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Abstract. The P method, first introduced in [9], has become a robust strategy
to prove decay for wave equations in the context of black holes and beyond. In
this note, we propose an extension of this method, which is particularly suitable
for proving decay for a general class of wave equations featuring a scale-critical
time-dependent potential and/ or first-order terms of small amplitude. Our
approach consists of absorbing error terms in the rP-weighted energy using a
novel Gronwall argument, which allows a larger range of p than the standard
method. A spherically symmetric version of our strategy first appeared in [22]
in the context of a weakly charged scalar field on a black hole whose equations

also involve a scale-critical potential.
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1 Introduction

The r? method of Dafermos—Rodnianski [9] is a versatile tool to prove decay in
time for solutions ¢ to waves equations of the form [1,¢ =0, which is sufficiently
robust for applications to nonlinear wave equations (see, e.g., [7,8,19,24]). The
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method is carried out in physical space and relies on the radiative structure of wave
equations on an asymptotically flat spacetime g, for which r¢ (usually) admits a
finite limit—the Friedlander radiation field ¢z(u,w)—defined, for u€R, weS? as

= i 1.1

¢Z(an) v_lf_'{loor¢(u7vaw)a ( )
where v and v are respectively retarded-time and advanced-time coordinates, corre-
sponding to u=t—r and v=t+r on the usual Minkowski spacetime. In its simplest
expression, the key idea of the 7P method is to exploit the boundedness of a r?
weighted energy of the following form, for 0 <p<2:

supZ/v

“+o00
[ =
1Bl<2

/ rplvgzﬁv(rqﬁ)\2(u,v,w)dvdw, (1.2)
SQ

V0

D
2

to obtain pointwise decay in time of ¢ at the rate u~2 as u— 400, under the

additional conditions that
I. Energy boundedness (in the style of (1.8) below) holds.

II. An integrated local decay estimate (in the style of (1.9)), also known as a
Morawetz estimate, is valid.

In this paper, our goal is to apply the 7P method and obtain decay in time
estimates for the following class of linear wave equations with scale-critical potential
and /or scale-critical first-order terms of small amplitude.

g=—%(u,v)dudv+r*(u,v)dos, (1.3b)

Lgo #(Z[ewi(u,v)+W¢(u,v)]~8i¢+[eq(u,v)+Q(u,U)].rav(b)7 (1.30)

where e€R is a small constant, and ¢ is a spherically-symmetric and asymptotically
flat’ Lorentzian metric in the mild sense that

[1+0ur(w,v)], 140y (u,v)], |97 (u,0) —4], 7]9,Q%|(u,v)

<rH(u,v) as v— 400, (1.4a)
057 (u,v), [0u0ur|(u,0), 10,057 (u,v)
<r?(u,v) as  v—+o00. (1.4b)

As we will discuss in Section 1.3, the usual Minkowski metric m=—dt?2+dx?+dy?+dz2, associated
to Oy, =—07 402402402, satisfies (1.4), together with many other usual spacetime metrics g, such
as the Schwarzschild spacetime.
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Finally, the potentials (terms involving wg(u,v) and Wy(u,v)) and first-order terms
(terms involving w; (u,v), Wi (u,v), q(u,v) and Q(u,v)) are scale-critical in the sense
that

|wi| (u,v), q|(w,v), 7[0swol(u,v), °|8uq|(u,v) S1, (1.5a)
|VVZ'|(U,’U), |Q|<U7U)7 T‘avW0|<u7U)7 7’2|8,UW1|(U,U), 7”2’an|<16,1})
=o(l) as v—+oc. (1.5b)

Note that the inverse-square power r~2 in the potential of (1.3) is called scale-
critical because on flat spacetime (i.e., if g = —dt*+dx®+dy*+dz* the Minkowski
metric) and if wy =W; =0, while wg, Wy, ¢, @ are constants, then the rescaling
u— Au, v— Av leaves (1.3) unchanged. The class of potentials satisfying (1.5) are
allowed to oscillate in u and mildly oscillate in v, such as the following example
(assuming (1.4) holds)

wo(u,v) =sin(u+log(r(u,v))), (1.6a)
wy (u,v) =q(u,v) =Wsy(u,v) =Wi(u,v)=Q(u,v)=0. (1.6b)

In particular, we allow for a large class of time-dependent potentials, see Section 1.3
for more general examples.

In our main theorem below, we take € to be sufficiently small, and we condition-
ally assume that the energy boundedness (condition I) and an integrated local decay
estimate (condition II) are satisfied, in the traditional spirit of the r” method [9].
We then deduce time-decay of the energy ((1.10)) on a foliation that reaches null
infinity (see Fig. 1) and point-wise decay ((1.11), (1.14)) at rates that are arbitrarily
close to the optimal ones as € — 0 (see Section 1.4 for further discussions on the
sharpness of our estimates).

Theorem 1.1. Let ¢ be a solution of (1.3) where g and the potential terms satisfy
(1.4) and (1.5) with (characteristic) initial data on the bifurcate null cones ([ug,ur]x
S?)U([vg, +00) xS?) with ug€R, upeRU{+00}, vER as depicted in Fig. 1, satisfying
the following assumptions for all 0<p<3

/ / P81 (g, )0, (TWSQ¢)| (uo,v,w)dvdw, (1.7a)

18]<2
Z/ /rp+2k 10, 0) [0 (1) |2 (u, v, w) dvdw < oc. (1.7b)
S2

Defining E|[¢](u) to be the standard (unweighted) energy on a foliation radiating to
infinity of Fig. 1, defined in Section 2, we assume that for all solutions ¢ as abowve,
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the boundedness of the energy E|¢|(u), in the sense that there exists a constant D>0
such that all uy <us

E[¢](uz) < DE[¢](ur). (1.8)

Additionally, we make the following assumption of integrated local decay: for some
o >1, there exists a constant C, >0 such that for all uy >y, and defining the
spacetime region Dy, oo ={u1 <u, v>uvg}

/ |61 (u,v,w) +12%0u 0] (u,v,w) + 720y | (u,v,w)
Dy oo

(1) dudvdw < C,E[¢|(uy). (1.9)

Then, there exists €g >0 such that if || <eo, there exists n(€) >0 such that n(e)—0
as e—0 and

B[] (u) Su3tne), (1.10)
The following limit exists

11)1}_1 T¢<U7U7w) - wI(uaw)

and the following estimate holds in the region v—u> R, assuming R is sufficiently
large

Pl (u,0,w), [1hz] (u,w) Su 5 (1.11)

Moreover, if analogues of the energy boundedness (1.8) and integrated local decay
(1.9) hold for T¢, where T=0,+0,, in the sense that there exists o' >1 and 1/(e)>0
such that n'(€) =0 as e =0 such that for all uy <us

E[T¢)(uy) <D’ (E[qu] (un)+u P9 Blg) (u1)> 7 (1.128)
[Tl (u,0,w) —24 (e
/DW Sy dudeds < Cor (BTGl OElgl(w)), - (112b)

for Cyr >0, D' >0 independent of €, and additionally the following assumption is
satisfied

|auwi|(uav)7 |auQ‘(u7U> ST_I(UMU)’ T|auWi|(uav)7 T‘auQKu’U)
=o(1) as v—+oo. (1.13)

Then, we also have the following (sharper) pointwise decay estimate: for allv>u+R,
weS?:

] (,0,00) U5 (1.14)
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Figure 1:

We want to emphasize that, despite initial data being given on characteristic
bifurcate hypersurfaces ([ug,ur]x S?)U([vg,+00) x S?), it is equivalent to start from
a spacelike hypersurface (Cauchy problem) and evolve the solution up to ([ug,ur] x
S?)U([vg,+00) x S?) with no difficulty, see e.g., [22], Section 4.

We finally remark that it is also possible to propagate the point-wise estimates
(1.11), (1.14) of Theorem 1.1 in the region {v—u <R} (see [2,14]). We will however
omit the relevant estimates for brevity. On a black hole spacetime, (1.11), (1.14)
are also valid up to the black hole event horizon, providing so-called red-shift esti-
mates are satisfied, see for instance [11,22] for such examples and the discussion in
Section 1.3.

1.1 The principles of the r method

On Minkowski spacetime, the wave equation —8?¢+8§¢+8§¢+8§¢:O takes the

following form, where u=t—r, v=t+r, r=/22+y>+22, »=r¢ (radiation field) and
A is the standard Laplacian on S?:

0u0pt) =12 Ag21). (1.15)

The key idea of the r? method of Dafermos and Rodnianski [9] is to prove decay-in-
time for ¢ using energy methods, namely L2-based estimates, which can typically be
carried out on more general spacetimes, with a potential or a nonlinearity. However,
the standard energy E(T) computed on the time-slice {t =T} is constant and does
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not decay. Instead, one can compute the energy on a V-shaped foliation (indexed
by u) as depicted in Fig. 1 and the goal is to prove that this energy E (u) ends up
decaying in u. To capture this decay, Dafermos and Rodnianski use the multiplier
r?0,1 and, upon integration on a spacetime region {u; <u<wus}, obtain

/ rp\avw|2+/ [/ rp—1|avw|2}du’s / PO+ E(uw),  (116)

for all uy <wug, where 0 <p<2, and (1.9) is used to absorb various boundary terms
at the curve {r =R} into the energy F(u;). (1.16) consists of two statements: the
boundedness of the rP-weighted energy for 0 <p <2, and the (integrated) decay of
the 7P~ weighted energy. Using (1.16) as a hierarchy of estimates in p (see [9] for
details), Dafermos and Rodnianski obtain the time-decay of the energy at the rate
u~P, where here p=2:

E(u) Su™?. (1.17)

We emphasize that the proof of (1.17) relies heavily on the validity of the energy
boundedness (1.8) and integrated local decay (1.9) estimates, used as a black box.
The argument of the 7?7 method can be also be carried out on the Schwarzschild
or (sub-extremal) Reissner—Nordstrom spacetime (1.28) and in higher dimensions,
see [20] and [17] for the more general setting in which it can be applied.

