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Background: Outcome measures that are count variables with excessive zeros
are common in health behaviors research. Examples include the number of
standard drinks consumed or alcohol-related problems experienced over time.
There is a lack of empirical data about the relative performance of prevail-
ing statistical models for assessing the efficacy of interventions when outcomes
are zero-inflated, particularly compared with recently developed marginalized
count regression approaches for such data. Methods: The current simulation
study examined five commonly used approaches for analyzing count outcomes,
including two linear models (with outcomes on raw and log-transformed scales,
respectively) and three prevailing count distribution-based models (ie, Poisson,
negative binomial, and zero-inflated Poisson (ZIP) models). We also consid-
ered the marginalized zero-inflated Poisson (MZIP) model, a novel alternative
that estimates the overall effects on the population mean while adjusting for
zero-inflation. Motivated by alcohol misuse prevention trials, extensive simula-
tions were conducted to evaluate and compare the statistical power and Type I
error rate of the statistical models and approaches across data conditions that
varied in sample size (N = 100 to 500), zero rate (0.2 to 0.8), and intervention
effect sizes. Results: Under zero-inflation, the Poisson model failed to control
the Type I error rate, resulting in higher than expected false positive results.
When the intervention effects on the zero (vs. non-zero) and count parts were in
the same direction, the MZIP model had the highest statistical power, followed
by the linear model with outcomes on the raw scale, negative binomial model,
and ZIP model. The performance of the linear model with a log-transformed out-
come variable was unsatisfactory. Conclusions: The MZIP model demonstrated
better statistical properties in detecting true intervention effects and control-
ling false positive results for zero-inflated count outcomes. This MZIP model
may serve as an appealing analytical approach to evaluating overall intervention
effects in studies with count outcomes marked by excessive zeros.
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1 | INTRODUCTION

Count outcomes are frequently encountered in health behaviors research. Examples of such data include number of
standard drinks containing alcohol consumed,! number of cigarettes smoked,? and number of sexual risk behaviors
experienced.? Zero-inflation occurs when there is an excessive proportion of outcome values stacked at zero, which is a
common phenomenon, especially with behavioral health outcomes. For example, in alcohol prevention and intervention
trials aimed at reducing alcohol consumption among participants, the proportion of participants reporting zero alcohol
drink can be as high as 66%, suggesting that the outcome variable was zero inflated.* One reason for the disproportionate
proportions of zeros and non-zero values is that the study population may consist of two clinically distinct groups, where
one group comprises participants at-risk for alcohol consumption and the other comprises participants not-at-risk (eg,
participants who are abstainers that will not consume any drink, resulting in zero-inflation). In the following context, we
refer to the above two groups as the at-risk and not-at-risk subpopulations, respectively.

Many types of statistical approaches have been utilized to model count data in the literature. To appropriately account
for the count nature of such data, researchers have used generalized linear models based on count distributions, such as
the Poisson and negative binomial (NB). The Poisson regression model assumes that the mean of the outcome is equal to
the variance, while the NB regression model allows the variance to be greater than the mean by incorporating an additional
dispersion parameter. Both the Poisson and NB models assume that the study sample comes from one homogeneous
population and relate covariates to the mean outcome of the entire sample. With these models, there is no flexibility to
account for excessive zeros when the count outcome of interest is zero inflated.

The zero-inflated Poisson (ZIP) model is an extension of the regular Poisson model that is more appropriate for count
data with excessive zeros by using a mixture distribution of the Poisson distribution and a point mass at zero (ie, the
structural zeros). In the context of alcohol intervention trials, the Poisson part can be considered as evaluating the at-risk
subpopulation who may or may not drink at a given assessment, and the structural zero part as evaluating the not-at-risk
subpopulation who “predictably” do not drink (eg, abstainers for religious or other personal reasons). More discussion
for the two-part nature of the ZIP model can be found in Reference 5. Unlike the Poisson and NB models that evalu-
ate the effects of each covariate on the overall mean of the outcome, the ZIP model separately evaluates the effects on
the two parameters of the mixture distribution-the Poisson mean and the probability of a structural zero. As a conse-
quence, the estimates from a ZIP model can be cumbersome to interpret, as they describe two different parameters for
two subpopulations.

