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ABSTRACT
We introduce a reduction of inversive difference polynomials that

is associated with a partition of the basic set of automorphisms and

uses a generalization of the concept of effective order of a differ-

ence polynomial. Then we develop the corresponding method of

characteristic sets and apply it to prove the existence and obtain

a method of computation of multivariate dimension polynomials

that describe the transcendence degrees of intermediate fields of

finitely generated inversive difference field extensions obtained by

adjoining transforms of the generators whose orders with respect to

the components of the partition of the basic set are bounded by two

sequences of natural numbers. We show that such dimension poly-

nomials carry essentially more invariants (that is, characteristics of

the extension that do not depend on its difference generators) than

standard (univariate) difference dimension polynomials. We also

show how the obtained results can be applied to the equivalence

problem for systems of algebraic difference equations.
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1 INTRODUCTION
The role of difference dimension polynomials in difference algebra

is similar to the role of Hilbert polynomials in commutative algebra

and algebraic geometry, as well as to the role of Kolchin differential

dimension polynomials in the study of differential field extensions

and algebraic differential equations. In particular, as it is shown in

[7] (see also [8, Chapter 7]), the univariate difference dimension
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polynomial of a system of algebraic difference equations expresses

its A. Einstein’s strength, that is, the difference counterpart of the

concept of strength of a system of partial differential equations

introduced in [3]. Furthermore, the important role of difference

dimension polynomials is determined by at least three more factors.

First, a difference dimension polynomial of a finitely generated

difference field extension (or of a system of algebraic difference

equations defining such an extension) carries certain invariants, i.e.,

characteristics of the extension that do not change when we switch

to another system of difference generators (with the corresponding

change of the defining equations), see [5, Chapter 6] and [8, Chapter

4]. In this connection, one should mention the results on multivari-

ate difference dimension polynomials associated with partitions

of the basic set of translations, see [7], [10], and [8, Chapter 3].

They carry more invariants than their univariate counterparts. (See

also [2], [12], [15], and [18] where the results on difference dimen-

sion polynomials are generalized to the difference-differential case.)

Second, properties of difference dimension polynomials associated

with prime difference polynomial ideals give a powerful tool in the

dimension theory of difference algebras, see [5, Chapter 7], [8, Sec-

tion 4.6], [11] and [17]. Finally, the results on difference dimension

polynomials can be naturally extended to algebraic and differential

algebraic structures with a finitely generated commutative group

action, see [9], [13], [14] and [16].

In this paper we introduce a reduction of inversive difference

polynomials that is associated with a fixed partition of the set of

basic translations and takes into account the effective orders of the

polynomials with respect to the elements of the partition (we gen-

eralize the concept of the effective order of an ordinary difference

polynomial defined in [1, Chapter 2, Section 4]). We consider a new

type of characteristic sets of inversive difference polynomials that

are associated with the introduced reduction and use their proper-

ties to prove the existence of a multivariate dimension polynomial

of a finitely generated inversive difference field extension that de-

scribes the transcendence degrees of intermediate fields obtained by

adjoining transforms of the generators whose orders with respect

to the elements of the partition lie between given natural numbers.

This dimension polynomial is a polynomial in 2𝑝 variables where 𝑝

is the number of subsets in the partition of the basic set of transla-

tions. We determine invariants of such polynomials, i. e., numerical

characteristics of the extension that are carried by any its dimension

polynomials and that do not depend on the system of difference gen-

erators the polynomial is associated with. Our Theorem 4.2 shows

that the introduced dimension polynomials carry more invariants

of the corresponding inversive difference field extensions than the

univariate difference dimension polynomials introduced in [6] and

their multivariate counterparts defined in [10]. Note that while the

study of difference algebraic structures deals with power products
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of translations with nonnegative exponents, inversive difference

rings are considered together with the free commutative group

generated by basic automorphisms. Therefore, while the dimension

theory of difference rings and modules is close to its differential

counterpart, the study of inversive difference algebraic structures

(including the study of their dimensional characteristics) encoun-

ters many problems caused by the fact that one has to consider

negative powers of translations.

2 PRELIMINARIES
Throughout the paper, N, Z≤0, Z, Q, R, and Q[𝑡1, . . . , 𝑡𝑝 ] denote
the sets of all non-negative integers, non-positive integers, integers,

rational numbers, real numbers, and the ring of polynomials in

variables 𝑡1, . . . , 𝑡𝑝 over Q, respectively. As usual,
(𝑡+𝑖
𝑖

)
will denote

the polynomial (𝑡 +𝑖) (𝑡 +𝑖−1) . . . (𝑡 +1)/𝑖! ∈ Q[𝑡]. If 𝑆 is a finite set,
then Card 𝑆 denotes the number of its elements. If𝑚 ∈ N,𝑚 > 0,

then, ≤𝑃 will denote the product order on N𝑚 , that is, a partial

order such that (𝑎1, . . . , 𝑎𝑚) ≤𝑃 (𝑎′
1
, . . . , 𝑎′𝑚) if and only if 𝑎𝑖 ≤ 𝑎′𝑖

for 𝑖 = 1, . . . ,𝑚. The lexicographic order will be denoted by ≤
lex

.

By a difference ring we mean a commutative ring 𝑅 with unity

together with a finite set 𝜎 = {𝛼1, . . . , 𝛼𝑚} of mutually commuting

injective endomorphisms of 𝑅 called translations (every ring homo-

morphism is unitary, that is, it maps unity to unity). The set 𝜎 is

called the basic set of the difference ring 𝑅, which is also called a

𝜎-ring. If 𝑅 is a field, it is called a difference field or a 𝜎-field. (We will

often use prefix 𝜎- instead of the adjective ”difference”.) In what fol-

lows, every field is supposed to have characteristic zero. If all trans-

lations of 𝑅 are automorphisms, we set 𝜎∗ = {𝛼1, . . . , 𝛼𝑚, 𝛼−1
1
, . . . ,

𝛼−1𝑚 } and say that 𝑅 is an inversive difference ring or a 𝜎∗-ring. In
this case, Γ will denote the free commutative group of all power

products 𝛾 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 where 𝑘𝑖 ∈ Z (1 ≤ 𝑖 ≤ 𝑚). The order

of 𝛾 is defined as ord 𝛾 =
∑𝑚
𝑖=1 |𝑘𝑖 |; furthermore, for every 𝑟 ∈ N,

we set Γ(𝑟 ) = {𝛾 ∈ Γ | ord 𝛾 ≤ 𝑟 }. If a difference (respectively,

inversive difference) ring 𝑅 is a field, it is called a difference (or 𝜎-)
field (respectively, an inversive difference (or 𝜎∗-) field).

