shift region N := {—A < s < Ag(e)}, Ag(€) := c(M, e, A, m?) -
log(e 1) for c(M, e, A, m?) > 0.

3. the early blue-shift region EB := {S"(M,e, A) < s < siin(€)}, sin(€) =

2y _—2
log(V(M’;"Ié\fr re) where v(M, e, A, m?)

> 0 small enough and S”(M, e, A) > 0 are fixed constants that will be deter-
mined in the proof, and 2K_(M, e, A) is the surface gravity of the Reissner—
Nordstrom-(dS/AdS) Cauchy horizon.

4. thelate blue-shiftregion LB := {s;in(€) < s < 8c-€ ™'}, whered¢c(M, e, A, m?)
> 0.

-2 —1
5. thecrushingregionC := {4s;;,(€) < 5 < Sco}, and seo(€) := € +0dogle )

<
41K-|-b2

+00.
6. The spacelike singularity S = {r = 0} = {s = s (€)}.

Remark 1.4. Note that the region £B overlaps with A (for small enough € > 0)
and LB overlaps with C. Nevertheless, our estimates in £5 (respectively £B) are
more precise than those in A (respectively C) on the overlap EBNN (respectively
LBNC). We consider C in isolation because it is the largest region where the metric
is Kasner-like.

Each region is characterized by a particular dynamical regime in which specific
techniques apply, see below.®

6 Asa guiding principle, the early regions are in linear regime and the late ones are driven
by the nonlinearity.
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To estimate the EMKG system, we use a standard bootstrap method (which
is crucial, in view of the nonlinearities) and prove weighted estimates (drastically
different in each region) integrating along the time direction.

In fact, we expect most of our estimates to generalize in the non-homogeneous
situations (see Sect.1.7). We emphasize that our methods are entirely quantita-
tive (and are inspired from those in [60] which deal with a spacetime with fewer
symmetries, albeit with simpler dynamics) and that, even though g. are analytic
spacetimes, we do not rely on analyticity at any stage.

Before turning to the nonlinear estimates, we will mention in Sect. 1.8.2 a prior
linear result proven in [42] that is useful in the early blue-shift region €8 (where
the dynamics are still mostly linear) and the late blue-shift region £5.

1.8.2. Preliminary Estimates on the Corresponding Linearized Solution To
capture the late time dynamics and the ultimate formation of the singularity (see
Sect. 1.8.6), we require sharp estimates on the scalar field ¢. It is well-known
that such sharp estimates cannot be obtained exclusively through physical spaces
methods (see the discussion in [43]). Moreover, even for the linear wave equation
Ugrn @z = m?¢ on a fixed Reissner—Nordstrom-(dS/AdS), the late time behavior
depends on the parameters (M, e, A, mz) (see [42)).

In our specific setting, the linearized version of ¢ from Theorem I corresponds
to ¢g) =€ ¢(£1), where ¢(Ll) is a solution of DgRNqﬁ(cl) = m2¢(Ll) with constant

data ¢(£1)

=lonH". ¢>(£1) solves a linear radial ODE in r* and
¢ (%) = AM, e, A,m?) - 5 (r*) + B(M, e, A, m?) - 1o(r*), where

1) >~ 1, O(r™) ~r*asr* — +o0.

One of the results of [42] is to show that, for all sub-extremal parameters
(M, e, A) and almost every mass m?

B(M,e, A,m?) #0, (res)

which is a condition that we will refer to as a scattering resonance. When (res) is
satisfied, ¢g)(r*) ~ r* near the Reissner—Nordstrom-(dS/AdS) Cauchy horizon.
The exceptional set D(M, e, A) C R of masses m? for which (res) is not true is
called the set of non-resonant masses and it was shownin [42] that0 € D(M, e, A),
hence D(M, e, A) is non-empty.

In the early regions (specifically R, N and £B), we will estimate the difference
between the actual solution ¢ and the linearized ¢, (see Sect. 1.8.3 for details) and
show an estimate of the following form: for all s < log(e 1),

deo dér

Ig(s) — F(s)| <€ log(e ). (diff)

The bound (diff), however, is no longer true in future regions L5 (for s > 4s;;;(€))
and C because the EMKG solution is dominated by the nonlinear regime at late time.
The condition (res), in turn, is useless in R and N, as it dictates the asymptotics
of ¢, close enough to the Cauchy horizon. But in £5, two conditions are reunited
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to combine (diff) and (res): the EMKG system is still in the linear regime, and the
metric is close (i.e. s ~ log(e_l) is large) to the Reissner—Nordstrom-(dS/AdS)
Cauchy horizon (see Sect. 1.3 and Sect. 1.8.4). Thus, (diff) and (res) give sharp
asymptotics in £B:

|f1—¢(s) —B(M,e, A,m?) - €| < e log(e™). (1.20)
S

In the later regions £5 and C, we will build on (1.20) to construct the (genuinely
nonlinear at this point) dynamics of ¢ which critically affects the behavior of the
metric g, especially the spacelike singularity formation. In particular, the Kasner
exponents depend (Sect. 1.5) on what we call the resonance parameter b_ € R

B(M, e, A, m?)

b_(M,e, A,m?) = 02 & 1)
(M.e. Aom) = e (M. e. )

#0, (b-)
where 2K_ (M, e, A) < 0Ois the surface gravity of the unperturbed Cauchy horizon
(recall b_ is used in Theorem I).

1.8.3. The Red-Shift Region R and the No-Shift Region N: Cauchy Stability
Regime Recall the definition of the regions R and A from Sect. 1.8.1. These
regions are easier for the following reasons:

1. The range of s in R is infinite, but the spacetime volume is small. Moreover,
one can exploit the classical red-shift estimates for the wave equation (and, by
extension, for the EMKG system).

2. Therange of s in \V'is finite, but large (i.e. O (log(e !))). Nevertheless, the range
of s to the future of A/ is O(¢~2) and log(e ™) <« €72 so N is considered to
be “a small region”, compared to the rest of the spacetime.

In particular, in these two regions, the principle of Cauchy stability, which
roughly states that € perturbations in the data give rise to O (¢?) perturbations for
the solutions of quadratic nonlinear PDEs, prevails.

Concretely, forall s € R 1= {—00 < s < —A} for A(M, e, A, m2) large, we
show the schematic estimates

18(5) = RN ()| S €2 - KRS 2, R1)

|f1—f<s> - dé%(sn Sttt <, (R2)

k7 ls) — 1] S €2 HKrMee s o 2, (R3)

B(s) — ()] S e - KrMebls &, (R4)

wherex ! := _Q% («~! = 1 onReissner—Nordstrom-(dS/AdS)) and 2Ky (M, e, A)

> 0 is the surface gravity of the event horizon. The factor 2K+

shift, and requiring A to be large gives e?+5 <« 1 fors < —A.

is the sign of red-
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In the no-shift region N := {—A < s < c(M, e, A, mz) . log(e_l)}, we use
Gronwall estimates: for all s € N,

|g(s) — grn ()] S C° - € e, (N1)
d d
1B - B s Se (N2)
ds ds
() — () S C - S €, (N3)
where C(M, e, A, m2) .= ¢ In the above estimates, the term C* < e lis

indeed the sign of the loss incurred by the use of Gronwall. To avoid this loss, we
will only use the above for s < §”(M, e, A, m*) where " (M, e, A, m*) > 0is a
large constant but independent of € (recall that the past boundary of the next region
EBisats = S (M, e, A, m?)).

Completing these steps provides estimates on the difference between the dy-
namical metric g. and its unperturbed background ggry (recall g = ggn on the
data, see Theorem I) in the strong C! norm, up to £B. This explains the stability
of the Cauchy horizon claimed in Theorem I; in particular, for any constant I" > 0,
8¢ 1s uniformly close to ggy for s < I, for |€| small enough (we will extend these
estimates up to s < €~ !, but they fail for s ~ ¢~2).

Remark 1.5. Going forward, we will actually not directly need g — gry estimates
in C to prove the formation of a spacelike singularity: nevertheless, we will need
(1.20), for which we do need g — grn to be small in the past of £8. Thus, there is no
obvious way to avoid difference estimates on the metric to show that the singularity
is spacelike.

1.8.4. The Early Blue-Shift Region £5: Reissner—-Nordstrom-(dS/AdS) Stabil-
ity in Strong Norms In the early blue-shift region EB = {S"(M, e, A, m?) <
s < sjin(€)} C N, Cauchy stability, as defined earlier, does not give sharp bounds,
so we look for different paths towards improvement. We will exploit the so-called
blue-shift effect, which traditionally occurs at the Cauchy horizon of Reissner—
Nordstrom-(dS/AdS) for large s. To understand its manifestation, recall the lapse
Q? from (1.15): the typical estimate we obtain in this region is
d > ks K-
|7 10g(@)(5) = 2K-(M, e, A)| S e <« —o,

where 2K_(M,e, A) < 0 is the surface gravity of the Reissner—Nordstrom-
(dS/AdS) Cauchy horizon and S (M, e, A, m?%) > 0 is chosen to be sufficiently
large so that the last inequality holds. This enforces a behavior of the form

Q% (s) &~ 2K-3, (blue-shift)

an estimate which is also valid on Reissner—Nordstrom-(dS/AdS), close enough to
the Cauchy horizon. Since e2K-5" « 1, Q2 is small, which is helpful to close
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difference estimates with an (inconsequential) logarithmic loss (compare with the
much worse estimates from (N1), (N2), (N3)), i.e., for all s € £B,

g(s) — grn ()] S €252 S e -log(e )2, (EB1)
|—< )—dg”(>|< 25 < log(e ), (EB2)
9(s) —pr(s)| S e 57 S e -logleH2 (EB4)

The analogue of (R3) is different; using (blue-shift) and the Raychaudhuri
equation (2.24), we get, for all s € £B

2

k~ls) — 1] < QZ(S) ~ 2. PK-ls <o, (1.21)

and the future boundary {s = s;;, =~ log(e_l)} of £B is chosen so that the RHS of
(1.21) is < 0.1, hence 2 (sin) ~ €2.

1.8.5. The Late Blue-Shift Region £3: Reissner-Nordstrom-(dS/AdS) Stabil-
ity in Weak Norms Unlike its predecessors, the late blue-shift region L5 :=
{siin(€) <s <é¢c - 6_1} has a large s-range of order O and Cauchy stability
utterly fails, two facts that render the estimates noticeably more delicate. The failure
of Reissner-Nordstrom-(dS/AdS) stability in strong C' norm can be expressed for
instance in the following estimate:

kL)~ €2 2Kl o ey a e 0D 5 . (1.22)

A similar estimate holds for the Hawking mass p, which becomes large. Relatedly,
in the non-hairy case when ¢ tends to 0 (discussed in Sect. 1.1), it is known that mass
inflation is caused by the blue-shift effect (see [63]); we see some reminiscence of
this phenomenon in the hairy case as reflected by (1.22) and the related estimate
on p.