To directly infer the effects on the overall mean and maintain the ability to account for zero inflation, the marginalized
ZIP (MZIP) model has been proposed based on the framework of the ZIP model.®® Instead of separately evaluating the
effects on the two parameters, this approach makes direct inference on the overall effect of the entire sample by linking the
marginal (or overall) mean of the outcome to the covariates. Compared to the ZIP model, which conceptually separates
the population into two subpopulations, the MZIP model treats the entire sample as a whole, which makes it feasible
to answer the following, simpler but often critical question of whether the intervention is efficacious for the entire study
population. That question is commonly of principal interest when a clinical trial is designed® and can be accounted for in
a calculation of sample size based on an MZIP model.!°

Despite the increasing availability of new statistical methods and software for analyzing count data with zero infla-
tion, a nonignorable number of studies still do not utilize appropriate statistical methods for such data. For example,
in a meta-analysis of 17 studies using individual participant data from each, over half (nine studies) had excessive pro-
portions of zero outcomes (ie, number of drinks). However, of the nine, eight did not account for this zero inflation.* A
review by Reference 11 summarized the statistical models used to evaluate the effectiveness of brief alcohol interventions
in reducing alcohol consumption. The investigators reviewed 119 alcohol-related count outcomes from 64 papers and
observed that more than half of the outcomes (61.3%) were analyzed using statistical models that assume normally dis-
tributed residuals. Less than a third (31.1%) were analyzed using count distribution models. These observations suggest
a gap between the methodological advances and their applications in applied research.

In this article, we aim to bridge the implementation gap by providing evidence-based guidance in selecting appropriate
statistical models for count data with or without excessive zeroes through extensive simulation studies. To this end, we
conducted a methodological phase III study!? to compare the statistical performance across candidate methods for count
data by evaluating their ability to control Type I error (ie, ability to control false positive findings) and statistical power
(ie, ability to detect a true effect, when it exists) under a large range of data conditions inferred from application settings.
Based on the empirical evidence, we then provide pragmatic recommendations on selecting a preferred method among
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candidate methods in different scenarios (eg, when a certain method is preferred). More specifically, we consider three
broad sets of statistical models. The first set consists of conventional count distribution-based models for data with or
without zero-inflation, including the Poisson, NB, and ZIP models. The second is a marginalized model for zero-inflated
data, specifically the MZIP model. The third set consists of linear models, with or without logarithm transformation,
which have been commonly used in the literature (eg, see Reference 11). This current study is a neutral comparison study,
where we focus on comparing existing approaches for count data, without preference for any particular method. None of
the authors of the current study was involved in the development of the methods being evaluated. Note, however, that our
group developed an R package “mcount”3 to fit the MZIP model based on methods as described in the original paper’
for applications. For more discussion on the concept of neutral comparison study, please see References 14,15.

This article is organized as follows. In Section 2, we describe the formulation of the count distribution-based models
considered in the simulation study. In Section 3, we describe a simulation study to evaluate and compare the relative
performances of candidate methods under various data conditions. In Section 4, we summarize the empirical results in
terms of Type I error and statistical power obtained from the simulation study. In Section 5, we discuss the overall findings
and conclusions.

2 | METHODS

For a clinical trial with two arms, let us assume that the outcome of interest is a count variable that may or may not have
excessive zero values. Suppose that the study sample size is n and for the i-th participant,i = 1,2, ... , n, the count outcome
is y;. Consider p — 1 covariates in the statistical model of the trial outcome, one of which is the intervention assignment
indicator 1(4,-7}, where A; denotes i-th participant’s assignment to either the intervention (T) or control (C) arm. Denote
the remaining p — 2 covariates as X;_, = (X2, Xi3, ... ,Xip—1)". In the following, we describe potential statistical models
that may be considered to evaluate the intervention effect on the count outcome, including the Poisson, NB, ZIP, MZIP,
and linear regression models with raw scale scores or log-transformed scores.

2.1 | Poisson and NB regression models

Among the count distribution-based regression models, the Poisson model has the most straightforward formulation by
modeling the logarithm of the mean outcome through a list of predictors. The outcome values are assumed to follow the
Poisson distribution, which restricts the mean value to be equal to its variance. When there is “overdispersion” in the
data, where the variance of the distribution is larger than the mean, the Poisson model can underestimate variance and
yield invalid inferences. Based on the two-arm trial design described at the beginning of the Methods Section, the Poisson
model can be expressed as

y; ~ Poisson(v;),

Poi Poi Poi i
log) = X" = By + p" Lja=ry + X[, M,

(€]

where v; = E[y;] is the overall mean of the outcome under a Poisson distribution, x; = (1, 1; Ai=T},ti_2)[, and g =

i
(pre, foi’ nPoy = (pEoi, ﬁ{’oi, 5‘”', ey ﬂlfﬁil)t are the vectors of regressors and regression coefficients, respectively.