A subring (ideal) 𝑅0 of a 𝜎-ring 𝑅 is said to be a difference (or

𝜎-) subring of 𝑅 (respectively, difference (or 𝜎-) ideal of 𝑅) if 𝑅0 is

closed with respect to the action of any 𝛼𝑖 ∈ 𝜎 . A 𝜎-ideal 𝐼 of 𝑅 is

called reflexive if the inclusion 𝛼𝑖 (𝑎) ∈ 𝐼 (𝑎 ∈ 𝑅, 𝛼𝑖 ∈ 𝜎) implies

that 𝑎 ∈ 𝐼 . (If 𝑅 is a 𝜎∗-ring, it means that 𝐼 is closed with respect

to every automorphism from 𝜎∗). If a prime ideal 𝑃 of 𝑅 is also

a 𝜎-ideal, it is called a prime difference (or 𝜎-) ideal of 𝑅. If 𝑅 is a

𝜎∗-ring and 𝑃 is reflexive, it is referred to as a prime 𝜎∗-ideal of 𝑅.
If 𝑅 is a 𝜎-ring and 𝑆 ⊆ 𝑅, then the intersection 𝐼 of all 𝜎-ideals of

𝑅 containing the set 𝑆 is the smallest 𝜎-ideal of 𝑅 containing 𝑆 ; it is

denoted by [𝑆]. If the set 𝑆 is finite, 𝑆 = {𝑎1, . . . , 𝑎𝑟 }, we say that the
𝜎-ideal 𝐼 is finitely generated (we write this as 𝐼 = [𝑎1, . . . , 𝑎𝑟 ]) and
call 𝑎1, . . . , 𝑎𝑟 difference (or 𝜎-) generators of 𝐼 . If𝑅 is inversive, then

the smallest 𝜎∗-ideal 𝐼 of 𝑅 containing a subset 𝑆 of 𝑅 is denoted by

[𝑆]∗. Elements of the set 𝑆 are called 𝜎∗-generators of this ideal; if
𝑆 = {𝑎1, . . . , 𝑎𝑟 }, we write 𝐼 = [𝑎1, . . . , 𝑎𝑟 ]∗, say that the 𝜎∗-ideal 𝐼
is finitely generated and call 𝑎1, . . . , 𝑎𝑟 its 𝜎

∗
-generators. Clearly,

[𝑆]∗ is generated, as an ideal, by the set {𝛾 (𝑎) | 𝑎 ∈ 𝑆, 𝛾 ∈ Γ}. (In
what follows we will often write 𝛾𝑎 instead of 𝛾 (𝑎).)

If 𝑅 is a 𝜎∗-ring, then an expression of the form

∑
𝛾 ∈Γ 𝑎𝛾𝛾 , where

𝑎𝛾 ∈ 𝑅 for any 𝛾 ∈ Γ and only finitely many elements 𝑎𝛾 are

different from 0, is called a 𝜎∗-operator over 𝑅. It is an endomor-

phism of the additive group of 𝑅; if 𝐶 =
∑
𝛾 ∈Γ 𝑎𝛾𝛾 and 𝑓 ∈ 𝑅, then

𝐶 (𝑓 ) = ∑
𝛾 ∈Γ 𝑎𝛾𝛾 (𝑓 ). Two 𝜎∗-operators

∑
𝛾 ∈Γ 𝑎𝛾𝛾 and

∑
𝛾 ∈Γ 𝑏𝛾𝛾

are considered to be equal if and only if 𝑎𝛾 = 𝑏𝛾 for any 𝛾 ∈ Γ. The
set of all 𝜎∗-operators over 𝑅 will be denoted by E𝑅 . This set, which
has a natural structure of an 𝑅-module generated by Γ, becomes a

ring if one sets𝛾𝑎 = 𝛾 (𝑎)𝛾 for any 𝑎 ∈ 𝑅,𝛾 ∈ Γ and extends this rule
to the multiplication of any two 𝜎∗-operators by distributivity. The

resulting ring E𝑅 is called the ring of 𝜎∗-operators over 𝑅. Clearly,
if 𝐼 is a 𝜎∗-ideal of 𝑅, 𝐼 = [𝑓1, . . . , 𝑓𝑘 ]∗, then every element of 𝐼 is of

the form

∑𝑞
𝑖=1

𝐶𝑖 (𝑓𝑖 ) (𝑞 ∈ N) where 𝐶1, . . . ,𝐶𝑞 ∈ E𝑅 .
If 𝐿 is a 𝜎-field and its subfield 𝐾 is also a 𝜎-subring of 𝐿, then 𝐾

is said to be a 𝜎-subfield of 𝐿; 𝐿, in turn, is called a 𝜎-field extension

or a 𝜎-overfield of 𝐾 . We also say that we have a 𝜎-field extension

𝐿/𝐾 . If 𝐿 is inversive and 𝛼 (𝐾) ⊆ 𝐾 for any 𝛼 ∈ 𝜎∗, we say that 𝐾

is an inversive difference (or 𝜎∗-) subfield of 𝐿 or that we have a

𝜎∗-field extension 𝐿/𝐾 . In the last case, if 𝑆 ⊆ 𝐿, then the smallest

𝜎∗-subfield of 𝐿 containing 𝐾 and 𝑆 is denoted by 𝐾 ⟨𝑆⟩∗. 𝑆 is said
to be the set of 𝜎∗-generators of 𝐾 ⟨𝑆⟩∗ over 𝐾 . If the set 𝑆 is finite,
𝑆 = {𝜂1, . . . , 𝜂𝑛}, we say that 𝐿/𝐾 is a finitely generated 𝜎∗-field
extension. As a field, 𝐿⟨𝑆⟩∗ = 𝐾 ({𝛾𝑎 | 𝛾 ∈ Γ, 𝑎 ∈ 𝑆}).

Let 𝑅 and 𝑅′ be two difference rings with the same basic set 𝜎 , so

that elements of 𝜎 act on each of the rings as pairwise commuting

endomorphisms. (More rigorously, we assume that there exist in-

jective mappings of 𝜎 into the sets of endomorphisms of the rings

𝑅 and 𝑅′ such that the images of any two elements of 𝜎 commute.

For convenience we will denote these images by the same symbols).

A ring homomorphism 𝜙 : 𝑅 −→ 𝑅′ is called a difference (or 𝜎-)
homomorphism if 𝜙 (𝛼𝑎) = 𝛼𝜙 (𝑎) for any 𝛼 ∈ 𝜎 , 𝑎 ∈ 𝑅. Clearly, the
kernel of such a mapping is a reflexive difference ideal of 𝑅.