As should be clear, difference estimates (as we had earlier) cannot be provn
in £B. However, we still obtain some form of weak stability in the C° norm of
Reissner—Nordstrom-(dS/AdS): recalling the definition of r from (1.15),

_(M,e, A
() = (M, e, A)| S €25 Se < % (LBI)
Q%(s) &~ 2K-3, (LB1)

lp(s) — A(M, e, A,m*) e —B(M,e, A,m?) -€-5s| <& s> <e’s. (LB3)
At the first order we get a much sharper control, which is more useful than (LB3)

in practice:

[r2(s) - ¢(s)—r -B(M,e, A,m?) -¢| < € )
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Going forward, estimate (¢) will be crucial in the spacelike singularity formation
in C. Obtaining (¢) was in truth the main motivation behind all the estimates that
we wrote earlier, including the metric difference estimates.

Finally, we prove the following estimate on ﬁr := 7, which will be important

in the crushing region C:

2
—i(s) > ——]T )

r(s)

Note that, near the future boundary of LB, () differs drastically from the Reissner—
Nordstrom-(dS/AdS) bounds —gy (s) &~ ¢*X-5. This is yet another sign of the
nonlinear violent collapse, see Sect. 1.8.6 below.

1.8.6. The Crushing Region C: Nonlinear Regime and Spacelike Singularity
Formation We introduce the crushing region C := {4s7;, < s < Sco}, Which
overlaps substantially with £B. The reason of this overlap is that in the region
LBNC = {4siin < s < 8¢ - €'} the estimates we will get on C are weaker than
the ones already proven in L5; however, it is desirable to have the largest possible
crushing region C in which the metric is uniformly close to Kasner.

In contrast to the bounds obtained in past regions, that were inspired from [60]
(in the context where the Cauchy horizon is stable), the region C has a new behavior.
A nonlinear bifurcation occurs, driving the dynamical system away from Reissner—
Nordstrom-(dS/AdS) and towards a Kasner metric (Sect. 1.5). The key ingredient
is an estimate on the null lapse £ (see 1.15) which ultimately makes the spacetime
volume of C much smaller than expected (see heuristics in Sect. 1.4): we prove that
Q? tends to 0 as a large r power. More specifically, for all s € C,

-2

2y (TN
Q% (s) ~ (r—> . (CH

By (C1), we can schematically neglect the terms proportional to £ in the
EMKG system of ODEs (Sect.2.4):

d*log(rQ? 3¢?
%_—m—"bﬁ = <1——+m2r2|¢|2+Ar> ¢

d . 2 e? 262 2412

%(—”’)ZQ . 1_1’_2 — 1A +m7|P|7) = 0,

d .

L) =m0 ~ 0. (429
N

The three above equations are of course mere heuristics we give to explain the proof:
for details, see Sect.4.5. Once these heuristics have been made rigorous, they show

7 Note that (7) is consistent with the statement previously obtained in [2,3] that both rd,,r
and 79,7 admit a finite limit towards {r = 0} in the spherically symmetric Einstein-scalar-
field model.
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that (#) and (¢) are still valid in C. To prove (C1) (which is as of now just a bootstrap
assumption), we plug () and (d)) into (1.23) and integrate: the following schematic
computation undoubtedly embodies the most important nonlinear aspects of the
dynamics.

d? log(rQZ) N 2|d¢|2 N &2 N ;
dS2 - ds - r4 -~ r3
d log(r2? 1 -2 - )
= Og;i(r ) A EN log(r©2%) ~ log(r€ 2) + constant.
§ r

Now that we have explained the main elements behind the estimates, we make
important qualitative comments.

1. C is the only region where r is not bounded away from zero. While the r-
dependence of (7) and (¢) was inconsequential in £, it becomes crucial in C,
as it dictates the behavior of all the other quantities as r — 0.

2. ¢ and 7 blow-up with the same r power as on Schwarzschild at » = 0, but
the pre-factor is different, which impacts dramatically the dynamics, and is
responsible for violent nonlinear collapse (see Sect. 1.4).

3. The drastic difference between () and (qS) and their Schwarzschild analogue
can be interpreted as a consequence of the almost stability of the Reissner—
Nordstrom-(dS/AdS) Cauchy horizon and its associated blue-shift effect, which
provides “non-typical” initial data on {s = 4sy;,,} the past boundary of C.

4. The dynamics are governed by the nonlinearity —2| ‘% 2 in the Gauss equation
(1.23). This term is responsible for a monotonicity-driven collapse, which is
reminiscent of the stable blow-up dynamics near Kasner in [26].

5. To show (C1), we needed sharp estimates on ¢ already in the past, given by
(@) (showing that ¢ differs from ¢, in LB), itself following from (EB4), an
estimate that uses the presence of a linear resonance, i.e. (res).

All the power law bounds e.g. (1.7) follow directly from (C1); they are more
compelling than (C1) as they do not depend on the choice of the coordinate s: the
Hawking mass and the Kretschmann scalar are geometric quantities.

As a consequence of () (still valid in C), we show that there exists 5o, < 400
with seo(€) =~ €2 such that

lim r(s) =0,
S—> S0
therefore S := {r = 0} is indeed a spacelike singularity, since s is finite at S and
g = —Q*(—dt? +ds?) + dog.

Lastly, we recall that (C1) translates into a Kasner behavior as explained in

Sect. 1.5, see also Theorem 3.3.

1.9. Outline of the Paper

e In Sect.2, we introduce the Reissner—Nordstrom-(dS/AdS) metric, the class of
spatially-homogeneous spacetimes that we consider, specify the data of The-
orem I, and the reduction of the Einstein equations as a system of nonlinear
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ODEs. We also mention a result on the linearized dynamics from [42] that we
will be needing.

e In Sect.3, we provide a precise statement of the results that were condensed
in Theorem I: Theorem 3.1 (main theorem), Theorem 3.2 (convergence to
Reissner—Nordstrom), Theorem 3.3 (Kasner behavior).

e In Sect.4, we prove Theorem 3.1 and provide many useful quantitative esti-
mates.

e Sect.5 is a short proof of Theorem 3.2, entirely based on the quantitative esti-
mates of Sect. 4.

e In Sect. 6, we prove Theorem 3.3, mostly based again on the quantitative esti-
mates of Sect.4 and also using certain renormalization procedures and conver-
gence estimates.

2. Preliminaries

2.1. The Reissner—Nordstrom-(dS/AdS) Interior Metric

Before defining the Reissner—Nordstrom-(dS/AdS) metric, we introduce the set
of sub-extremal parameters (M, e, A) € R% x R? defined as Py, := PA~OUPA=O
where PA=0 consists of all (M, e, A) € R% x R x R_ such that the polynomial
X2 —2MX e — ATX4 has two positive simple roots r_ < ry and Ps‘yo of of all

(M, e, A) € R x R x R% such that the polynomial X2 —2MX +é> — ATX4 has
three positive simple roots r— < ry < re.

Let (grn, Frn) be an electro-vacuum solution of (1.1)-(1.4) i.e. a solution
with ¢ = 0, given by

oM 2 A
gry =—|1——+ 5— - —=N)ar (&rN)
TRN  Tgy 3
2 2 !
M et Argy 2
+(1- . drl
"TRN  Tgy 3
+ rgy[do® + sin(0)2dy?),
e
FRN=7d[Adr, (FgrN)
r

in the coordinate range t € R, rgy € [r—(M, e, A),ry(M, e, A)] and where
(M, e, A) € Pse and r+(M,e, A) > 0 are the roots of the polynomial X2 -
2MX + e — ATﬂ For A = 0 (resp. A > 0, resp. A < 0), the metric given by
(grn) is called the sub-extremal Reissner-Nordstrom (resp. de Sitter, resp. Anti-de
Sitter) interior metric. Define that

dr* 1 oM ArZ
=y , Q&N RN ;:_(1—+ 5 — 3RN> (2.1)
RN QRN(FRN) TRN rRN
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*—t it
P Al N i (2.2)
2 2

intherangeu € R,v € R, r* € R. We attach the following so-called event horizons
to the space-time:

HY ={v=—00}, Hj:={u=-o00}, H" :=H] UH} ={r*=—o0}.
(2.3)

Note that in the (u, v, 6, ¥) coordinate system, (ggy) takes the form
grN = —4Q% ydudv + riy[d6? + sin()2de?].
Itis aclassical computation (see e.g. [60]) that there exists aconstantay (M, e, A) >

0 such that, as r* — —o0,

QLN () ~ ay - KM _ L 2K (Mo A) (o) 24
where 2K (M, e, A) > 0is the so-called surface of the gravity of the event horizon
and we also define, more generally,

2 ( o2 Ari(M, e, A)

2Ki(M,e,A) = ————— [ M — _
r3(M, e, A) r(M,e, A) 3

), (K+)

noting that the so-called surface gravity of the Cauchy horizon2K_ (M, e, A) <0
is strictly negative.
Lastly, we also define “regular coordinates” (U, V) as

av _ 2K U= —o00) = 0. (2.5)
du
av _ K V(v = —00) = 0. (2.6)
dv

2.2. Spherically Symmetric Metrics and (1.1)—(1.4) in Double Null Coordinates

We consider a spherically symmetric Lorentzian manifold (M, g) taking the
following form in null coordinates (u, v):

g = go + r’dog = —4Q%dudv + r’dog, 2.7

and we call r the area-radius. We also define the Hawking mass by the formula:
r
p = 5(1 —go(Vr, Vr)).