The NB model is an alternative count regression model. Compared to the Poisson regression model, it incorporates an
additional “dispersion” parameter, which allows the variance to be greater than the mean. Therefore, the NB regression

model is flexible in accommodating overdispersion. Similarly, the NB regression model can be expressed as

yi ~ NB(v;, k), @)
NB

log(vy) = X" = fg + By " Lia=my +x;, 0"
where v; = [E[y;] is the overall mean of the outcome and k > 0 is the dispersion parameter, which satisfies Var[y;] =

2

v+ %‘ Of note, the above parameterization for dispersion follows the Type 2 NB distribution (or NB2) with a quadratic
mean-variance relationship.'® For a Type 1 NB distribution parameterization, the variance is a linear function of the mean,
which is less commonly used in practice.
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2.2 | ZIP regression model

When evaluating count outcomes, zero inflation is said to be present when the observed proportion of zeros is much
greater than the theoretically expected proportion under a conventional count distribution, such as Poisson or NB. Such an
observation typically reflects inherent study population characteristics, where a subset of participants will “predictably”
produce zeros (ie, the not-at-risk subpopulation as previously described in the Introduction section). In the presence of
zero inflation, the Poisson and NB models may not perform well because their formulations do not account for excessive
zeros. As a result, the two statistical models (ie, Poisson and NB models) could produce biased effect size estimates and
inaccurate statistical significance inferences.!”

The ZIP model was proposed to account for zero inflation by explicitly modeling excessive zeros.!®1° This model
assumes that a count outcome follows a mixture distribution consisting of the Poisson distribution and a point mass at
zero (ie, the structural zeros). For example, in the context of alcohol intervention trials whose primary goal is to reduce the
number of drinks consumed, the Poisson part can be considered as evaluating an at-risk subpopulation who may or may
not drink at a given assessment. In contrast, the structural zero part can be considered as evaluating the not-at-risk sub-
population who “predictably” do not drink (eg, abstainers for religious or other personal reasons). More discussion on the
two-part nature of the ZIP model can be found in Reference 5. Consequently, the intervention effects are estimated in two
separate parts—the rate ratio (RR) of the mean in the Poisson part (eg, number of drinks, including random zeros from
those who happened not to drink) and the odds ratio (OR) of being a structural zero (eg, abstainers vs. non-abstainers) in
the structural zero part. The ZIP model can be formally expressed as

0 with probability z;
y- ~ ’
Poisson(y;)  with probability 1 — x;

. 3
log <ﬁ> = xl?yZIP =" + v lia=r) + xl{p_ZCZIP, and

L
108(/41) — X;‘ﬂZIP — ﬂgIP + ﬂIZIP]I{Ai:T} + Xl{’p_zrlzlp’
where y; = E[y;|y; from the Poisson part] is the mean parameter of the Poisson part, z; = Pr(y; is a structural zero) is the
structural zero rate, B“° = (77, pZ1P, y?POY = (2P, p7IP, 2P ﬁfﬁ)t are the regression coefficients for the Poisson

ZIP
part, and y** = (/{'", y"7, 4OV = G P )

A are the regression coefficients for the structural zero part.
When applying the ZIP model to data, covariate effects, such as an intervention or treatment effect, are interpreted sepa-
rately for the two parts, corresponding to two distinct subpopulations. However, in many clinical trials, whether there is
an “overall” intervention or treatment effect for the entire population is important and often the principal clinical ques-
tion. Unfortunately, the overall intervention effect is not straightforward to evaluate in a ZIP model. Of note, under the
ZIP model, the “overall mean,” which is denoted by E[y;] £y, can be expressed as
t gZIP
vi=Q1 -7z = L{m 4)
1447

Equation (4) implies that the “overall mean” depends on all covariates and consequently all parameters from the two
parts of the model. More importantly, the overall effect of the intervention, which is usually defined as the incidence rate
ratio (IRR) between the intervention (T) and control (C) groups holding other covariates constant, is expressed as

1+exp(rf” +x;_,¢%")

]E[ylA = T7X —2]
L P = exp(p7h)

ElyjlA; = C,xp] 1+ exp(ya® + yAP + XI‘)_ZCZIP)’

(5

where i and j represent two hypothetical participants in treatment and control groups, respectively, and with the same
sets of covariates (ie, X,_»). Because the IRR is a function of covariates x,_, in Equation (5), it implies that under the
ZIP model, unless the treatment indicator is the only covariate included in the model (ie, x,_, = 0), the intervention
effect depends on all other covariate values and varies across individuals. To obtain a population-level overall treat-
ment effect from the ZIP model, it is necessary to integrate out all covariates, which can be computationally tedious and
error prone.
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2.3 | MZIP model

The MZIP model is an extension of the ZIP model.>® The MZIP model accounts for zero inflation and directly models
the overall mean of the outcome. Recall that we denote E[y;] 2 v; as the overall mean and y; as the mean of the Poisson
variable. The MZIP model is then expressed as

0 with probability r;
y' ~ )
Poisson(y;)  with probability 1 — z;
(6)

P
log <1 z” > = xIyMAP =  MZIP |\ MZIPY |y XEp—Z EMZIP and
— :

MZIP MZIP MZIP ZIP
log(vy) = x! M0 = g1AP 4 pYAPT g oy + xf’p_an .