In what follows we deal with inversive difference (𝜎∗-) rings
and fields. If 𝑅 is such a ring and 𝑌 = {𝑦1, . . . , 𝑦𝑛} is a finite set

of symbols, we can consider the polynomial ring 𝑅 [Γ𝑌 ], where
Γ𝑌 denotes the set of symbols {𝛾𝑦 𝑗 |𝛾 ∈ Γ, 1 ≤ 𝑗 ≤ 𝑛}, as a 𝜎∗-
ring containing 𝑅 as its 𝜎∗-subring. The corresponding 𝜎∗-ring
extension is defined by setting 𝛼 (𝛾𝑦 𝑗 ) = (𝛼𝛾)𝑦 𝑗 for any 𝛼 ∈ 𝜎∗,
𝛾 ∈ Γ, 1 ≤ 𝑗 ≤ 𝑛; it is denoted by 𝑅{𝑦1, . . . , 𝑦𝑛}∗ and called the ring
of inversive difference (or 𝜎∗-) polynomials in 𝜎-indeterminates

𝑦1, . . . , 𝑦𝑛 over 𝑅. A 𝜎∗-ideal of 𝑅{𝑦1, . . . , 𝑦𝑛}∗ is called linear if it is
generated (as a 𝜎∗-ideal) by homogeneous linear 𝜎∗-polynomials,

that is, 𝜎∗-polynomials of the form

∑𝑑
𝑖=1 𝑎𝑖𝛾𝑖𝑦𝑘𝑖 (𝑎𝑖 ∈ 𝑅, 𝛾𝑖 ∈ Γ,

1 ≤ 𝑘𝑖 ≤ 𝑛 for 𝑖 = 1, . . . , 𝑑). It is shown in [8, Proposition 2.4.9] that

if 𝑅 is a 𝜎∗-field, then a linear 𝜎∗-ideal of 𝑅{𝑦1, . . . , 𝑦𝑛}∗ is prime.

If 𝐾 is a 𝜎∗-field, 𝑓 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}∗ and 𝜂 = (𝜂1, . . . , 𝜂𝑛) is
an 𝑛-tuple with coordinates in a 𝜎∗-overfield of 𝐾 , then 𝑓 (𝜂) (or
𝑓 (𝜂1, . . . , 𝜂𝑛) ) denotes the result of the replacement of every entry

𝛾𝑦𝑖 in 𝑓 with 𝛾𝜂𝑖 (𝛾 ∈ Γ, 1 ≤ 𝑖 ≤ 𝑛). If 𝜋 : 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛}∗ →
𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩∗ is a natural 𝜎-homomorphism (𝜋 (𝑎) = 𝑎 for any
𝑎 ∈ 𝐾 and 𝑦𝑖 ↦→ 𝜂𝑖 ), then 𝑃 = Ker𝜋 is a prime 𝜎∗-ideal of 𝑅 called

the defining ideal of the extension 𝐿/𝐾 . In this case, 𝐿 is isomorphic

to the 𝜎-field qf (𝑅/𝑃), the quotient field of 𝑅/𝑃 (𝜂𝑖 ↔ 𝑦𝑖 + 𝑃 ).
Let 𝐾 be a 𝜎∗-field andU a family of elements in some 𝜎∗-overfield
of𝐾 . We say thatU is𝜎-algebraically dependent over𝐾 , if the family

ΓU = {𝛾 (𝑢) | 𝛾 ∈ Γ, 𝑢 ∈ U} is algebraically dependent over 𝐾 .

Otherwise, the familyU is said to be 𝜎-algebraically independent
over 𝐾 . If 𝐿 is a 𝜎∗-overfield of 𝐾 , then a set 𝐵 ⊆ 𝐿 is said to be a
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𝜎-transcendence basis of 𝐿 over𝐾 if 𝐵 is 𝜎-algebraically independent

over 𝐾 and every element 𝑎 ∈ 𝐿 is 𝜎-algebraic over 𝐾 ⟨𝐵⟩∗ (that is,
the set {𝛾𝑎 | 𝛾 ∈ Γ} is algebraically dependent over 𝐾 ⟨𝐵⟩∗). If 𝐿 is a

finitely generated 𝜎∗-field extension of 𝐾 , then all 𝜎-transcendence

bases of 𝐿 over 𝐾 are finite and have the same number of elements

(see [8, Proposition 4.1.6]). This number is called the𝜎-transcendence
degree of 𝐿 over 𝐾 (or the 𝜎-transcendence degree of the extension

𝐿/𝐾 ); it is denoted by 𝜎-tr. deg𝐾 𝐿.

The following theorem, whose prove can be found in [5, Section

6.4], introduces the (univariate) dimension polynomial of a finitely

generated inversive difference field extension.

Theorem 2.1. Let 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩∗ be a 𝜎∗-field extension of
a 𝜎∗-field 𝐾 generated by a finite set 𝜂 = {𝜂1, . . . , 𝜂𝑛}. Then there
exists a polynomial 𝜙𝜂 |𝐾 (𝑡) ∈ Q[𝑡] such that

(i) 𝜙𝜂 |𝐾 (𝑟 ) = tr. deg𝐾 𝐾 ({𝛾𝜂 𝑗 |𝛾 ∈ Γ(𝑟 ), 1 ≤ 𝑗 ≤ 𝑛}) for all
sufficiently large 𝑟 ∈ N;

(ii) deg𝜙𝜂 |𝐾 ≤ 𝑚, where𝑚 = Card𝜎 , and 𝜙𝜂 |𝐾 (𝑡) can be written
as 𝜙𝜂 |𝐾 (𝑡) =

∑𝑚
𝑖=0 𝑎𝑖

(𝑡+𝑖
𝑖

)
where 𝑎0, . . . , 𝑎𝑚 ∈ Z and 2𝑚 |𝑎𝑚 .

(iii) 𝑑 = deg𝜙𝜂 |𝐾 , 𝑎𝑚 and 𝑎𝑑 do not depend on the set of 𝜎∗-

generators 𝜂 (if 𝑑 < 𝑚, 𝑎𝑑 ≠ 𝑎𝑚). Moreover,
𝑎𝑚

2
𝑚

= 𝜎-tr. deg𝐾 𝐿.
(iv) If the elements 𝜂1, . . . , 𝜂𝑛 are 𝜎-algebraically independent over

𝐾 , then 𝜙𝜂 |𝐾 (𝑡) = 𝑛
∑𝑚
𝑘=0

(−1)𝑚−𝑘
2
𝑘
(𝑛
𝑘

) (𝑡+𝑘
𝑘

)
.

The polynomial 𝜙𝜂 |𝐾 (𝑡) is called the 𝜎∗-dimension polynomial
of the 𝜎∗-field extension 𝐿/𝐾 associated with the system of 𝜎∗-
generators 𝜂. Methods and algorithms for computation of such

polynomials can be found in [5].

DIMENSION POLYNOMIALS OF SUBSETS OF Z𝑚

In what follows we give some results on numerical polynomials

associated with subsets of Z𝑚 (𝑚 is a positive integer). The proofs

of the corresponding statements can be found in [5, Chapter 2].