In [1,2], Angelopoulos, Aretakis and Gajic introduced a novel viewpoint on the
rP method allowing to prove sharp decay and late-time tails for a large class of wave
equations

0,0=V(r)¢, where |V|(r)<r ¢ as r—+oo, (1.18)

on a stationary and spherically-symmetric asymptotically flat metric g and a scale
sub-critical potential |V|(r) <r727¢, where € >0. See also [3,16, 18] for follow-up
work and extensions of these methods. We also mention the recent [14] establishing
late-time tails for a large class of equations which is even more general than (1.18)
(for instance also allowing for first-order terms and nonlinearities) using a novel
approach.

1.2 Our new strategy to address scale-critical potentials

Following the spirit of [9], we make the assumptions of energy boundedness (1.8)
and integrated local decay (1.9) that we use as a black box. Using the multiplier
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P9, for (1.3) gives schematically (compare with (1.16))

/ rf’!am\%/ [/ rp-1|avw|2}du’

5/ rp|avw|2+E(u1)+e/W U rp—2\¢|yav¢|]du', (1.19)

ul

where we have taken w; = W; = ¢ = Q = 0 for now to simplify and
e[ 211910 du is an integrated (so-called “bulk”) error term. The stan-
dard approach of the r? method (see [2]) is to absorb the bulk error term into the
fuuf [ —w ™ 10u|?] term in the left-hand-side, which works well for a sub-critical
potential satisfying (1.18), with the use of the Hardy inequality (see Proposition 3.2).
Here, the Hardy inequality gives

[ wtaetacs [*[ [ rmoar|acs [*] [ wop]a
Rt T I

where 0 <p<2. To absorb the error term e [*[f _ 7?7 |1||d,9]]du into the left-

hand-side with the help of (1.20), we must further restrict p<2—0O(y/€), which gives
the rP-hierarchy in a range 0<p<2—0(y/€)

/ rp|am|2+/ [/ rp—1|avw|2}du’s / PO+ Bw),  (1.21)

which is sufficient to obtain (1.17), up to an arbitrarily small loss O(u°V9). (1.17)
is one power of u away from sharpness, however (compare with (1.10)). To go up
to p<3 and obtain sharper estimates, we must decompose the solution ¢ into its
spherical average and higher angular modes, following the original idea of [2]:

d(u,v,w)= ¢o(u,v) +é>1(u,v,w). (1.22)
= [ o(u,v,w)dw
SQ

It turns out that 720, (r¢>;) also obeys the hierarchy (1.21), translating? into faster
energy decay for ¢, i.e.,

El¢s1](u) Su= OV, (1.23)

fWe note that this step requires to commute (1.3) with 9,,, which is why (1.5) requires assumptions
on the 0, derivatives of the potential terms. These assumptions, however, are not necessary for
spherically-symmetric solutions of (1.3).
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and (1.23) is essentially sufficient to show (1.10), (1.11), (1.14) for ¢»;. Therefore,
our next objective is to prove (1.21) for the spherical average 1y and 2 <p < 3.
The novelty of our approach is to absorb the bulk error term into fuqu rP|0,1)|?
instead of [ *[f,_,7770,4|*]du’ using a Gronwall argument. Starting from (1.19),
we proceed, using the Hardy inequality differently from (1.20) to get schematically,
exploiting (1.21) with p—1

[ rwtowas
-u1u2 _U/:u ] . ) Ny %
< / / 210,02 | du! / U rp—‘*rw\?]du’]
LJu; LJu=u' i i LJ uy u=u'
</
LJ U1
</
ul L

To conclude the proof of (1.10), we close the rP-weighted hierarchy (1.21) for 0 <
p<3—0(y/e) using an induction argument, where u; and uy take values on a dyadic
sequence. The proof of (1.11) follows from (1.10) by a standard argument. To
obtain the sharp point-wise decay on a constant-r curve (1.14), we must retrieve
faster decay for the time-derivative T'¢y, i.e.,

E[T o) (u) Su=>"), (1.25)

which is done considering a rP-weighted hierarchy for rd,(r¢g) (see [11] where this
hierarchy was introduced).

We finally note that we additionally allow for first-order linear terms in (1.3).
The ingoing derivative terms in (1.3) are handled with the use of a novel “Hardy
inequality” ((3.10) in Proposition 3.2) which only works for solutions to the wave
equation (1.3).

N |=

/ P 0,1 |? | du/ / [/ rp_Ql&,wF} du'}

N

/ P|0y1p|? | dud! / r”_1|8v¢|2+£77(u1)} . (1.24)

N

1.3 Examples of spacetimes and potentials satisfying the
assumptions

1.3.1 Decay rates in the assumptions

For the sake of comparison with the Minkowski metric, let us define a time-variable
t=v+u, and we keep in mind that r is comparable to v—u (for large 7). We are
interested in a region where u>wug, v—u> R, thus

r(u,v) Sult(u,v) Sv. (1.26)
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Thus, the r-decay assumptions in Theorem 1.1 represent the weakest possible form
of decay. In the presence of nonlinearities, where Theorem 1.1 can be adapted, the
decay of some coefficients may be obtained in terms of inverse powers of ¢, which is
stronger than the inverse powers of r required in (1.4), (1.5), and (1.13).

Finally, note that the scaling in (1.3) is arranged to respect the radiative structure
of the wave equation which gives a finite limit for r¢ and r29,(r¢) towards v=+o0
so that, for fixed u, the three terms ¢, 9,¢, rd,¢ share the same scaling, i.e.,

\¢|(u,v,w)§r*1, |(9u<b|(u,v,w)§r*1, r]8v¢|(u,v,w)§7’*1 as v——+oo. (1.27)

1.3.2 Metric assumptions

We first note that there exist many examples of Lorentzian metrics g satisfying (1.4),
such as the (sub-extremal) Reissner-Nordstrom metric, modeling the exterior of a
charged star/black hole for r>r,(M,e)

2M ¢ 2M e\t
gRN:_<1__+e—2>dt2+<1——+e—2> dr*+r’doss, (1.28)
o roor

where 0<l|e| <M and r,(M,e):=M++/M?—e?. Indeed, introducing the standard
coordinates

*

u=t—r*, v=t+r",

CZ: - <1—ﬂ+6—2>1, (1.29)

r o or2

shows that (1.28)assumes the form of ¢ given in (1.3) with

oM ¢ oM ¢
‘ e). (1.30)

Q2 (u,v) :4<1_T+7"_2>’ Oy =—0y1r= <1_T+ﬁ
Note that in the case e=0, (1.28) reduces to the well-known Schwarzschild metric,
which itself reduces to the (trivial) Minkowski metric g = —dt?+dx?®+dy?+dz* for
M =0, under which Oy =—07 40+ 0. +02.
Lastly, we note that a large class of non-stationary spacetimes will also satisfy
(1.4), in particular spacetimes which converge to, or remain close to the Reissner—
Nordstrém metric (1.28) at large-time.

1.3.3 Integrated local decay and energy boundedness

It is well-known [10] that the energy boundedness (1.8) and integrated local energy
estimate (1.9) hold on the Schwarzschild/(sub-extremal) Reissner—Nordstrém metric
in the absence of a potential, i.e., for Uy, ¢=0.
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In [22], (1.8) and (1.9) are established ® for spherically-symmetric solutions of
(1.3) on a (sub-extremal) Reissner-Nordstrém metric, i.e., for g =gry and with
w1 =W7;=0, under the smallness condition of e.

In [11], Gajic established (1.8) and (1.9) for (1.3) on the sub-extremal Reissner—
Nordstrém metric with w;=W;=¢=Q=0, and e=1 (no smallness condition), under
the assumption that

V(r)=r""(wo(r)+Wo(r))

is time-independent and wq(r)+Wy(r) admits a limit as r — oo, i.e., there exists
o> —}1 such that

V(r)~ar? as 1 — 400, (1.31a)
1

V(T)E—E for all r>r (M,e)=M+vVM?—e2. (1.31b)
r

It is also possible to replace (1.31b) with a no-resonance condition on V (r), see [11].