Note that the MZIP model is different from the ZIP model in that the MZIP directly models the overall mean (ie, v;) through
covariates, instead of the mean in the Poisson part (ie, y;) as in the ZIP model (see Equations 4 and 5). No additional
regression equation is needed for the Poisson mean, y;, as it is determined through the equation u; = 1E_ln Intuitively, to

produce the same overall mean of the entire population (v;), the mean number of outcomes in the at-risk subpopulation
(u;) would need to be higher to offset a scenario with a greater proportion of individuals in the not-at-risk subpopulation
(x;), and vice versa.

In Equation (6), the intervention effect on the “overall mean” outcome for the entire population is quantified by
ﬁi"mp , which can be interpreted as the log incidence density ratio difference between the intervention and control groups.
Therefore, M#!? enjoys the same straightforward interpretation as g or g*. Compared to the ZIP model where the
intervention effect is interpreted separately for the at-risk (through p#*) and not-at-risk (through y?*) subpopulations,
the MZIP model evaluates the intervention effect on the entire population through the latent parameter p)“/*. With a
single intervention effect estimate on the entire population, the MZIP model is advantageous over the ZIP model when
answering the question of whether, and to what extent, an intervention in question is efficacious for the entire population.
In addition to the intervention effect on the overall mean estimate, the MZIP model provides the parameter estimates
in the structural zero part using the same formula as in the ZIP model. Therefore, the MZIP model retains the ability to
evaluate the intervention effect for the not-at-risk subpopulation through the latent parameter yM#/*.

The likelihood function of an MZIP model is as follows:

L(},MZIP’ ﬂMZIP |y) — H(l + exl{yMZIP)_IH[eXZ{yMZIP + e_(1+exp(xl§ymzzp))exp(X;ﬂMZIP)]
Yi ;=0
[e—(1+eXP(Xf7MZIP)) eXP(XfﬂMZIP)(l + X i X ] @)

-
yi>0 i

To fit an MZIP model, one can estimate the parameters by maximizing the likelihood function shown in Equation (7)
using non-linear optimization algorithms, which has been implemented in an R package “mcount” (Reference 13; see
Reference 9 for a real data application utilizing the “mcount” R package).

3 | SIMULATION

The simulation study is structured according to the ADEMP scheme, which has five elements, including aims,
data-generating mechanisms, estimands and other targets, methods, and performance measures.?’ Each of the five
elements is described in the following subsections.

31 | Aims

The simulation study is aimed at evaluating comparative performances across five statistical models for count data in
terms of empirical statistical power and Type I error in various data situations. The methods considered are the Poisson
model, NB model, ZIP model, MZIP model, and linear model.
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3.2 | Data-generating mechanisms

The simulation settings for study characteristics were based on motivating data from Project INTEGRATE,?! a large-scale
individual participant data meta-analysis project examining the effectiveness of brief alcohol interventions on reducing
alcohol consumption among young adults. Therefore, the simulation settings used in this study represent a broad range
of data conditions in this field. Because the ZIP regression model allows for the flexible manipulation of the intervention
effect on the two subpopulations through the Poisson and structural zero parts, it was selected as the data generating
model. Specifically, for an individual study with two arms, we considered total sample sizes of N € {100,200, 300,500},
where the outcome of the i-th subject (i € {1,2, ... , N}) was simulated by a ZIP model characterized by y; ~ Poisson(y;)
with probability 1 — z;, and 0 otherwise. The Poisson mean parameter y; and the structural zero rate z; were determined
through the following link functions

log (&) = yo + r1l{a=1) + r2Cov;, and
log(ui) = fo + Pl (a=1) + f2CoV;,

®)

where the intervention group assignment was determined by 1 4,-ry ~ Bernoulli(0.5) and the covariate was generated by
Cov; ~ N(0,1). Equation (8) is a special case of the general formulation of a ZIP model (Equation 3). For this simulation,
we considered the situation, in which the outcomes are explained by the difference in the intervention versus control
group and an additional individual-level covariate for baseline differences in the outcome.

The regression coefficients f; and y; in Equation (8) measure the intervention effects on the Poisson and structural
zero parts of the ZIP model, respectively. In the context of alcohol intervention studies, f; could quantify the effect of the
intervention on the average number of drinks for participants who drink, with f; < 0 representing a favorable interven-
tion effect (ie, reduced drinking). y; would quantify the intervention effect on the proportion of abstainers, with y; > 0
indicating a favorable intervention effect (ie, a greater proportion of non-drinking) in the intervention arm. Since the
intervention influences the outcome in two ways, we considered the following four intervention conditions characterized
by different values of f; and y;:

Condition 1. f; € {—0.1,-0.2,-0.3} and y; = 0.5: Intervention reduces the average number of drinks for those who drink
(ie, RR = 0.90, 0.82, 0.74) and increases the proportion of abstainers or nondrinkers (ie, OR = 1.65).