Definition 2.2. A polynomial 𝑓 (𝑡1, . . . , 𝑡𝑝 ) ∈ Q[𝑡1, . . . , 𝑡𝑝 ] is
called numerical if 𝑓 (𝑟1, . . . , 𝑟𝑝 ) ∈ Z for all sufficiently large
(𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 . (That is, there exist 𝑠1, . . . , 𝑠𝑝 ∈ N such that
𝑓 (𝑟1, . . . , 𝑟𝑝 ) ∈ Z for all (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 with 𝑟1 ≥ 𝑠1, . . . , 𝑟𝑝 ≥ 𝑠𝑝 .)

Polynomials in Z[𝑡1, . . . , 𝑡𝑝 ] and polynomials

∏𝑝

𝑖=1

( 𝑡𝑖
𝑚𝑖

)
with

𝑚1, . . . ,𝑚𝑝 ∈ N are examples of numerical polynomials in 𝑝 vari-

ables. The following theorem proved in [5, Chapter 2] gives the

”canonical” representation of such polynomials.

Theorem 2.3. Let 𝑓 (𝑡1, . . . , 𝑡𝑝 ) be a numerical polynomial in 𝑝
variables and𝑚𝑖 = deg𝑡𝑖

𝑓 (1 ≤ 𝑖 ≤ 𝑝). Then this polynomial can be
represented in the form

𝑓 (𝑡1, . . . 𝑡𝑝 ) =
𝑚1∑︁
𝑖1=0

. . .

𝑚𝑝∑︁
𝑖𝑝=0

𝑎𝑖1 ...𝑖𝑝

(
𝑡1 + 𝑖1
𝑖1

)
. . .

(
𝑡𝑝 + 𝑖𝑝
𝑖𝑝

)
(1)

with integer coefficients 𝑎𝑖1 ...𝑖𝑝 (0 ≤ 𝑖𝑘 ≤ 𝑚𝑘 for 𝑘 = 1, . . . , 𝑝) that
are uniquely defined by the numerical polynomial.

In what follows we deal with subsets of Z𝑚 . Also, we fix a parti-

tion of the set N𝑚 = {1, . . . ,𝑚} into 𝑝 disjoint subsets (𝑝 ≥ 1):

N𝑚 = Δ1 ∪ Δ2 ∪ . . . Δ𝑝 (2)

whereΔ1 = {1, . . . ,𝑚1},Δ2 = {𝑚1+1, . . . ,𝑚1+𝑚2}, . . . ,Δ𝑝 = {𝑚1+
· · ·+𝑚𝑝−1+1, . . . ,𝑚} (𝑚𝑖 = CardΔ𝑖 for 𝑖 = 1, . . . , 𝑝 ;𝑚1+· · ·+𝑚𝑝 =

𝑚). If 𝑎 = (𝑎1, . . . , 𝑎𝑚) ∈ Z𝑚 , we denote the numbers

∑𝑚1

𝑖=1
|𝑎𝑖 |,∑𝑚1+𝑚2

𝑖=𝑚1+1 |𝑎𝑖 |, . . . ,
∑𝑚
𝑖=𝑚1+···+𝑚𝑝−1+1 |𝑎𝑖 | by ord1 𝑎, . . . , ord𝑝 𝑎, respec-

tively; ord𝑘 𝑎 (1 ≤ 𝑘 ≤ 𝑝) is called the order of 𝑎 with respect to Δ𝑘 ).
Furthermore, we consider the set Z𝑚 as the union

Z𝑚 =
⋃

1≤ 𝑗≤2𝑚
Z
(𝑚)
𝑗

(3)

where Z
(𝑚)
1

, . . . ,Z
(𝑚)
2
𝑚 are all distinct Cartesian products of𝑚 sets

each of which is either N or Z≤0. We assume that Z
(𝑚)
1

= N and

call Z
(𝑚)
𝑗

the 𝑗 th orthant of Z𝑚 (1 ≤ 𝑗 ≤ 2
𝑚
).

The set Z𝑚 will be considered as a partially ordered set with

the order ⊴ such that (𝑒1, . . . , 𝑒𝑚) ⊴ (𝑒′
1
, . . . , 𝑒′𝑚) if and only if

(𝑒1, . . . , 𝑒𝑚) and (𝑒′
1
, . . . , 𝑒′𝑚) lie in the same orthant and

( |𝑒1 |, . . . , |𝑒𝑚 |) ≤𝑃 ( |𝑒′
1
|, . . . , |𝑒′𝑚 |).

If𝐴 ⊆ Z𝑚 , then𝑊𝐴 will denote the set of all elements of Z𝑚 that

do not exceed any element of 𝐴 with respect to ⊴. Furthermore, for

any 𝑟1, . . . , 𝑟𝑝 ∈ N, 𝐴(𝑟1, . . . , 𝑟𝑝 ) will denote the set of all elements

𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ 𝐴 such that ord𝑖 𝑥 ≤ 𝑟𝑖 (𝑖 = 1, . . . , 𝑝).

Theorem 2.4. [5, Theorem 2.5.5] Let 𝐴 ⊆ Z𝑚 and let partition (2)

of the set N𝑚 be fixed. Then there exists a numerical polynomial in 𝑝
variables 𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) such that

(i) 𝜙𝐴 (𝑟1, . . . , 𝑟𝑝 ) = Card𝑊𝐴 (𝑟1, . . . , 𝑟𝑝 ) for all sufficiently large
𝑝-tuples (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 .

(ii) deg𝜙𝐴 ≤ 𝑚 and deg𝑡𝑖
𝜙𝐴 ≤ 𝑚𝑖 (1 ≤ 𝑖 ≤ 𝑝). Furthermore, if

𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) is written in the form (1), then 2
𝑚 |𝑎𝑚1 ...𝑚𝑝

.
(iii) If 𝐴 = ∅, then

𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) =
𝑝∏
𝑗=1

[𝑚 𝑗∑︁
𝑖=0

(−1)𝑚 𝑗−𝑖
2
𝑖

(
𝑚 𝑗

𝑖

) (
𝑡 𝑗 + 𝑖
𝑖

)]
. (4)

The polynomial 𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) is called the dimension polynomial
of the set 𝐴 ⊆ Z𝑚 associated with partition (2) of N𝑚 . Algorithms

for computing such polynomials can be found in [5, Chapter 2].

3 𝐸-REDUCTION OF INVERSIVE DIFFERENCE
POLYNOMIALS. 𝐸-CHARACTERISTIC SETS

Let𝐾 be an inversive difference fieldwith a basic set𝜎 = {𝛼1, . . . , 𝛼𝑚}.
Let us fix a partition of the set 𝜎 into 𝑝 disjoint subsets (𝑝 ≥ 1):

𝜎 = 𝜎1

⋃
· · ·

⋃
𝜎𝑝 (5)

where 𝜎1 = {𝛼1, . . . , 𝛼𝑚1
}, 𝜎2 = {𝛼𝑚1+1, . . . , 𝛼𝑚1+𝑚2

}, . . . ,
𝜎𝑝 = {𝛼𝑚1+···+𝑚𝑝−1+1, . . . , 𝛼𝑚} (𝑚1 + · · · +𝑚𝑝 =𝑚) .