In the presence of the Maxwell field (Fry), we define the Vaidya mass & and the
constant-r surface gravity 2K:
e? Ar3

Tt T e
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2 e AP
2K = |\ ——— —— ). (2.8)
r? r 3

An elementary computation shows that (note that the normalization of Q2 differs
from [60] by a factor 4)

B (2.9)

Let ¢ a real-valued spherically symmetric scalar field on (M, g) such that
(g, Fry, ¢) is a solution of (1.1)=(1.4). Then, (r, 22, ¢) satisfy the following sys-
tem of PDE’s in any double-null (u#, v) coordinates:

Q2 9,rd Q?
3,0,r = - P (A +m2|¢|2>
r r r
=—Q% 2K +rQ* - m?|p|%, (2.10)
5 2Q2  20,rd,r  4Q%
0udy 10g(Q) = =20, + —5 + =5 — —-¢, (2.11)
r r r
oy r —r
A <§> = @amﬁ, (2.12)
Oy —r
3 <@> = @|av¢|2, (2.13)
dyrd 3urd
Bty = — 0P W aepy, (2.14)
r

2.3. Set-Up of the Initial Data

We pose characteristic data for (2.10)—(2.14) on two affine-complete null hy-
persurfaces Ht = {v=—o0,u € R}and H} := {u = —o0, v € R} intersecting
at a sphere, where (i, v) are renormalized by the following gauge conditions:

—yur m2ry €2 —0yr m?ry €2

=1 Do W=l
M 2K (M,e,N)’ Q@ 1t 2K+ (M, e, N)
(2.15)

The data we consider consist of sub-extremal Reissner-Nordstrom-(dS/AdS) data
for (r, 92) and a constant function ¢ on Hz_ U H;, more precisely, for some
(e, M, A) € P, and some € # 0 (recall the definition of @4+ > 0 from (2.4)),

Forury =1+(Mo e, A), (r-data)
@2 o (M. e, A) )
(62K+(u+v)> o = 1 P (2°-data)
[HIUH S (1— —2K+(M’8’A))

Pirury =€ (¢-data)
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where 2K (M, e, A) > 0 is given by (K+). Note that the main advantage of the
term % in (2.15) is that in this gauge, Q2 is proportional to e>X+®+) a5 in the
€ = 0 case. One can check that such data are compatible with the (null) constraints
imposed on H; UH} by (2.10)—(2.14). Recalling that (u, v) are defined by (2.15),
we define coordinates U and V by the formulae (2.5), (2.6), thus Hz =1{V =
0,u € R} and H; = {U = 0,v € R}. Then, by (2.14), we have the following

identities:

2
m ar(M,e, N) g (Menw
3,9 — St thefve,
Oudu bl 2K (M, e, A)—mPri €2 | _ _szz(rlt; :2A)
+(M.e,
2
- B m ar(M,e, N) sk (Me
(O V‘15)|7-{4Lr = 2 7" m2re €2 e €.
KoM, e, A) —mPrie? | _ mwree
+(Me,

Integrating using the boundary condition dy ¢ (0, 0) = dy ¢ (0, 0) = 0 at the bifur-
cation sphere {U = V = 0} gives

M,e, N)

5 I o ( 2K, (M.e. A 216
) 31 (V) KOl —miriey € & (210
M,e, N)

5 I o ( R2KeMeu (917
OV ) g (W) KOl —mirie € « @17

In particular, note that (a”d’)mjg = (0 and (av¢)|H{ = 0.

2.4. System of ODEs for Static Solutions and Initial Data

Lett := v —u and s := v+ u where (u, v) are given by (2.15). For the data of
Sect. 2.3, it is clear that 9,7, 0, log(Qz), 0:¢ = 0 on the initial surfaces Ht U 'H;
(recall the discussion in Sect. 2.3). Therefore, 0,7, 0; log(Qz), d;¢ = 0 for solutions
(r, 2, ¢) of the 2D PDE (2.10)—(2.14) with the data of Sect.2.3. In view of the
identities

au:3s_at7 8v:as+ata

it is clear for that all f € {r(s), Q2(s), d(s)}, o f =0 f = %. In the (¢, 5, 0, @)
coordinate system, (2.7) becomes

g = Q2(s)(—ds? + dt?) + r’(s)dog. (2.18)

Note that the usual gauge freedom of spherical symmetry consisting in u — F (u)
and v — G(v) for monotonic functions F and G translates into the gauge trans-
form s — H(s) for H(s) monotonic. Using the notation % = f , the Einstein—
(Maxwell)— Klein-Gordon equations (2.10)—(2.14) can be written as

Q2 Q22 2 2,12
- 7+r—3e + rQe(A + m~|¢|7), (2.19)

F=

r
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which is also equivalent to

d . 2 e 262 20412
g(—rr):Q : 1_72 —r2Q%(A + m?|p]%),
or
d (- —i\? 1 e
a5 (7) = 2<7) +Q (72 - 74) — (A +m? ()
d?log(Q? . 202 272 402
Lg)=—2|¢|2+—z+—z——462’
ds r r r

or equivalently
d? log(er) . Q2 3¢?
— 5 =+ (1 - tmiriel Arz) :
the Raychaudhuri equation
d (7 —r .5
- (@) = léP

1. =F

which we can also write, defining the quantity " := =7 as
. r .
21y 2
(k=) = @|¢| .
The Klein—Gordon wave equation is
. 2¢ -
=220
r
or, equivalently,
d .
——(r’¢) = —m’r*Q%¢,
ds
— =) =- — — —(log(27)).
ds(§22> mree des(Og( 2

Note that 7 < 0 therefore « ~! > 0. In the s-variables, (2.9) becomes

2 2 A2 2
K—z.Qz:_[l__Wﬁ_z__"}:_[1__p]
r r 3 r
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(2.20)

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

Recalling the renormalized Vaidya mass from (2.8) we can also derive the

following equation:

2 2
& = S g+ rilgl.

(2.30)
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Note that gauge (2.15) translates into the following normalization for s on
HY = {s = —oo}:
—7(—00) . m2r+ €2

-1, _ N s n
R = T T T ey

(2.31)

Additionally, note that one can easily show that @ is constant on H* and
equates the following value:

@ = M. (2.32)

Lastly, note that (2.16) and (2.17) become

¢E ) / _m2
o = = —— €, 233
<Q2 et Oire 4K2 (M, e, A) (2.33)
where we introduce the notation [/ := % for a regular coordinate s defined as
ds 2
P Q7(s), s(s =—o00)=0. (2.34)

2.5. Linear Scattering in the Black Hole Interior

Consider the linear Klein-Gordon equation with mass m? € R on the Reissner—
Nordstrom-(dS/AdS) interior (g g ;) with sub-extremal parameters (M, e, A) € Pk,
(see Sect.2.1):

Oervor = m’¢r. (2.35)

Using the spherical harmonics Y; ,(6,¢), we write ¢,(t,s,0,¢9) =

fzog an:_l(qbg);,m(t, $)Y1.m(©, ¢), where s = r* is defined in Sect.2.1. We
consider the case of homogeneous, spherically symmetric solutions T¢, = 0,
R¢,r = Owhere T = 9; is the Killing vector field of Reissner—Nordstrom-(dS/AdS)
(spacelike in the interior) and R is any vector field on the sphere. Since R¢, = 0,
then (¢1);,n = Oforany! # 0. Then we denote u(w, s) = fweR e rdol(t, s)dt:
since T¢, = 0, then u(w, s) = 0 for any w # 0. In what follows, we denote that
u(s) = u(w =0, s). Then, u satisfies the following ODE in s:

i=V-u, (2.36)

Here the expression of V(s) can be found in (6.2) and (6.3) with w =1 = 0 in
[[42], Section 6]. Define u; and #5, two linearly independent solutions of (2.36),
characterized by their asymptotic behavior towards the event horizon, i.e. as s —
—o00, the following asymptotic equivalences are true:

iin(s) ~ 1.

ur(s) ~ s.
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Also define v and v,, two linearly independent solutions of (2.36), characterized
by their asymptotic behavior towards the Cauchy horizon i.e. as s — o0, the
following asymptotic equivalences are true:

vi(s) ~ 1,

a(s) ~ s.

Lemma 2.1. (Kehle—Shlapentokh—Rothman [42]) Recalling the definition of
2K_(M,e) < 0 from Sect.2.1, there exists C(M, e, A, m?) > 0 and so(M, e, A,
mz) € R such that, for all s > s,

N di d*v
[3105) = 11+ =2 15) + | Z51() = € e, (2.37)

2,..
[U2(s) —s| + I—(S) -1+ |

I(S) <C.¢ (2.38)

Proposition 2.2. (Kehle—Shlapentokh—Rothman [42]) There exists A(M, e, A,
m?) € R, B(M, e, A, m?) € R such that

] = Avy + Bvs.

Moreover, there exists Z(M, e, A, m2), the zero set of an analytic function (in
particular, a subset of R* of zero Lebesgue measure) such that forall (M, e, A, m?) €
Pse — Z, BIM, e, A, m?) # 0.

Corollary 2.3. Let ¢, be a solution of (2.35) with constant data ¢y = € # 0
on {s = —oo} on the Reissner—Nordstrom-(dS/AdS) metric (grn). Then for all
parameters (M, e, A, m2) € Pse — Z, there exists constants C(M, e, A, m2) >0
and so(M, e, A, mz) € R such that, for all s > s,

lpc(s) — A(M, e, A,m?)-€ — B(M, e, A,m?) - € - 5|

+lpr(s) — B(M,e, A,m?) -€| < C -e-e2K-Me. s (2.39)
Qi (s) < C - 2K Mels, (2.40)
dlog 2
|%(s) —2K_ (M, e, A)| < C - 2K-(Me.M)s (2.41)
)

3. Precise Statement of the Main Results

In this section and all the subsequent ones, we will use the notation f(s) < g(s)
to signify that there exists a constant C(M, e, A, m?) > 0such that f(s) < C- -g(s)
for all s in the region of interest. 2> is defined similarly and f(s) >~ g(s) if f(s) <
g(s) and g(s) < f(s) (note that we have used this notation already in Sect. 1).
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3.1. Presence of a Spacelike, Crushing Singularity and Gauge-Invariant
Estimates

Theorem 3.1. Let Z C R* be the zero Lebesgue measure set from Theorem 2.2.
Then, forall (M, e, A, m?) € Py — Z with e # 0, there exists eo(M, e, A, m?) >
0 such that for all 0 < |€| < €, the future domain of dependence M of the
characteristic data from Sect.2.3 (i.e. (s = —00) = €) terminates at a spacelike
singularity at which r = 0.

More precisely, there exists a foliation of M by spacelike hypersurfaces X

with, s € (—00, S00(€)), where s is defined in (2.31), and soo(€) = K. €72 4
L(e) - log(e_l) and Lo(M, e, A, m?) > 0 are such that
lim r(s)=0, |L(e)| < Lo, 3.1

S—> 500 (€)

where we recall that B(M , e, A, m2) # 0isdefinedin Theorem2.2 and2K_(M, e,
A) < Oisdefinedin Sect.2.1. S := {s = soo} is furthermore a spacelike singularity
in the sense that for all p € {s = soo}, J~(p) N'HT is compact, where J~(p) is
the causal past of p.

Moreover, all the quantitative estimates stated in Proposition 4.3, 4.4, 4.6, 4.7,
4.8, 4.9 are satisfied. In particular, the following stability with respect to Reissner—
Nordstrom-(dS/AdS) estimates hold: for all s < e !

