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Abstract. The rp method, first introduced in [9], has become a robust strategy
to prove decay for wave equations in the context of black holes and beyond. In
this note, we propose an extension of this method, which is particularly suitable
for proving decay for a general class of wave equations featuring a scale-critical
time-dependent potential and/ or first-order terms of small amplitude. Our
approach consists of absorbing error terms in the rp-weighted energy using a
novel Grönwall argument, which allows a larger range of p than the standard
method. A spherically symmetric version of our strategy first appeared in [22]
in the context of a weakly charged scalar field on a black hole whose equations
also involve a scale-critical potential.
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1 Introduction15

The rp method of Dafermos–Rodnianski [9] is a versatile tool to prove decay in
time for solutions φ to waves equations of the form �gφ=0, which is sufficiently
robust for applications to nonlinear wave equations (see, e.g., [7, 8, 19, 24]). The
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method is carried out in physical space and relies on the radiative structure of wave
equations on an asymptotically flat spacetime g, for which rφ (usually) admits a
finite limit–the Friedlander radiation field ψI(u,ω)–defined, for u∈R, ω∈S

2 as

ψI(u,ω) := lim
v→+∞

rφ(u,v,ω), (1.1)

where u and v are respectively retarded-time and advanced-time coordinates, corre-
sponding to u=t−r and v=t+r on the usual Minkowski spacetime. In its simplest
expression, the key idea of the rp method is to exploit the boundedness of a rp

weighted energy of the following form, for 0≤p≤2:

sup
u

∑

|β|≤2

∫ +∞

v=v0

∫

S2

rp| /∇β
S2∂v(rφ)|2(u,v,ω)dvdω, (1.2)

to obtain pointwise decay in time of φ at the rate u−
p
2 as u→+∞, under the16

additional conditions that17

I. Energy boundedness (in the style of (1.8) below) holds.18

II. An integrated local decay estimate (in the style of (1.9)), also known as a19

Morawetz estimate, is valid.20

In this paper, our goal is to apply the rp method and obtain decay in time
estimates for the following class of linear wave equations with scale-critical potential
and/or scale-critical first-order terms of small amplitude.

�gφ=
1

r2(u,v)

(
1∑

i=0

[εwi(u,v)+Wi(u,v)]·∂iuφ+[εq(u,v)+Q(u,v)]·r∂vφ
)

, (1.3a)

g=−Ω2(u,v)dudv+r2(u,v)dσS2 , (1.3b)

where ε∈R is a small constant, and g is a spherically-symmetric and asymptotically
flat† Lorentzian metric in the mild sense that

|1+∂ur(u,v)|, |1+∂vr(u,v)|, |Ω2(u,v)−4|, r|∂vΩ2|(u,v)
.r−1(u,v) as v→+∞, (1.4a)

|∂2vr|(u,v), |∂u∂vr|(u,v), |∂u∂2vr|(u,v)
.r−2(u,v) as v→+∞. (1.4b)

†As we will discuss in Section 1.3, the usual Minkowski metric m=−dt2+dx2+dy2+dz2, associated
to �m=−∂2t +∂2x+∂2y+∂2z , satisfies (1.4), together with many other usual spacetime metrics g, such
as the Schwarzschild spacetime.
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Finally, the potentials (terms involving w0(u,v) and W0(u,v)) and first-order terms
(terms involving w1(u,v), W1(u,v), q(u,v) and Q(u,v)) are scale-critical in the sense
that

|wi|(u,v), |q|(u,v), r|∂vw0|(u,v), r2|∂vq|(u,v).1, (1.5a)

|Wi|(u,v), |Q|(u,v), r|∂vW0|(u,v), r2|∂vW1|(u,v), r2|∂vQ|(u,v)
=o(1) as v→+∞. (1.5b)

Note that the inverse-square power r−2 in the potential of (1.3) is called scale-
critical because on flat spacetime (i.e., if g=−dt2+dx2+dy2+dz2 the Minkowski
metric) and if w1 =W1 =0, while w0, W0, q, Q are constants, then the rescaling
u→λu, v→λv leaves (1.3) unchanged. The class of potentials satisfying (1.5) are
allowed to oscillate in u and mildly oscillate in v, such as the following example
(assuming (1.4) holds)

w0(u,v)=sin(u+log(r(u,v))), (1.6a)

w1(u,v)=q(u,v)=W0(u,v)=W1(u,v)=Q(u,v)=0. (1.6b)

In particular, we allow for a large class of time-dependent potentials, see Section 1.321

for more general examples.22

In our main theorem below, we take ε to be sufficiently small, and we condition-23

ally assume that the energy boundedness (condition I) and an integrated local decay24

estimate (condition II) are satisfied, in the traditional spirit of the rp method [9].25

We then deduce time-decay of the energy ((1.10)) on a foliation that reaches null26

infinity (see Fig. 1) and point-wise decay ((1.11), (1.14)) at rates that are arbitrarily27

close to the optimal ones as ε→ 0 (see Section 1.4 for further discussions on the28

sharpness of our estimates).29

Theorem 1.1. Let φ be a solution of (1.3) where g and the potential terms satisfy
(1.4) and (1.5) with (characteristic) initial data on the bifurcate null cones ([u0,uF ]×
S
2)∪([v0,+∞)×S

2) with u0∈R, uF∈R∪{+∞}, v0∈R as depicted in Fig. 1, satisfying
the following assumptions for all 0≤p<3

∑

|β|≤2

∫ +∞

v0

∫

S2

rp+|β|(u0,v)|∂v(r /∇β
S2φ)|2(u0,v,ω)dvdω, (1.7a)

1∑

k=0

∫ +∞

v0

∫

S2

rp+2k(u0,v)|∂1+k
v (rφ)|2(u0,v,ω)dvdω<∞. (1.7b)

Defining E[φ](u) to be the standard (unweighted) energy on a foliation radiating to
infinity of Fig. 1, defined in Section 2, we assume that for all solutions φ as above,
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the boundedness of the energy E[φ](u), in the sense that there exists a constant D>0
such that all u1<u2

E[φ](u2)≤DE[φ](u1). (1.8)

Additionally, we make the following assumption of integrated local decay: for some
σ > 1, there exists a constant Cσ > 0 such that for all u1 ≥ u0, and defining the
spacetime region Du1,∞={u1≤u, v≥v0}
∫

Du1,∞

|φ|2(u,v,ω)+r2|∂uφ|2(u,v,ω)+r2|∂vφ|2(u,v,ω)
(1+r)σ

dudvdω≤CσE[φ](u1). (1.9)

Then, there exists ε0>0 such that if |ε|<ε0, there exists η(ε)>0 such that η(ε)→0
as ε→0 and

E[φ](u).u−3+η(ε). (1.10)

The following limit exists

lim
v→+∞

rφ(u,v,ω)=ψI(u,ω)

and the following estimate holds in the region v−u≥R, assuming R is sufficiently
large

r|φ|(u,v,ω), |ψI |(u,ω).u−1+
η(ε)
2 . (1.11)

Moreover, if analogues of the energy boundedness (1.8) and integrated local decay
(1.9) hold for Tφ, where T=∂u+∂v, in the sense that there exists σ′>1 and η′(ε)>0
such that η′(ε)→0 as ε→0 such that for all u1<u2

E[Tφ](u2)≤D′
(

E[Tφ](u1)+u
−2+η′(ε)
1 E[φ](u1)

)

, (1.12a)
∫

Du1,∞

|Tφ|2(u,v,ω)
(1+r)σ′ dudvdω≤Cσ′

(

E[Tφ](u1)+u
−2+η′(ε)
1 E[φ](u1)

)

, (1.12b)

for Cσ′ > 0, D′> 0 independent of ε, and additionally the following assumption is
satisfied

|∂uwi|(u,v), |∂uq|(u,v).r−1(u,v), r|∂uWi|(u,v), r|∂uQ|(u,v)
=o(1) as v→+∞. (1.13)

Then, we also have the following (sharper) pointwise decay estimate: for all v≥u+R,
ω∈S

2:

|φ|(u,v,ω).u−2+
η(ε)
2 . (1.14)
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Figure 1:

We want to emphasize that, despite initial data being given on characteristic30

bifurcate hypersurfaces ([u0,uF ]×S
2)∪([v0,+∞)×S

2), it is equivalent to start from31

a spacelike hypersurface (Cauchy problem) and evolve the solution up to ([u0,uF ]×32

S
2)∪([v0,+∞)×S

2) with no difficulty, see e.g., [22], Section 4.33

We finally remark that it is also possible to propagate the point-wise estimates34

(1.11), (1.14) of Theorem 1.1 in the region {v−u≤R} (see [2,14]). We will however35

omit the relevant estimates for brevity. On a black hole spacetime, (1.11), (1.14)36

are also valid up to the black hole event horizon, providing so-called red-shift esti-37

mates are satisfied, see for instance [11, 22] for such examples and the discussion in38

Section 1.3.39

1.1 The principles of the rp method40

On Minkowski spacetime, the wave equation −∂2t φ+∂2xφ+∂2yφ+∂2zφ=0 takes the

following form, where u=t−r, v=t+r, r=
√

x2+y2+z2, ψ=rφ (radiation field) and
/∆S2 is the standard Laplacian on S

2:

∂u∂vψ=r
−2 /∆S2ψ. (1.15)

The key idea of the rp method of Dafermos and Rodnianski [9] is to prove decay-in-
time for φ using energy methods, namely L2-based estimates, which can typically be
carried out on more general spacetimes, with a potential or a nonlinearity. However,
the standard energy E(T ) computed on the time-slice {t=T} is constant and does
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not decay. Instead, one can compute the energy on a V -shaped foliation (indexed
by u) as depicted in Fig. 1 and the goal is to prove that this energy Ẽ(u) ends up
decaying in u. To capture this decay, Dafermos and Rodnianski use the multiplier
rp∂vψ and, upon integration on a spacetime region {u1≤u≤u2}, obtain

∫

u=u2

rp|∂vψ|2+
∫ u2

u1

[∫

u=u′

rp−1|∂vψ|2
]

du′.

∫

u=u1

rp|∂vψ|2+Ẽ(u1), (1.16)

for all u1<u2, where 0<p≤2, and (1.9) is used to absorb various boundary terms
at the curve {r=R} into the energy Ẽ(u1). (1.16) consists of two statements: the
boundedness of the rp-weighted energy for 0≤p≤2, and the (integrated) decay of
the rp−1 weighted energy. Using (1.16) as a hierarchy of estimates in p (see [9] for
details), Dafermos and Rodnianski obtain the time-decay of the energy at the rate
u−p, where here p=2:

Ẽ(u).u−2. (1.17)

We emphasize that the proof of (1.17) relies heavily on the validity of the energy41

boundedness (1.8) and integrated local decay (1.9) estimates, used as a black box.42

The argument of the rp method can be also be carried out on the Schwarzschild43

or (sub-extremal) Reissner–Nordström spacetime (1.28) and in higher dimensions,44

see [20] and [17] for the more general setting in which it can be applied.45

In [1, 2], Angelopoulos, Aretakis and Gajic introduced a novel viewpoint on the
rp method allowing to prove sharp decay and late-time tails for a large class of wave
equations

�gφ=V (r)φ, where |V |(r).r−2−ε as r→+∞, (1.18)

on a stationary and spherically-symmetric asymptotically flat metric g and a scale46

sub-critical potential |V |(r). r−2−ε, where ε> 0. See also [3, 16, 18] for follow-up47

work and extensions of these methods. We also mention the recent [14] establishing48

late-time tails for a large class of equations which is even more general than (1.18)49

(for instance also allowing for first-order terms and nonlinearities) using a novel50

approach.51

1.2 Our new strategy to address scale-critical potentials52

Following the spirit of [9], we make the assumptions of energy boundedness (1.8)
and integrated local decay (1.9) that we use as a black box. Using the multiplier
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rp∂v for (1.3) gives schematically (compare with (1.16))
∫

u=u2

rp|∂vψ|2+
∫ u2

u1

[∫

u=u′

rp−1|∂vψ|2
]

du′

.