The order of an element 𝛾 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 ∈ Γ with respect to

𝜎𝑖 (1 ≤ 𝑖 ≤ 𝑝) is defined as

∑𝑚1+···+𝑚𝑖

𝜈=𝑚1+···+𝑚𝑖−1+1 |𝑘𝜈 |; it is denoted by

ord𝑖 𝛾 . If 𝑖 = 1, the sum is

∑𝑚1

𝜈=1
|𝑘𝜈 |. For any 𝑟1, . . . , 𝑟𝑝 ∈ N, we set

Γ(𝑟1, . . . , 𝑟𝑝 ) = {𝛾 ∈ Γ | ord𝑖 𝛾 ≤ 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑝)}.
Let us consider 𝑝 total orderings <1, . . . , <𝑝 of the group Γ such

that 𝛾 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 <𝑖 𝛾

′ = 𝛼
𝑘 ′
1

1
. . . 𝛼

𝑘 ′𝑚
𝑚 (1 ≤ 𝑖 ≤ 𝑝) if and only if

the (2𝑚 + 𝑝)-tuple (ord𝑖 𝛾, ord1 𝛾, . . . , ord𝑖−1 𝛾, ord𝑖+1 𝛾, . . . , ord𝑝 𝛾,
|𝑘𝑚1+···+𝑚𝑖−1+1 |, . . . , |𝑘𝑚1+···+𝑚𝑖

|, 𝑘𝑚1+···+𝑚𝑖−1+1, . . . , 𝑘𝑚1+...,+𝑚𝑖
,

|𝑘1 |, . . . , |𝑘𝑚1+···+𝑚𝑖−1 |, |𝑘𝑚1+···+𝑚𝑖+1, . . . , |𝑘𝑚 |, 𝑘1, . . . , 𝑘𝑚1+···+𝑚𝑖−1 ,

𝑘𝑚1+···+𝑚𝑖+1, . . . , 𝑘𝑚) is less than the corresponding (2𝑚 +𝑝)-tuple
for 𝛾 ′ with respect to the lexicographic order on Z2𝑚+𝑝

.

Two elements 𝛾1 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 and 𝛾2 = 𝛼

𝑙1
1
. . . 𝛼

𝑙𝑚
𝑚 are called

similar if (𝑘1, . . . , 𝑘𝑚) and (𝑙1, . . . , 𝑙𝑚) lie in the same orthant of Z𝑚 .
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Then we write 𝛾1 ∼ 𝛾2. We say that 𝛾1 divides 𝛾2 (or 𝛾2 is a multiple
of 𝛾1) and write 𝛾1 |𝛾2 if 𝛾1 ∼ 𝛾2 and 𝛾2 = 𝛾𝛾1 for some 𝛾 ∈ Γ, 𝛾 ∼ 𝛾1.

Let 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛}∗ be the algebra of 𝜎∗-polynomials in 𝜎∗-
indeterminates𝑦1, . . . , 𝑦𝑛 over𝐾 . Then 𝑅 can be viewed as a polyno-

mial ring in the set of indeterminates Γ𝑌 = {𝛾𝑦𝑖 | 𝛾 ∈ Γ, 1 ≤ 𝑖 ≤ 𝑛}
whose elements are called terms. We define the order of a term 𝑢 =

𝛾𝑦𝑖 with respect to 𝜎 𝑗 (denoted by ord𝑗 𝑢) as ord𝑗 𝛾 . Furthermore,

considering representation (3) of Z𝑚 , we set Γ𝑗 = {𝛼𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 ∈

Γ | (𝑘1, . . . , 𝑘𝑚) ∈ Z(𝑚)
𝑗

} and Γ𝑗𝑌 = {𝛾𝑦𝑖 | 𝛾 ∈ Γ𝑗 , 1 ≤ 𝑖 ≤ 𝑛}.
Terms 𝑢 = 𝛾𝑦𝑖 and 𝑣 = 𝛾 ′𝑦 𝑗 are called similar if 𝛾 ∼ 𝛾 ′; in this

case we write 𝑢 ∼ 𝑣 . If 𝑢 = 𝛾𝑦𝑖 is a term and 𝛾 ′ ∈ Γ, we say that

𝑢 is similar to 𝛾 ′ and write 𝑢 ∼ 𝛾 ′ if 𝛾 ∼ 𝛾 ′. Clearly, if 𝑢 ∈ Γ𝑌 ,
𝛾 ∈ Γ and 𝛾 ∼ 𝑢, then ord𝑗 (𝛾𝑢) = ord𝑗 𝛾 + ord𝑗 𝑢 for 𝑗 = 1, . . . , 𝑝 .

Furthermore, if𝑢, 𝑣 ∈ Γ𝑌 , we say that𝑢 divides 𝑣 (or 𝑣 is a transform
or a multiple of 𝑢) and write 𝑢 | 𝑣 , if 𝑢 = 𝛾 ′𝑦𝑖 , 𝑣 = 𝛾 ′′𝑦𝑖 for some 𝑦𝑖

and 𝛾 ′ |𝛾 ′′. (If 𝛾 ′′ = 𝛾𝛾 ′ for some 𝛾 ∈ Γ, 𝛾 ∼ 𝛾 ′, we write 𝑣
𝑢
for 𝛾 .)

We consider 𝑝 orders <1, . . . , <𝑝 on the set Γ𝑌 that correspond to

the orders on the group Γ (we use the same symbols for the orders

on Γ and Γ𝑌 ). These orders are defined as follows: 𝛾𝑦 𝑗 <𝑖 𝛾
′𝑦𝑘 if

and only if𝛾 <𝑖 𝛾
′
in Γ or𝛾 = 𝛾 ′ and 𝑗 < 𝑘 (1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗, 𝑘 ≤ 𝑛).

Definition 3.1. Let 𝑓 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}∗ \𝐾 and 1 ≤ 𝑘 ≤ 𝑝 . Then
the greatest with respect to <𝑘 term in 𝑓 is called the 𝑘-leader of the
𝜎∗-polynomial 𝑓 ; it is denoted by 𝑢 (𝑘 )

𝑓
. The smallest with respect to

<𝑘 term in 𝑓 is called the 𝑘-coleader of 𝑓 and is denoted by 𝑣 (𝑘 )
𝑓

.

Definition 3.2. Let 𝑓 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛} \𝐾 and let 𝑢 (𝑘 )
𝑓

and 𝑣 (𝑘 )
𝑓

be the 𝑘-leader and 𝑘-coleader of 𝑓 , respectively (1 ≤ 𝑘 ≤ 𝑝). Then the
nonnegative integer ord𝑘 𝑢

(𝑘 )
𝑓

−ord𝑘 𝑣
(𝑘 )
𝑓

is called the 𝑘th effective
order of 𝑓 ; it is denoted by Eord𝑘 𝑓 .