_ dor
Lps) —ge)| S5 S, \—()——<>!<e s Se,
(3.2)
92
|r() = ren ()| S €25 Se, Jlog [ = (5) <2< (3.3)
Qn ()
Additionally, in the crushing region C := {4s;;, < s < Seo}, Where i, =

(IK_)""log(v - e for v(M, e, A, m?) > 0, there exists Dc(M, e, A, m?) > 0
such that we have the following spacetime volume estimate: for all s € C,

Swol | | By nirelo. 1]}

s'>s

(r(s)) e 2 (1=elog(e™")-De) o

<r(s)> “2.(14€2. log(e’l) Dc)

r_

r—

Finally, there exists ﬁc (M, e, A, mz) > 0 such that the following blow-up
estimates hold for all s € C:

d —1
pl(s) ~e! '10g(r_l(S)), |—¢|(S) ~ (3.5)

r(s)
r(s) e 2(1—e log(e’l) -Dc)
()

r—
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-2 2 2 -.D
r(S))_b €72 (1+€>log(e™1)-D¢) 3.6)

§p<s)§e“~<—

6() .
o) - 86

3.7
p2(s) G-

Here p(s) is the Hawking mass and K(s) 1= Raf;,wR“ﬂ“” (s) is the Kretchsmann
scalar. Moreover, forall p > 1 + ¢,

d¢
sup  |p[(s) = +o0, sup Id—I(S)
sele!,s00] sele!,s00]
sup  p(s) = +oo, / pPdvol,
sele=! s00] sele! soolN{rel0, 11}

Soo
=4 / oP(s)) - r2(s") - Q*(s)ds' = 400,
671

6
R
sup r6(s) - R(s) = +o0, lim sup F(S)z—(S) = o0,
sele!,500] 6_>0S€[€7l,soc] p=(s)
/ r* - VR)Pdvol, = +o0. (3.8)
sele ! 500 1N{tel0, 17}

3.2. Convergence to Reissner—Nordstrom-(dS/AdS) in a Weak Topology

Definition 3.1. (Convergence in distribution) We define the functions the real-line

s € R —> r]%N(s) and s € R — Q%N(s) = —(1 — ), where

VRN(Y) + 2 NO)
rry is the area-radius function of the spherically symmetric Relssner—N ordstrom-
(dS/AdS) metric (ggy), and the coordinate s = r* on (ggpy) (see Sect.2.1). Sim-
ilarly, defining a coordinate s from (2.31), we view rez(s) and Qz(s) from (2.18)
(where g is the metric from Theorem 3.1) as functions on {s € (—00, ss0(€))}, and
we extend these functions on the real-line as rz(s) =ry N(s) 925 (s) = Q% N

for all s > so0(€). Then for (fe, fe» frn) € { (rgv r2€s rRN) (Q 925» Q%QN) 1,
we say that fe converges uniformly (respectively in L”(RRy), resp. in D'(Ry)) to
fry if s € R — fc(s) converges uniformly (respectively in L?, resp. in distribu-

. L (R, LP (R
tion)tos € R — fry(s) as € — 0, denoted f —(> )fRN (resp. fe i) )fRN,

/( s)
resp. fe SrN)-

Theorem 3.2. Under the assumptions of Theorem 3.1, if holds (as in Definition
3.1) that

D' (R L*®(Ry LP(Ry

o g2 Qa2 2 B Q2 (3.9)
D'(Ry) .

P2 R Elirb sup |l’2(s)—”12eN(s)‘=0 (3.10)

s<e—2ta
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foralla € (0, 2). Nevertheless, re2 does not converge to r%  uniformly orin L? (Ry)
for any p > 1 and we have that

Soo
inflrgz(s) :O, / |r2(s)—r12gN(s)|pdS 2672.
el

s>€~

3.3. Uniform Kasner-like Behavior

Theorem 3.3. Under the assumptions of Theorem 3.1, the metric can be expressed
in the following form, defining the proper time variable T > 0 as gz, = —8;, (i.e.
null shift, unitary lapse gauge, also called synchronous gauge):

g = —dit 4 [1 + @:ad(f)] ) ,52[]74b352-(1+62~10g(e’1)-P(f))]dp2
+[1+ €8] - PO 72 L o). 3.11)

Herer_ = nez -r_(M, e, A) for somen(M, e, A, m*) > 0and P(T), Ggad(f) and
"8 () obey the following estimates in the region C := {0 < T < ¢ (€)}, where
Tc(e) = F~e4fors0me0 <I'<To(M,e, A, m2): there exists Po(M, e, A, mz) >
0, Co(M, e, A, mz) > 0 such that

sup |P|(T) < Po, (3.12)
teC
sup | €79 (7) < Cp - € log?(e 1), (3.13)
7eC
sup |€4"8|(7) < Cp - €*log?(e ™). (3.14)
7eC

In particular, € (T) and @;“‘1 (7) tend uniformly to 0 in C as € tends to 0.
We also have the following estimate comparing the proper time T and the re-
normalized area-radius X 1= r%:for some Torr (M, e, A, m2) > 0,

T
sup | lo
feg ¢ B #'(1+€2~1Og(€_1)'1"(f))_1

Terr(M, e, A,m?) - X(T)*~

| < €e?log?(e7h.

(3.15)

Additionally, the scalar field blows-up when T approaches 0: there exists Qo(M, e,
A,m?) >0, |0(%)| < Qo such that

sup | (F) —2b_ -€- (1 +€*-log(e ") - Q%)) -log(F ") | <e-logle™.
7eC

(3.16)

Moreover, we have the following estimates in the L ([0, T¢]) normfor1 < p <
-2
€

ge = —di*+ 7% (1 + Eg“d(f)) dp® + (14 E®(D)) - (2 - dog),  (3.17)
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-1 - €2 log(e_l)

o MNES @lrqosen S 57— (3.18)
J— p . 6

.t . €2 log(e 1)

To "NEE" @) Lrqozen S T, e (3.19)

1 1
In particular, T, PEM and To b Eg“d converge to 0 in LP ([0, T¢c]) as € tends to 0.

Remark 3.1. Up to the errors eS| (’Egad (which converge to 0), (g¢, ¢) corresponds
to a Kasner metric of the form (1.13) satisfying the relation 1.14 (the first one exactly,
the second one to top order). Namely,

Praa =1 —4b2€* (1 +¢- P(©), px=py=2b€e"-(1+¢-P(¥),
pp=2b_-€-(1+€-Q(7)); (3.20)
Prad + Px + py = 1, Pra+Pi+ Py +2p5=1+40(). (321

Note that py, py, prad. Py depend on 7, although the dependence is lower order
in €, so, even assuming e = Qizad = 0, (ge, @) is not an exact Kasner metric.
This is due to the non-linear back-reaction which already acts as a (non-trivial)
perturbation in the early-time regions where the dynamics are mostly linear.

Remark 3.2. Because we work on a time-interval [0, T¢] where 7o ~ €%, it is
important to prove estimates in a scale-invariant way, which is why we considered
1 1

(7 Eg“d and fc_;Eémg instead of Eg“d and EX"8.

4. Proof of Theorem 3.1

4.1. Preliminary Estimates up to the No-Shift Region

In this section, we prove that there exists a time Ag(e) =~ log(e_l) up to
which we are in the linear regime and we derive sub-optimal estimates using a
basic Gronwall argument. Nevertheless, although we prove the estimates up to
s ~ log(e~ 1), we will ultimately only apply them for s < §”(M, e, A, m*) where
S"(M, e, A,m?) > 01is a large constant independent of €. More refined estimates
(building up on this section) will be derived in Sect. 4.2 in the region s >~ log(e~!).
We consider two different regions for the moment: the red-shift region R := {s <
—A} where A(M,e, A) > 0 is a large number and the no-shift region A/ :=
{—A <5 < Ag(e)} for Ag(€) = c(M, e, A, m?) -log(e™") > 0.

Lemma 4.1. There exist Dp(M, e, A, m?) > 0and A(M, e, A) > 0 such that, for
alls e R :={s < —A},

11(s) + % < Dg-e, @1
k= (s) — 1] < Dg - € 4.2)

|r(s) — r(M, e, A)| + 2K (s) — 2K 1| < Dg - @°(s), (4.3)
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| (s) — M| < Dg - Q%(s) - €2, (4.4)
dlog($?) 5
IT(S) — 2K (s)| + [1og(£27)(s) — 2K - 5]

< Dg - [Q%(s) + €2]. (4.5)

Proof. The proofis a simpler version of Proposition 4.5 in [60]. For the convenience
of the reader we briefly sketch the argument. We make two bootstrap assumptions:
dlog($2?)

= ) —2K4 [ = Ky, [l(s) =4Dk - €. (4.6)

The key estimate is to use (2.28) to derive, for some % <a< % that,

d <r2¢'5€‘”

V2¢ PCE
ds \ Q2

2.2 as
—mrog - e’
Q2

d
) = (a — —log(2%)
ds
Then we integrate, using the fact that (a — % log(2?)) < _315T+ and Gronwall’s
inequality, together with (2.33) and (4.6). This shows that, for all s € R,

161(s) S Dr - Q%(s) - €,

which closes the bootstrap of ¢ since fioo Q2(s"ds’' S e Keh < %, if we choose

A large enough. The other estimates follow from integration and improve the other
bootstrap assumptions from (4.6), see [60] for details. O

Lemma 4.2. There exist C = C(M, e, A,m?) > 1 and Dy(M, e, A,m?) > 0

such that the following estimates hold for all s € N = {s < Ag(€)}, where
2\y—1

Ao(e) = M og(e™Y) is so that C° - € = Je:

p1(s) + |1(s) < Dy - C* -, 4.7)

k™! = 1](s) < Dy - (C* - €)? 4.8)
2

|‘”°§# —2K|(s) < Dy - (C* - €)*, (4.9)

loo — M|(s) < Dy - (C* - €). (4.10)

Proof. We bootstrap (4.7)-(4.10) replacing C* by C¥.In particular, for € small
enough and given that C* < e_% by definition of Ay, the estimates (4.7)—(4.10)
are satisfied with C*¢ replaced by €f. We also bootstrap

Q%(s) < 4Dy. 4.11)
Then, coupling the bootstraps with (2.29), it is clear that, for some E(M, e, A) > 0,
r7i(s) < E(M,e, A) (4.12)

for all s € N. Therefore, by (2.27), using the bootstraps and defining ¢ := r,
there exists C(M, e, A, m2) > 0 such that

d
<@ ) = C(M,e, A,m?) - |(¢, 9)I.
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Therefore, by Gronwall’s inequality, the bootstrap corresponding to (4.7) is re-
trieved. It is then not difficult to retrieve the other bootstraps using (4.7) and im-
prove the C 2 weights to a smaller C* weight (recall C > 1). Note in particular
that to retrieve the bootstrap assumption (4.11), we use the identity (2.29) and the
bootstrap | — M| < DN(CSATSE)2 to get

9252|1—2—M+i—§r2|+“/—g,

r r 3 r

which with (4.12) is sufficient to conclude (after taking Dy large enough, say
Dy >4 sup |1—2M4 f—; — %r2| and € small enough so that /€ - E(M, e, A)

-
ro<r<ry

D
=35 O

4.2. Estimates for the Difference with Linearized Quantities

In this section, we control the difference between the Reissner—Nordstrom
quantities (rry, Q%e ~» @) and (r, 822, ¢). We shall denote these differences §¢p =
¢ — dr, 8Q% = Q> — Q% ., 8r = r — rgy. From now on, we will use the above
notation throughout the paper.