Coming back to more general considerations, we discuss the T-commuted energy
boundedness (1.12a) and integrated local decay (1.12b). Note that, if the metric
and the potentials are stationary, i.e.,

Tr=0, TQ?=0, Tw;=Tq=TW,=Tq=0, (1.32)

then (1.12a), (1.12b) immediately follow from (1.8) and (1.9), in fact, we have the
stronger estimate:

/ %—Z;’T:‘”)dudvdw <Co E[T6)(u), (1.33a)
(6] (u2) < DE[g](u). (1.33b)

More generally, it is possible to retrieve (1.12a), (1.12b) if the quantities involved
in (1.32) decay in time at a rate O(u~'*9W9). Such a result should, however, be
obtained on a case-by-case basis.

1.3.4 Potential assumptions for sharp energy and radiation field decay

We now discuss (1.5), the potential assumptions used to obtain the first conclusions
of Theorem 1.1, i.e., (1.10), (1.11). We note that (1.5) allows for a large class of
time-dependent potentials. The most general form for wy to respect (1.5) allows

SWhile the proof of [22] is, strictly speaking, only for the charged scalar field equation, it is easy
to generalize it to (1.3).
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for linear oscillations in u and logarithmic oscillations in v or r. ¢ and w; are also
allowed to oscillate linearly in u, however, they cannot oscillate in r. In other words,

wo(,0) = folu, og(r(u,0))), (1.342)
wy (u,v) = f1(u,r"H(u,0)), (1.34b)
q(u,v) = f,(u,r(u,v)), (1.34c¢)

where fo(X,Y), f1(X.,Y), f,(X,Y) are bounded functions and 0y fy, Oy f,, Oy f1 are
bounded. For Wy, W; and @, we can take, for any € >0 and Fy(X,Y), Fi(X,Y),
Fo(X,Y) bounded with Oy Fy, Oy F1, Oy F, bounded

Wo(u,0)=(1+r)" 6Fo(u,log(r(u,v))), (1.35a)
Wi(u,v)=Fi(u,r™" " (u,v)), (1.35Db)
Q(u,v) = Fo(u,r~'"(u,v)). (1.35¢)

1.3.5 Potential assumptions for sharp point-wise scalar field decay

To obtain the stronger conclusion of Theorem 1.1, i.e., (1.14), we require (1.13),
which we now discuss. The key difference, compared to the less demanding assump-
tions (1.5), is that the potentials are no longer allowed to feature linear oscillations
in u, only logarithmic ones, i.e.,

wo(u,v) = go(log(u),log(r(u,v))), (1.36a)
wy (u,v) =g (log(u),r*(u,v)), (1.36Db)
q(u,v) =g, (u,r " (u,v)), (1.36¢)

where ¢o(X,Y), 91(X,Y), go(X,Y) are bounded functions with bounded deriva-
tive (compared with (1.34)). Wy, W) and @ obey similarly stronger assumptions
compared to (1.35), which we omit to state.

1.4 Previous works on scale-critical potentials and
sharpness of the decay
The literature on decay estimates for scale-critical potentials is vast, we refer to the
review [21].
For the wave equation (1.3) with an exact inverse-square potential on Minkowski
spacetime, i.e.,

g=—dt? +dz* +dy* +dz*, wo(u,v)=1, wi=Wy=W;=¢g=Q=0, (1.37)
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it is known [4,12] that the following asymptotics hold
L4 VTFTe

7“Iabl(u,v,w)%(L) C (1.38)

uv

Moreover, (1.38) also holds on the sub-extremal Reissner-Nordstrém metric [11]
for a large class of time-independent asymptotically inverse-square potentials sat-
isfying (1.31a), (1.31b), see [6] for previous works involving sharp upper bounds.
Lastly, precise late-time tails for an even more general class of stationary spacetimes
and time-independent scale-critical potentials were proved by Hintz [13].

In comparison, Theorem 1.1 allows for a class of time-dependent potentials that
are allowed to oscillate, as discussed earlier in this section; however, we do not derive
precise late-time tails. Our approach moreover relies on the smallness of €, and the
estimates (1.10), (1.11), (1.14) are not, strictly speaking, sharp in terms of decay
rate, because they feature an arbitrarily small loss O(u"), where 7n(¢) =o0(1) as
¢ — 0. However, the above examples satisfying the estimates (1.38) show that our
estimates (1.10), (1.11), (1.14) in Theorem 1.1 are sharp, up to this arbitrarily small
loss. Note, in particular, that on a constant-r curve, (1.38) gives

6] (u,v,w) Su>H00. (1.39)

Finally, we notice that the Maxwell-charged-scalar-field equations are modeled af-
ter a wave equation with a scale-critical of the form (1.3), where € represents the
asymptotic charge of the spacetime. This system was studied by the author [22] in
spherical symmetry on a Reissner-Nordstrom black hole assuming € is small. On the
other hand, for the Maxwell-charged-scalar-field equations on Minkowski spacetime,
€ is schematically a time-dependent function e=Q(t)—0 as t—+o00; in this context,
Yang and Yu proved global existence with no smallness assumption on the initial
data [24]; see also [5,15,23] for previous works.

2 Preliminary

We start by re-writing (1.3) in terms of the radiation field ¢ :=r¢: we find the
formula
0?2 € ! .

auavwzzrizﬁgf(ﬁ_'_ﬁ @z(u7v)azw+5(uvv>ravw ) (21)

=0

where we defined



M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43 13

and
02 0,102 0,112
uﬁo(u,v):—zwo(u,v)—i—[ 7] wl(u,v)—l—&q(u,v),
- 0?
wl(u,v):—zwl(u,v),
. 02 0?2 0?2
Wo(u,v):—IWO(U,U)+%W1(U,U)+%+7“8ué?vr,
. 0?2
Wa(u,0)=— - Wi (u,0),

)= aw.0), Quv)=—Quv).

Note that, under the assumptions (1.4), (1.5), we have
[l (u,0), 1G] (u,v), 7]0u00| (u,v), 710uq] (u,v), r*|0u1|(u,0) ST, (2.2)
and under the assumption (1.13),
|0uti| (u,v), 10udl(w,v), ST (u,v), (2:3)

in the region where r> R(¢), where we assume R(€) >0 to be a large constant. We
then define the null outgoing cone

Cy={u'=u, v>vg(u), weS*}, (2.4)

where vg(u) =u+R is such that p(u,vg(u)) =R, where p=v—u. We will use the
notation yp={(u,vg(u),w), u>uy, weS*}={(ur(v),v,w), v>vy, weS?*}.We also
define global V-shaped foliation ¥,

Eu:C’uUiu/gu, v =vp(u), w€S2}J, (2.5)
c,

U

where ug(v) is such that r(ug(v),v)=R; and for any u; <us, the spacetime domain
Dr(ur,uz)={u <u<uy, v>vg(u), weS?} (2.6)

and the unweighted energy on 3, defined as

Bl)a)= [ (10,08 + Vo Mot | (710,08 + Va0 )'d,  (27a)

u =u

] (u) = / 2|0y 2 dvdus, (2.7b)

Ep[¢](u):Ep[r¢](u)+E(u). (2.7¢)
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Our convention is that the volume form that we use is always dudvdose.
For any function f € L%*(S?), we write its decomposition in terms of spherical
harmonics w€S? — Y (w)

flw)=> fiYr(w), (2.82)
Fero@)=)_ fLYr(w), (2.8b)
foro(w)= Z fLYr(w), (2.8¢)

for any Ly €N, and, of course, the notation extends to f(u,v,w) for which fr(u,v)
now also depends on (u,v).

We will also always adopt the convention A < B if there exists a constant C' >0
that it independent of € such that

A<C-B. (2.9)

We will also write A+O(f(e)) as a replacement for A+ f(e), where f(x)>0 and
F(0)=0.

Finally, with no loss of generality, we will always assume that uy>1.

3 Boundedness of the r’-weighted energy and
energy decay

3.1 rP-weighted energy and black box decay results

In this section, we provide preliminary calculus results that will be useful in the
sequel. The key idea is to succeed in converting the boundedness of the rP-weighted
energy into the time-decay of the unweighted energy.

Lemma 3.1 ( [22, Lemma 6.3]). Suppose that there exists 1 <p<2, such that for
all ug <uy <usg

| Bl @it By us) S By ). (5.1)

Then for all 0<q<p and for all k€N,

By(u) ut0-p) 4 M-t s Py()

ubP—1

Su P B (ug). (3.2)
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Now, we move to a point-wise decay result taking advantage of the decay of the
weighted energy.

Proposition 3.1. For any v€(0,3), and v>vg(u), the following estimate holds:

N

1 ~
P (w,0) |60, e S | o ()] (3.3)
Proof. This is a standard integration argument, see for instance [22, Lemma 7.1]. [

Then, we include a standard consequence of the Integrated Local Decay Estimate
(1.9) to control the energy on a timelike curve, using an averaging argument in r,
see e.g., [22, Proposition 6.4].

Lemma 3.2. The following estimates hold true for all uy <us, and k€ NU{0}:

u2

STy /S 2\aaW§2¢|2(u,vR(u),w)dudw <3 B[V (w). (3.4)

IBI<k” ™ |al<1 1B|<k

Proof. While the argument is already contained in the proof of Proposition 6.4
in [22], we briefly sketch it for the reader’s convenience. We will always assume R
is large enough. By (1.9), we have, recalling p(u,v) =v—u,

L Z 060> <CrE(uy).