Definition 3.3. Let 𝑓 , 𝑔 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}∗. We say that 𝑓 has

lower rank than 𝑔 and write rk 𝑓 < rk 𝑔 if either 𝑓 ∈ 𝐾 , 𝑔 ∉ 𝐾 , or

(𝑢 (1)
𝑓
, deg

𝑢
(1)
𝑓

𝑓 , ord2 𝑢
(2)
𝑓
, . . . , ord𝑝 𝑢

(𝑝 )
𝑓
, Eord1 𝑓 , . . . , Eord𝑝 𝑓 ) <lex

(𝑢 (1)𝑔 , deg
𝑢
(1)
𝑔
𝑓 , ord2 𝑢

(2)
𝑔 , . . . , ord𝑝 𝑢

(𝑝 )
𝑔 , Eord1 𝑔, . . . , Eord𝑝 𝑔)

(6)

(𝑢 (1)
𝑓

and 𝑢 (1)𝑔 are compared with respect to the order <1 on Γ𝑌 ). If
the two (2𝑝 + 1)-tuples are equal (or 𝑓 , 𝑔 ∈ 𝐾) we say that 𝑓 and 𝑔
are of the same rank and write rk 𝑓 = rk𝑔.

Definition 3.4. Let 𝑓 , 𝑔 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}∗ and let 𝑑 = deg
𝑢
(1)
𝑔
𝑔.

We say that 𝑓 is 𝐸-reduced with respect to 𝑔 if at least one of the
following two conditions holds.

(i) 𝑓 does not contain (𝛾𝑢 (1)𝑔 )𝑒 (𝛾 ∈ Γ) with 𝛾 ∼ 𝑢 (1)𝑔 and 𝑒 ≥ 𝑑 ;
(ii) 𝑓 contains some (𝛾𝑢 (1)𝑔 )𝑒 with 𝛾 ∈ Γ, 𝛾 ∼ 𝑢

(1)
𝑔 , 𝑒 ≥ 𝑑 , and

either there is 𝑘 ∈ N, 2 ≤ 𝑘 ≤ 𝑝 , such that ord𝑘 𝑢
(𝑘 )
𝛾𝑔 > ord𝑘 (𝑢

(𝑘 )
𝑓

)

or there is 𝑗 ∈ N, 1 ≤ 𝑗 ≤ 𝑝 , such that ord𝑗 𝑣
( 𝑗 )
𝛾𝑔 < ord𝑗 (𝑣 ( 𝑗 )𝑓 ).

Thus, 𝑓 is not 𝐸-reduced with respect to 𝑔 if 𝑓 contains some

(𝛾𝑢 (1)𝑔 )𝑒 such that 𝛾 ∈ Γ, 𝛾 ∼ 𝑢
(1)
𝑔 , 𝑒 ≥ deg

𝑢
(1)
𝑔
𝑔, ord𝑘 𝑢

(𝑘 )
𝛾𝑔 ≤

ord𝑘 (𝑢
(𝑘 )
𝑓

) (2 ≤ 𝑘 ≤ 𝑝), and ord𝑗 𝑣
( 𝑗 )
𝛾𝑔 ≥ ord𝑗 (𝑣 ( 𝑗 )𝑓 ) for 𝑗 = 1, . . . 𝑝 .

Remark 3.5. If 𝑓 , 𝑔 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}∗ then 𝑓 is reduced with re-
spect to 𝑔 in the sense of [5, Definition 3.4.22] with respect to the term
ordering <1, if condition (i) of the last definition holds. Clearly, in this
case 𝑓 is 𝐸-reduced with respect to 𝑔 as well.

Remark 3.6. It follows from [18, Lemma 3.3] that for all 𝑓 ∈ 𝑅 =

𝐾{𝑦1, . . . , 𝑦𝑛}∗, 𝑗 ∈ {1, . . . , 2𝑚} and 𝑘 ∈ {1, . . . , 𝑝}, there exist terms
𝑢𝑓 𝑗𝑘 and 𝑣 𝑓 𝑗𝑘 in 𝑓 such that for all elements 𝛾 = 𝛼

𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 ∈ Γ𝑗

with sufficiently large ( |𝑘1 |, . . . , |𝑘𝑚 |) ∈ N𝑚 (in the sense of Defi-
nition 2.2), one has 𝑢 (𝑘 )

𝛾 𝑓
= 𝛾𝑢𝑓 𝑗𝑘 and 𝑣 (𝑘 )

𝛾 𝑓
= 𝛾𝑣 𝑓 𝑗𝑘 . Therefore, if

𝑓 ∈ 𝑅 and 𝑢 (1)
𝑓

= 𝛾1𝑦𝑘 where 𝛾1 ∈ Γ𝑗 (1 ≤ 𝑗 ≤ 2
𝑚), then there exist

𝑎𝑖 𝑓 , 𝑏𝑘 𝑓 ∈ Z (2 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑘 ≤ 𝑝) such that for any such 𝛾 ∈ Γ𝑗 ,

ord𝑖 𝑢
(𝑖 )
𝛾 𝑓

= ord𝛾 + 𝑎𝑖 𝑓 and ord𝑘 𝑣
(𝑘 )
𝛾 𝑓

= ord𝛾 + 𝑏𝑘 𝑓 .

Proposition 3.7. If 𝑓 , 𝑔 ∈ 𝐾{𝑦1, . . . , 𝑦𝑛}∗ and rk 𝑓 < rk𝑔, then
𝑓 is 𝐸-reduced with respect to 𝑔.

Proof. Suppose that 𝑓 is not 𝐸-reduced with respect to 𝑔. Then

𝑓 contains some (𝛾𝑢 (1)𝑔 )𝑒 where 𝛾 ∈ Γ, 𝛾 ∼ 𝑢 (1)𝑔 , 𝑒 ≥ 𝑑 = deg
𝑢
(1)
𝑔
𝑔

(hence 𝛾 = 1, since otherwise 𝑢
(1)
𝑔 <1 𝛾𝑢

(1)
𝑔 ≤1 𝑢

(1)
𝑓

that con-

tradicts the condition (6) for rk 𝑓 < rk𝑔), and also ord𝑘 𝑢
(𝑘 )
𝑔 ≤

ord𝑘 𝑢
(𝑘 )
𝑓

for𝑘 = 2, . . . , 𝑝 and ord𝑘 𝑣
(𝑘 )
𝑔 ≥ ord𝑘 𝑣

(𝑘 )
𝑓

for𝑘 = 1, . . . , 𝑝 .