∫

u=u1

rp|∂vψ|2+Ẽ(u1)+ε
∫ u2

u1

[∫

u=u′

rp−2|ψ||∂vψ|
]

du′, (1.19)

where we have taken w1 = W1 = q = Q = 0 for now to simplify and
ε
∫ u2

u1
[
∫

u=u′ r
p−2|ψ||∂vψ|]du is an integrated (so-called “bulk”) error term. The stan-

dard approach of the rp method (see [2]) is to absorb the bulk error term into the
∫ u2

u1
[
∫

u=u′ r
p−1|∂vψ|2] term in the left-hand-side, which works well for a sub-critical

potential satisfying (1.18), with the use of the Hardy inequality (see Proposition 3.2).
Here, the Hardy inequality gives
∫ u2

u1

[∫

u=u′

rp−2|ψ||∂vψ|
]

du′.

∫ u2

u1

[∫

u=u′

rp−1|∂vψ|2
]

du′+

∫ u2

u1

[∫

u=u′

rp−3|ψ|2
]

du′

.

∫ u2

u1

[∫

u=u′

rp−1|∂vψ|2
]

du′+Ẽ(u1), (1.20)

where 0≤p< 2. To absorb the error term ε
∫ u2

u1
[
∫

u=u′ r
p−1|ψ||∂vψ|]du′ into the left-

hand-side with the help of (1.20), we must further restrict p<2−O(
√
ε), which gives

the rp-hierarchy in a range 0<p<2−O(
√
ε)

∫

u=u2

rp|∂vψ|2+
∫ u2

u1

[∫

u=u′

rp−1|∂vψ|2
]

du′.

∫

u=u1

rp|∂vψ|2+Ẽ(u1), (1.21)

which is sufficient to obtain (1.17), up to an arbitrarily small loss O(uO(
√
ε)). (1.17)

is one power of u away from sharpness, however (compare with (1.10)). To go up
to p< 3 and obtain sharper estimates, we must decompose the solution φ into its
spherical average and higher angular modes, following the original idea of [2]:

φ(u,v,ω)= φ0(u,v)
︸ ︷︷ ︸

:=

∫

S2

φ(u,v,ω)dω

+φ≥1(u,v,ω). (1.22)

It turns out that r2∂v(rφ≥1) also obeys the hierarchy (1.21), translating‡ into faster
energy decay for φ≥1, i.e.,

Ẽ[φ≥1](u).u
−4+O(

√
ε), (1.23)

‡We note that this step requires to commute (1.3) with ∂v, which is why (1.5) requires assumptions
on the ∂v derivatives of the potential terms. These assumptions, however, are not necessary for
spherically-symmetric solutions of (1.3).
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and (1.23) is essentially sufficient to show (1.10), (1.11), (1.14) for φ≥1. Therefore,
our next objective is to prove (1.21) for the spherical average ψ0 and 2< p< 3.
The novelty of our approach is to absorb the bulk error term into

∫

u=u2
rp|∂vψ|2

instead of
∫ u2

u1
[
∫

u=u′ r
p−1|∂vψ|2]du′ using a Grönwall argument. Starting from (1.19),

we proceed, using the Hardy inequality differently from (1.20) to get schematically,
exploiting (1.21) with p−1

∫ u2

u1

[∫

u=u′

rp−2|ψ||∂vψ|
]

du′

.

[∫ u2

u1

[∫

u=u′

rp|∂vψ|2
]

du′
] 1

2
[∫ u2

u1

[∫

u=u′

rp−4|ψ|2
]

du′
] 1

2

.

[∫ u2

u1

[∫

u=u′

rp|∂vψ|2
]

du′
] 1

2
[∫ u2

u1

[∫

u=u′

rp−2|∂vψ|2
]

du′
] 1

2

.

[∫ u2

u1

[∫

u=u′

rp|∂vψ|2
]

du′
] 1

2
[∫

u=u1

rp−1|∂vψ|2+Ẽ(u1)
] 1

2

. (1.24)

To conclude the proof of (1.10), we close the rp-weighted hierarchy (1.21) for 0<
p<3−O(

√
ε) using an induction argument, where u1 and u2 take values on a dyadic

sequence. The proof of (1.11) follows from (1.10) by a standard argument. To
obtain the sharp point-wise decay on a constant-r curve (1.14), we must retrieve
faster decay for the time-derivative Tφ0, i.e.,

E[Tφ0](u).u
−5+η(ε), (1.25)

which is done considering a rp-weighted hierarchy for r∂v(rφ0) (see [11] where this53

hierarchy was introduced).54

We finally note that we additionally allow for first-order linear terms in (1.3).55

The ingoing derivative terms in (1.3) are handled with the use of a novel “Hardy56

inequality” ((3.10) in Proposition 3.2) which only works for solutions to the wave57

equation (1.3).58

1.3 Examples of spacetimes and potentials satisfying the59

assumptions60

1.3.1 Decay rates in the assumptions61

For the sake of comparison with the Minkowski metric, let us define a time-variable
t= v+u, and we keep in mind that r is comparable to v−u (for large r). We are
interested in a region where u≥u0, v−u≥R, thus

r(u,v).u. t(u,v).v. (1.26)
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Thus, the r-decay assumptions in Theorem 1.1 represent the weakest possible form62

of decay. In the presence of nonlinearities, where Theorem 1.1 can be adapted, the63

decay of some coefficients may be obtained in terms of inverse powers of t, which is64

stronger than the inverse powers of r required in (1.4), (1.5), and (1.13).65

Finally, note that the scaling in (1.3) is arranged to respect the radiative structure
of the wave equation which gives a finite limit for rφ and r2∂v(rφ) towards v=+∞
so that, for fixed u, the three terms φ, ∂uφ, r∂vφ share the same scaling, i.e.,

|φ|(u,v,ω).r−1, |∂uφ|(u,v,ω).r−1, r|∂vφ|(u,v,ω).r−1 as v→+∞. (1.27)

1.3.2 Metric assumptions66

We first note that there exist many examples of Lorentzian metrics g satisfying (1.4),
such as the (sub-extremal) Reissner–Nordström metric, modeling the exterior of a
charged star/black hole for r≥r+(M,e)

gRN =−
(

1− 2M

r
+
e2

r2

)

dt2+
(

1− 2M

r
+
e2

r2

)−1

dr2+r2dσS2 , (1.28)

where 0≤|e|≤M and r+(M,e) :=M+
√
M2−e2. Indeed, introducing the standard

coordinates

u= t−r∗, v= t+r∗,
dr∗

dr
=
(

1− 2M

r
+
e2

r2

)−1

, (1.29)

shows that (1.28)assumes the form of g given in (1.3) with

Ω2(u,v)=4
(

1− 2M

r
+
e2

r2

)

, ∂vr=−∂ur=
(

1− 2M

r
+
e2

r2

)

. (1.30)

Note that in the case e=0, (1.28) reduces to the well-known Schwarzschild metric,67

which itself reduces to the (trivial) Minkowski metric g=−dt2+dx2+dy2+dz2 for68

M=0, under which �g=−∂2t +∂2x+∂2y+∂2z .69

Lastly, we note that a large class of non-stationary spacetimes will also satisfy70

(1.4), in particular spacetimes which converge to, or remain close to the Reissner–71

Nordström metric (1.28) at large-time.72

1.3.3 Integrated local decay and energy boundedness73

It is well-known [10] that the energy boundedness (1.8) and integrated local energy74

estimate (1.9) hold on the Schwarzschild/(sub-extremal) Reissner–Nordström metric75

in the absence of a potential, i.e., for �gRN
φ=0.76
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In [22], (1.8) and (1.9) are established § for spherically-symmetric solutions of77

(1.3) on a (sub-extremal) Reissner–Nordström metric, i.e., for g = gRN and with78

w1=W1=0, under the smallness condition of ε.79

In [11], Gajic established (1.8) and (1.9) for (1.3) on the sub-extremal Reissner–
Nordström metric with w1=W1=q=Q=0, and ε=1 (no smallness condition), under
the assumption that

V (r)=r−2(w0(r)+W0(r))

is time-independent and w0(r)+W0(r) admits a limit as r→∞, i.e., there exists
α>−1

4
such that

V (r)∼αr−2 as r→+∞, (1.31a)

V (r)≥− 1

4r2
for all r≥r+(M,e)=M+

√
M2−e2. (1.31b)

It is also possible to replace (1.31b) with a no-resonance condition on V (r), see [11].80

Coming back to more general considerations, we discuss the T -commuted energy
boundedness (1.12a) and integrated local decay (1.12b). Note that, if the metric
and the potentials are stationary, i.e.,

Tr=0, TΩ2=0, Twi=Tq=TWi=Tq=0, (1.32)

then (1.12a), (1.12b) immediately follow from (1.8) and (1.9), in fact, we have the
stronger estimate:

∫

Du1,∞

|Tφ|2(u,v,ω)
(1+r)σ′ dudvdω≤Cσ′E[Tφ](u1), (1.33a)

E[φ](u2)≤DE[φ](u1). (1.33b)

More generally, it is possible to retrieve (1.12a), (1.12b) if the quantities involved81

in (1.32) decay in time at a rate O(u−1+O(
√
ε)). Such a result should, however, be82

obtained on a case-by-case basis.83

1.3.4 Potential assumptions for sharp energy and radiation field decay84

We now discuss (1.5), the potential assumptions used to obtain the first conclusions
of Theorem 1.1, i.e., (1.10), (1.11). We note that (1.5) allows for a large class of
time-dependent potentials. The most general form for w0 to respect (1.5) allows

§While the proof of [22] is, strictly speaking, only for the charged scalar field equation, it is easy
to generalize it to (1.3).
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for linear oscillations in u and logarithmic oscillations in v or r. q and w1 are also
allowed to oscillate linearly in u, however, they cannot oscillate in r. In other words,

w0(u,v)=f0(u,log(r(u,v))), (1.34a)

w1(u,v)=f1(u,r
−1(u,v)), (1.34b)

q(u,v)=fq(u,r
−1(u,v)), (1.34c)

where f0(X,Y ), f1(X,Y ), fq(X,Y ) are bounded functions and ∂Y f0, ∂Y fq, ∂Y f1 are
bounded. For W0, W1 and Q, we can take, for any ε> 0 and F0(X,Y ), F1(X,Y ),
FQ(X,Y ) bounded with ∂Y F0, ∂Y F1, ∂Y Fq bounded

W0(u,v)=(1+r)−εF0

(
u,log(r(u,v))

)
, (1.35a)

W1(u,v)=F1(u,r
−1−ε(u,v)), (1.35b)

Q(u,v)=FQ(u,r
−1−ε(u,v)). (1.35c)

1.3.5 Potential assumptions for sharp point-wise scalar field decay85

To obtain the stronger conclusion of Theorem 1.1, i.e., (1.14), we require (1.13),
which we now discuss. The key difference, compared to the less demanding assump-
tions (1.5), is that the potentials are no longer allowed to feature linear oscillations
in u, only logarithmic ones, i.e.,

w0(u,v)=g0
(
log(u),log(r(u,v))

)
, (1.36a)

w1(u,v)=g1(log(u),r
−1(u,v)), (1.36b)

q(u,v)=gq(u,r
−1(u,v)), (1.36c)

where g0(X,Y ), g1(X,Y ), gQ(X,Y ) are bounded functions with bounded deriva-86

tive (compared with (1.34)). W0, W1 and Q obey similarly stronger assumptions87

compared to (1.35), which we omit to state.88

1.4 Previous works on scale-critical potentials and89

sharpness of the decay90

The literature on decay estimates for scale-critical potentials is vast, we refer to the91

review [21].92

For the wave equation (1.3) with an exact inverse-square potential on Minkowski
spacetime, i.e.,

g=−dt2+dx2+dy2+dz2, w0(u,v)=1, w1=W0=W1=q=Q=0, (1.37)
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it is known [4, 12] that the following asymptotics hold

r|φ|(u,v,ω)≈
( r

uv

) 1+
√
1+4ε
2

. (1.38)