Proposition 4.3. There exists Dj,e (M, e, A, m2) > 0 such that the following esti-
mates are true for all s € R.:

189%|(s) < Dl - €2 - Q%(s), (4.13)
18 10g(2)|(s) < Dy - €2, (4.14)
%(6 1og(2%)[(s) < Dj - €* - Q%(s), (4.15)
187](s) < D - € - Q%(s), (4.16)
187](s) < Dy - € - Q%(s), 4.17)
18¢|(s) < D - € - Q%(s), (4.18)
18¢[(s) < Dly - €3 - %(s). (4.19)

Proof. 8r, 8¢, 8¢, and L (8log(22%)) are zero, and §log(Q?) = O(e?) for the
initial data on H . We make the following bootstrap assumptions

Q2. 1892, 167, |8F], €1 -18¢| < 4D} - €2 (4.20)

The key point is to notice (rry, Q%N) satisfy (2.19) and (2.22) with ¢ = 0 and
¢, satisfies (2.26) with (r, Q2) replaced by (rgry, Q%{,N). Then we can take the
difference of the two equations; for instance, for (2.26),

2(8@5)f_2¢.£ (5r‘ FRN - Or

8¢ = —

r

) —m?Q%8¢p — m>¢pp - 6.
r FRN

We will keep using this technique repetitively without referring explicitly to it.
Plugging (4.20) and the bounds of Lemma 4.1 into the above we get, for all s,

18$1(s) < D - € - Q%(s) + IF] - 3]
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We can integrate this estimate using Gronwall’s inequality, since |7| is integrable
and we get

1861(s) + 16¢1(s) S D - € - Q3(s), (4.21)

where to obtain the §¢ on the LHS we integrated a second time and took advantage
of [* Q%(s)ds" < Q%(s). Since Q%(s) S e 2K+ in R, the 8¢ part of (4.20) is
improved, choosing A large enough. Then by, (2.22), we get

d%510g($?
DD < -2
S

which upon double integration (and noting 18922 < Q2.8 log(92)| using the
Taylor expansion of log) gives

15 10g(2%)(s)| + |j—s<8 1og(29)[(s) + 272(s) - 18Q%/(s) < Dj - €2,

which improves the Q2(s)- |8$22 |(s) part of (4.20) using the smallness of Q2. The
other two estimates can be improved similarly and the bootstraps close. Note that
(4.20) is now closed with D' - €2 - Q2 replacing the RHS, which allows to re-do
the argument with these improved weights and obtain all the claimed estimates. O

Proposition 4.4. There exists D\ (M, e, A, m?) > 0 such that the following esti-
mates are true for all s € N':

5 1og Q%|(s) < D)y - €2 - C*, (4.22)
d

|- (@log Q%)|(s) < Dly - €2 - C°, (4.23)
)

6r|(s) < D)y - €*- C%, (4.24)

67|(s) < D)y - €*- C°, (4.25)

18¢1(s) < Dy - € - C*, (4.26)

18¢1(s) < Dy - €3 - C*. (4.27)

Proof. The proof is similar to that of Lemma 4.2, taking advantage of the bounds
already proved in Lemma 4.2. m]

Corollary 4.5. There exists S'(M,e, A) > 0, D' (M, e, A,m*) >0, BIM, e, A,
m?) £ 0 such that, for all s € N" := {S'(M, e, A) < s < Ag(€))},

r(s) —r_| < €2 + |rrn(s) —r_| < €2 + D -&*K-5, (428)
D7l K < Q2(5) < D - K5, (4.29)
|p(s) < D" - (e - 5 4 *K=), (4.30)
lp — B -€l(s) < D' - (¢ + *K-%). (4.31)

In particular, there exists S"(M,e, A,m*) > S'(M,e, A,m*) > 0, D'_(M, e,
A, m?) > 0 such that, forall s € N"" :={S" (M, e, A,m?) <5 < Ag(€))},

d log(? : K_
%(s) —2K_| <2D’ - (e7 + XKy < |—|. (4.32)

| 100
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Proof. Immediate from Proposition 4.4 and (2.39). Note that the existence of a
D' (M,e,A) > 0and S'(M, e, A) > Osuch that D'~" - e2K=5 < |rpn(s) —r_| =~
Q% < D"_-e*( =5 fors > §'is an easy computation on (gg ). For (4.32), similarly
there exists s > S”(M, e, A, m?), D" (M, e, A) > 0 such that, for all s > S”,

dlog(Q%,)
ds

K|

_2K | <D". 2K_s .
® T

|
O

Note that we have the freedom to choose S (M, e, A, m2) large enough and
Corollary 4.5 still applies with slightly modified constant. We will make use of this
fact in Sect.4.3.

4.3. Estimates on the Early Blue-Shift Region

We work on the early blue-shift region EB := {§” < s < si,(€)} for sjin(€) :=
QIK_])"'log(v(M, e, A, m?) - e~?) withv(M, e, A, m*) > 0 a small constant to
be fixed later. Note that £B and N overlap on the region {S” < s < Ay}, but from
Sect.4.1 and 4.2, we will only apply the estimates on {s = S”} the past boundary
of EB.

Proposition 4.6. There exists Dg(M, e, A, m?%) > 0 such that, foralls € EB, we

have
Q01 8¢ < DE - €, (4.33)
18(2$)|(s) < Dg - €, (4.34)
sTH8¢1(s) + 18¢1(s)| < DE - € -5, (4.35)

571 1810g(2%)1(s) + |di<8 log(22))|(s) < Dg - €* - s (4.36)
S

s7h187](s) + 187](s) < D - €7, 4.37)
k™t —1](s) = 0.1, (4.38)
|0 — M|(s) < Dg - €% - 5. (4.39)

Moreover, there exists C_(M, e, A) > 0 such that we have the following esti-
mates at s = $j;n(€):

|¢(s1in) — B - €| < Dg - € -log(e™ 1), (4.40)
1% (s1in) — €2 - C— v (M, e, N)|

= [Q(spin) — C— - *X=%n| < Dp - €* - log(e™1)?, (4.41)

. B?r_ _
| —F(s1in) — K |e2 — Qsin)| < D -t loge ™2, (4.42)
2

|r(stin) — [1 — T |e2szin(e>]r_(M,e, A)| < Dg - €2, (4.43)
dlog(£2) B
|S0800 ) (i) — 2K_| < D - €2 log(e ™)), (4.44)

ds
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| / A L | <D loge ). (445
1" Q (S) 2|K—| -Q (slill)

By (4.43), note in particular that, for € > 0 small enough,
r(sin) <r—(M,e, A). (4.46)

In view of (4.43), we define Cgp as follows, and it obeys the following inequal-
ity:

- r(stin) 2Dg(M, e, A, m?)
Cpp =€ 2 -log( 52 = ), |Cgpl =
[1 - 2|K_|62Sl,‘n]}’_ r— (M’ e A)
4.47)

Proof. Our strategy involves a bootstrap method and follows three steps:

1. we first close the bootstrap estimates on the geometric quantities (r, 22).
2. Then, we close the bootstrap estimates on the scalar field ¢.
3. Finally, we obtained improved estimates on (r, Qz).

We bootstrap the estimates, with By (M, e, A, m2) > 0 to be determined in the
proof and B defined in Theorem 2.2

15log(Q2%)| < 4B - €2 - 5. (4.48)
| ¢| <4B e, (4.49)
r~l(s) <1002 (M, e, M), (4.50)

where we have assumed Bj large enough so that (4.48) holds true at s = S”. Note
that taking S” (M, e, A, m?) large enough (recall that S” only depends on M, e, A,
m?2) ensures that (4.50) is satisfied at s = S”.

For € small enough, using s;i, < log(e’l) and (4.48), we have for some
C_(M,e, A) > 0:

C_ Q% (s
- 2K < —Rg( ) < Q%(s) <2Q%y(s) <4C_ - K-,
Integrating (2.24) and using also (4.8) for s = S§” we get for some D}, (M, e,

A, m?) > 0:
k™l — 1] < D} -€* + D}, - B> €. &2K-I < 0.1, 4.51)

after taking v small enough so that DY, - B? - €2 . ¢?K=lsiin = D . B2 . v < 0.05.
From this and (4.48) we get

|67 <8C_e2 - (By - *K=* .52 4 2D, - B?).

where we used §Q2> < 2C_e?K-5.5log(2?) and chose S” large enough. Integrating
and using (4.24), we get

8C_ - €2 ”
87| < IK—IGBI L 2K-S"[§"2 43D} . B® - €2 s
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8C_ - €2

<—— B +3D}-B*>- €5,
|K_| N

2K_s

where we used the integrability® of e 52, and chose DY, large enough so that

D,,CS" < D},B*S" < D}, B?s.
Plugging these bounds into (2.22) and using (4.49), (4.50), the smallness of €
and Q2 <1, we get

d2
d—2(610g(92))|(s)§P(M, e, N)By - €2 - X5 .52 4 DY . B2,
S

where P(M,e, A, B) > O, DK,’(M, e, A\, mz) > (. Integrating the above using
(4.23) for s = S” gives that
P(M,E,A) 2.32K*S”

d
—(8log(Q*)| < ————B; -
|75 (B log(&2)] = K| 1€

8”2 + D}/ - B’e’s < (B + DY, - B*)é?s,
where in the last line we have chosen " (M, e, A, mz) large enough so that %

e*K-5". 52 < 1 (note that P(M, e, A) does not have any implicit dependence on

S”). Integrating another time improves bootstrap (4.48) if we choose B; > D B*
and € small enough. In what follows, we fix B1(M, e, A, mz) in such a way, and
thus we need not worry about the dependence on B; anymore. Bootstrap (4.50) is
improved immediately after multiplying (4.51) and integrating. (4.49) remains; for

dlog(9?) .
—— < 0:

this, note that the following identity for all f follows from
d .
%(Q~If|)59~|f|~ (4.52)

To prove that, consider the derivative of Q2. | f |2; see Proposition 6.5 in [43] for
details. Then, upon integration with the usual rules gives

2 ( //) ' 2
K2 S//s;p;lr fl(). (4.53)

Q) - 1f1() = QS - IfIS") + ———=
Now coming back to (2.27) and taking differences, we get that
d . .
| OIS € - s e 159,
s

To address eX-* - Q - |8¢|. apply (4.53) to f = 8¢. we get also through the are of
(4.26), that:

%((S(r%m(s) St K2 ek sy <e3 + sup |r?- 8<i>|(t)> :

S"<t<s

"
2K—xdex < eZK,S (S”)N

8 Note indeed that for any N > 0, we have It g/, e &g if s is

large enough.
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Writing r28¢ = 8(r2¢) — (r + rgy) - r - ¢, and using the previously proven
bounds this implies

|%(5(}’2(]‘5))|(S) 5 63 . e2K_Ss2 +€K_S . Q(S//)

S<t<s

-((1+s)-€3+ sup |3(r2.q'a)|(t)). (4.54)

Integrating (4.54) and using (4.24) and (4.27) for s = S” gives, using Gronwall’s
inequality, that

s
sup 18(r29)|(1) < exp </ K- sz(s”)ds> 3 < e
S”Stfs K4

Thus, using the bounds of (2.39) is more than sufficient to improve the bootstrap
(4.49).