Condition 2. f; € {—0.1,-0.2,-0.3} and y; = 0: Intervention reduces the average number of drinks for those who drink
(ie, RR = 0.90, 0.82, 0.74) but has no effect on abstainers (ie, OR = 1).

Condition 3. f; =0 and y; = 0.5: Intervention has no effect on the average number of drinks (ie, RR = 1) for those who
drink but increases the proportion of abstainers (ie, OR = 1.65).

Condition 4. f; € {0.1,0.2,0.3} and y; = 0.5: Intervention increases the average number of drinks for those who drink
(ie, RR = 1.11, 1.22, 1.35) and increases the proportion of abstainers or nondrinkers (ie, OR = 1.65).

Condition 5. f; =0 and y; = 0: Intervention has no effect on both the average number of drinks and the proportion of
abstainers (ie, RR =1and OR =1).

Conditions 1-4 will be used to evaluate statistical power across the models, where intervention is effective for the
number of drinks, the likelihood of drinking, or both. In Condition 4, the intervention has an iatrogenic effect increasing
the average number of drinks consumed (f; > 0) but has an intended effect increasing the proportion of non-drinking
(y1 > 0). Because the intervention has conflicting effects on the two parts, this condition may be less common in alcohol
prevention and intervention trials. However, this atypical scenario provides interesting empirical evidence on the relative
performance of the methods, which we will discuss later. In Condition 5, the intervention has no effect. This condition
can be used to evaluate the Type I error rate of all models considered.

To evaluate statistical properties over different levels of zero inflation, we varied the proportion of zero outcomes from
0.2, 0.3, ..., 0.8. Once f; and y; are determined in each condition, we set fy = 0.8 — #; and f, = 0.2, so that the mean
expected number of drinks is fixed, ensuring that samples are comparable across simulation conditions with respect to
their drinking level. We further constrained y, = 2y, so y, can be calculated such that the pre-determined zero rate can
be reached. Note that f, and y, are the parameters quantifying the effects of a covariate in the simulation, which are of
less interest in applied research. The simulation settings are summarized in Table 1.
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TABLE 1 Summary of simulation settings.

Possible values
Sample size 100, 200, 300, 500
Zero rate 0.2,0.3, ...,0.8
B -0.1,-0.2,-0.3,0,0.1,0.2, 0.3
71 0,0.5

3.3 | Estimands and other targets

The simulation estimand or target of interest is to test a null hypothesis regarding the intervention effect, that is, Hy: the
intervention has no effect on alcohol consumption. This is a general expression and the specific null hypothesis for each
method is described below in Section 3.4.

3.4 | Methods

We considered the Poisson, NB, ZIP, MZIP, and linear models in this simulation. The null hypothesis to test intervention
effects in each method was described as follows.

1. Poisson model-testing the effect of intervention on the overall mean of the entire population (Hy : ﬁf of = 0).
2. NB model-testing the effect of intervention on the overall mean of the entire population (Hy : f’B =0).
3a. ZIP model-testing the effect of intervention on the mean of the Poisson part (Hy : f“* = 0).
3b. ZIP model-testing the effect of intervention on the structural zero part (Hy : y“* = 0).
4. MZIP model-testing the effect of intervention on the overall mean of the entire population (H, : pM** = 0).
5a. Linear model with raw scale scores-testing the effect of intervention on the overall mean of the entire population
(Hp : plnear—raw wwhere pinear-"av is the intervention effect in the model).
5b. Linear model with log-transformed outcome scores-testing the effect of intervention on the overall mean of the
entire population (Hy : f"ear’log , Where ﬂiinear’log is the intervention effect in the model). Note that a constant of 1

was added to outcome values to avoid taking the logarithm of zero.

Note that the ZIP model evaluates the intervention effect in two distinct parts, which come with two separate statistical
tests for the intervention effect (ie, Models 3a & 3b).