P} <p<2R, u1<u<uz |CM‘§1

So by the mean-value theorem applied to the function p, there exits R* € (%,ZR)
such that

Z 1060| (u,vR(u))du <2RCRE(uy).
Y al<t
With no loss of generality, we can then replace R by R* and thus (3.4) is proved for

k=0. Similarly, after commuting (1.3) with W@, |B| <k and applying (1.9) to this
new solution, we obtain (3.4) for any ke N. O

3.2 rP-weighted multipliers

In this section, we assume sufficient regularity of all the functions involved so that
integration by part makes sense. Our goal is to derive various integrated identities
using r?0, multipliers for (2.1) or commuted versions.
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Lemma 3.3. Assume that

2
auavzp:%r—?ASszrF. (3.5)
Then
r?|0,9[? V2| Y|
[ | (5 o ()
2(P p-1 2, 1 2 -3 2
+Q (ir” |0y +§([2—p]8v7“—7’8v10g(9 )17 V2| >
- / PO, F. (3.6)
SQ
12 Proof. Multiply (3.5) with 0,4 and integrate on S2. O

Lemma 3.4. Assume that 1 satisfies (3.5). Then, defining ¥ :=Q2r20,4, we
have

1 r’F
1 .
au\lj1+2r [_aur]qjl_ZASQw_‘_ﬁa

Oy 0y W 4271 [—0ur]0, W1 — o2 [—8,,7“%7“-1—7“351,7“] v,y

0z r’F
= Ae 0,y )

(3.7a)

(3.7b)

Therefore, the use of the rP0, multiplier provides the following identity:

I ((—am 2]t 2, (20

QZ
+§([2—p]&,r—r&,log(QQ))rp_?’|Y7§2\I/1|2)
P73 | |2 [(p—2)8vr[—8vr8ur+7“8u<9vr] — (83vr)(8ur)+r(8uavavr)} )
2
:/ 70,4 &;(7;2—];)—1—/ Oy (Tp_z(—ﬁuré?vr—l—r@u@vr)]\IJ1|2
s2 S2

QQTp—Q
TR Wsﬂfﬂz)- (3.8)

13 Proof. The proof is similar to that of Lemma 3.3. [



134

135

136

137

138

M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43 17

3.3 Hardy and Poincaré inequalities

In this section, we recall the standard Hardy and Poincaré inequalities (that do not
require (1.3) to be satisfied), as expressed in the language we will be using. We
also include a less trivial and novel result, involving a Hardy-type inequality for the
ingoing derivative taking advantage of (1.3).

Proposition 3.2. Let ¢#2 and assume that for all u>wug, w € S?

lim 777 2(u,v) f (u,v,w) =0.
v—+00

Then

/ r3| f |2 dudv
Dr(u1,u2)

R
5]2—q[2/ r7 10, fIPdudv+
Dr(u1,u2) |2_q’ uy

q—2 u2

|17 (w,0p(u))du. (3.9)

Let g<2 and ¢ a solution of (1.3), with v =r¢. Then

/ P39,
Dr(u1,u2)

see-g [ BT Vsl 20 | et

Cuy

R [ RO PV ) () ) (310)

ul

Proof. The proof of the Hardy inequality (3.9) is standard, see for instance [22,
Lemma 2.2]. For (3.10), we use a similar strategy and write:

/ Tp_3|3u¢!2
Dr(u1,u2)

1 2
—_ 8v(rp—2)|8u¢|
2_p DR(u1,u2) 8’Ur
1% 0.0 1 . |0ut?
- Rp—2v 7l d - P—4[,.252 U
)., Dor (u,vp(u)) U+2_p DR(“l,UZ)T [r=0,r] [0,7]2

- > S () o d()
- p—4 5 p—4 ) ) -1 y ] .
’ 2-p [/DR(ULM) 4avrr AS vouer ( Our auw+ O,r rouy | Ot

i=
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Now, using (1.4) and (2.2), we can absorb some of the terms using the largeness of
R and smallness of € to write

2 Q
[y
Dr(u1,u2) 2— p Dr(u1,u2) 48

< | " RP10,0 (u,vr(w))du+ 12— p] /D 30,0

Rr(u1,u2)

2

= %Szwauw‘

+e2/ P75 |2, (3.11)
Dr(u1,uz2)

Now, by (3.9) with ¢=p—2, the last term can be controlled in the following fashion:

/ LY —— LA, w‘
DR(u1 u2) 2_p DR uy, UZ 48

5317_4/“2(1%2[2—19]‘1|8u¢|2+|¢| )(u,vr(u))du
+62[2—p]_2/ P30, ]2 (3.12)
Dr(u1,u2)

Note that integrating by parts on S? and then in v gives

— P~ w&m
/D I ok

1/ Qo
=— = —_—7 8 sz
5 DR@“M)@ NN

1 02
—_ °" . p—4 2, -
5 . 7“ ‘Wsﬂﬂ +2/Cu1 oot
2

1 vr(u2) QQ 1 Q
- p 4 / /d Iy 8 S p—
2/1}\ avr |WS2¢’ (UR( )7U) (% +2/;R(ul’u2) u(avrr

r(u1)

4) ’WSQw‘27
which, combining to (1.4) and (3.12) gives

/ Vs +[2—p) / 1319, ?
C Dr(u1,u2)

u2

< / e A / (R0, P 1P+ Vs ) (,0m(w))

Cuyq uy

TS / 39, (3.13)
Dr(u1,u2)

1o which is completing the proof of (3.10). O
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The next proposition records the well-known Poincaré inequality.

Proposition 3.3. Let f€ H'(S?). Then the following inequality holds:

[ VetarP =Ly [ |l (319
S? S2

Moreover,
|WSQfL|2=L(L+1)/ | fl?. (3.15)
s2 s2

Proof. This is very standard, see for instance [12, Lemma 2.1], ]

3.4 Lower-weighted energy estimates

We start with a first boundedness statement for rP-weighted estimates for 0 <p<2.
The argument relies on the Hardy inequalities of Proposition 3.2 and provides (non-
optimal) decay results in time for the unweighted energy.

Proposition 3.4. There exists piow(€) <2 with 2—pjo,(€) =O(\/€) such that for all
0 <p < Piow

/ rplav¢\2+p/ rp—l|a,,w|2+(2—p)rp—2w7szw|2
Cus Dr(u1,uz2)
u2

< / 0P Pt P+ Cr |3 [0a0( on(u)) el (3.16)

Cuy U o<1

Proof. By (2.1), v satisfies (3.5) with

1
F=e¢r2 (Zwl(u,v)(‘?;@/)—l—d(u,v)?“av@b) ’

=0

so we can apply Lemma 3.3 and integrate (3.6) on Dg(u1,us) to obtain

/ rp|&,1/1]2+p/ PO P4 (2—p)rP 2| Vet
c

g Dr(u1,u2)

5/ Tplavw!2+6/ [P 1O P [P Dt ]
Cuy Dr(u1,uz)

+COr [ 10adl (W vr(u))du!
Y jal<1
< / 1?10, +e / PGP0+ Cr [ ) 10 (W vp(u))du'.
Cuy Dr(u1,u2)

U jal<1
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Note that in the above, we have used the bound on F' coming from (2.2) giving

P00 F | Se (r" 2 ([0 14100 |0 [+~ 0u0 )
Se (P ([P0, )+ o). (3.17)

Now, we apply Proposition 3.2 and by (3.9), (3.10) with ¢=p, we have

/ P (| +[|0uyp[?]
Dr(u1,u2)

2

<[2-p _2/ P10, 2+,E—/ P 2|V t)|?
[ ] Dr(u1,u2) | | R [2_]7] Dr(u1,u2) | ° |
+[2—p]_1/ rp_4]WSQ¢|2+CR/ Z 10,01 (v ,vg(u))du, (3.18)

Cuy el
s hence, using the smallness of €, on condition that (2—p) > /¢, we get (3.16). O]

Corollary 3.1. For 0<p<piw(€) and u; <us:

/ w)du+ B, (uy) S Ey(uy). (3.19)
Proof. Note that, since pjo, <2, we have r7~4|Vg1)|? <|Vs2¢|?, hence

/ PNVt |* < E(u). (3.20)

u

Using this, together with Proposition 3.4 and (1.8) immediately proves

p/qup_l[w](u)du—i—Ep(ug)SE (uq —|—C’R/ Z 1002 (W ,op(u))du’.  (3.21)

bolal<t
w7 Then (3.19) follows from an application of Lemma 3.2. O
148 We finally obtain a first (non-optimal) decay result of the energy.
Corollary 3.2.
E[p)(u) SuMew Sum?OWO, (3.22)

u  Proof. Immediate from the combination of Corollary 3.1 and Lemma 3.1. [
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3.5 Faster energy decay for higher spherical harmonics

In this section, we prove that the higher spherical harmonics decay faster than the
spherical average. Our goal is to reproduce the 0 <p<2 hierarchy for the commuted
quantity ¥y =r%9,7 (see [2] where this idea was first introduced). First, we define

o1 (u,v,w) :=d(u,v,w)— | o(u,v,w)dw (3.23)
S2

and 1> (u,v,w) =r¢>1(u,v,w). We will also denote
\Ijl(uavac‘» :r26vw21(uavaw>'