Moreover, (1.38) also holds on the sub-extremal Reissner–Nordström metric [11]93

for a large class of time-independent asymptotically inverse-square potentials sat-94

isfying (1.31a), (1.31b), see [6] for previous works involving sharp upper bounds.95

Lastly, precise late-time tails for an even more general class of stationary spacetimes96

and time-independent scale-critical potentials were proved by Hintz [13].97

In comparison, Theorem 1.1 allows for a class of time-dependent potentials that
are allowed to oscillate, as discussed earlier in this section; however, we do not derive
precise late-time tails. Our approach moreover relies on the smallness of ε, and the
estimates (1.10), (1.11), (1.14) are not, strictly speaking, sharp in terms of decay
rate, because they feature an arbitrarily small loss O(uη(ε)), where η(ε) = o(1) as
ε→0. However, the above examples satisfying the estimates (1.38) show that our
estimates (1.10), (1.11), (1.14) in Theorem 1.1 are sharp, up to this arbitrarily small
loss. Note, in particular, that on a constant-r curve, (1.38) gives

|φ|(u,v,ω).u−2+O(ε). (1.39)

Finally, we notice that the Maxwell-charged-scalar-field equations are modeled af-98

ter a wave equation with a scale-critical of the form (1.3), where ε represents the99

asymptotic charge of the spacetime. This system was studied by the author [22] in100

spherical symmetry on a Reissner–Nordström black hole assuming ε is small. On the101

other hand, for the Maxwell-charged-scalar-field equations on Minkowski spacetime,102

ε is schematically a time-dependent function ε=Q(t)→0 as t→+∞; in this context,103

Yang and Yu proved global existence with no smallness assumption on the initial104

data [24]; see also [5, 15, 23] for previous works.105

2 Preliminary106

We start by re-writing (1.3) in terms of the radiation field ψ := rφ: we find the
formula

∂u∂vψ=
Ω2

4
r−2 /∆S2ψ+

ε

r2

(
1∑

i=0

w̃i(u,v)·∂iuψ+q̃(u,v)·r∂vψ
)

, (2.1)

where we defined

w̃i(u,v)= w̌i(u,v)+ε
−1W̌i(u,v),

q̃(u,v)= q̌(u,v)+ε−1Q̌(u,v),
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and

w̌0(u,v)=−Ω2

4
w0(u,v)+

[∂ur]Ω
2

4
w1(u,v)+

[∂vr]Ω
2

4
q(u,v),

w̃1(u,v)=−Ω2

4
w1(u,v),

W̌0(u,v)=−Ω2

4
W0(u,v)+

[∂ur]Ω
2

4
W1(u,v)+

[∂vr]Ω
2

4
+r∂u∂vr,

W̌1(u,v)=−Ω2

4
W1(u,v),

q̌(u,v)=−Ω2

4
q(u,v), Q̌(u,v)=−Ω2

4
Q(u,v).

Note that, under the assumptions (1.4), (1.5), we have

|w̃i|(u,v), |q̃|(u,v), r|∂vw̃0|(u,v), r|∂v q̃|(u,v), r2|∂vw̃1|(u,v).1, (2.2)

and under the assumption (1.13),

|∂uw̃i|(u,v), |∂uq̃|(u,v), .r−1(u,v), (2.3)

in the region where r≥R(ε), where we assume R(ε)>0 to be a large constant. We
then define the null outgoing cone

Cu={u′=u, v≥vR(u), ω∈S
2}, (2.4)

where vR(u)=u+R is such that ρ(u,vR(u))=R, where ρ= v−u. We will use the
notation γR={(u,vR(u),ω), u≥u0, ω∈S

2}={(uR(v),v,ω), v≥v0, ω∈S
2}.We also

define global V -shaped foliation Σu

Σu=Cu∪{u′≤u, v′=vR(u), ω∈S
2}

︸ ︷︷ ︸

Cu

, (2.5)

where uR(v) is such that r(uR(v),v)=R; and for any u1<u2, the spacetime domain

DR(u1,u2)={u1≤u≤u2, v≥vR(u), ω∈S
2} (2.6)

and the unweighted energy on Σu defined as

E[φ](u)=

∫

Cu

(r2|∂vφ|2+| /∇S2φ|2)dvdω+
∫

Cu

(r2|∂uφ|2+| /∇S2φ|2)du′dω, (2.7a)

Ep[ψ](u)=

∫

Cu

rp|∂vψ|2dvdω, (2.7b)

Ẽp[φ](u)=Ep[rφ](u)+E(u). (2.7c)
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Our convention is that the volume form that we use is always dudvdσS2 .107

For any function f ∈L2(S2), we write its decomposition in terms of spherical
harmonics ω∈S

2→YL(ω)

f(ω)=
+∞∑

L=0

fLYL(ω), (2.8a)

f≤L0(ω)=

L0∑

L=0

fLYL(ω), (2.8b)

f≥L0(ω)=
+∞∑

L=L0

fLYL(ω), (2.8c)

for any L0∈N, and, of course, the notation extends to f(u,v,ω) for which fL(u,v)108

now also depends on (u,v).109

We will also always adopt the convention A.B if there exists a constant C>0
that it independent of ε such that

A≤C ·B. (2.9)

We will also write A±O(f(ε)) as a replacement for A±f(ε), where f(x)≥ 0 and110

f(0)=0.111

Finally, with no loss of generality, we will always assume that u0>1.112

3 Boundedness of the rp-weighted energy and113

energy decay114

3.1 rp-weighted energy and black box decay results115

In this section, we provide preliminary calculus results that will be useful in the116

sequel. The key idea is to succeed in converting the boundedness of the rp-weighted117

energy into the time-decay of the unweighted energy.118

Lemma 3.1 ( [22, Lemma 6.3]). Suppose that there exists 1<p<2, such that for
all u0≤u1<u2

∫ u2

u1

Ep−1[ψ](u)du+Ẽp(u2). Ẽp(u1). (3.1)

Then for all 0≤q≤p and for all k∈N,

Ẽq(u).u
−k(1− q

p
)+

sup2−2k−1u≤u′≤uẼp(u
′)

up−q
.u−p+q ·Ẽp(u0). (3.2)
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Now, we move to a point-wise decay result taking advantage of the decay of the119

weighted energy.120

Proposition 3.1. For any γ∈(0, 1
2
), and v≥vR(u), the following estimate holds:

r
1
2
+γ(u,v)‖φ(u,v,·)‖L2(S2).

[

Ẽ2γ(u)
] 1

2
. (3.3)

Proof. This is a standard integration argument, see for instance [22, Lemma 7.1].121

Then, we include a standard consequence of the Integrated Local Decay Estimate122

(1.9) to control the energy on a timelike curve, using an averaging argument in r,123

see e.g., [22, Proposition 6.4].124

Lemma 3.2. The following estimates hold true for all u1<u2, and k∈N∪{0}:
∑

|β|≤k

∫ u2

u1

∑

|α|≤1

∫

S2

|∂α /∇β
S2φ|2(u,vR(u),ω)dudω.

∑

|β|≤k

E[ /∇β
S2φ](u1). (3.4)

Proof. While the argument is already contained in the proof of Proposition 6.4
in [22], we briefly sketch it for the reader’s convenience. We will always assume R
is large enough. By (1.9), we have, recalling ρ(u,v)=v−u,

∫

R
2
≤ρ≤2R, u1≤u≤u2

∑

|α|≤1

|∂αφ|2≤CRE(u1).

So by the mean-value theorem applied to the function ρ, there exits R∗ ∈ (R
2
,2R)

such that ∫ u2

u1

∑

|α|≤1

|∂αφ|2(u,vR∗(u))du≤2RCRE(u1).

With no loss of generality, we can then replace R by R∗ and thus (3.4) is proved for125

k=0. Similarly, after commuting (1.3) with /∇β
S2 , |β|≤k and applying (1.9) to this126

new solution, we obtain (3.4) for any k∈N.127

3.2 rp-weighted multipliers128

In this section, we assume sufficient regularity of all the functions involved so that129

integration by part makes sense. Our goal is to derive various integrated identities130

using rp∂v multipliers for (2.1) or commuted versions.131
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Lemma 3.3. Assume that

∂u∂vψ=
Ω2

4
r−2 /∆S2ψ+F. (3.5)

Then

∫

S2

[

∂u

(rp|∂vψ|2
2

)

+∂v

(Ω2rp−2| /∇S2ψ|2
8

)

+Ω2
(p

2
rp−1|∂vψ|2+

1

8

(
[2−p]∂vr−r∂v log(Ω2)

)
rp−3| /∇S2ψ|2

)]

=

∫

S2

rp∂vψ F. (3.6)

Proof. Multiply (3.5) with rp∂vψ and integrate on S
2.132

Lemma 3.4. Assume that ψ satisfies (3.5). Then, defining Ψ1 := Ω−2r2∂vψ, we
have

∂uΨ1+2r−1[−∂ur]Ψ1=
1

4
/∆S2ψ+

r2F

Ω2
, (3.7a)

∂u∂vΨ1+2r−1[−∂ur]∂vΨ1−2r−2[−∂vr∂ur+r∂2uvr]Ψ1

=
Ω2

4
r−2 /∆S2Ψ1+∂v

(r2F

Ω2

)

. (3.7b)

Therefore, the use of the rp∂v multiplier provides the following identity:

∫

S2

(

(−∂ur)
[

2+
p

2

]

rp−1|∂vΨ1|2+∂u
(rp|∂vΨ1|2

2

)

+
Ω2

8

(
[2−p]∂vr−r∂v log(Ω2)

)
rp−3| /∇S2Ψ1|2

)

+rp−3|Ψ1|2
[
(p−2)∂vr[−∂vr∂ur+r∂u∂vr]−(∂2vvr)(∂ur)+r(∂u∂v∂vr)

])

=

∫

S2

rp∂vΨ1 ∂v

(r2F

Ω2

)

+

∫

S2

∂v

(

rp−2
(
−∂ur∂vr+r∂u∂vr

)
|Ψ1|2

−Ω2rp−2

8
| /∇S2Ψ1|2

)

. (3.8)

Proof. The proof is similar to that of Lemma 3.3.133
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3.3 Hardy and Poincaré inequalities134

In this section, we recall the standard Hardy and Poincaré inequalities (that do not135

require (1.3) to be satisfied), as expressed in the language we will be using. We136

also include a less trivial and novel result, involving a Hardy-type inequality for the137

ingoing derivative taking advantage of (1.3).138

Proposition 3.2. Let q 6=2 and assume that for all u≥u0, ω∈S
2

lim
v→+∞

rq−2(u,v)f(u,v,ω)=0.