Then Eord𝑘 𝑔 ≤ Eord𝑘 𝑓 (1 ≤ 𝑘 ≤ 𝑝), contrary to the inequality

rk 𝑓 < rk𝑔. Therefore, 𝑓 is 𝐸-reduced with respect to 𝑔. □

Proposition 3.8. Let A = {𝑔1, . . . , 𝑔𝑡 } be a finite set of 𝜎∗-
polynomials in the ring 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛}∗ and let 𝑢 (𝑖 )𝑘 denote the
𝑖-leader of 𝑔𝑘 (1 ≤ 𝑘 ≤ 𝑡, 1 ≤ 𝑖 ≤ 𝑝). Let 𝑑𝑘 = deg

𝑢
(1)
𝑘

𝑔𝑘 and

let 𝐼𝑘 be the coefficient of (𝑢 (1)
𝑘

)𝑑𝑘 when 𝑔𝑘 is written as a poly-

nomial in 𝑢 (1)
𝑘

(1 ≤ 𝑘 ≤ 𝑡). Furthermore, let 𝐼 (A) = {𝑓 ∈ 𝑅 |
either 𝑓 = 1 or 𝑓 is a product of finitely many 𝜎∗-polynomials of
the form 𝛾 (𝐼𝑘 ) (𝛾 ∈ Γ, 𝑘 = 1, . . . , 𝑡)}. Then for any ℎ ∈ 𝑅, there exist
𝐽 ∈ 𝐼 (A) and ℎ ∈ 𝑅 such that ℎ is 𝐸-reduced with respect to A and
𝐽ℎ ≡ ℎ(𝑚𝑜𝑑 [A]∗) (that is, 𝐽ℎ − ℎ ∈ [A]∗).

Proof. If ℎ is 𝐸-reduced with respect to A, one can set ℎ = ℎ.

Suppose that ℎ is not 𝐸-reduced with respect toA. In what follows,

if a 𝜎-polynomial 𝑓 ∈ 𝑅 is not 𝐸-reduced with respect to A, then a

term𝑤 𝑓 that appears in 𝑓 will be called theA-leader of 𝑓 if𝑤 𝑓 is the

greatest (with respect to <1) term among all terms 𝛾𝑢
(1)
𝑔𝑘

with 𝛾 ∈
Γ, 𝛾 ∼ 𝑢 (1)𝑔𝑘

, (1 ≤ 𝑘 ≤ 𝑡 ) such that 𝑓 contains (𝛾𝑢 (1)
𝑘

)𝑒 with 𝑒 ≥ 𝑑𝑘 ,
ord𝑖 𝑢

(𝑖 )
𝛾𝑔𝑘

≤ ord𝑖 𝑢
(𝑖 )
𝑓

for 𝑖 = 2, . . . , 𝑝 , and ord𝑗 𝑣
(𝑖 )
𝛾𝑔𝑘

≥ ord𝑗 𝑣
( 𝑗 )
𝑓

for

𝑗 = 1, . . . , 𝑝 . Let𝑤ℎ be the A-leader of the element ℎ, 𝑑 = deg𝑤ℎ
ℎ,

and 𝑐ℎ the coefficient of𝑤𝑑
ℎ
when ℎ is written as a polynomial in

𝑤ℎ . Then 𝑤ℎ = 𝛾𝑢
(1)
𝑘

for some 𝑘 ∈ {1, . . . , 𝑡} and 𝛾 ∈ Γ such that

𝛾 ∼ 𝑢 (1)𝑔𝑘
, 𝑑 ≥ 𝑑𝑘 , ord𝑖 𝑢

(𝑖 )
𝛾𝑔𝑘

≤ ord𝑖 𝑢
(𝑖 )
ℎ

(2 ≤ 𝑖 ≤ 𝑝), and ord𝑗 𝑣
( 𝑗 )
𝛾𝑔𝑘

≥
ord𝑗 𝑣

( 𝑗 )
ℎ

(1 ≤ 𝑗 ≤ 𝑝). Let us choose such 𝑘 that corresponds to

the maximum (with respect to <1) 1-leader 𝑢
(1)
𝑖

(1 ≤ 𝑖 ≤ 𝑡 ) and

consider the 𝜎∗-polynomial ℎ′ = 𝛾 (𝐼𝑘 )ℎ − 𝑐ℎ𝑤
𝑑−𝑑𝑘
ℎ

(𝛾𝑔𝑘 ). Clearly,
deg𝑤ℎ

ℎ′ < deg𝑤ℎ
ℎ and ℎ′ does not contain any A-leader 𝛾 ′𝑢 (1)𝜈

(𝛾 ′ ∈ Γ, 1 ≤ 𝜈 ≤ 𝑡 ) that is greater than𝑤ℎ with respect to <1 (such
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a term cannot appear in 𝛾 (𝐼𝑘 )ℎ or 𝛾𝑔𝑘 , since 𝑢
(1)
𝛾𝑔𝑘

= 𝛾𝑢
(1)
𝑔𝑘

= 𝑤ℎ).

Applying the same procedure to ℎ′ and continuing in the same way,

we will arrive at a 𝜎-polynomial ℎ ∈ 𝑅 such that ℎ is 𝐸-reduced

with respect to A and 𝐽ℎ − ℎ ∈ [A]∗ for some 𝐽 ∈ 𝐼 (A). □

The process of reduction described in the proof of the last propo-

sition can be realized by the following algorithm. (Recall that E𝑅 de-

notes the ring of 𝜎∗-operators over the 𝜎∗-ring 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛}∗.)

Algorithm 3.9. (ℎ, 𝑡, 𝑔1, . . . , 𝑔𝑡 ; ℎ)
Input: ℎ ∈ 𝑅, a positive integer 𝑡 , A = {𝑔1, . . . , 𝑔𝑡 } ⊆ 𝑅 where

𝑔𝑖 ≠ 0 for 𝑖 = 1, . . . , 𝑡

Output: Element ℎ ∈ 𝑅, elements 𝐶1, . . . ,𝐶𝑡 ∈ E𝑅 and 𝐽 ∈ 𝐼 (A)
such that 𝐽ℎ =

∑𝑡
𝑖=1𝐶𝑖 (𝑔𝑖 ) + ℎ and ℎ is 𝐸-reduced with respect to A

Begin
𝐶1 := 0, . . . ,𝐶𝑡 := 0, ℎ := ℎ

While there exist𝑘 , 1 ≤ 𝑘 ≤ 𝑡 , and a term𝑤 that appears inℎ with
a (nonzero) coefficient 𝑐𝑤 , such that 𝑢 (1)𝑔𝑘

|𝑤 , deg
𝑢
(1)
𝑔𝑘

𝑔𝑘 ≤ deg𝑤 ℎ,

ord𝑖 (𝛾𝑘𝑤𝑢
(𝑖 )
𝑔𝑘

) ≤ ord𝑖 𝑢
(𝑖 )
ℎ

for 𝑖 = 2, . . . , 𝑝 , where 𝛾𝑘𝑤 = 𝑤

𝑢
(1)
𝑔𝑘

, and

ord𝑗 (𝛾𝑘𝑤𝑣
( 𝑗 )
𝑔𝑘

) ≥ ord𝑗 𝑣
( 𝑗 )
ℎ

for 𝑗 = 1, . . . , 𝑝 , do
𝑧:= the greatest of the terms𝑤 that satisfy the above conditions.
𝑙 := the smallest number 𝑘 for which𝑢 (1)𝑔𝑘