Lemma 3.5. Recall F=¢ r? (Zgzotbi(u,v)'8;31#—1—(](%1))-7“8”1/1). Then, if ¢ is a
solution of (1.3):

2F 0 ) —
&J(TQQ >_6.w1§f2v) Aw‘se 12 (|4 |0uth| 4+ [ W1 | +7|0, U1 ]). (3.24)

Eq. (3.24) is also true replacing F' by F-;, mutatis mutandis.
Proof. Immediate calculation, using (2.1), (1.4) and (2.2). O

Proposition 3.5. For all u; <us, we have for all 0<p<pow:

< / 210,01 P+ C / S YR (). (3.25)
Cuy

U<, |8I<1

rp|8v\111|2+/ (rP7 10,0 [P 4+rPTH8,9]?)
Dr(u1,u2)

Proof. Fix 0<p<2. We make use of Lemma 3.4 and integrate (3.8) on Dg(uq,us).
By the fact that for p<2, the boundary terms in v of
O2yp=2

8

Dy (rp2(—8u7’8vr—|—r6’u8w)|\111]2— ]WSQ\I’1|2)

on ZT={v=o00} are 0 and taking advantage of Lemma 3.5, we obtain

/ rp]@,qll\z—{—/
C/KLZ

'DR(U17“2)|:

L 2 :

n P73 —([2—p|Oyr —10,10g(Q)) |Vs2 V1|
Dr(u1,u2) 8

2+§:| Tp_1|8v\111]2



22 M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43

+((p—2)0ur[=0yrOyr+10s, 1] — (02,7) (0ur) +10,0,0,r) ¥ |2>
S[omatee [ ol o)
Cuy Dr(u1,uz2)

+e€

/ - 2.0, U] Aot

+CR/ |8ay7g2¢|2(u’,v3(u'))du'. (3.26)

! |a\<1 81<1

Now, we use the smallness of € to absorb the
[ O O | rl0, )
Dr(u1,u2)

term into the left-hand-side from which we obtain

/ rp|8@\111|2+/ {2+E} 710,07
C DR(u17u2) 2

u2

Q2
+/ rp=3 <—([Z—p]&ﬂ“—r@vlog(ﬂ2))|Y752\I/1|2
D (u1,us) 8
+((p=2)ur[—ByrDur+102, 1] — (027) (Dur) +10,0,0,) [ W |2)

5/ Tp|3v‘1’1|2+6/ P (WP [0u )+ P4 ]?)
Cuy Dr(u1,us2)

+e€

/ P~ wl[a‘I’ 4&827#‘
(u1,u2)

+CR/ \8QY7S2¢|2(U',UR(u'))du’. (3.27)

1 |a|<1 181<1

Apply Proposition 3.2 with g=p gives, also exploiting the fact that [, 7974|Vg1[*<
uy
E(uy):

[ mep o

Dr(u1,u2)

<Ry / [ ]
Dr(uy,u2

+(2-p) (B (u)+Cr / S 0u6 2 vr () i), (3.28)

L a1



M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43 23

Now we can apply Proposition 3.2 again to Ys21 this time with ¢=p—2 to obtain

/ Vg2

Dr(u1,u2)

< p—3 2 2 B 27,1 / l

< 1773 | V20,00 >+ Cr > 0aYeol (W vp())du’.  (3.29)
Dr(u1,u2)

U al<1, |B[<1

Combining (3.28), (3.29), and recalling that r?|9,1| <[Py, we get

[ msep o

Dr(u1,u2)

<@y / T [0 P4 Ve 2]
Dr(u1,u2)

+@op) (B O [ VR W o). (330)

U al<1, |BI<1

We now return to (3.27), in particular its third term. By (3.14) (Poincaré’s inequal-
ity) in Proposition 3.3, we have

/S2 |Vez (01)22f 26/S2 [(U1)>0]?,

and of course

[ vsap=2 [ @

hence, as a consequence of (1.4), we have a coercive estimate of the form

Q2
/ rP3 (— ([2—p)Opr —10,10g(2)) | Vg2 U4 |?

Dr(u1,uz) 8

+ ((p—2)0ur[—0urOur+10,, 1) — (02,7) (0ur) +10,0,0,r) ¥, ]2)

220 [ (Tl (W) )
Dr(u1,uz)
12 / (74 W el =170 ). (3.31)
Dr(u1,uz)

Thus, combining this estimate with (3.27), (3.30) (we took R(e) to be large enough
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in order to absorb various terms into the left-hand-side) leads to

/ rp|(9v‘111|2—|—/ {2+E} Tp1|5’v\1’1|2+[2—p]/ P Ve U
C Dr(u1,u2) 2 Dr(u1,u2)

ug
5/ 7|0, W1 | +€/ T‘p_3|\111|2+6/ Tp_QlDl[avlpl]ASﬂ/J‘
Cuy Dr(u1,u2) Dr(u1,u2)

E(uy +CR/ \8QY7§2¢|2(u',vR(u’))du'. (3.32)

1 |a\<1 18]<1

Now, by Proposition 3.2 (Hardy inequality) applying to ¥y with ¢=p, we get, using
the fact that €[2—p]~' =0(1) since p<piow,

/ 7"”|8v\111|2+/ [2+Z—)] rp_1|8v\111|2—|—[2—p]/ 7"”_4W7§2\IJ|2
C Dr(u1,u2) 2 Dr(u1,uz2)

ug
5/ Tp‘a \Ill|2+€/ prl[av\Ifl]Aggw‘
C Dr(u1,u2)

ul

E(uq +C’R/ |3aY7§2qb|2(u/,vR(u/))du/. (3.33)

1 |a\<1 181<1

Finally, we handle the term fDR(ul ug)rp_2w1 [0,¥1]Ag21. Integrating by parts on S
and in v gives, using (2.2)

P20, U1, (u,v) Ag21)

/DR uy,u2

)

P20, (u,v)@vWS2 v, ‘Wg2w‘
)

,

(
Dr(u1,uz2
(

= / p2@1(u,0)avvg2\yl'vg2w’
Dr(u1,u2)

< / PV P+ 10,0
Dr(u1,u2) Dr(u1,u2)

+CR/ |3QW§2¢|2(u',vR(u’))du’
U q)<1, |m<1
< / A AR
Dr(u1,u2)
+CR/ |8QY7§2¢|2(U',UR(u’))du’

1 |a|<1 181<1
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< / P W P 2
Dr(u1,u2)

+CR/ |8aY7§2¢]2(u’,vR(u'))du', (3.34)

1 |a\<1 |8]<1

155 where in the last inequality, we have applied Proposition 3.2 (Hardy’s inequality) to
Y for g=np.
Now, using Proposition 3.2, this time on V; with ¢=p finally gives

/ P20,V 1, (u,v) Ag21)
Dr(u1,u2)

,S/ PP W Wy 24P 3 ap 2P 3 |0 |2
Dr(u1,u2)
+Cp / 0. %02 (0 () !
" |a\<1 181<1
5/ P Va2 Wy P47, 0|
Dr(u1,u2)
+CR/ 10.Y 56> (v () du . (3.35)
vl |a\<1 181<1

Combining (3.33), (3.34) and using the smallness of € (recall that e =0(2—p) by
choice of piy) to absorb the right-hand-side of (3.34) into the left-hand-side of
(3.33) finally leads to

/ 710,01 2+ / {2+?]rp—l|avwlr2+[2—p1 / Y U2
C Dr(u1,u2) 2 Dr(u1,u2)

u2

N/ |0, 2+ E(uy) —I—C’R/ |3QW§2¢|2(UI,UR(U’))du', (3.36)
Cul

U1 |a\<1 1BI<1

which concludes the proof of (3.25), noting again that Proposition 3.2 provides the

control of
Lo mup= [
Dr(u1,u2) Dr(u1,u2)

155 This completes the proof. O]

156 We deduce a rP-weighted-hierarchy analogous to that of Corollary 3.1.
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Corollary 3.3. For 0<p<piow(€) and u; <us:

/ By [0 (1) By 0] (1)t (1] ()

ul

SE[U)(w)+ Y B[Ye] (). (3.37)

181<1

Proof. This is an immediate consequence of Proposition 3.5, following the same
proof as Corollary 3.1. O

Finally, we apply the hierarchy of Corollary 3.3 to deduce the faster energy-decay
of higher-order spherical harmonics.

Corollary 3.4. The following estimate holds for all u>uy:
E[p>1])(u) Suew. (3.38)

Proof. First, we choose a dyadic sequence (u,),en and apply Corollary 3.37 to u; =
Up, Us=1Uyny1; then, by the mean-value theorem, there exists v’ € [u,,,u, 1] such that

Epoa[1]) () Syt | B[] (wa)+ > E[Vg651])(wn)

18]<1

<Supt | B0 (uo)+ > B[V&ds1)(uo) | Suy?,

|8I<1

where in the last inequality, we have also used (1.8) applied to Wgquzl. Then by

using Corollary 3.37 again, we obtain that for all u € [u,,u,11]
By i [1]() Su,

By Lemma 3.1, we obtain that
EolWi)(w)= [ 00 S
Cu
Then, by Proposition 3.2 (Hardy inequality), we obtain

/ P2 2= / 120,512 = Ealtb) () Su P,

u Cu

In particular, we have

By [021] (u) SuPrev.