Then
∫

DR(u1,u2)

rq−3|f |2dudv

.|2−q|−2

∫

DR(u1,u2)

rq−1|∂vf |2dudv+
Rq−2

|2−q|

∫ u2

u1

|f |2(u,vR(u))du. (3.9)

Let q<2 and φ a solution of (1.3), with ψ=rφ. Then

∫

DR(u1,u2)

rq−3|∂uψ|2

.ε2(2−q)−1

∫

DR(u1,u2)

[
rq−3|∂vψ|2+rq−5| /∇S2ψ|2

]
+(2−q)−1

(∫

Cu1

rq−4| /∇S2ψ|2

+Rp−4

∫ u2

u1

(R2|∂uψ|2+|ψ|2+| /∇S2ψ|2)(u,vR(u))du
)

. (3.10)

Proof. The proof of the Hardy inequality (3.9) is standard, see for instance [22,
Lemma 2.2]. For (3.10), we use a similar strategy and write:

∫

DR(u1,u2)

rp−3|∂uψ|2

=− 1

2−p

∫

DR(u1,u2)

∂v(r
p−2)

|∂uψ|2
∂vr

=
1

2−p

∫ u2

u1

Rp−2 |∂uψ|2
∂vr

(u,vR(u))du+
1

2−p

∫

DR(u1,u2)

rp−4[r2∂2vr]
|∂uψ|2
[∂vr]2

+
2

2−p

[
∫

DR(u1,u2)

Ω2

4∂vr
rp−4 /∆S2ψ∂uψ+ε r

p−4

(
1∑

i=0

w̃i(u,v)

∂vr
·∂iuψ+

q̃(u,v)

∂vr
·r∂vψ

)

∂uψ

]

.
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Now, using (1.4) and (2.2), we can absorb some of the terms using the largeness of
R and smallness of ε to write

∣
∣
∣
∣

∫

DR(u1,u2)

rp−3|∂uψ|2−
2

2−p
[∫

DR(u1,u2)

Ω2

4∂vr
rp−4 /∆S2ψ∂uψ

∣
∣
∣
∣

.[2−p]−1

∫ u2

u1

Rp−2|∂uψ|2(u,vR(u))du+ε2[2−p]−2

∫

DR(u1,u2)

rp−3|∂vψ|2

+ε2
∫

DR(u1,u2)

rp−5|ψ|2. (3.11)

Now, by (3.9) with q=p−2, the last term can be controlled in the following fashion:
∣
∣
∣
∣

∫

DR(u1,u2)

rp−3|∂uψ|2−
2

2−p

∫

DR(u1,u2)

Ω2

4∂vr
rp−4 /∆S2ψ∂uψ

∣
∣
∣
∣

.Rp−4

∫ u2

u1

(R2[2−p]−1|∂uψ|2+|ψ|2)(u,vR(u))du

+ε2[2−p]−2

∫

DR(u1,u2)

rp−3|∂vψ|2. (3.12)

Note that integrating by parts on S
2 and then in u gives

∫

DR(u1,u2)

Ω2

∂vr
rp−4[ /∆S2ψ∂uψ]

=− 1

2

∫

DR(u1,u2)

Ω2

∂vr
rp−4∂u[| /∇S2ψ|2]

=− 1

2

∫

Cu2

Ω2

∂vr
rp−4| /∇S2ψ|2+

1

2

∫

Cu1

Ω2

∂vr
rp−4| /∇S2ψ|2

− 1

2

∫ vR(u2)

vR(u1)

Ω2

∂vr
Rp−4| /∇S2ψ|2(uR(v′),v′)dv′+

1

2

∫

DR(u1,u2)

∂u

(
Ω2

∂vr
rp−4

)

| /∇S2ψ|2,

which, combining to (1.4) and (3.12) gives
∫

Cu2

rp−4| /∇S2ψ|2+[2−p]
∫

DR(u1,u2)

rp−3|∂uψ|2

.

∫

Cu1

rp−4| /∇S2ψ|2++Rp−4

∫ u2

u1

(R2|∂uψ|2+|ψ|2+| /∇S2ψ|2)(u,vR(u))du

+ε2[2−p]−1

∫

DR(u1,u2)

rp−3|∂vψ|2, (3.13)

which is completing the proof of (3.10).139
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The next proposition records the well-known Poincaré inequality.140

Proposition 3.3. Let f ∈H1(S2). Then the following inequality holds:
∫

S2

| /∇S2f≥L|2≥L(L+1)

∫

S2

|f≥L|2. (3.14)

Moreover,
∫

S2

| /∇S2fL|2=L(L+1)

∫

S2

|fL|2. (3.15)

Proof. This is very standard, see for instance [12, Lemma 2.1],141

3.4 Lower-weighted energy estimates142

We start with a first boundedness statement for rp-weighted estimates for 0≤p<2.143

The argument relies on the Hardy inequalities of Proposition 3.2 and provides (non-144

optimal) decay results in time for the unweighted energy.145

Proposition 3.4. There exists plow(ε)<2 with 2−plow(ε)=O(
√
ε) such that for all

0<p≤plow:
∫

Cu2

rp|∂vψ|2+p
∫

DR(u1,u2)

rp−1|∂vψ|2+(2−p)rp−2| /∇S2ψ|2

.

∫

Cu1

[rp|∂vψ|2+rp−4| /∇S2ψ|2]+CR

∫ u2

u1

∑

|α|≤1

|∂αφ|2(u′,vR(u′))du′. (3.16)

Proof. By (2.1), ψ satisfies (3.5) with

F =ε r−2

(
1∑

i=0

w̃i(u,v)·∂iuψ+q̃(u,v)·r∂vψ
)

,

so we can apply Lemma 3.3 and integrate (3.6) on DR(u1,u2) to obtain
∫

Cu2

rp|∂vψ|2+p
∫

DR(u1,u2)

rp−1|∂vψ|2+(2−p)rp−2| /∇S2ψ|2

.

∫

Cu1

rp|∂vψ|2+ε
∫

DR(u1,u2)

[rp−1|∂vψ|2+rp−3[|ψ|2+|∂uψ|2]

+CR

∫ u2

u1

∑

|α|≤1

|∂αφ|2(u′,vR(u′))du′

.

∫

Cu1

rp|∂vψ|2+ε
∫

DR(u1,u2)

rp−3[|ψ|2+|∂uψ|2]+CR

∫ u2

u1

∑

|α|≤1

|∂αφ|2(u′,vR(u′))du′.
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Note that in the above, we have used the bound on F coming from (2.2) giving

rp|∂vψF |.ε
(
rp−2(|ψ|+|∂uψ|)|∂vψ|+rp−1|∂vψ|2

)

.ε
(
rp−3(|ψ|2+|∂uψ|2)+rp−1|∂vψ|2

)
. (3.17)

Now, we apply Proposition 3.2 and by (3.9), (3.10) with q=p, we have

∫

DR(u1,u2)

rp−3[|ψ|2+||∂uψ|2]

.[2−p]−2

∫

DR(u1,u2)

rp−1|∂vψ|2+
ε2

R3[2−p]

∫

DR(u1,u2)

rp−2| /∇S2ψ|2

+[2−p]−1

∫

Cu1

rp−4| /∇S2ψ|2+CR

∫ u2

u1

∑

|α|≤1

|∂αφ|2(u′,vR(u′))du′, (3.18)

hence, using the smallness of ε, on condition that (2−p)�√
ε, we get (3.16).146

Corollary 3.1. For 0≤p≤plow(ε) and u1<u2:

p

∫ u2

u1

Ep−1[ψ](u)du+Ẽp(u2). Ẽp(u1). (3.19)

Proof. Note that, since plow<2, we have rp−4| /∇S2ψ|2. | /∇S2φ|2, hence
∫

Cu

rp−4| /∇S2ψ|2.E(u). (3.20)

Using this, together with Proposition 3.4 and (1.8) immediately proves

p

∫ u2

u1

Ep−1[ψ](u)du+Ẽp(u2). Ẽp(u1)+CR

∫ u2

u1

∑

|α|≤1

|∂αφ|2(u′,vR(u′))du′. (3.21)

Then (3.19) follows from an application of Lemma 3.2.147

We finally obtain a first (non-optimal) decay result of the energy.148

Corollary 3.2.

E[φ](u).u−plow .u−2+O(
√
ε). (3.22)

Proof. Immediate from the combination of Corollary 3.1 and Lemma 3.1.149
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3.5 Faster energy decay for higher spherical harmonics150

In this section, we prove that the higher spherical harmonics decay faster than the
spherical average. Our goal is to reproduce the 0≤p≤2 hierarchy for the commuted
quantity Ψ1=r

2∂vψ (see [2] where this idea was first introduced). First, we define

φ≥1(u,v,ω) :=φ(u,v,ω)−
∫

S2

φ(u,v,ω)dω (3.23)

and ψ≥1(u,v,ω)=rφ≥1(u,v,ω). We will also denote

Ψ1(u,v,ω)=r
2∂vψ≥1(u,v,ω).

Lemma 3.5. Recall F = ε r−2
(∑1

i=0w̃i(u,v)·∂iuψ+q̃(u,v)·r∂vψ
)
. Then, if φ is a

solution of (1.3):

∣
∣
∣∂v

(r2F

Ω2

)

−ε· w̃1(u,v)

4r2
/∆S2ψ

∣
∣
∣.ε r−2(|ψ|+|∂uψ|+|Ψ1|+r|∂vΨ1|). (3.24)

Eq. (3.24) is also true replacing F by F≥1, mutatis mutandis.151

Proof. Immediate calculation, using (2.1), (1.4) and (2.2).152

Proposition 3.5. For all u1<u2, we have for all 0<p≤plow:
∫

Cu2

rp|∂vΨ1|2+
∫

DR(u1,u2)

(
rp−1|∂vΨ1|2+rp+1|∂vψ|2

)

.

∫

Cu1

rp|∂vΨ1|2+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′. (3.25)

Proof. Fix 0<p<2. We make use of Lemma 3.4 and integrate (3.8) on DR(u1,u2).
By the fact that for p<2, the boundary terms in v of

∂v

(

rp−2
(
−∂ur∂vr+r∂u∂vr

)
|Ψ1|2−

Ω2rp−2

8
| /∇S2Ψ1|2

)

on I+={v=∞} are 0 and taking advantage of Lemma 3.5, we obtain

∫

Cu2

rp|∂vΨ1|2+
∫

DR(u1,u2)

[

2+
p

2

]

rp−1|∂vΨ1|2

+

∫

DR(u1,u2)

rp−3

(
Ω2

8

(
[2−p]∂vr−r∂v log(Ω2)

)
| /∇S2Ψ1|2
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+
(
(p−2)∂vr[−∂vr∂ur+r∂2uvr]−(∂2vvr)(∂ur)+r∂u∂v∂vr

)
|Ψ1|2

)

.

∫

Cu1

rp|∂vΨ1|2+ε
∫

DR(u1,u2)

rp−2|∂vΨ1|(|ψ|+|∂uψ|+|Ψ1|+r|∂vΨ1|)

+ε

∣
∣
∣
∣

∫

DR(u1,u2)

rp−2w̃1[∂vΨ1] /∆S2ψ

∣
∣
∣
∣

+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′. (3.26)

Now, we use the smallness of ε to absorb the

ε

∫

DR(u1,u2)

rp−2|∂vΨ1|(|ψ|+|∂uψ|+|Ψ1|+r|∂vΨ1|)

term into the left-hand-side from which we obtain
∫

Cu2

rp|∂vΨ1|2+
∫

DR(u1,u2)

[

2+
p

2

]

rp−1|∂vΨ1|2

+

∫

DR(u1,u2)

rp−3
(Ω2

8

(
[2−p]∂vr−r∂v log(Ω2)

)
| /∇S2Ψ1|2

+
(
(p−2)∂vr[−∂vr∂ur+r∂2uvr]−(∂2vvr)(∂ur)+r∂u∂v∂vr

)
|Ψ1|2

)

.

∫

Cu1

rp|∂vΨ1|2+ε
∫

DR(u1,u2)

rp−3(|ψ|2+|∂uψ|2+|Ψ1|2)

+ε

∣
∣
∣
∣

∫

DR(u1,u2)

rp−2w̃1[∂vΨ1] /∆S2ψ

∣
∣
∣
∣

+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′. (3.27)

Apply Proposition 3.2 with q=p gives, also exploiting the fact that
∫

Cu1
rq−4| /∇S2ψ|2.

E(u1):
∫

DR(u1,u2)

rp−3(|ψ|2+|∂uψ|2)

.[2−p]−2

∫

DR(u1,u2)

[
rp−3|∂vψ|2+rp−5| /∇S2ψ|2

]

+(2−p)−1(E(u1)+CR

∫ u2

u1

∑

|α|≤1

|∂αφ|2(u′,vR(u′))du′). (3.28)
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Now we can apply Proposition 3.2 again to /∇S2ψ this time with q=p−2 to obtain

∫

DR(u1,u2)

rp−5| /∇S2ψ|2

.