Now that all bootstraps are closed, we turn to improved estimates. For (4.42)
and (4.43), note in particular the formula:

§F = -k — 11— 807,
and we can integrate (2.24) to obtain

r

s 112
| — 87 (s) — 9%)/ "’52' ds| < [8Q%|(s) + Q7(s) I« (S") = 1].
S// Q

Thus, applying (4.8), at s = S” and by (4.36), we get that

~

. 2 S rlgl* 2 2 2K_s
| —8r(s) — Q7(s) Fdsl < et steth (4.55)
S//
Now, from (4.55) and (4.35) and the inequality
fr(s) — B-e| Se-e?h,
we get
)
| — 87 (s) — B2 - 92(s)/ édﬂ < €2 52K 4 by
S//
Note also that by (4.37), (4.36) and using the fact that rpy —r— = 0(9%,), we
RN
have

s d
| — 87 (s) — B2r_ - €2 92(s)/ LS PR s,
N4 Q

d -2
. . R A . | S
Now we useidentity Q™= = —4—- i log(Qz),agaun by (4.36) and the fact that Tlos )
%= = O(Qgy), e get
. Br_ 2 202K.s | 4
|—8r(s)—2|K|e|§e cs7e S e, (4.56)

which gives (4.42). Integrating again using (4.24) at s = §” finally gives (4.43),
given that [rgy (siin) — r—| < €2.
From here on, all the other claimed estimates can be retrieved quite easily. O
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4.4. Estimates on the Late Blue-Shift Region

We define the late blue-shift region LB := {s;;, <5 < §c(M,e, A, mz) -e’l}
with §¢(M, e, A, m?) > 0 small to be determined later. We have the following
estimates:

Proposition 4.7. Recalling the notations from Proposition 4.6, defining b_ =
-2, c_v!
% #0and Cepy = eh’ (k=pr=+Ces) -C_, there exists Dpg(M, e, A, m2) >0

such that for all s € LB:

2
Ir(s) — [1 — T4 |62s]r_(M, e,N)| < Dpp- €, (4.57)
r(s) < r—(M, e, A,m?), (4.58)
) BZ.r_(M,e, N)
|—r(s)—T-62—Qz(s)| <Dyp-€-s, (4.59)

i) B>, Q%)
rs) 21k ¢ T T

2,2
+ = r(s)-F(s) — ﬁ €2 —r_ Q%) < Drp-€t-s, (4.60)
d 2 2
Iglc)g(ﬂ )(s) —2K_| < Dpp-€” -5, 4.61)
)
1L 1og (r(s)—biz'f"2 : Qz(s)) e (9| = Dup - s.462)
ds r_
QZ
|log(C'—e(2S),u)| <Dpp-€* 5% (4.63)
2
llog <[’"r(—s)]—"—2'6"2¥)| <D [62 2 e 2. 92(s)] . (4.64)
- of f
Q"% 9|(s) + 1pI(s) < Drp - €, (4.65)
r(s) - ¢(s) —r2 - B-€| < Dpg - €, (4.66)
|p(s) —A-e —B-€-s| <Dyp-€ -s°. (4.67)

Proof. We make the following bootstrap assumptions, introducing Bz = B3(M, e,
A, mz), By = By(M, e, A, m2) (to be chosen later) and recalling D = Dg(M, e,
A, m2) > 0:

dlog(Q?

8Dk <k, (4.68)
ds

|¢|(s) < 10Dg - s, (4.69)

e%(sfsnn) 18¢|(s) < 10Dg €2 s, (4.70)

IF|(s) < B - €2, (4.71)

|692|(s) < By - Q% - €2 - 5% (4.72)
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Note that by the estimates of Proposition 4.6 and (4.68), (4.69), (4.70), (4.71), (4.72)
are satisfied in a neighborhood of s = sy, (for B3 > 2C_ - v). As a consequence
of (4.68), we have

QZ(S) < 62 . er'(S_Slin)’
and integrating (4.71) and using (4.43) at s = s7;,, we have

r—
Ir—r_(M,e,N)| < Dg - € -sjin(€) + B3 - €* -5 S e < 100°

Thus, integrating (2.27) using (4.40) we get
161(5) S r21pl(s) S e+ € sin S e+ logle™!) Se,

which improves bootstrap (4.69) for small enough €, after a second integration and
gives

¢1(s) S €-s.

From (4.71), notice that |§7| < €2 (trivial estimate), and hence, using (4.37) at
s = sin, and since s > 57, > log(e™1),

167] < €% [s +loge H] < €.

Plugging these estimates and the bootstraps (notably 4.72) in (2.27) gives,
|%(8(r2¢'5))| S &K bmsin) g2 4 @5 Kl msin) g3 &6 tin) .S,
which we integrate to get, using (4.34) at s = sy,

829)1(s) S €, (4.73)
which also implies

B@)I(s) S €.
Integrating, we get, also using (4.34) at s = sy;,,, that

1801(s) S € -5,

which is sufficient to improve boostrap (4.70) for small enough €, in view of the
K_
bound e 10 %1in) 52 < Jog? (e~ 1).
For bootstrap (4.68), we take difference into (2.23) and get, using the previously
proven estimates

d2
|E(5 log(r©2?))| < Q%(s)e?s? + €. (4.74)

Thus, integrating and using (4.44) and the fact that fs‘jm (s Q*(s")ds' < €% spt
foralla > Oand s > s;;, > log(e™!),

K|

d
|$(810g(r92))| <e?s<e< oo
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Using (trivially) the bound on 7 and (2.41), we get

d ) » 1K
|ds log(27)(s) —2K_| Se” -5 < 50 (4.75)

and clearly (4.75) improves (4.68). Another integration of (4.75) also improves
(4.72) using 1822 < Q% - |81og(?)| (note that we used the fact that € - s <
8c(M, e, A, m?) is bounded, hence |8 log(Qz)l is bounded by a constant depending
only on M, e, A and mz).

For bootstrap (4.71), notice that by (2.24) and (4.8) at s = S” we have, for all
s,

e (s) _/S r|¢>|((,))d _<e

Now evaluate, using the estimates of Proposition 4.6,

Sl L (il o [P 18Il +18D6) |
| 2o B ey IR 2y
s Q%) Q) , Q(s')

K
5 64/ s’Q’z(s/)ds’ 5 64 .5 Q’z(s),

"

whence, for some D} ,(M, e, A, m2) > 0,

17| — Q2(s) - / |¢>z:| (S) _ Q%) < D), [4.34_62.92@].

Therefore, using (2.39) and choosing € small enough, we get
N r(s/)
s Q2(s)
<Dy [ s+ 2], 4.76)

|I7](s) — B* - €% - Q%(s) - ds' — Q*(s)|

Now write the identity
/‘Y ) /S £ o
7 gy =
Slin QZ(S/) Slin — s (log(r—lfzz))
o r(s) _ r (Siin)
20K_| - Q2%(s)  21K-|- Q2*(siin)

Y LN R R P
i A5 N2 )\ =Logr—102) 12K-|)

4.77)

Next we use (4.75) to estimate the last term:
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r(s)
(QZ(S/) )

| d 102 S/‘
sin — g5 (log(r='Q%)) + 2K
562-(S+62'S2)-g;2(—is)) <25 Q7). (4.78)

Combining (4.45), (4.76), (4.77) and (4.78) shows that, for some DZB (M, e, A, m?)
> 0, and assuming small enough e,

2., 2 1(s)

2 < 2 49 < 4.
k- FOIS [€2-Q2(s) +e*s] < et 5. (479)

171(s) —

Thus, (4.71) is improved if we choose, say, Bz > max{2C_ - v, 2B2. 2|rK‘_‘}
large enough. Note, in particular, that

. b2 . =2
2 PO e o< @s0)

r(s) r_

To obtain (4.64), note, in particular, that combining (4.75) and (4.80) and integrating
gives

(—2K_) — b2 .¢

—b2.e2

r(s) Q(s)

2 -2
[1— %stlm(é)]r— eb="Cep . C_ .yl e

|10g

b72 . 6_2 N
—_—/ Qz(s)ds| < €. s?
- Slin

r

which then gives

—b~2e2
I’(s) QZ(S)
|10g _
[t 2|1< &€ Stin(€)]r— b Ces  c_ -1 2
b2
r_ - 2|K_| (slln)|
S he? Q. 4.81)

Note also that, using the Taylor expansion of log, we obtain (recalling the
definition s;i,(€) = 2|K_ |~} log(ve_z)),

2
b~%e *log(1 — 3K lezsme)) +2|K_| - siin(€)| S *[log(e™)]*, (4.82)
C_-b"%y1
from which we get (4.64), noting that - 2|K | Q2(sin) = KT + O(e?
log(e™h).

All the other claimed bounds follow (or were already proven in the course of
the proof).
]
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4.5. Estimates on the Crushing Region

We define the crushing region as C := {4s;;,, < s < sco} region. Note that for
€ small enough, 8¢ - € ™' > 4s7;,(€) ~ log(e ") hence C and LB overlap. We will
thus only apply Proposition 4.7 to obtain estimates for s = 4s;;,, and prove new
estimates for s > 4s;;,,. We proceed in this way to obtain “unified” estimates in C

which we will use in Sect. 6 to show the uniform proximity of g, to a Kasner metric
inC.

Proposition 4.8. There exists Dc(M, e, A, mz) > 0 such that, for all s € C,

lp(s) — b=t et -log<r7‘)| < Dc -€-log(e™") [1 + log<’—‘>|} ,

r(s)
(4.83)
[r2p(s) — B -r% €| < Dc - €, (4.84)
2 2 B*.r2 2 2 -1
[r?(s) —r2 + T -s| < D¢ € -log(e™ ), (4.85)
2.2, ¢2
|"(S) |rFl(s) — T:l|
= |r(s) - IFI(s) = 2|K_| - B2 -2 - €*| < D¢ - €* - log(e ™), (4.86)
d 2 D¢ - €21 -1
|~ log(r =" " Q2 (s))| < —<-C ogle ). (4.87)
ds r2
| = ——log(Q2*(s)) — 2K_| < Dc - € - log(e 1), (4.88)
r2 ds

Moreover, recalling the notations from Proposition 4.6 and recalling C,ry =

-2
e b="Ce . C_ > 0, we have

r(s) p2 e Qz(s)>
|log <[ —1 Cr }

r(s)

Proof. The key point (and the main difference with £B), which we will use repet-
itively when integrating, is that Q2(4s;,) ~ €3 (by (4.63)) so that the term 2(s)
on the RHS of (4.59), (4.60) or the ¢ =% - Q72 in (4.62), (4.64) can be ignored for
s = 4siin.