Then, we can apply Lemma 3.1 again to 9>, this time invoking Corollary 3.1 applied
to ¢>1 to finally obtain (3.38) as desired. O
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We conclude this section by proving point-wise decay estimates corresponding
o (1.11), (1.14), but for ¢, instead of the full solution.

Corollary 3.5. The following estimates hold: for all n>0, u>wuq

7"’¢21|(U,’U,OJ) Snu%—mow-i-ngu—%—i-@(ﬁ)’ (339&)

P3| o1 | (u,0,w) Sy u Mot Sy 2OV, (3.39b)

Proof. We write, combining the Sobolev embedding on S? and the Cauchy-Schwarz
inequality in v: for any n>0

] (1,0,0) S D IV 5s1 (,0,) | 22(ee)

18]<2

<D <R||Y7§2¢21(U,UR( N2 [/U " /g2 0, Vs2¢>1|2} /2)- (3.40)

|8]<2

Eq. (3.39a) then follows immediately from the application of Proposition 3.1 with
y= %—77, and Proposition 3.5 applied to nggb for |8] <2. Eq. (3.39b) is obtained
similarly as a consequence of Proposition 3.1 with yv=n. O

3.6 Higher-weighted energy estimates for the spherical
average

In Section 3.4, we managed to prove the boundedness of rP-weighted estimates for
P <Piow=2—0(y/€). In this section, we want to obtain a similar result for 2<p<
3—0O(y/€), which comes arbitrarily close to the sharp exponents p<3. To do this,
we will restrict to our attention to the spherical-average of the solution

o= [ o(u,v,w)dw. (3.41)
SQ

This section generalizes the treatment of [22] in Section 6.3, whose main idea is to
absorb the error terms inside the boundary term E,[¢](u2) instead of absorbing them
into the bulk term f “* Ep_1[¥](u)du with the help of a Gronwall argument. We point
out, however, that the argument has been extended and significantly streamlined
compared to its previous version present in [22].

We start by quoting an easy calculus lemma, on which the Gronwall argument
will be eventually based.



28 M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43

Lemma 3.6. The following identity holds for all u; <us:

u2

/uu a%—kb :g [ﬁ—glog (\/5%)] N (3.42)

w7 where we defined [F(u)]2? :=F(ug)— F(uq).

ul

ws  Proof. The proof is elementary, using a change of variable z=/u. O

179 Then, we move to the main result of this section, which quantifies faster energy
1o decay for the spherical average than what was obtained in Section 3.4.

Proposition 3.6. There exists 2 <ppign(€) < 14piow <3 such that prign=3—0O(\/€)
and d(e) =O(y/€) such that for all u>wug, 0<q<ppign—1

Ey[gho) (u) SuPriont20ta, (3.43a)
Eppin 0] (w) Su™. (3.43b)

Proof. Let 2<p<1+4pjw<3. Similarly to the proof of Proposition 3.4, we use the
multiplier 70,7, and we apply Lemma 3.3 to obtain, using (1.4), (2.2)
u2 C 1

/ +/ 17110,
C DR(ul 1u2)
u2

SCr [ 10atol’ (W wr(u))du' +e P78yt
Dr(u1,u2)

U al<1

1/2
T I A (e
Dr(u1,u2) Dr(u1,u2)

Then, by Proposition 3.2 applying with g=p—1, and the fact that p <3, we obtain

/ Tp|8v¢0|2_/ Tp|avr¢)0|2 +/ 7“p_1|avr(/)0|2
C Cu Dr(u1,u2)

SCr Z 104002 (v, vp(u'))du/

u2
U jal<1

1/2
+e[3—p] ! {/ 7’p|av¢0’2] {/ 772|010
Dr(u1,u2) Dr(u1,u2)

oo~ [ 1710l

1/2

1/2



M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43 29

Then, by an averaging argument in R similar to the one used in Corollary 3.1,

[ Bveslinl(ulduct | Eyfool(us) ~ By fin] )|

ul

S| Epltho] (us) — Ep[tho] (ua) |

o | [ Bl % [ Bl B B

ul ul

Then, applying Corollary 3.1, in view of the fact that p—1<py,.,, we obtain

| Brestinltuduct | Byliel(ua) — By o] )|

ul

S| Eplo] (ua) — Ep[too] (un) |

1 1

56[3—]3]_1 |:/ Ep[w[)] (u)du] |:E~1p,1<ul)] ’ +E(U1) (345)
ul

In what follows, we take (u,)nen, a dyadic sequence, and ug = u € [ty,u,11] and

Uy =1u,. For some large A >0, D>0 and small § € (0,%) to be determined later, we

introduce the induction hypotheses

E, 1 (u) < D? A%y 12 (3.46a)
B (uy) < A% (3.46b)

Egs. (3.46a), (3.46b) are obviously satisfied for k=0 (providing A is large enough,
depending on ug, where we recall ug>1) and we will assume it holds for all 0 <k<n.
Then, combining (3.46a) and (3.45) shows that there exists C'>0 (independent of €
and p) and 7(e,p) =Ce[3—p|~! such that

Eyfue] (u) S A-Done)-u, " [ /”Ep[w(u')du/] B, o) (u)+CE(w,).  (347)

J/
-~ Un ~~

=a(un,A,e) =b(un)

Therefore, as an application of Lemma 3.6

( /u jEp[wo](u’)du’Ys (u—un)+glog (1+%( /u jEp[wo](u’)du’)é>. (3.48)

Denoting

N

X:%(/qup[wo](u’)du/)é and  F(z)=z—In(1+2),

n



30 M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43

a monotonically increasing function of (positive) inverse F~!(y). Thus, we have

a2 AZD?p? 420
F(X) < u—u,]< n_ 4
from which we get
x<pr (A0

- 2 bluy) )’

which translates into
1
u 3 L (A2D?
a</unEp[¢o](u’)du’> <b.F 1( : b(w). (3.50)

Note that F~'(y) <2,/y(14./y) for all y>0 (this follows easily from the inequality
2<2y/z(14+/2z)—In(142+/2(1++/2)) for all z>0), hence (3.50), combined with (3.47)

gives

Bl <e( [ Biwlw) +
<’ -A-Dp(e)- [b%(un)\/i+A.D-n(e).ug 4 b(u). (3.51)

Now, note that, as a consequence of (3.46b) and Corollary 3.2, there exists C' >0
independent of € such that

b(uy) < A2 4O Plow, (3.52)
So, combining (3.51) and (3.52) gives, for u large enough and Dn(e) small enough

1+2An(e)
' 9226
To achieve a small Dn(e), we take D to be independent of € and 3—p=+/€, so that

n(e)=0(y/e). We will also take A to be independent of ¢ and choose 6 =0O(y/€) so
that

Epltho](u) Supy’- A% (1+2An(e) Suply - A% n(e) : (3.53)

2% = [1+2An(e)]%

In view of Corollary 3.2, the left-hand-side of (3.53) also controls Ep and, there-
fore, (3.46b) is satisfied for k=n+1, after taking e (hence 7(€)) small enough. Now,
to prove (3.46a) for k=n+1, we come back to (3.45), which we combine with (3.53)
to obtain

/ uEp—l[%] (u)du'+ Ep[tho] (u) S A -n(e) uy . (3.54)
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Then, by the mean-value theorem, there exists w € [up,un1] such that

By [tho) (uy,) SA%n(e)-u, '+, (3.55)

n

and by Corollary 3.1, we deduce that for all u € [uy,u, 1],
Ep1[to](u) SA%-n(e)-u=+2, (3.56)

thus, (3.46b) is satisfied for k=n-+1 if € (hence n(¢)) is small enough and D is large
enough. Thus, (3.43b) and (3.43a) for ¢=ppisn—1 are proved. In view of the fact
that ppign—1€ (1,2), we can finally apply Lemma 3.1 and deduce (3.43a) for any
0<q<phign—1. O

Then, we deduce a corollary From Proposition 3.6 that will end-up being useful
in the next section.