∫

DR(u1,u2)

rp−3| /∇S2∂vψ|2+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′. (3.29)

Combining (3.28), (3.29), and recalling that r2|∂vψ|. |Ψ1|, we get

∫

DR(u1,u2)

rp−3(|ψ|2+|∂uψ|2)

.[2−p]−2

∫

DR(u1,u2)

rp−7
[
|Ψ1|2+| /∇S2Ψ1|2

]

+(2−p)−1
(

E(u1)+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′

)

. (3.30)

We now return to (3.27), in particular its third term. By (3.14) (Poincaré’s inequal-
ity) in Proposition 3.3, we have

∫

S2

| /∇S2(Ψ1)≥2|2≥6

∫

S2

|(Ψ1)≥2|2,

and of course ∫

S2

| /∇S2(Ψ1)=1|2=2

∫

S2

|(Ψ1)=1|2,

hence, as a consequence of (1.4), we have a coercive estimate of the form

∫

DR(u1,u2)

rp−3

(
Ω2

8

(
[2−p]∂vr−r∂v log(Ω2)

)
| /∇S2Ψ1|2

+
(
(p−2)∂vr[−∂vr∂ur+r∂2uvr]−(∂2vvr)(∂ur)+r∂u∂v∂vr

)
|Ψ1|2

)

&[2−p]
∫

DR(u1,u2)

(
rp−3| /∇S2(Ψ1)≥2|2−rp−4|(Ψ1)=1|2

)

& [2−p]
∫

DR(u1,u2)

(
rp−4| /∇S2Ψ1|2−rp−4|Ψ1|2

)
. (3.31)

Thus, combining this estimate with (3.27), (3.30) (we took R(ε) to be large enough
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in order to absorb various terms into the left-hand-side) leads to
∫

Cu2

rp|∂vΨ1|2+
∫

DR(u1,u2)

[

2+
p

2

]

rp−1|∂vΨ1|2+[2−p]
∫

DR(u1,u2)

rp−4| /∇S2Ψ|2

.

∫

Cu1

rp|∂vΨ1|2+ε
∫

DR(u1,u2)

rp−3|Ψ1|2+ε
∣
∣
∣
∣

∫

DR(u1,u2)

rp−2w̃1[∂vΨ1] /∆S2ψ

∣
∣
∣
∣

+E(u1)+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′. (3.32)

Now, by Proposition 3.2 (Hardy inequality) applying to Ψ1 with q=p, we get, using
the fact that ε[2−p]−1=o(1) since p≤plow,

∫

Cu2

rp|∂vΨ1|2+
∫

DR(u1,u2)

[

2+
p

2

]

rp−1|∂vΨ1|2+[2−p]
∫

DR(u1,u2)

rp−4| /∇S2Ψ|2

.

∫

Cu1

rp|∂vΨ1|2+ε
∣
∣
∣
∣

∫

DR(u1,u2)

rp−2w̃1[∂vΨ1] /∆S2ψ

∣
∣
∣
∣

+E(u1)+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′. (3.33)

Finally, we handle the term
∫

DR(u1,u2)
rp−2w̃1[∂vΨ1] /∆S2ψ. Integrating by parts on S

2

and in v gives, using (2.2)
∣
∣
∣
∣

∫

DR(u1,u2)

rp−2∂vΨ1w̃1(u,v) /∆S2ψ

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

DR(u1,u2)

rp−2w̃1(u,v)∂v /∇S2Ψ1 · /∇S2ψ

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

DR(u1,u2)

rp−2w̃1(u,v)∂v /∇S2Ψ1 · /∇S2ψ

∣
∣
∣
∣

.

∫

DR(u1,u2)

rp−4| /∇S2Ψ1|2+|
∫

DR(u1,u2)

rp−1|ψ||∂vψ|

+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′

.

∫

DR(u1,u2)

rp−4| /∇S2Ψ1|2+rp−3|ψ|2+rp−3|Ψ1|2

+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′
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.

∫

DR(u1,u2)

rp−4| /∇S2Ψ1|2+rp−3|Ψ1|2

+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′, (3.34)

where in the last inequality, we have applied Proposition 3.2 (Hardy’s inequality) to153

ψ for q=p.154

Now, using Proposition 3.2, this time on Ψ1 with q=p finally gives

∣
∣
∣
∣

∫

DR(u1,u2)

rp−2∂vΨ1w̃1(u,v) /∆S2ψ

∣
∣
∣
∣

.

∫

DR(u1,u2)

rp−4| /∇S2Ψ1|2+rp−3|ψ|2+rp−3|Ψ1|2

+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′

.

∫

DR(u1,u2)

rp−4| /∇S2Ψ1|2+rp−1|∂vΨ1|2

+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′. (3.35)

Combining (3.33), (3.34) and using the smallness of ε (recall that ε= o(2−p) by
choice of plow) to absorb the right-hand-side of (3.34) into the left-hand-side of
(3.33) finally leads to

∫

Cu2

rp|∂vΨ1|2+
∫

DR(u1,u2)

[

2+
p

2

]

rp−1|∂vΨ1|2+[2−p]
∫

DR(u1,u2)

rp−4| /∇S2Ψ|2

.

∫

Cu1

rp|∂vΨ1|2+E(u1)+CR

∫ u2

u1

∑

|α|≤1, |β|≤1

|∂α /∇β
S2φ|2(u′,vR(u′))du′, (3.36)

which concludes the proof of (3.25), noting again that Proposition 3.2 provides the
control of ∫

DR(u1,u2)

rp−3|Ψ1|2=
∫

DR(u1,u2)

rp+1|ψ|2.

This completes the proof.155

We deduce a rp-weighted-hierarchy analogous to that of Corollary 3.1.156
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Corollary 3.3. For 0≤p≤plow(ε) and u1<u2:
∫ u2

u1

(Ep−1[Ψ1](u)+Ep+1[ψ](u))du+Ep[Ψ1](u2)

.Ep[Ψ1](u1)+
∑

|β|≤1

E[ /∇β
S2φ](u1). (3.37)

Proof. This is an immediate consequence of Proposition 3.5, following the same157

proof as Corollary 3.1.158

Finally, we apply the hierarchy of Corollary 3.3 to deduce the faster energy-decay159

of higher-order spherical harmonics.160

Corollary 3.4. The following estimate holds for all u≥u0:
E[φ≥1](u).u

−2plow . (3.38)

Proof. First, we choose a dyadic sequence (un)n∈N and apply Corollary 3.37 to u1=
un, u2=un+1; then, by the mean-value theorem, there exists u∗n∈[un,un+1] such that

Ep−1[Ψ1](u
∗
n).u

−1
n



Ep[Ψ1](un)+
∑

|β|≤1

E[ /∇β
S2φ≥1](un)





.u−1
n



Ep[Ψ1](u0)+
∑

|β|≤1

E[ /∇β
S2φ≥1](u0)



.u−1
n ,

where in the last inequality, we have also used (1.8) applied to /∇β
S2φ≥1. Then by

using Corollary 3.37 again, we obtain that for all u∈ [un,un+1]

Ep−1[Ψ1](u).u
−1.

By Lemma 3.1, we obtain that

E0[Ψ1](u)=

∫

Cu

|∂vΨ1|2.u−plow .

Then, by Proposition 3.2 (Hardy inequality), we obtain
∫

Cu

r−2|Ψ1|2=
∫

Cu

r2|∂vψ≥1|2=E2[ψ≥1](u).u
−plow .

In particular, we have

Eplow [ψ≥1](u).u
−plow .

Then, we can apply Lemma 3.1 again to ψ≥1, this time invoking Corollary 3.1 applied161

to φ≥1 to finally obtain (3.38) as desired.162
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We conclude this section by proving point-wise decay estimates corresponding163

to (1.11), (1.14), but for φ≥1 instead of the full solution.164

Corollary 3.5. The following estimates hold: for all η>0, u≥u0

r|φ≥1|(u,v,ω).η u
1
2
−plow+η.u−

3
2
+O(

√
ε), (3.39a)

r
1
2 |φ≥1|(u,v,ω).η u

−plow+η.u−2+O(
√
ε). (3.39b)

Proof. We write, combining the Sobolev embedding on S
2 and the Cauchy-Schwarz

inequality in v: for any η>0

|ψ≥1|(u,v,ω).
∑

|β|≤2

‖ /∇β
S2ψ≥1(u,v,·)‖L2(S2)

.
∑

|β|≤2

(

R‖ /∇β
S2φ≥1(u,vR(u),·)‖L2(S2)+

[∫ +∞

vR(u)

∫

S2

r1+2η|∂v /∇β
S2ψ≥1|2

]1/2)

. (3.40)

Eq. (3.39a) then follows immediately from the application of Proposition 3.1 with165

γ= 1
2
−η, and Proposition 3.5 applied to /∇β

S2φ for |β|≤ 2. Eq. (3.39b) is obtained166

similarly as a consequence of Proposition 3.1 with γ=η.167

3.6 Higher-weighted energy estimates for the spherical168

average169

In Section 3.4, we managed to prove the boundedness of rp-weighted estimates for
p≤plow=2−O(

√
ε). In this section, we want to obtain a similar result for 2≤p<

3−O(
√
ε), which comes arbitrarily close to the sharp exponents p<3. To do this,

we will restrict to our attention to the spherical-average of the solution

φ0=

∫

S2

φ(u,v,ω)dω. (3.41)

This section generalizes the treatment of [22] in Section 6.3, whose main idea is to170

absorb the error terms inside the boundary term Ep[ψ](u2) instead of absorbing them171

into the bulk term
∫ u2

u1
Ep−1[ψ](u)du with the help of a Grönwall argument. We point172

out, however, that the argument has been extended and significantly streamlined173

compared to its previous version present in [22].174

We start by quoting an easy calculus lemma, on which the Grönwall argument175

will be eventually based.176
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Lemma 3.6. The following identity holds for all u1<u2:

∫ u2

u1

du

a
√
u+b

=
2

a

[√
u− b

a
log
(√

u+
b

a

)]u2

u1

, (3.42)

where we defined [F (u)]u2

u1
:=F (u2)−F (u1).177

Proof. The proof is elementary, using a change of variable x=
√
u.178

Then, we move to the main result of this section, which quantifies faster energy179

decay for the spherical average than what was obtained in Section 3.4.180

Proposition 3.6. There exists 2<phigh(ε)≤1+plow<3 such that phigh=3−O(
√
ε)

and δ(ε)=O(
√
ε) such that for all u≥u0, 0≤q≤phigh−1

Ẽq[φ0](u).u
−phigh+2δ+q, (3.43a)

Ẽphigh [φ0](u).u
2δ. (3.43b)

Proof. Let 2<p≤1+plow<3. Similarly to the proof of Proposition 3.4, we use the
multiplier rp∂vψ, and we apply Lemma 3.3 to obtain, using (1.4), (2.2)

∣
∣
∣
∣

∫

Cu2

rp|∂vψ0|2−
∫

Cu1

rp|∂vψ0|2
∣
∣
∣
∣
+

∫

DR(u1,u2)

rp−1|∂vψ0|2

.CR

∫ u2

u1

∑

|α|≤1

|∂αφ0|2(u′,vR(u′))du′+ε
∫

DR(u1,u2)

rp−1|∂vψ0|2

+ε

[∫

DR(u1,u2)

rp|∂vψ0|2
]1/2[∫

DR(u1,u2)

rp−4(|ψ0|2+|∂uψ0|2)
]1/2

.