3.5 | Performance measure

To evaluate and compare the performance of considered methods for testing the null hypothesis of Hy: the intervention
has no effect on alcohol consumption, we calculated the empirical Type I error rate and statistical power of each method.
In each simulation setting, we considered 8,000 replications. In each replication, study data were generated based on
the data-generating mechanisms explained above, and the considered models were fit to the generated data. After 8,000
replications per condition, we calculated the rejection rate, which is the proportion of replications that yielded statistically
significant results for the intervention for each condition for each model. In Conditions 1-4, which have at least one true
intervention effect, the observed rejection rate is the empirical statistical power (ie, true positives). In the final Condition
5 with null intervention effects, the rejection rate is the empirical Type I error rate, which is the ability to control the
probability of having false positive results. We set the significance level at 0.05, so the rejection rate of 0.05 means that
the method adequately controlled the Type I error. If the rejection rate is less than 0.05, the method is overly conservative
in controlling the Type I error, which could lead to the inability to detect a true intervention effect, when it exists. If the
rejection rate is greater than 0.05, the method may be prone to false positive results. The relative performance across the
methods was evaluated by comparing their rejection rates from the models in each of the simulation settings.
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4 | RESULTS
41 | Typelerror

Figure 1 presents the rejection rates of the five statistical methods under null effects (Condition 5) across simulation
settings. Since the intervention has no effect on the count and zero parts (f; = y; = 0), the rejection rates represent the
empirical Type I error. To account for the Monte-Carlo error incurred due to using a finite number of replicates (ie,
8,000), we considered the estimated Type I error to be significantly different than 0.05 if it was outside the range of

[0.0S +1.96 X 4/ % =[0.045,0.055]. From the results, we see that first, the Poisson model failed to control the

Type I error rate, which was highly inflated (> 0.06) across simulation settings. Notably, as the zero rate increased, the
inflation of the Type I error rate became more severe, indicating that the Poisson model is increasingly likely to lead to
false conclusions. Second, the MZIP model, the ZIP model testing the count part (noted as “3a. ZIP: count” in figure leg-
ends), and both of the linear models controlled the Type I error rate well (ie, within the expected range [0.045,0.055])
across simulation settings. Third, the ZIP model testing the intervention effect on the structural zero part (noted as “3b.
ZIP: zero” in figure legends) controlled Type I error well when sufficient zero inflation existed (> 0.4 zero rate) and the
sample size was relatively large (> 300). However, when the zero inflation was modest (ie, < 0.4 zero rate) and the sample
size was small to modest (< 300), the tests became overly conservative with the Type I error rate less than 0.045. Fourth,
the NB model appropriately controlled Type I error when the zero rate was low to moderate (< 0.3). However, when the
zero rate increased to 0.4 or higher, the Type I error rate generally fell below 0.045. Although the NB model is still valid
in terms of statistical significance and its ability to control the probability of false positives, it is more likely to result in
excessive false negative results under zero inflation.

4.2 | Statistical power

The rejection rates for the statistical methods under Conditions 1-4 are presented in Figures 2-5, respectively.
Since the intervention had effects on at least the count or zero parts (f; or y; # 0), the rejection rates represent
empirical statistical power. The comparative results between the statistical methods for each of Conditions 1-4 are
described. Note that the Poisson model will not be discussed here because it is statistically invalid under zero inflation
(Figure 1).

4.2.1 | Condition1: f € {-0.1,-0.2,-0.3} and y; = 0.5

In Condition 1, the intervention is efficacious for both the count and zero parts. First, as shown in Figure 2, the MZIP
model testing the intervention effect on the overall mean and the linear model with raw scale scores had comparable
statistical power, which was generally the highest. Second, the linear model on log transformed scores was less powerful
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FIGURE 1 Results of empirical Type I error rates under Condition 5 for different statistical methods from 8,000 replications.
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FIGURE 2 Results of empirical statistical power under Condition 1 for different statistical methods from 8,000 replications.
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FIGURE 3 Results of empirical statistical power under Condition 2 for different statistical methods from 8,000 replications.
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FIGURE 4 Results of empirical statistical power under Condition 3 for different statistical methods from 8,000 replications.

than the MZIP and the linear model with raw scores under higher effect size (f; = —0.2 and —0.3), but the power disad-
vantage diminished at greater zero rates. When the effect size was small (f; = —0.1), the linear model on log transformed
scores had the highest power at high zero rates (> 0.5), but the power gain was modest compared to the MZIP model
testing the overall mean and the linear model on the raw scale. Third, the NB model performed well at lower zero rates
(< 0.3). However, as the zero rates increased, the statistical power of the NB model deteriorated quickly, showing much
lower rejection rates than the MZIP or linear models with either raw or log-transformed scores. This observation was
expected because of the overly conservative Type I error rate of the NB model under moderate to high levels of zero infla-
tion, which compromised its power to detect true intervention effects. Fourth, the ZIP model testing the count part had
less power since testing the intervention effect only for the count part of the population leaves the intervention effects on
the zero mass left ignored, leading to power loss.