Corollary 3.6. Let 0<q<3+ny, for some no€(0,1). Then for all u>uy,
/ 1970 (o >+ utho| > +12 Ot |*] S Prion 240, (3.57)
Dr(u,00)
Proof. By Proposition 3.2 (Hardy inequality) and Lemma 3.2, we have
/ 970 o] *+|0utbo > + 12| Outho ]
Dr(u,00)
+o0
S ol [ P+ 0w (. on(w)d
Dr(u,00) u
< / P 0P+ B (u)
Dr(u,00)
“+o0o
S| Bualbul(u)du'+Bla). (3.58)
Now by Corollary 3.1 and Proposition 3.6, we have
+o00 _
[ En il S B ) Sun e,

which concludes the proof. O]

Finally, from Proposition 3.6, we deduce the proof of (1.11) when restrict to ¢,

189 the spherical average.
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Corollary 3.7. The following estimate holds: for all u>ug, v>vg(u)

1=ppig €
rlol (u,0) Su— =+ (3.59)
Proof. We write, by the Cauchy-Schwarz inequality for any 1 >0
+o0 1/2
al(0) S, Bl () | [ 10, (3.60)
vr(u)
Then, combining Proposition 3.1 with v=7 and Proposition 3.6, to
ol (u,0p(u)) Su™ "3 HHT <oy 30N, (3.61)
By Proposition 3.6, we also obtain
+oo
/ r1+’7|8v¢0|2(u,v)dv Su1+n—ph,1:gh §U—2+n+0(\/€) (3.62)
vR(u)
Combining the two concludes the proof of (3.59), choosing n=0=0(/e). O

3.7 Energy and radiation field pointwise decay statements
of Theorem 1.1

Finally, we obtain the proof of (1.10) and (1.11) in Theorem 1.1. First, (1.10) results
from an immediate application of Proposition 3.5 and Proposition 3.6, noting that

E[9](u) = E¢o] (u) + E[21] (u) Su v P t20 <300V, (3.63)

Then, (1.11) is obtained as an immediate application of Corollary 3.7 and Corol-
lary 3.5.

4 Commuted energy and point-wise decay under
extra assumptions

In this section, we will utilize (1.12a), (1.12b), (2.3) to derive faster decay for the T-
commuted energy (1.25) and sharp point-wise decay in the bounded-r region (1.14).
We generalize the approach of Gajic in [11], that consists in establishing a new
hierarchy for the quantity ©y=1r9,1.



M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43 33

o 4.1 An additional hierarchy

22 We start to derive a r? weighted hierarchy for ©y and 2<p<3.
Proposition 4.1. There exists C>0 independent of € so that for all 24-Ce<p<ppign:

/ 7"’|&L,®()|2 < g PrightpF20(e) (4.1)
Cy
Moreover, let (u,)nen be a dyadic sequence and u, <u; <us <tu,,1. Then
ug
/ / [,r,p—l |av®0|2+7,p—3|60’2]dul §u;phigh+p+26(6)' (42)
Proof. We define ©g=1r0,19, and assuming 9,0,1y=F', we find that
-0,
040000+ — 2 9,004+ (=1 L0, Dyr 1207 0y1) O = O, (1 F). (4.3)
r

By (3.5) and (1.4), we have, choosing R(¢) large enough:

1
8uav@o+;&,90—7“_2@0

< S (ol 10,00/ +180|+718,00).  (44)

Now, multiply (4.4) by 70,0, and integrate on Dg(uy,us), in the same fashion
as in Lemma 3.3 and Proposition 3.4, with additionally an integration by parts in v
of the 7772[0,0,]0, term to obtain

[ moent+p+1+06) [

Cluy Dr(u1,uz2)

/ rp—4[|wo|2+|auw0121]
Dr(u1,u2)

u2
+CR/ > 10atol* (W ,ur(u))du,
“ el
after absorbing various terms into the left-hand-side. In what follows, we will take
2+Ce<p<3 for some C'>0 independent of € arranged so that all the terms in the left-
hand-side are coercive. We also use Proposition 3.2 applied with g=p—1 to proceed
as in the proof of Proposition 3.6 to obtain, noting the fact that r7=2|9,1[*=r?~103
and we also use Lemma 3.2 to control the term CRLZQZ|a|<1 1000 | (v, vg(u'))du’

/ rpav@0|2+(p+1+0(€))/

Cluy Dr(u1,uz)

< / 210,00[2 +€[3—p) " / 20,0
C Dr(u1,u2)

ul

17119,00[24+ (p— 2+ 0(e)) / 310,
Dr(u1,u2)
1

2

[N

5/ rp\av@o|2-|—e

1

/ 219,00
Dr(u1,uz2)

110,002+ (p— 2+ 0(c)) / 3]0y 2
Dr(u1,u2)

2

2

/ rp\aveoﬁ
Dr(u1,u2)

+E(u1), (4.5)
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where in the last line, we have used the fact that r?=4|0¢|? =7P"2|9,1o|>. Then, we
can apply Proposition 3.6 and take p=pp;g, in (4.5), resulting in

J

u2

T A

Dp(u1,uz)

Tphi9h|3v@o|2+/

Dr(u1,u2)
1
_1 2 -
f,/ 19110, 00| +€[3— phign] g {/ Tphigh|av@0|2} +E(u1),  (4.6)
Cul DR(ulaUQ)

We can then repeat the proof of Proposition 3.6 to obtain

[ oo |
C

ug Dr (ul ,UQ)

rPan =119, 00|+ / rPrisn =812 Sup’ @ (4.7)

Dr(u1,uz2)

Now let 24 Ce<p <ppign. We write, using (4.7)

/ rp\&,@o|2+/ 7“7’1|&J@0]2—|—/ 7310, 2
C Dr(u1,u2) Dr(u1,u2)

uz
{/ yPhigh—1 ‘av@0|2
Dr(u1,u2)

SIS
NI

< / 710,002+ / r20=3=pion |y [+ | Dt ]
C, L/ Dr(u1,u2)

ul

+E(uy)

5/ Tp\av@0|2+€/ r2r S im0, 0] | up+E(un).
Cul L DR(“DUQ)

=

Now, note that 2p—3—ppn < —1 so we can still apply Proposition 3.2 (Hardy
inequality) and obtain

/ rp\(?U@o]Q—F/
c

. Dr(u1,u2)

< / 710,002
Cuy

1
2
S / 710,00+ V raw} ug+ Bur)
C Dr(u1,u2)

uq

119,00+ / 77310, 2

Dr(u1,uz2)

<[ (19
C

uq

where in the last line, we have used Proposition 3.6. Now, applying (4.8) if u; <us=
UE [Up,Uny1], Where (u,)nen is a dyadic sequence easily gives

/ 1710,00° < / PP 18,00 |2 +un i P, (4.9)

Cuy
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Note that by (4.7) applied to uy =u,, and us=wu,1, there exists u} € [u,,u,+1] such
that

/ rPhisn =119, 00)2 Sy 1T (4.10)
C

By interpolation between (4.7) with us=u] and (4.10), we obtain

/ r7]9,00* Sun " T (4.11)
Cur

Taking u; = in (4.9) and combining with (4.11) then concludes the proof of the

proposition. O

4.2 Improved decay for the time-derivative

In this section, we take advantage of Proposition 4.1 to derive improved decay for
the T" derivative of v, in order to prove (1.25) in Theorem 1.1. To fix the notations,
recall Ty = 0,19+ 0,19. Assuming 0,0,109=F, we obtain

0, T =F+01g=F +0,(r"'09) = F+17'9,00—172(9,1|0q. (4.12)

We start by showing improved decay for the rP-weighted energy of T'¢g along a
dyadic sequence. The following result—Proposition 4.2 below—does not require the
use of the extra assumptions (1.12a), (1.12b), (2.3).

Proposition 4.2. There exists pr(€) € (2,pnign), nr(€)€(0,1), with pr(e)=3—0(/€)
and nr(e)=0(\/€) as e—0, such that for all dyadic sequences (uy)nen, there erxists
Ul € [Un,Uny1] such that

Epr [T o) (uy,) Sy, >, (4.13)

Moreover, the following estimate holds for all dyadic sequences (un)nen

Un41
/ 7|0, Tepo|* = / Epy [T o) (w)du Suy, #2100 (4.14)
DR(un,unJrl) Un

Proof. Let p'=3—v, where v€(0,1). We write, using (1.4)

1?10, Tabo| <1’ F2 417 =400 |21 72|, 0 |2
ST ([tbo|* +10utho]?) +17 4O +17 219,00 . (4.15)
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for u; <wug, we integrate (4.15) on Dg(u1,us), and, making use of Proposition 3.2
(Hardy inequality) with ¢=p’'—1, we obtain

/ 7|0, Ttho|?
Dr(u1,u2)
u2

5/ 00 * 417 210,00+ Cr [ |0adol* (W vp(w))du,  (4.16)
Dr(u1,u2)

" al<1
which turns into the following estimate after applying Lemma 3.2

/ P10, Tibo|? < / P =002+ 720,00 |+ E (u1). (4.17)
Dr(ui,u2)

Dr(u1,u2)

Now, if > Ce, then p'—1+42v € (2+C€,ppign) and thus we have by Proposition 4.1
applied to p=p'—1+42v that, assuming as in its statement that u, <wu; <ug <41,
where (u,,)nen is a dyadic sequence

/ T Qo 2rt EH|9, @p 2 Sy o THHEITIND <0 10WD. - (4.13)
Dp(u1,u2)

Thus, combining with (4.17) and (1.10), we end up with

/ (0, T S O, (4.19)
Dr(u1,u2)
Thus, by the mean-value theorem, there exists u* € [uy,u,+1] such that

/ P10, T | < u;2+o(\/€), (4.20)
which concludes the proof. O

Now, we move on to using the extra assumptions (1.12a), (1.12b), (2.3) to show
that the improved decay proved in Proposition 4.2 on a dyadic sequence in fact holds
for all u. Let us denote

1
0u0, Tty = 7“% (Z@Di(u,v) -0 Ty +G(u,v) -r&UT@bO) +eFy. (4.21)

=0

As a consequence of the assumptions (1.4), (2.2), (2.3) note that

1
|[Fol <r? (Z(ITTH@HT!T@T%D'\3Z¢o!+(!T7"\QI+?"\TQDﬂ&%!)