Then, by Proposition 3.2 applying with q=p−1, and the fact that p<3, we obtain

∣
∣
∣
∣

∫

Cu2

rp|∂vψ0|2−
∫

Cu1

rp|∂vψ0|2
∣
∣
∣
∣
+

∫

DR(u1,u2)

rp−1|∂vψ0|2

.CR

∫ u2

u1

∑

|α|≤1

|∂αφ0|2(u′,vR(u′))du′

+ε[3−p]−1

[∫

DR(u1,u2)

rp|∂vψ0|2
]1/2[∫

DR(u1,u2)

rp−2|∂vψ0|2
]1/2

.
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Then, by an averaging argument in R similar to the one used in Corollary 3.1,
∫ u2

u1

Ep−1[ψ0](u)du+
∣
∣Ep[ψ0](u2)−Ep[ψ0](u1)

∣
∣

.
∣
∣Ep[ψ0](u2)−Ep[ψ0](u1)

∣
∣

.ε[3−p]−1

[∫ u2

u1

Ep[ψ0](u)du

] 1
2
[∫ u2

u1

Ep−2[ψ0]du

] 1
2

+E(u1). (3.44)

Then, applying Corollary 3.1, in view of the fact that p−1≤plow, we obtain
∫ u2

u1

Ep−1[ψ0](u)du+
∣
∣Ep[ψ0](u2)−Ep[ψ0](u1)

∣
∣

.
∣
∣Ep[ψ0](u2)−Ep[ψ0](u1)

∣
∣

.ε[3−p]−1

[∫ u2

u1

Ep[ψ0](u)du

] 1
2 [

Ẽp−1(u1)
] 1

2
+E(u1). (3.45)

In what follows, we take (un)n∈N, a dyadic sequence, and u2 = u∈ [un,un+1] and
u1=un. For some large ∆>0, D>0 and small δ∈ (0, 1

2
) to be determined later, we

introduce the induction hypotheses

Ẽp−1(uk)≤D2 ·∆2u−1+2δ
k , (3.46a)

Ẽp(uk)≤∆2u2δk . (3.46b)

Eqs. (3.46a), (3.46b) are obviously satisfied for k=0 (providing ∆ is large enough,
depending on u0, where we recall u0>1) and we will assume it holds for all 0≤k≤n.
Then, combining (3.46a) and (3.45) shows that there exists C>0 (independent of ε
and p) and η(ε,p)=Cε[3−p]−1 such that

Ep[ψ0](u)≤∆·D·η(ε)·u−
1
2
+δ

n
︸ ︷︷ ︸

=a(un,∆,ε)

[∫ u

un

Ep[ψ0](u
′)du′

] 1
2

+Ep[ψ0](un)+CE(un)
︸ ︷︷ ︸

=b(un)

. (3.47)

Therefore, as an application of Lemma 3.6

(∫ u

un

Ep[ψ0](u
′)du′

) 1
2

≤ a

2
(u−un)+

b

a
log

(

1+
a

b

(∫ u

un

Ep[ψ0](u
′)du′

) 1
2

)

. (3.48)

Denoting

X=
a

b

(∫ u

un

Ep[ψ0](u
′)du′

) 1
2

and F (x)=x−ln(1+x),
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a monotonically increasing function of (positive) inverse F−1(y). Thus, we have

F (X)≤ a2

2b
[u−un]≤

∆2D2η2

2

u2δn
b(un)

, (3.49)

from which we get

X≤F−1

(
∆2η2

2

u2δn
b(un)

)

,

which translates into

a

(∫ u

un

Ep[ψ0](u
′)du′

) 1
2

≤b·F−1

(
∆2D2η2

2

u2δn
b(un)

)

. (3.50)

Note that F−1(y)≤2
√
y(1+

√
y) for all y≥0 (this follows easily from the inequality

z≤2
√
z(1+

√
z)−ln(1+2

√
z(1+

√
z)) for all z≥0), hence (3.50), combined with (3.47)

gives

Ep[ψ0](u)≤a
(∫ u

un

Ep[ψ0](u
′)du′

) 1
2

+b

≤uδn ·∆·D·η(ε)·
[

b
1
2 (un)

√
2+∆·D·η(ε)·uδn

]

+b(un). (3.51)

Now, note that, as a consequence of (3.46b) and Corollary 3.2, there exists C ′>0
independent of ε such that

b(un)≤∆2u2δn +C ′ ·u−plow
n . (3.52)

So, combining (3.51) and (3.52) gives, for u large enough and Dη(ε) small enough

Ep[ψ0](u)≤u2δn ·∆2 ·(1+2∆η(ε))≤u2δn+1 ·∆2 ·η(ε)· 1+2∆η(ε)

22δ
. (3.53)

To achieve a small Dη(ε), we take D to be independent of ε and 3−p&√
ε, so that

η(ε)=O(
√
ε). We will also take ∆ to be independent of ε and choose δ=O(

√
ε) so

that
22δ=[1+2∆η(ε)]2.

In view of Corollary 3.2, the left-hand-side of (3.53) also controls Ẽp and, there-
fore, (3.46b) is satisfied for k=n+1, after taking ε (hence η(ε)) small enough. Now,
to prove (3.46a) for k=n+1, we come back to (3.45), which we combine with (3.53)
to obtain

∫ u

un

Ep−1[ψ0](u
′)du′+Ep[ψ0](u).∆2 ·η(ε)·u2δn . (3.54)
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Then, by the mean-value theorem, there exists u∗n∈ [un,un+1] such that

Ep−1[ψ0](u
∗
n).∆2 ·η(ε)·u−1+2δ

n , (3.55)

and by Corollary 3.1, we deduce that for all u∈ [un,un+1],

Ep−1[ψ0](u).∆2 ·η(ε)·u−1+2δ, (3.56)

thus, (3.46b) is satisfied for k=n+1 if ε (hence η(ε)) is small enough and D is large181

enough. Thus, (3.43b) and (3.43a) for q=phigh−1 are proved. In view of the fact182

that phigh−1∈ (1,2), we can finally apply Lemma 3.1 and deduce (3.43a) for any183

0≤q≤phigh−1.184

Then, we deduce a corollary From Proposition 3.6 that will end-up being useful185

in the next section.186

Corollary 3.6. Let 0≤q≤3+η0, for some η0∈(0,1). Then for all u≥u0,
∫

DR(u,∞)

rq−6
[
|ψ0|2+|∂uψ0|2+r2|∂vψ0|2

]
.u−phigh+2δ+η0 . (3.57)

Proof. By Proposition 3.2 (Hardy inequality) and Lemma 3.2, we have

∫

DR(u,∞)

rq−6
[
|ψ0|2+|∂uψ0|2+r2|∂vψ0|2

]

.

∫

DR(u,∞)

rq−4|∂vψ0|2+
∫ +∞

u

[
|ψ0|2+|∂uψ0|2

]
(u′,vR(u

′))du′

.

∫

DR(u,∞)

r−1+η0 |∂vψ0|2+E(u)

.

∫ +∞

u

Eη0−1[ψ0](u
′)du′+E(u). (3.58)

Now by Corollary 3.1 and Proposition 3.6, we have

∫ +∞

u

Eη0−1[ψ0](u
′)du′. Ẽη0(u).u

−phigh+2δ+η0 ,

which concludes the proof.187

Finally, from Proposition 3.6, we deduce the proof of (1.11) when restrict to φ0,188

the spherical average.189
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Corollary 3.7. The following estimate holds: for all u≥u0, v≥vR(u)

r|φ0|(u,v).u
1−phigh

2
+

δ(ε)
2 . (3.59)

Proof. We write, by the Cauchy-Schwarz inequality for any η>0

|ψ0|(u,v).ηR|φ0|(u,vR(u))+
[∫ +∞

vR(u)

r1+η|∂vψ0|2
]1/2

. (3.60)

Then, combining Proposition 3.1 with γ=η and Proposition 3.6, to

|φ0|(u,vR(u)).u−
phigh

2
+δ+η.u−

3
2
+η+O(

√
ε). (3.61)

By Proposition 3.6, we also obtain

∫ +∞

vR(u)

r1+η|∂vψ0|2(u,v)dv.u1+η−phigh .u−2+η+O(
√
ε) (3.62)

Combining the two concludes the proof of (3.59), choosing η=δ=O(
√
ε).190

3.7 Energy and radiation field pointwise decay statements191

of Theorem 1.1192

Finally, we obtain the proof of (1.10) and (1.11) in Theorem 1.1. First, (1.10) results
from an immediate application of Proposition 3.5 and Proposition 3.6, noting that

E[φ](u)=E[φ0](u)+E[φ≥1](u).u
−2plow+u−phigh+2δ.u−3+O(

√
ε). (3.63)

Then, (1.11) is obtained as an immediate application of Corollary 3.7 and Corol-193

lary 3.5.194

4 Commuted energy and point-wise decay under195

extra assumptions196

In this section, we will utilize (1.12a), (1.12b), (2.3) to derive faster decay for the T -197

commuted energy (1.25) and sharp point-wise decay in the bounded-r region (1.14).198

We generalize the approach of Gajic in [11], that consists in establishing a new199

hierarchy for the quantity Θ0=r∂vψ.200
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4.1 An additional hierarchy201

We start to derive a rp weighted hierarchy for Θ0 and 2<p<3.202

Proposition 4.1. There exists C>0 independent of ε so that for all 2+Cε≤p≤phigh:
∫

Cu

rp|∂vΘ0|2.u−phigh+p+2δ(ε). (4.1)

Moreover, let (un)n∈N be a dyadic sequence and un≤u1<u2≤un+1. Then
∫ u2

u1

∫

Cu′

[rp−1|∂vΘ0|2+rp−3|Θ0|2]du′.u−phigh+p+2δ(ε)
n . (4.2)

Proof. We define Θ0=r∂vψ0, and assuming ∂u∂vψ0=F , we find that

∂u∂vΘ0+
−∂ur
r

∂vΘ0+(−r−1∂u∂vr+r
−2∂ur∂vr)Θ0=∂v(rF ). (4.3)

By (3.5) and (1.4), we have, choosing R(ε) large enough:
∣
∣
∣
∣
∂u∂vΘ0+

1

r
∂vΘ0−r−2Θ0

∣
∣
∣
∣
.
ε

r2
(|ψ0|+|∂uψ0|+|Θ0|+r|∂vΘ0|). (4.4)

Now, multiply (4.4) by rp∂vΘ0 and integrate on DR(u1,u2), in the same fashion
as in Lemma 3.3 and Proposition 3.4, with additionally an integration by parts in v
of the rp−2[∂vΘ0]Θ0 term to obtain
∫

Cu2

rp|∂vΘ0|2+(p+1+O(ε))

∫

DR(u1,u2)
rp−1|∂vΘ0|2+(p−2+O(ε))

∫

DR(u1,u2)
rp−3|Θ0|2

.

∫

Cu1

rp|∂vΘ0|2+ε
[
∫

DR(u1,u2)
rp−4[|ψ0|2+|∂uψ0|2]

] 1
2
[
∫

DR(u1,u2)
rp|∂vΘ0|2

] 1
2

+CR

∫ u2

u1

∑

|α|≤1

|∂αφ0|2(u′,vR(u′))du′,

after absorbing various terms into the left-hand-side. In what follows, we will take
2+Cε<p<3 for some C>0 independent of ε arranged so that all the terms in the left-
hand-side are coercive. We also use Proposition 3.2 applied with q=p−1 to proceed
as in the proof of Proposition 3.6 to obtain, noting the fact that rp−2|∂vψ0|2=rp−4Θ2

0

and we also use Lemma 3.2 to control the term CR

∫ u2

u1

∑

|α|≤1 |∂αφ0|2(u′,vR(u′))du′
∫

Cu2

rp|∂vΘ0|2+(p+1+O(ε))

∫

DR(u1,u2)
rp−1|∂vΘ0|2+(p−2+O(ε))

∫

DR(u1,u2)
rp−3|Θ0|2

.

∫

Cu1

rp|∂vΘ0|2+ε[3−p]−1

[
∫

DR(u1,u2)
rp−2|∂vψ0|2

] 1
2
[
∫

DR(u1,u2)
rp|∂vΘ0|2

] 1
2

+Ẽ(u1), (4.5)
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where in the last line, we have used the fact that rp−4|Θ0|2=rp−2|∂vψ0|2. Then, we
can apply Proposition 3.6 and take p=phigh in (4.5), resulting in

∫

Cu2

rphigh |∂vΘ0|2+
∫

DR(u1,u2)

rphigh−1|∂vΘ0|2+
∫

DR(u1,u2)

rphigh−3|Θ0|2

.