Notably, under a sample size of N = 100, none of the methods reached a power of 0.8 in all simulation conditions.
When N = 200, a power of 0.8 was only achieved by the MZIP model, linear models, and NB models when the intervention
effect on the mean was —0.3 (ie, RR = 0.74) with low to moderate zero inflation. With a sample size of N = 300 or greater,
statistical power was adequate for the MZIP and linear models in more simulation conditions with a zero rate as a major
determining factor of power, along with the magnitude of effects.

4.2.2 | Condition2: f; € {-0.1,-0.2,—0.3} and y; =0

Suppose that intervention was efficacious only for participants who engaged in the behavior of interest, such as con-
suming drinks containing alcohol, but not for those who predictably did not drink. First, as shown in Figure 3, the ZIP
model testing the Poisson mean outperformed the four other statistical models (ie, MZIP, NB, and linear models with
raw or log transformed scores). It may be because the other models could not leverage the intervention effect on the zero
mass when estimating the overall treatment effect on the overall mean when y; = 0, and also because it was the “true”
model. Second, the MZIP model testing the intervention effect on the overall mean had the highest power of the remain-
ing four tests, followed by the linear model with raw scores, the NB model, and the linear model with log-transformed
scores.

4.2.3 | Condition 3: fy =0and y; = 0.5

In Condition 3, intervention had an effect only on the proportion of zero responses (eg, abstainers). Figure 4 shows the
results on the power to detect intervention effects. First, as the “true” model in this condition, the ZIP model testing
the structural zero part had the highest power with larger samples (N > 300). The linear model with log-transformed
outcome scores generally had the second highest power, followed by the linear model with raw scores and the MZIP
model. Moreover, even at N = 500, the power to detect the intervention effect was less than 0.8. For N = 300 or less,
statistical power was below 0.5. Of note, we anticipate that this condition is less common in practice as interventions
generally tend to influence the average number of drinks if they affect the likelihood of abstaining. Therefore, the result
of Condition 3 is not our primary interest in the current study.
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FIGURE 5 Results of empirical statistical power under Condition 4 for different statistical methods from 8,000 replications.
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424 | Condition4: f € {0.1,0.2,0.3} and y; = 0.5

Finally, Condition 4 represents a supposedly less common scenario where the intervention had conflicting effects on the
two subpopulations. The empirical power to detect intervention effects is presented in Figure 5. First, the ZIP model
testing the count part (3a in figure legends) or zero part (3b in figure legends) generally had the highest power among
the methods. Specifically, the test for the count part had higher power as f; increased, which was due to a higher
effect size, and the test for the zero part reached its highest power when the zero rate was 0.6. Second, the MZIP
model generally had a lower power compared to the ZIP model testing the count part and/or the ZIP model testing
the zero part, followed by the linear model with raw scores, the NB model, and the linear model with log-transformed
scores. Of note, the above four methods focus on the overall mean outcome difference between intervention and con-
trol groups. Because the intervention had conflicting effects on the count and zero parts, the intervention effect on
the overall mean from one part can be canceled out by the effect on the other part. Clinically speaking, the overall
mean number of drinks among the entire sample can be reduced because of the increased number of nondrinkers,
which is meaningful. However, any desirable effects on the structural zero part (ie, increased proportion of nondrinkers)
may be canceled out or dampened if the average number of drinks among those who drink increases. Therefore, it
may be helpful to check the direction of intervention effects on the two parts when deciding which statistical model
to select.

4.3 | Computational cost

The computational cost to estimate the methods considered in this study was generally negligible. For example, it took
less than 1 second to estimate each considered method for a setting of N = 500, f; = —0.2, y; = 0.5, and zero rate = 0.5.
The above experiment was conducted in a laptop with Intel i7-13700HX CPU (2.10 GHz).

5 | DISCUSSION AND CONCLUSIONS

We conducted a methodological phase III study!? to evaluate and compare the statistical properties of candidate methods
for count data through extensive simulation experiments in the context of health behaviors research. This was a neutral
comparison study aimed at evaluating and summarizing the relative performance across the considered methods in prac-
tical application settings for biostatisticians and applied researchers. We represented a variety of plausible data situations
in terms of the size and direction of the intervention effect, sample size, and degree of zero inflation. The empirical results
obtained from this simulation can serve to guide real data applications in the field. We provide clinical implications and
practical recommendations for model selection.

Among the conventional count distribution-based models without adjustment for zero-inflation, the Poisson model is
always invalid with an inflated Type I error rate under zero inflation according to our observation (eg, zero rate > 0.2). The
Poisson model tends to falsely judge an ineffective intervention to be efficacious, leading to excessive false positive results.
This result can be expected because the Poisson model does not allow modeling excessive zeros nor overdispersion, which
typically occurs in zero-inflated data.?? Therefore, we recommend against using the Poisson model in all scenarios where
zero inflation is present. Similar to the Poisson model, the NB model does not account for excessive zeroes, but allows
for overdispersion. However, it controls the Type I error below the nominal level in the simulation (eg, @ = 0.05). When
zero inflation is moderate to high (eg, zero rates > 0.4), the NB model tends to overly control Type I error, hampering
one’s ability to detect true intervention effects. Although the NB model is still statistically valid under zero inflation, its
statistical power is compromised.