We bootstrap the following estimates for CM,e, A, mz)
>0,Bs5(M,e, A, m2) > (), to be determined later:

r_
<Dc- [ez -log(e™H? + log(e™!) - |log(—)|] : (4.89)

9l(s) = e 11og (=) 1+ 1] (4.90)

€ 2
Q2(s5) < e K- . <L> . 4.91)

r—
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Note that (4.90) and (4.91) hold initially in a neighborhood of 4s;;, by the
previous propositions. Note also that ! ?%-5 < €78 in this region hence (4.91)
also provides smallness in the subsequent estimates. Integrating (2.27) using (4.90)
and (4.91) with (4.66) for s = 4s;;,,

N
Ir2g(s) — B -r% -¢| < € +f rrQ%plds’ < €
4sin
S
+e 11 / K-y < 3. (4.92)
4“1m

Then, integrating (2.20) and using (4.90) and (4.91) with (4.60) for s = 4s;,
gives
2,2 .2

< et log(e™ ). (4.93)

| —r(s)-r(s) — W' N

Integrating (4.93) and using (4.57) for s = 4s;;,, we obtain

2
|11§ st (if”) 1] S et loge™) s, (4.94)

and in particular, for € small enough,

BZ

s <1l-e? (4.95)
|K-|
Moreover, as a consequence of (4.92) and (4.93), we obtain (recalling that
B
b= ),
X 3 1 —1
p—bt et | < eloge )™ Irl o € logle) (4.96)

r2

Now we can integrate that on [4s;,, s] using (4.57) and (4.67), which improves
bootstrap (4.90) and gives

_ _ r—
|¢(s)—b_1 10g< (S))‘ <e-loge™!) +elog(e™h) - log( G ))‘
4.97)
Then, from (2.22), (4.92) and using (4.91), we get
d*log(rQ?) T A S SR
T+2B 'G'r—4|§r—4 € '(r—_) ¢ Sr_“’
which we re-write, using (4.93), as
d?log(rQ? Zlog(e™ 1) - |F
| 0g(r2°) CAK |2 Irl| ~ € loge™) Irl_ 4.98)
ds? r3 r3

We then integrate using (4.57), (4.59), (4.60) and (4.61) for s = 4s;;;, (recall
that 7 < 0) we obtain
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2 2 2 2
|d10§§Q ) 0K _g| |dloi(srs2 ) QK. ;_;|
€ loi(e ) < ez-lc;%(e ) 4.99)
In particular, this shows that dl%ggz) < 1.99K_, and so, by (4.63),
Q%(s) < Q¥ (Asyiy) - VK HIn) < o0y €8 (4.100)

Now we can re-write (4.99) using (4.93) as: there exists a constant Ec (M, e,
A, m?) > 0 such that, for all s € C,

|d log(22?)
ds

_4 b2
= ‘a (log(r

o 7l
2._|

+ ()% €

1
92))| Ec -log(e™) -IFl (4.101)

’
Therefore, integrating (4.101) on [4si, s] using (4.64) at s = 4s;;, and also
(4.43), we obtain
r(s) _, -2 -2 2(s) _ _ r_
| log ((—) PeT =) S € -log(e ™) 4 loge ™) - [log(—)|.
r_ Cery r
(4.102)

In particular, for € small enough and taking the exponential (recall (4.47) and
the definition of Ceyy),

b—Z

-2
Q2(s) < (“‘”) . (4.103)

Combining (4.100) and (4.103) (for instance, take (4.100) to the power 0.999
and (4.103) to the power 0.001 and multiply them) improves bootstrap (4.91) for €
small enough; all the other claimed estimates follow from the proof.

|

4.6. Spacelike Singularity and Blow-Up Estimates

Proposition 4.9. There exists soo(€) > 0 such that

lim r(s) =0,

S—> S0
and moreover there exists D.(M, e, A, m?) > 0, D{(M,e, A, m?) > 0 such that

|s —E_2~E|<D -log(e ™! 4.104
- 57 | = Dc-log(e™h), (4.104)

2
[(Soo — §) — e 2. |I;_;| . rr(ZS)| <D - log(e_l) r2(s).  (4.105)
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Additionally, {s = sco} is a spacelike singularity in the sense that for all p €
(s = 500}, J7(p) N'HT is compact, where J~(p) is the domain of dependence of
p.

Moreover, there exists Dc(M, e, A, m2) > 0 such that the following blow-up
estimates hold: for all s € C,

—b=e 2 (14+e>log(e ™)-Dc)
~ rs
D;' ~e4-<ﬁ) = p()

r—

—b~%.e2. (12 log(e™")-D¢)
<Dc-e*- <@> , (4.106)
r—
—2b~%.e 2. (1422 log(¢™")-Dc)
De* et (—r(s)) < 8@
r—
—2b=2.€2.(1-2€2-log(e™1)-D¢)
< D% €. <®> (4.107)
r—

Here p is the Hawking mass and R(s) = Ra/gu,,R“’g“”(s) the Kretchsmann
scalar. In particular, for all p > 1,

sup p(s) = +oo, / pPdvol,
seC CN{tel0,1]}

= 4 / T oP(s) - r(s) - QA(s")ds' = +oo. (4.108)

Proof. The existence of s, (4.104), (4.105) follows directly from (4.85), (4.86).
The spacelike character of S follows immediately. (4.106) (and by extension,
(4.108), also using (4.86)), follow from (4.89) and (2.29). For a metric of the form
(2.7), R is given by (c.f. [46], Section 5.8)

d?log(Q?) 2 16p2 P
_ —4
R =169 [ 12 } +—3 +24(—r3

. 2 .
1207214 — m2|¢|2) + 4804,

In view of (2.29) and (2.22) and Proposition 4.8, we see that the Q_4|<]5|4 term
dominates, therefore, for all s € C,
64 _ 674 . ,OZ(S)

)= me e ~ )

’

and (4.107) then follows from (4.106).
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5. Convergence to Reissner—Nordstrom-(dS/AdS) in a Weak Topology

In this section, we state, for the convenience of the reader, the convergence
results in the s coordinate defined by (2.31), which follow immediately from the
estimates of Sect.4. We refer the reader to Definition 3.1 for notations.

Proposition 5.1. Recall the definition of Q2. (s) from Definition 3.1. Then Q2.(s)
converges uniformly to Q%e N (8). More precisely, we have the estimate

sup  [Q2(s) — Qay ) = sup Q%) — QEy ()] S €2 (5.1)

—00<§ <400 —00<5 <800 (€)

Moreover, 22 (s) converges in L' (Ry) to Q%‘e ~ (8). More precisely, we have the
estimate

+oo  _ Soo(€)
f 12 (s) — Q& p (s)|ds = f 19%(s) — QL y(s)lds S e (5.2)
—0o0 —0o0
Proposition 5.2. Recall the definition of 7. (s) from Definition 3.1. Then, for all
s € R, we have the point-wise convergence

e (s) o rRN(S).

Additionally, we have the following convergence in distribution:

- D'(Ry)

e RN -

Moreover, we have a convergence in L;’;’C in the sense that, for all S € R, there
exists €9(S) > 0 such that, for all 0 < |e| < €,

sup  [F2(s) —ray()| < sup  [F2(s) —ray(s)| < C-e. (5.3)
—oco<s<S$ —oco<s<e~!

Nevertheless, Fz (s) does not converge to rrn (s) in L! (Ry) (or a forciori in any
LP(Ry), 1 < p < 00); in particular,
/ [r2(s) — ry(s)|ds > / [r2(s) — ray(s)lds = C - e 2. (5.4)
seR el <s<s500(€)
Also, Fc(s) does not converge uniformly to rgy (s) either. For all 0 < a < 1, there
exists sy (€) € (8¢ - e !, Soo) With

lin})r(sa €e))=a-r_(M,e, \). (5.5)

Lastly, 7 (s) does not converge to rgy(s) in WP for any p > 1, and we have
the following estimate for all s < Soo:

+oo g7 drrn Soo r—
/S | 6h = =76 ds" = f([||r|<s’>—s2%m<s/>lds/27 (56)

/ ™ (2’ = 400, (5.7)

Proof. All the estimates follow from (4.16), (4.24) (for s < s7i,), (4.37), (4.57) and
(4.85).
Note that s¢(€) := 500 — €} > €~! for small enough €, by (4.104). O
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6. Convergence to a Kasner-type Metric in Re-normalized Coordinates

In this section, we will define new variables to show that the metric is uniformly
close to a Kasner metric of exponents

(1 —4b2 €2, 2b% €2, 202 €2) + 04(e3)

in the crushing region C = {4s;;, < s < sco(€)},andclosein BM O (in Kasner-type
coordinates) to Minkowski.

To express the metric in Kasner-type coordinates, we define (a multiple of) the
proper time 7(s) > 0 as

dt 2
— =—1(M,e, A,m", €) - Q(s),
ds

7(Se0) = 0, (6.1

where 79(€) > 0 (to be estimated later, see already Lemma 6.1) is chosen so that
on the past boundary on C (i.e. s = 4s7;,,), as per (4.63)

T(@4s1in) = QAsiin) = /C— - v72 - €* + 0(e®[log(e ). (6.2)

We immediately have the following formulae for 7:

7(5) =10 f = Q(shas' 6.3)
s
4 log(z ™ ")(s) = # (6.4)
ds [i Q(shds’
It will also be convenient to introduce the the re-scaled area-radius
X(s) = @ (6.5)

Note that for all s € C, X(s) € (0, 1) (This is a direct consequence of the mono-
tonicity of r and (4.58)).
Substituting s for T in (2.7) gives a metric of the following form:

g = —152de® + Q2 (s)dt* + 1% - X*(s)dog. (6.6)

Now the goal will be to show that for a bounded function P (t) we have, for all
s eC,

Q2(s) & p20-2b- (14 log(e™)-P (D)) (6.7)
4b_e>-(1+€>log(e™")-P(1))
T

Once (6.7) and (6.8), we (trivially) re-scale by constants the coordinates in the
following fashion:

i 6.9)
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2
p=1 "1, (6.10)
4p_e?
dés =12 ( 0 ) dog:. 6.11)
VCers

Thus (6.6) becomes schematically a Kasner metric of exponents (1 — 4b_e2,
2b_€?, 2b_€?) (up to RIGE log(e_l)) errors)

g~ —di* + fz(l_‘”’*éz)d/o2 + r4b*€2dc7§z.
The key will be to estimate X 2(s) in terms of $2(s) in the following manner:

|K_| 7> Q(s")ds' IK_| - 7(s)

| Q(s) - X2(s) _”:|m.sz(s)-x2(s)

— 1] <€ log(e ™). (6.12)

6.1. Preliminary Estimates

In this section, we will give two types of estimates that are basically translation
in the 7, X variables of the estimates of Sects.4.4 and 4.5.

6.1.1. Estimates on 7y  In this section, we estimate the constant 7o from (6.2).
This will be useful both for the L°° and BM O estimates. Note that, by our definition

of 7 in (6.1) and (6.2), we have log(?((j;]’f"))) = 0 on the past boundary of C.

Lemma 6.1.
|to(€) — |K_|(M, e, A)| < €* - log(e™H?2. (6.13)

In particular, lim to(e) = |K_|.
e—>0

Proof. We start with the following estimate which follows immediately from (4.63):

Q4siin) = /C_ -v2 - e* + 0(®log(e ™H?). (6.14)

Now, by (4.63) and (4.88) [which guarantees that  is decreasing in C], it is easy
to see that

Soo IOOS[,'n
/ Q(s)ds = / Q(s)ds + 0(”)
4 4

Slin Slin
1005772
= ,/C,/ eX=5ds + 0(e* log(e™1?)
4slin
_ c_-v?