∫

Cu1

rphigh |∂vΘ0|2+ε[3−phigh]−1u
− 1

2
+δ

1

[∫

DR(u1,u2)

rphigh |∂vΘ0|2
] 1

2

+Ẽ(u1), (4.6)

We can then repeat the proof of Proposition 3.6 to obtain
∫

Cu2

rphigh |∂vΘ0|2+
∫

DR(u1,u2)

rphigh−1|∂vΘ0|2+
∫

DR(u1,u2)

rphigh−3|Θ0|2.u2δ(ε)2 . (4.7)

Now let 2+Cε<p<phigh. We write, using (4.7)
∫

Cu2

rp|∂vΘ0|2+
∫

DR(u1,u2)

rp−1|∂vΘ0|2+
∫

DR(u1,u2)

rp−3|Θ0|2

.

∫

Cu1

rp|∂vΘ0|2+ε
[∫

DR(u1,u2)

r2p−3−phigh [|ψ0|2+|∂uψ0|2]
] 1

2
[∫

DR(u1,u2)

rphigh−1 |∂vΘ0|2
] 1

2

+E(u1)

.

∫

Cu1

rp|∂vΘ0|2+ε
[∫

DR(u1,u2)

r2p−3−phigh [|ψ0|2+|∂uψ0|2]
] 1

2

uδ2+E(u1).

Now, note that 2p−3−phigh <−1 so we can still apply Proposition 3.2 (Hardy
inequality) and obtain

∫

Cu2

rp|∂vΘ0|2+
∫

DR(u1,u2)

rp−1|∂vΘ0|2+
∫

DR(u1,u2)

rp−3|Θ0|2

.

∫

Cu1

rp|∂vΘ0|2

.

∫

Cu1

rp|∂vΘ0|2+ε
[∫

DR(u1,u2)

r2p−1−phigh |∂vψ0|2
] 1

2

uδ2+E(u1)

.

∫

Cu1

rp|∂vΘ0|2+uδ2 ·u
−phigh+p
1 , (4.8)

where in the last line, we have used Proposition 3.6. Now, applying (4.8) if u1<u2=
u∈ [un,un+1], where (un)n∈N is a dyadic sequence easily gives

∫

Cu

rp|∂vΘ0|2.
∫

Cu1

rp|∂vΘ0|2+u−phigh+p+δ
n . (4.9)
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Note that by (4.7) applied to u1=un and u2=un+1, there exists u∗n∈ [un,un+1] such
that

∫

Cu∗n

rphigh−1|∂vΘ0|2.u−1+2δ
n . (4.10)

By interpolation between (4.7) with u2=u
∗
n and (4.10), we obtain

∫

Cu∗n

rp|∂vΘ0|2.u−phigh+p+2δ
n . (4.11)

Taking u1=u
∗
n in (4.9) and combining with (4.11) then concludes the proof of the203

proposition.204

4.2 Improved decay for the time-derivative205

In this section, we take advantage of Proposition 4.1 to derive improved decay for
the T derivative of ψ0, in order to prove (1.25) in Theorem 1.1. To fix the notations,
recall Tψ0=∂uψ0+∂vψ0. Assuming ∂u∂vψ0=F , we obtain

∂vTψ0=F+∂2vψ0=F+∂v(r
−1Θ0)=F+r−1∂vΘ0−r−2[∂vr]Θ0. (4.12)

We start by showing improved decay for the rp-weighted energy of Tφ0 along a206

dyadic sequence. The following result–Proposition 4.2 below–does not require the207

use of the extra assumptions (1.12a), (1.12b), (2.3).208

Proposition 4.2. There exists pT (ε)∈(2,phigh), ηT (ε)∈(0,1), with pT (ε)=3−O(
√
ε)

and ηT (ε)=O(
√
ε) as ε→0, such that for all dyadic sequences (un)n∈N, there exists

u∗n∈ [un,un+1] such that

ẼpT [Tφ0](u
∗
n).u

−2+ηT (ε)
n . (4.13)

Moreover, the following estimate holds for all dyadic sequences (un)n∈N
∫

DR(un,un+1)

rpT |∂vTψ0|2=
∫ un+1

un

ẼpT [Tφ0](u)du.u
−1+2ηT (ε)
n . (4.14)

Proof. Let p′=3−ν, where ν∈(0,1). We write, using (1.4)

rp
′ |∂vTψ0|.rp

′
F 2+rp

′−4|Θ0|2+rp
′−2|∂vΘ0|2

.ε2rp
′−4
(
|ψ0|2+|∂uψ0|2

)
+rp

′−4|Θ0|2+rp
′−2|∂vΘ0|2. (4.15)
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for u1<u2, we integrate (4.15) on DR(u1,u2), and, making use of Proposition 3.2
(Hardy inequality) with q=p′−1, we obtain

∫

DR(u1,u2)

rp
′ |∂vTψ0|2

.

∫

DR(u1,u2)

rp
′−4|Θ0|2+rp

′−2|∂vΘ0|2+CR

∫ u2

u1

∑

|α|≤1

|∂αφ0|2(u′,vR(u′))du′, (4.16)

which turns into the following estimate after applying Lemma 3.2
∫

DR(u1,u2)

rp
′ |∂vTψ0|2.

∫

DR(u1,u2)

rp
′−4|Θ0|2+rp

′−2|∂vΘ0|2+E(u1). (4.17)

Now, if ν≥Cε, then p′−1+2ν∈ (2+Cε,phigh) and thus we have by Proposition 4.1
applied to p=p′−1+2ν that, assuming as in its statement that un≤u1<u2≤un+1,
where (un)n∈N is a dyadic sequence
∫

DR(u1,u2)

rp
′−4+2η|Θ0|2+rp

′−2+2η|∂vΘ0|2.up
′−phigh−1+2δ(ε)+2η(ε)

n .u−1+O(
√
ε)

n . (4.18)

Thus, combining with (4.17) and (1.10), we end up with
∫

DR(u1,u2)

rp
′ |∂vTψ0|2.u−1+O(

√
ε)

n . (4.19)

Thus, by the mean-value theorem, there exists u∗n∈ [un,un+1] such that
∫

Cu∗n

rp
′ |∂vTψ0|2.u−2+O(

√
ε)

n , (4.20)

which concludes the proof.209

Now, we move on to using the extra assumptions (1.12a), (1.12b), (2.3) to show
that the improved decay proved in Proposition 4.2 on a dyadic sequence in fact holds
for all u. Let us denote

∂u∂vTψ0=
ε

r2

(
1∑

i=0

w̃i(u,v)·∂iuTψ0+q̃(u,v)·r∂vTψ0

)

+εF0. (4.21)

As a consequence of the assumptions (1.4), (2.2), (2.3) note that

|F0|.r−3

( 1∑

i=0

(|Tr||w̃i|+r|Tw̃i|)·|∂iuψ0|+(|Tr|q|+r|Tq|)·r|∂vψ0|
)

.r−3

( 1∑

i=0

|∂iuψ0|+r|∂vψ0|
)

. (4.22)
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Proposition 4.3. Assume (1.12a), (1.12b), (2.3) are satisfied. Then, there exists
pT (ε)∈ (2,phigh), ηT (ε)∈ (0,1), with pT (ε)=3−O(

√
ε) and ηT (ε)=O(

√
ε) as ε→ 0,

such that

ẼpT [Tφ0](u).u
−2+ηT (ε). (4.23)

Moreover, for all 0≤q≤pT−1,

Ẽq[Tφ0](u).u
−2−pT+ηT (ε)+q. (4.24)

Proof. Take (un)n∈N, a dyadic sequence and un≤u1<u2≤un+1.We will start to show
that the analogue of Proposition 3.4 holds for Tφ0. We proceed as in the proof
of Proposition 3.4, take 0≤ q≤ plow and apply the multiplier rqTψ0 to get, as in
Corollary 3.1

∫ u2

u1

Eq−1[Tψ0](u)du+Ẽq[Tψ0](u2)

.Ẽq[Tψ0](u1)+ε
2

∫

DR(u1,u2)

rq+1|F0|2+u−5+O(
√
ε), (4.25)

where we have also used (1.12a) and Proposition 3.6. Then, as in the proof of
Proposition 3.6, we apply the multiplier rpTψ0 with p= pT , and integrate to get,
using (4.25)
∫ u2

u1

Ep−1[Tψ0](u)du+Ep[Tψ0](u2)

.Ep[Tψ0](u1)+ε(Ep−1[Tψ0](u1)+

∫

DR(u1,u2)

rp|F0|2)
1
2

[∫ u2

u1

Ep[Tψ0](u)du

] 1
2

. (4.26)

Now, we can combine (4.22) and Corollary 3.6 with η0=O(
√
ε), to get

∫ u2

u1

Ep−1[Tψ0](u)du+Ep[Tψ0](u2)

.Ep[Tψ0](u1)+ε(Ep−1[Tψ0](u1)+u
−3+O(

√
ε)

n )
1
2

[∫ u2

u1

Ep[Tψ0](u)du

] 1
2

. (4.27)

By (4.14) in Proposition 4.2, we have
∫ u2

u1

Ep−1[Tψ0](u)du+Ep[Tψ0](u2)

.Ep[Tψ0](u1)+ε(Ep−1[Tψ0](u1)+u
−3+O(

√
ε)

n )
1
2u

− 1
2
+ηT (ε)

n . (4.28)
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Then, take u1=u
∗
n so that (4.13) in Proposition 4.2 is valid, thus for all u2∈[u∗n,un+1]

∫ u2

u∗
n

Ep−1[Tψ0](u)du+Ep[Tψ0](u2).u
−2+ηT
n +ε(Ep−1[Tψ0](u

∗
n))

1
2u

− 1
2
+ηT (ε)

n . (4.29)

Now, by the mean-value theorem again, there exists u∗∗n ∈ [u∗n,un+1] such that

Ep−1[Tψ0](u
∗∗
n ).u−3+ηT

n +ε(Ep−1[Tψ0](u
∗
n))

1
2u

− 1
2
+ηT (ε)

n . (4.30)

But then, by the boundedness result of Corollary 3.1, we in fact have

sup
u∈[u∗

n,un+1]

Ep−1[Tψ0](u).u
−3+ηT
n +ε(Ep−1[Tψ0](u

∗
n))

1
2u

− 3
2
+ηT (ε)

n , (4.31)

hence, by the Cauchy-Schwarz inequality

sup
u∈[u∗

n,un+1]

Ep−1[Tψ0](u).u
−3+2ηT
n . (4.32)

Hence, for all u≥u0
Ep−1[Tψ0](u).u

−3+2ηT . (4.33)

Finally we conclude with the proof of (4.24), using Lemma 3.1.210

211

4.3 Finishing the proof of point-wise decay212

We now turn to the completion of the proof of Theorem 1.1, where (1.11) remains213

the only estimate to be established. We will assume the extra assumptions (1.12a),214

(1.12b), (2.3) hold throughout this section. First, the point-wise decay of φ≥1 is215

obtained by Corollary 3.5 so in the rest of the proof we focus on φ0, the spherical216

average. We start by establishing the optimal point-wise decay result of φ0 on the217

constant r-curve r=R.218

Lemma 4.1. The following estimate holds:

|φ0|(u,vR(u)).u−2+O(
√
ε). (4.34)

Proof. We use (1.12b) repeating the argument of Lemma 3.2 we find that, combining
with Proposition 4.3 and Proposition 3.6

∫ +∞

u

|φ0|2(u′,vR(u′))du′.E[φ0](u).u
−phigh+2δ(ε).u−3+O(

√
ε), (4.35a)

∫ +∞

u

|Tφ0|2(u′,vR(u′))du′.E[Tφ0](u).u
−2−pT+ηT .u−5+O(

√
ε). (4.35b)
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Now, note that

|φ0|2(u,vR(u)).
∣
∣
∣
∣

∫ +∞

u

φ0 ·Tφ0(u
′,vR(u

′))du′
∣
∣
∣
∣

.