The ZIP model is an extension of the Poisson model that accounts for excessive zeros through a mixture distri-
bution of the Poisson and a point mass at zero and is most powerful when the main interest is any single part of
the ZIP distribution. However, when the overall intervention effect on the entire population is of interest, it has less
power than the MZIP model according to our observation. When the intervention has favorable effects on both the sub-
populations (ie, reducing the average number of drinks among those who may drink and increasing the proportion
of abstainers), the MZIP model generally had superior statistical power in the simulation. This is because the MZIP
model evaluates the effects on the overall mean of the outcome directly, which combines the effects from both sub-
populations, yielding higher statistical power. Of note, although the ZIP model was used to simulate the data, it may
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have less power because the tested parameters, pZ* and yZ'*, captured the information from one of the corresponding

subpopulations. In contrast, the MZIP and other models were able to capture the information from the entire popula-
tion. When the intervention has conflicting effects on each of the subpopulations (eg, increasing the average number
of drinks among those who drink and also increasing the proportion of abstainers, as shown in Condition 4), the MZIP
model underperformed. This is because the intervention effect on the overall mean is attenuated by the effect on one
subpopulation canceling out the effect of the other, when the two effects are in opposite directions. However, this illus-
trates a scenario that is less likely to occur in practice as interventions and treatments are supposed to do no harm to
participants.

Under the studied simulation conditions, linear models are also valid with well-controlled Type I error rates. The
linear model with raw scale scores generally had higher statistical power compared with its counterpart with log
transformation. This observation suggests that although the use of count distribution-based models has been widely
promoted for count data, the linear models may still produce valid inferences with acceptable statistical power, espe-
cially when compared with the Poisson or NB models. However, the use of log transformation may not be optimal
for count outcome analysis with zero inflation due to information loss. For example, the count outcome of number
of drinks consumed in a week has a relatively limited range (eg, 0-30 drinks), so taking the log transformation may
not be as beneficial as in other situations with a large range, such as expenses in dollars in economic research. Of
note, the linear model with raw scale scores had almost identical statistical power to the MZIP model, which may be
because both methods target the mean difference in the outcomes. Other considerations in model selection between
these two models include the implementation and interpretation of the methods. The linear model is simpler to con-
duct and is available in nearly all statistical software. The MZIP model is less available in current software, but we
have developed an R package “mcount” that facilitates the implementation of this method. Moreover, the linear model
assumes the sample to be drawn from a homogeneous population and evaluates the effect based on a linear relation-
ship, while the MZIP assumes two separate subpopulations and evaluates the effect based on a log scale for the overall
mean.

This simulation study generated empirical evidence regarding the statistical power and Type I error across candidate
methods, which can be useful when selecting an appropriate method in practice. Beyond the relative statistical perfor-
mance, we recommend applied researchers consider other aspects, such as the underlying data generating mechanism
and the appropriate research questions for their study. For example, if it is assumed that a sample was drawn from a
homogeneous population, then statistical methods based on a mixture distribution (eg, ZIP and MZIP models) may not
be advisable. Another example is, if it is reasonable to assume there exists two subpopulations (eg, those at-risk and
not-at-risk) and questions of interest concern only on one of the subpopulations (eg, intervention aims to reduce alcohol
use among those who may drink), then the ZIP model may be preferred.

The simulation settings studied in the current study were motivated by the data from brief alcohol intervention studies.
Therefore, the findings are most relevant for the alcohol intervention trials with similar effect sizes. With zero-inflated
outcome data, we also observed that statistical power across the methods was mostly below 0.8 under small to moderate
sample sizes (eg, N < 300) and effect sizes in the simulation (eg, |f1| < 0.2, corresponding to an intervention effect that
reduces no more than 19% of the average number of drinks among participants who may drink). Even at a large sample
size of N = 500, the power was adequate (at the 0.8 level) only for a few conditions in the simulation. Specifically, typical
clinical trials would not have adequate power to detect a significant intervention effect under small to moderate effect
sizes with small to moderate samples, regardless of the statistical methods used. Our findings indicate that in the presence
of zero inflation, individual clinical trials lack statistical power to detect effects on count outcomes. This underscores the
value of meta-analysis using individual participant data for increasing statistical power when analyzing such data (eg,
Reference 9). Study-specific small or null effects can be combined together to provide large-scale robust evidence in the
field of brief alcohol intervention and related areas (eg, Reference 21).
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