T et + 0% log(e™H?). (6.15)

(6.13) then follows immediately from (6.2), (6.14) and (6.15). O
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6.1.2. Preliminary Estimates on Q2 and X2 inC  The purpose of this section is
to translate the estimates of Sect.4.5 into the new 7, X functions. This will be very
useful in the proof of (6.12). One of the key quantities we introduce is log(Ay),
which is very small o(e3 log(e~1)).

. 5 b2 e? log(%;sf))—log(x(ﬂ)
Lemma 6.2. We define the variable D(s) = € '(sz_ez.log“_])2+€2,]0g(€—1)10g(x(s)))’

or, equivalently,

2.2

1 - b_ _
Q) =C)y o€ loge )2 D(s) |y —5—(+ePlogle™)-D(s)  (6.16)

Then there exists Do(M, e, A, mz) > 0, D6(M, e, A\, m2) > 0 such that, for all
sel,

[D|(s) < Do, (6.17)

’dD(X) P D)
dX 'T X-log(X~ 1’

(6.18)

Then, defining Ax(s) := peipe) QZb%i(s) 1 , we have, forall s € C,
Copp X (e loete= D)
log(Ax ()| < €* - log(e™H?. (6.19)
Now, defining F(s) = ez‘logl(efl) . (2|K“;(i)2"X(S)| - 1), or; equivalently,
AKX X@]_ F(s) - €% log(e V). (6.20)

B? . €2
Then there exists Fo(M, e, A, mz) > 0 such that, for all s € C,
[F[(s) < Fo. (6.21)

Proof. (6.17) is a mere-writing of (4.89). For (6.18), we note that (4.87) gives the
equivalent (in view also of (4.86))

e - X ()]
X2(s) - [log(X ()] ™~ X (s) - | log(X ()"

ID'()] <

and (6.18) follows immediately by the chain rule. For (6.19), pass (6.16) to the
power 2b2 - €2. (6.21) is a re-writing of (4.86). O
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6.2. The Proof of the Key Estimate (6.12)

Now we turn to the proof of (6.12), which is probably the most delicate estimate
linking X, Q2 and 7. We do the computation in two steps: in the first one we reduce
the computation of & to a complicated integral M(s).

Lemma 6.3. Recall the definition of the constant F from (6.21), we have the fol-
lowing identities for all s € C:

2 Qhds”  2K_|

= ¢ ¢ 6.22
a0) 52 - M(s) + € (s) + Ea(s), (6.22)
M(s) = € 2X*(s) / X ()] 28D 2 )b o)
2
Zl+ (1+e2 log(e™1)- D(X(v)Z))dZ (6.23)
50 Q(s")d
|€11(s) < Fo-€*-log(e - w, (6.24)
Q(s)
Soo Q / d /
|€2](s) < 4Dg - €* - log(e 1)*- J™ @ (6.25)
Q(s)
Proof. First, we use (6.16) to write that
b2 2

-(14+€2-Jog(e™ 1) D) g/

f:ysoo Q(S/)ds/ _ fgsoo ezlog(€71)2 D(s') . [X(s/)]
Q(s)

e€21og(e=1H2-D(s) . [X(S)] = 2 -(l+62-log(e*1)-D(s))

Then, in the integral in the numerator, we write (6.20) as 1 = w

B2¢2
_ eZ1oge™1H2.D(s") 2. —1y2. n_
F(s)-€log(e™ 1), andm = 1+4[¢¢ 1o ) (D(H=D) _ 1], The first

transformation will generate an error €1, while the second transformation generates
an error &,, and we have

2.2
2 —1 /
500 Q) (s')ds’ 2 K_|-e 2 [5°1X|(sH[X(s ]H' (L4 log(e™")-D(s)) 4/
i) | |2 S X ()_2 L 46,
Q) B bz o
[X(5)] -(14+€=-log(e=1)-D(s))
M(s)
ﬁwp@qgl%&’ﬁbu>[xﬁ)f4 4(H8mgchng»d,

Ei(s) := —e€ 2 log(efl)

72

e€2log(e1H2-D(s) . [X(s)] (1+€2'10g(€71)'D(3))
p2e—2
/soo [eez]og(e_1)2~[D(s/)—D(s)J 1] [X(s/)]%-(1+62-log(e’1)-D(s/))dx/
Ey(s) == b72 - .

(X)) 2 -(14+€2-log(e~1)-D(s))

Then (6.24) follows immediately from (6.21) and (6.16). (6.23) is obtained by the
substitution Z(s') := );(((s?)) for all fixed s.
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By (6.17) we also obtain (6.25) as such

(1+e Jog(e1)-D(s’ Nds’

—1y2 fjw[X(V/)]

X ()]~
iy, e R D“”[X(s )

Er(s) <2Dy - e log(e

(1+e D(s))

—2

'(1+€2<log(e’l)»D(s’))ds/

<4Dy - €2 log(e

(l+52 Jog(e=1)-D(s))

[x (é)]
O
Now we turn to estimating the main term M(s) in the earlier proposition. To

quantify the realization of (6.12), we will obtain as a result control over a quantity
log(Aq2) which we show is small and of order O(e?*- log(e_l)).

Proposition 6.4. The following uniform estimate holds true:

su |M(S)
reo X2(s)

—2b% | <€ log(e ™). (6.26)

[K_|-[7°° Q(s"ds'

Defining Aq = , the above bound implies that

Q) X%()
sup|Aq(s) — 1|, sup[log(Aa(s)| < € - log?(e ™). (6.27)
seC seC
Proof. We have that
M(s) = /;2—8 =/0 r(Z)z”F2 = dz (6.28)
r'(Z) = [X(S)] l°g“ L [D(ZX(s)- D(X(sng-mg(e—'>-D<x<s)Z)_ (6.29)

First, note, by (6.18), that

X dD() X qy
D@x) - Dol = [ 1Py = o [
Z-X VA

dy ,XYln(Y—l)
oy n(z) In(2)
_Do-ln(l+m)—Do-ln(l+l X

Therefore, using the inequality In(X ") In(1 +
X € (0, 1), we have

I(X 1)) < a for all a > 0 and

/ _ In(Z) 1
|In(X) - [D(ZX) — D(X)]| < D} -In(X~") - In(1 + m) < 1n(2).

Therefore |
that, forall0 < Z < 1,

W| < D(’) is bounded, and also using (6.17), we see

-2 log(fil) 1)72-10g(671)

r'(Z) = XN T 5 DX (9)2) - DX (DIH+In(2)- =5 D(X (5)2))
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2 -1
b_"-log(e™") In(X (s))-[D(X(s)Z)—D(X(:
_ @ = [ D0 (9 2) + RECHECEGD-LIOIT 11 7). 0 log(e 1)
- b

from which we deduce that

1

M(s) = e =2b% + 0(*log(e™1)).

2+ —5— + O(log(e~1))

6.3. The L®° Estimates

In this section, we show that the metric is uniformly close (L°°) to a Kasner
metric. We start with two immediate identities which will be of convenience in the
proof.

Lemma 6.5. We have the following identities:
(1 + €2 - log(e ") - D(x) + 4b*€2) - log(X)

=2b> - €2 log(t) — 207 - €2 log <|1§_0|>

—2b% - €?log(Aq(1)) — log(Ax (1)) — b2e? log(Cerr),  (6.30)
N T o log(Ax(7))
g 422 - 1+ ¢€2-log(e=") - D(7)

Q + 1+€2-log(e—1)-D(1)

70 ) 2b% €2 -10g(Cerf)

+10g(AQ(T)) + log (lK—| o 1 +€2. log(e_l) - D(7) .

6.31)

Proof. (6.30) and (6.31) are immediate re-writings of the identities given in
Sect.6.1. m]

Next, we give the L>° estimates for X (they immediately follow from the esti-
mates from the earlier sections on Ay and Ag).

Proposition 6.6. Ler  P(t)
+4b%e?) !t —1].
There exists Poy(M, e, A\, m2) > 0 such that

ke [+ € toge™) - DX ()

sup |P(7)| < Py, (6.32)
teC

X(r)l+62-1og(e*1)-D(r)+4b2_52

sup | log < e*log(e™ 12, (6.33)

2.2
teC 2be
T
Cesr
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| X%(1)
su (0]
teg & < . >4b2_62»(1+ez-10g(e1)-P(r))

v Cerf

< e*log(e™1)2,(6.34)

| X (1)
= Su (o)
reg ) ( L )2b2_62~(1+62~10g<€I)P(T))

N Cerr
4b% €2-(14€2log(e ) P(1))
T
( Ceff)
< e*log(e)? . g2 (IHe logle HP(D)

< etlog(e ™, (6.35)

sup Xz(t) —
teC

Proof. (6.32) follows immediately from (6.17) and (6.19). (6.33) is immediate
combining (6.27), (6.30) and (6.13). (6.34), (6.35) are just re-writings of (6.33).
O

Next, we turn to the uniform €2 estimates.

ogs . . 4p% €2 -1 2 2
Proposmon 6.7. Note the ldentlty (1 + m) =1 —4b e~ (1 =+

€2 -log(e™) - P(1)), where P is defined in Proposition 6.6. Then, for all T €, C:

su |lo QZ(T) }
PIO8\ an—az eretioge Pl

teC
Q(7) 212, —1
_ < e .
2?22 | log (Tl—4b262»(1+52~log(51)~P(r))) | S € logi(e), (6.36)
sup | Q%(1) — p21-4b2 e (14€> log(e™1)-P(1))] |
teC
< €2 . p21-4b2 (1€ log(e™H)-P(1))] < 61010g2(6—1). (6.37)

Proof. (6.36) and (6.37) follow directly from (6.31), (6.27), (6.19), (6.17) and
(6.13).0

Finally, for completeness we also give the ¢ estimates from Sect.4.5 in terms
of the new t coordinate.

Proposition 6.8. For all T € C, we have
lp(z) —2b_ - € -log(t™H| S e -log(e™) + € -log(e™") - log(r 1. (6.38)

Proof. This follows immediately from (6.35) and (4.83). O
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6.4. Concluding the Proof of Theorem 3.3

Finally, we gather all and the estimates we have proven in to finish the proof of
Theorem 3.3.

Corollary 6.9. Define the variables p and T by (6.9), (6.10). Then the metric satis-
fies (3.11) and (3.17) with P satisfying (3.12) and €™ (1), €% (1), EC" (v) and
E!d (1) satisfying (3.13), (3.14), (3.18), (3.19) and (3.16).

Proof. This follows from Proposition (6.6), Proposition (6.7), and (6.13), (4.57),
(4.63), (6.38). For (3.16), note that, recalling T = TLO, we have that

€ log(?) = €[log(r) — log(tp)] = € log(t) + O (e),

which is why (6.38) is still true, even with 7 replacing t. O
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