[∫ +∞

u

|φ0|2(u′,vR(u′))du′
] 1

2
[∫ +∞

u

|Tφ0|2(u′,vR(u′))du′
] 1

2

, (4.36)

which gives (4.34).219

Next, we prove similar bounds for ∂φ on the constant r curve r=R.220

Lemma 4.2. The following estimate holds:

∑

|α|=1

|∂αφ0|2(u,vR(u)).u−4+O(
√
ε). (4.37)

Moreover, there exists C>0 independent of ε, such that for all η∈(−1,1) such that
|η|>Cε,

∫ +∞

vR(u)

(
r−1−η|∂vψ0|2+r1−η|∂2vψ0|2

)
dv′.u−4+O(

√
ε)+η. (4.38)

Proof. We take η with 0< |η| ≤ 1, and write, invoking Proposition 3.2 (Hardy in-
equality)

∫ +∞

vR(u)

r−1−η|∂vψ0|2(u,v′)dv′

.η−1|ψ0|2(u,vR(u))+η−2

∫ +∞

vR(u)

r1−η|∂2vψ0|2(u,v′)dv′

.|η|−1

(

u−4+O(
√
ε)+

∫ +∞

vR(u)

r1−η|∂2vψ0|2(u,v′)dv′
)

. (4.39)

Next, we write, using (4.12)

∫ +∞

vR(u)

r1−η|∂2vψ0|2(u,v′)dv′

.

∫ +∞

vR(u)

r1−η
(
|∂vTψ0|2+ε2r−4(|ψ0|2+|∂uψ0|2+r2|∂vψ0|2

)
(u,v′)dv′. (4.40)
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Then, applying Proposition 3.2 (Hardy inequality) to the |ψ0|2 and |∂uψ0|2 terms,
we end up with

∫ +∞

vR(u)

r1−η|∂2vψ0|2(u,v′)dv′.
∫ +∞

vR(u)

(
r1−η|∂vTψ0|2+ε2r−1−η|∂vψ0|2

)
(u,v′)dv′

+ε2
(
|ψ0|2(u,vR(u))+|∂vψ0|2(u,vR(u))

)
. (4.41)

Now, we apply Proposition 4.3 and Lemma 4.1 to obtain (denoting x+ the positive
part of x)

∫ +∞

vR(u)

r1−η|∂2vψ0|2(u,v′)dv′

.u−4+[−η]++O(
√
ε)+ε2

∫ +∞

vR(u)

r−1−η|∂vψ0|2(u,v′)dv′+ε2|∂vψ0|2(u,vR(u)). (4.42)

Combining (4.39) and (4.42) gives
∫ +∞

vR(u)

r−1−η|∂vψ0|2(u,v′)dv′.u−4+[−η]++O(
√
ε)+η−2ε2

∫ +∞

vR(u)

r−1−η|∂vψ0|2(u,v′)dv′

+η−2ε2|∂vψ0|2(u,vR(u)). (4.43)

Now, choosing η−2ε2=δ small enough (this requires the claimed condition on η that
|η|>Cε), we get

∫ +∞

vR(u)

r−1−η|∂vψ0|2(u,v′)dv′.u−4+[−η]++O(
√
ε)+δ|∂vψ0|2(u,vR(u)), (4.44)

as well as
∫ +∞

vR(u)

r1−η|∂vψ0|2(u,v′)dv′.u−4+[−η]++O(
√
ε)+ε2|∂vψ0|2(u,vR(u)). (4.45)

To close the estimate, we then try to bound |∂vψ0|2(u,vR(u)). We write, for
any v = vR(u), and taking advantage of the fact that limv→+∞∂vψ0(u,v) = 0 and
Proposition 3.2 (Hardy inequality) and Lemma 4.1

|∂vψ0|2(u,vR(u)).
∫ +∞

vR(u)

|ψ0 ∂vψ0|(u,v′)dv′

.

[∫ +∞

vR(u)

r−1−η′ |∂vψ0|2(u,v′)dv′]
1
2

[∫ +∞

vR(u)

r1+η′ |∂2vψ0|2(u,v′)dv′
] 1

2

.[u−4+|η′|+O(
√
ε)+δ|∂vψ0|2(u,vR(u))]

1
2 [u−4+|η′|+O(

√
ε)+ε2|∂vψ0|2(u,vR(u))]

1
2

.u−4+O(
√
ε)+δ|∂vψ0|2(u,vR(u)), (4.46)
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where in the last two lines, we have applied (4.44) with η=η′ and (4.45) with η=−η′,
respectively and chosen η′=O(

√
ε). Choosing η so that δ is sufficiently small, we

have established (4.37) with α=v, i.e.,

|∂vψ0|2(u,vR(u)).u−4+O(
√
ε), (4.47)

and thus, combining with (4.44), (4.45) also gives (4.38). To show (4.37) with α=u,
we invoke Proposition 3.1 applied to Tφ0 and Proposition 4.3 to obtain

|Tφ0|2(u,vR(u)).u−4+O(
√
ε), (4.48)

which gives (4.37) with α=u after combining with and noticing that |∂uφ0|.|∂vφ0|+221

|Tφ0|.222

The proof of the following proposition will conclude the proof of (1.14), in view223

of the above remarks.224

Proposition 4.4. The following estimate holds for all u≥u0, v≥vR(u)
|φ0|(u,v).u−2+O(

√
ε). (4.49)

Proof. To complete the proof of (4.49), we propagate (4.34) of Lemma 4.1 in the225

region where v≥vR(u).226

We start writing, using Proposition 3.2 (Hardy inequality), Lemma 4.1 and
Lemma 4.2: for all u≥u0, v≥vR(u), and any η∈(0,1)

|φ0|2(u,v). |φ0|2(u,vR(u))+
∫ v

vR(u)

r−2|ψ0||∂vψ0|(u,v′)dv′

.|φ0|2(u,vR(u))+
[∫ v

vR(u)

r−3−η|ψ0|2(u,v′)dv′
] 1

2
[∫ v

vR(u)

r−1+η|∂vψ0|2(u,v′)dv′
] 1

2

.u−4+O(
√
ε)+
[∫ +∞

vR(u)

r−1−η|∂vψ0|2(u,v′)dv′+u−4+O(
√
ε)
] 1

2
[∫ +∞

vR(u)

r1+η|∂2vψ0|2(u,v′)dv′

+u−4+O(
√
ε)
] 1

2
u−4+O(

√
ε)+[u−4+O(

√
ε)−η+u−4+O(

√
ε)]

1
2 [u−4+O(

√
ε)+η+u−4+O(

√
ε)]

1
2

.u−4+O(
√
ε), (4.50)

where, in the last line, we have applied Lemma 4.2 with η=±O(
√
ε). This concludes227

the proof.228

Acknowledgements229

The author gratefully acknowledges support from the NSF Grant DMS-2247376.230

Special thanks go to Haydée Pacheco for the figure.231



42 M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43

References232

[1] Yannis Angelopoulos, Stefanos Aretakis, and Dejan Gajic, Late-time asymptotics233

for the wave equation on spherically symmetric, stationary spacetimes, Adv. Math.,234

323 (2018), 529–621.235

[2] Yannis Angelopoulos, Stefanos Aretakis, and Dejan Gajic, A vector field approach236

to almost-sharp decay for the wave equation on spherically symmetric, stationary237

spacetimes, Ann. PDE, 4(2) (2018), Paper No. 15, 120.238

[3] Yannis Angelopoulos, Stefanos Aretakis, and Dejan Gajic, Price’s law and pre-239

cise late-time asymptotics for subextremal Reissner–Nordström black holes, Annales240

Henri Poincare, 24(9) (2023), 3215–3287.241

[4] Dean Baskin, Jesse Gell-Redman, and Jeremy L. Marzuola, Price’s law on242

Minkowski space in the presence of an inverse square potential, arXiv Preprint:243

http://arxiv.org/abs/2207.06513, 2022.244

[5] Lydia Bieri, Shuang Miao, and Sohrab Shahshahani, Asymptotic properties of so-245

lutions of the Maxwell Klein Gordon equation with small data, Commun. Anal.246

Geom., 25(1) (2017), 25–96.247

[6] Ovidiu Costin, Wilhelm Schlag, Wolfgang Staubach, and Saleh Tanveer, Semiclas-248

sical analysis of low and zero energy scattering for one-dimensional Schrödinger249

operators with inverse square potentials, J. Funct. Anal., 255(9) (2008), 2321–2362.250

[7] Mihalis Dafermos, Gustav Holzegel, Igor Rodnianski, and Martin Taylor, Quasi-251

linear wave equations on asymptotically flat spacetimes with applications to Kerr252

black holes, arXiv preprint: https://arxiv.org/abs/2212.14093, 2022.253

[8] Mihalis Dafermos, Gustav Holzegel, Igor Rodnianski, and Martin Taylor, Quasilin-254

ear wave equations on Kerr black holes in the full subextremal range |a|<M , arXiv255

preprint: https://arxiv.org/abs/2410.03639, 2024.256

[9] Mihalis Dafermos and Igor Rodnianski, A new physical-space approach to decay for257

the wave equation with applications to black hole spacetimes, in XVIth International258

Congress on Mathematical Physics, pages 421–432. World Sci. Publ., Hackensack,259

NJ, 2010.260

[10] Mihalis Dafermos and Igor Rodnianski, Lectures on black holes and linear waves, in261

Evolution Equations, volume 17 of Clay Math. Proc., pages 97–205. Amer. Math.262

Soc., Providence, RI, 2013.263

[11] Dejan Gajic, Late-time asymptotics for geometric wave equations with inverse-264

square potentials, J. Funct. Anal., 285(7) (2023), Paper No. 110058, 114.265

[12] Dejan Gajic and Maxime Van de Moortel, Late-time tails for scale-invariant wave266

equations with a potential and the near-horizon geometry of null infinity, ArXiv267

preprint: https://arxiv.org/abs/2401.13047, 2024.268

[13] Peter Hintz, Linear waves on asymptotically flat spacetimes. I, arXiv Preprint:269

http://arxiv.org/abs/2302.14647, 2023.270

[14] Jonathan Luk and Sung-Jin Oh, Late time tail of waves on dynamic271

asymptotically flat spacetimes of odd space dimensions, ArXiv preprint:272



M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43 43

https://arxiv.org/abs/2404.02220, 2024.273

[15] Hans Lindblad and Jacob Sterbenz, Global stability for charged-scalar fields on274

Minkowski space, Int. Math. Res. Papers, 2006 (2006), 52976.275

[16] Siyuan Ma, Almost Price’s law in Schwarzschild and decay estimates in Kerr for276

Maxwell field, J. Differential Equations, 339 (2022), 1–89.277

[17] Georgios Moschidis, The rp-weighted energy method of Dafermos and Rodnianski278

in general asymptotically flat spacetimes and applications, Ann. PDE, 2(1) (2016),279

6, 194.280

[18] Siyuan Ma and Lin Zhang, Price’s law for spin fields on a Schwarzschild background,281

Ann. PDE, 8(25) (2022).282

[19] Federico Pasqualotto, Nonlinear stability for the Maxwell-Born-Infeld system on a283

Schwarzschild background, Ann. PDE, 5(2) (2019), Paper No. 19, 172.284

[20] Volker Schlue, Decay of linear waves on higher-dimensional Schwarzschild black285

holes, Anal. PDE, 6(3) (2013), 515–600.286

[21] Wilhelm Schlag, On pointwise decay of waves, J. Math. Phys., 62(6) (2021), Paper287

No. 061509, 27.288

[22] Maxime Van de Moortel, Decay of weakly charged solutions for the spherically289

symmetric Maxwell-charged-scalar-field equations on a Reissner-Nordström exterior290
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