1=0

1
57 (Sletuul+r10nl ) (122
=0
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Proposition 4.3. Assume (1.12a), (1.12b), (2.3) are satisfied. Then, there exists

pr(©) € (2 pugn), 7r(€) € 0.1, with pr(c) =3=0(6) and 1r(e) =O(V8) as =0
such that

Ep [T o) (u) Su>m), (4.23)
Moreover, for all 0 <q<pr—1,
Eq [T o) () SU*Q*pT+77T(€)+q. (4.24)

Proof. Take (uy,)nen, a dyadic sequence and u,, <uy <us <u,1.We will start to show
that the analogue of Proposition 3.4 holds for T'¢g. We proceed as in the proof
of Proposition 3.4, take 0 <q <pj, and apply the multiplier r97T, to get, as in
Corollary 3.1

[ BT wdu 760w

u1

<E[To) (un) +€ / P By P 5OV, (4.25)

Dr(u1,u2)

where we have also used (1.12a) and Proposition 3.6. Then, as in the proof of
Proposition 3.6, we apply the multiplier P Ty, with p=ps, and integrate to get,
using (4.25)

[ Bt aldur BT o))

u1l

P Fy|?)2 {/qup[Tz/)O](u)du] %. (4.26)

u1

SE,[To)(ur) + (B [Tifo] (u) + /

Dr(u,uz)
Now, we can combine (4.22) and Corollary 3.6 with no=0O(y/€), to get

/ ) Ep 1 [To] (u)du+ Ep[Tho) (uz2)

SE,[Too) (wr) +e( By [Toh0] (ur) +uy, *OVI)2 {/M E,[T'tho] (u)d“} 5' (4.27)

By (4.14) in Proposition 4.2, we have

/uzEp—l[T%Ku)dWrEp[T%](W)

u1

SE[T0) () + €(Byp 1 [Tho] (ur) -+ 7+ OWE Yoy 77770 (4.28)

n
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Then, take u; =u’ so that (4.13) in Proposition 4.2 is valid, thus for all us €[u}, 1y 11]

*

/w&ammwww&ﬂmwm5@”%&@@&%«%Mm#W@.@m)

Now, by the mean-value theorem again, there exists u** € [u,u,. 1] such that

Ep1[To] () S, 7 4 e Byt [T) () 7. (4.30)
But then, by the boundedness result of Corollary 3.1, we in fact have
1 _3 €
sup By [Tool(u) S, e By [Tl (up) e 7, (4.31)
u€uf un+1]

hence, by the Cauchy-Schwarz inequality
sup B, [T (u) Suy, T2, (4.32)

u€uf unt1]
Hence, for all u>ug
E, 1 [Tebo)(u) Su=?t2r, (4.33)

Finally we conclude with the proof of (4.24), using Lemma 3.1.

4.3 Finishing the proof of point-wise decay

We now turn to the completion of the proof of Theorem 1.1, where (1.11) remains
the only estimate to be established. We will assume the extra assumptions (1.12a),
(1.12b), (2.3) hold throughout this section. First, the point-wise decay of ¢ is
obtained by Corollary 3.5 so in the rest of the proof we focus on ¢g, the spherical
average. We start by establishing the optimal point-wise decay result of ¢y on the
constant r-curve r=R.

Lemma 4.1. The following estimate holds:
ol (u,vr () Su~?+ OV, (4.34)

Proof. We use (1.12b) repeating the argument of Lemma 3.2 we find that, combining
with Proposition 4.3 and Proposition 3.6

+oo
/ |¢0|2<ulij<ul>)du/ S, E[%] (u) gu*pm’gh+26(e) §u73+0(ﬁ)7 (4.35&)

u

+00
/ T o> (' vn(u))du’ S E[T o] (u) Su>PrHm Su=>rOVo, (4.35b)



M. Moortel / Ann. Appl. Math., 40 (2025), pp. 1-43 39

Now, note that

—+o00

|d0]*(u,0R(u) S do-Tpo(u',vp(u'))du’

u
1
2

+oo % +oo
5{ / |¢0|2(u’,vR(u’))du’} [ / |T¢0|2(u’,vR(u’))du’] S (436)
210 which gives (4.34). O

220 Next, we prove similar bounds for 0¢ on the constant r curve r=R.

Lemma 4.2. The following estimate holds:

D 10adol* (uw,vr(u) Su O, (4.37)

laf=1

Moreover, there exists C' >0 independent of €, such that for all n€(—1,1) such that
In|>Ce,

—+00
/ (r Bt 024 |2) df Sum OV (4.38)
vg(u)

Proof. We take n with 0< |n| <1, and write, invoking Proposition 3.2 (Hardy in-
equality)

+o0
/ Oy | (u, 0" ) do'

r(u)

+oo
S0 ool (womw)) 2 [ PR P
vr(u)
+0o0
Sl (w4 [ gz ) (439)
vR(u)
Next, we write, using (4.12)
+oo
/ 0240 |* (u, ) dv'
vR(u)
+00
S/ rl=n (|3UT1/10|2+62T*4(|1¢0\2+|3u¢0|2+7’2|81,¢0|2) (u,v")dv’. (4.40)
vR(u)
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Then, applying Proposition 3.2 (Hardy inequality) to the |¢g|* and |9,10|* terms,
we end up with

“+o0o +oo
/ 7’1"|83¢0|2(u,v')dv’§/ (r17"|8UT¢0]2+627’*1’7’|8Uw0|2) (u,v")do'

r(u) vr(u)

6 ([0l (n.0m(0) +0u0 P (wvn(w) . (4.41)

Now, we apply Proposition 4.3 and Lemma 4.1 to obtain (denoting x, the positive
part of x)

+0o0o
/ P P (0 )

r(u)
“+o00
Sy IO | (2 / P10, 0 () o' + 000 P op(w).  (4.42)
vRr(u)

Combining (4.39) and (4.42) gives

+o0 +oo
/ 7“_1_"|(9u¢o|2(u,v’)dv'§u_4+[_"]*+o(ﬁ)+77_2€2/ M0yt (v dv!

Rr(u) r(u)

+07 22010 |* (u,vR (). (4.43)

Now, choosing 772e2=4§ small enough (this requires the claimed condition on 7 that
In|>Ce), we get

—+oo
/ r_l_"|8vwo|2(u,v')dv’Su_4+[_”]++o(\/a+5|8U@Z)0|2(u,1)3(u)), (4.44)
vR(u)
as well as
—+o0
/ rl_”|8v¢g|2(u,v’)dv'§U_4+[_n]++o(ﬁ)~|—62|0Uw0|2(u,vR(u)). (4.45)
vr(u)

To close the estimate, we then try to bound [9,10|*(u,vr(u)). We write, for
any v =vg(u), and taking advantage of the fact that lim, ,,.0,%0(u,v) =0 and
Proposition 3.2 (Hardy inequality) and Lemma 4.1

+oo
10,0 (w,vr () < / T Bt 1)

R

+oo 12 1 +o0 / %
< [ / =1 |9yt 2,0 )] [ / P |9 2 (1,0 !

r(u) r(u)

SO 4 519,002 (w,0p(w))] 2 [u= T HOVA 1 210,400 2 (u v (u) )] 2
Sum OV 4 510,100 2 (u v (w)), (4.46)
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where in the last two lines, we have applied (4.44) with n=n" and (4.45) with n=—7/,
respectively and chosen ' =O(y/€). Choosing 7 so that 0 is sufficiently small, we
have established (4.37) with a=v, i.e.,

10,0/ (u, vR(u)) Su OV, (4.47)

and thus, combining with (4.44), (4.45) also gives (4.38). To show (4.37) with a=u,
we invoke Proposition 3.1 applied to T'¢y and Proposition 4.3 to obtain

[ To| (u,vr(u)) Su=FOW9, (4.48)
which gives (4.37) with a=u after combining with and noticing that [9,¢o|<|0, 00|+
| T'¢ol- [

The proof of the following proposition will conclude the proof of (1.14), in view
of the above remarks.

Proposition 4.4. The following estimate holds for all uw>wug, v>vg(u)
|pol(u,v) Su=2HOWVE), (4.49)

Proof. To complete the proof of (4.49), we propagate (4.34) of Lemma 4.1 in the
region where v >vg(u).

We start writing, using Proposition 3.2 (Hardy inequality), Lemma 4.1 and
Lemma 4.2: for all u>wug, v>vg(u), and any ne (0,1)

(2

60[2(u,) < Lo (u,0r(u)) + / 2o 10utto ;') o’

vR(u)
1

St nont) [ [ i [ [ o o]

vRr(u)

+oo 1 +oo

Sy IOV [/ r’l”’|3v¢o|2(u,v’)dv’+u*4+o(*/€)} ’ [/ 10240 (u, ) dv’
vr(u) vr(u)

1
+u—4+0(ﬁ)] U ATONE) g [y O =y 4O [~ O+ Ly 40V

Su OV, (4.50)
where, in the last line, we have applied Lemma 4.2 with n=+0(y/€). This concludes
the proof. O
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