is the greatest (with resect

to <1) 1-leader of an element of A such that 𝑢 (1)𝑔𝑘
| 𝑧, deg

𝑢
(1)
𝑔𝑘

𝑔𝑘 ≤

deg𝑧 ℎ, ord𝑖 (𝛾𝑘𝑧𝑢
(𝑖 )
𝑔𝑘

) ≤ ord𝑖 𝑢
(𝑖 )
ℎ

for 𝑖 = 2, . . . , 𝑝 , where 𝛾𝑘𝑧 = 𝑧

𝑢
(1)
𝑔𝑘

,

and ord𝑗 (𝛾𝑘𝑧𝑣
( 𝑗 )
𝑔𝑘

) ≥ ord𝑗 𝑣
( 𝑗 )
ℎ

for 𝑗 = 1, . . . , 𝑝 ,

𝐽 := 𝛾 (𝐼𝑙 ) 𝐽 , 𝐶𝑙 := 𝐶𝑙 + 𝑐𝑧𝑧𝑑−𝑑𝑙𝛾𝑙𝑧 where 𝑑 = deg𝑧 ℎ, 𝑑𝑙 = deg
𝑢
(1)
𝑔𝑙

𝑔𝑙 ,

and 𝑐𝑧 is the coefficient of 𝑧𝑑 when ℎ is written as a polynomial in 𝑧.
ℎ := 𝜏 (𝐼𝑙 )ℎ∗ − 𝑐𝑧𝑧𝑑−𝑑𝑙 (𝛾𝑔𝑙 )
End

Definition 3.10. A set A ⊆ 𝐾{𝑦1, . . . , 𝑦𝑛}∗ is said to be 𝐸-
autoreduced if either it is empty or A ⋂

𝐾 = ∅ and every element
of A is 𝐸-reduced with respect to all other elements of the set A.

Example 3.11. Let 𝐾 be an inversive difference field with a basic
set 𝜎 = {𝛼1, 𝛼2} considered with a partition 𝜎 = 𝜎1 ∪ 𝜎2 where
𝜎1 = {𝛼1} and 𝜎2 = {𝛼2}. Let A = {𝑔, ℎ} ⊆ 𝐾{𝑦}∗ (the ring of
𝜎∗-polynomials in one 𝜎∗-indeterminate 𝑦) where

𝑔 = 𝛼3
1
𝛼−2
2
𝑦 + 𝛼3

2
𝑦 + 𝛼2𝑦, ℎ = 𝛼2

1
𝛼−1
2
𝑦 + 𝛼−1

1
𝛼2
2
𝑦 + 𝛼1𝛼2𝑦.

Then𝑢 (1)𝑔 = 𝛼3
1
𝛼−2
2
𝑦, 𝑣 (1)𝑔 = 𝑣

(2)
𝑔 = 𝛼2𝑦,𝑢

(2)
𝑔 = 𝛼3

2
𝑦,𝑢 (1)

ℎ
= 𝛼2

1
𝛼−1
2
𝑦,

𝑣
(1)
ℎ

= 𝑣
(2)
ℎ

= 𝛼1𝛼2𝑦, and 𝑢
(2)
ℎ

= 𝛼−1
1
𝛼2
2
𝑦. We see that 𝑢 (1)𝑔 is a

transform of 𝑢 (1)
ℎ

, 𝑢 (1)𝑔 = 𝛾𝑢
(1)
ℎ

where 𝛾 = 𝛼1𝛼
−1
2

∼ 𝑢
(1)
ℎ

. Fur-

thermore, 𝛾ℎ = 𝛼3
1
𝛼−2
2
𝑦 + 𝛼2

1
𝑦 + 𝛼2𝑦, so 𝑢 (1)𝛾ℎ

= 𝑢
(2)
𝛾ℎ

= 𝛼3
1
𝛼−2
2
𝑦,

𝑣
(1)
𝛾ℎ

= 𝛼2𝑦, and 𝑣
(2)
𝛾ℎ

= 𝛼2
1
𝑦. Thus, ord2 𝑢

(2)
𝛾ℎ

= 2 < ord2 𝑢
(2)
𝑔 = 3,

ord1 𝑣
(1)
𝛾ℎ

= 0 = ord1 𝑣
(1)
𝑔 , but ord2 𝑣

(2)
𝛾ℎ

= 0 < ord2 𝑣
(2)
𝑔 = 1. There-

fore, 𝑔 is 𝐸-reduced with respect to ℎ. Since ℎ is clearly 𝐸-reduced
with respect to 𝑔, A = {𝑔, ℎ} is an 𝐸-autoreduced set. At the same
time, this set is not autoreduced in the sense of [5] where an analog of
Definition 3.4 does not assume option (ii) of our definition.

Proposition 3.12. Every 𝐸-autoreduced set is finite.

Proof. Suppose that there is an infinite 𝐸-autoreduced set A.

Since every infinite sequence of elements of Γ contains an infinite

subsequence whose elements are similar to each other (there are

only finitelymany orthants ofZ𝑚), it follows from [4, Chapter 0, Sec-

tion 17] that A contains a sequence of 𝜎∗-polynomials {𝑓1, 𝑓2, . . . }
such that 𝑢

(1)
𝑓𝑖

|𝑢 (1)
𝑓𝑖+1

for 𝑖 = 1, 2, . . . . Moreover, we can assume that

all leaders and coleaders of 𝜎∗-polynomials in this sequence are

similar to each other. Since the sequence {deg
𝑢
(1)
𝑓𝑖

𝑓𝑖 } cannot have
an infinite decreasing subsequence, without loss of generality we

can assume that deg
𝑢
(1)
𝑓𝑖

𝑓𝑖 ≤ deg
𝑢
(1)
𝑓𝑖+1

𝑓𝑖+1 (𝑖 = 1, 2, . . . ).

Let 𝑘𝑖 𝑗 = ord𝑗 𝑢
(1)
𝑓𝑖

, 𝑙𝑖 𝑗 = ord𝑗 𝑢
( 𝑗 )
𝑓𝑖

, 𝑛𝑖 𝑗 = ord𝑗 𝑣
( 𝑗 )
𝑓𝑖

(1 ≤ 𝑗 ≤ 𝑝).

Obviously, 𝑙𝑖 𝑗 ≥ 𝑘𝑖 𝑗 ≥ 𝑛𝑖 𝑗 (𝑖 = 1, 2, . . . ; 𝑗 = 1, . . . , 𝑝), so {(𝑙𝑖1 −
𝑘𝑖1 = 0, 𝑙𝑖2 − 𝑘𝑖2, . . . , 𝑙𝑖𝑝 − 𝑘𝑖𝑝 ) | 𝑖 = 1, 2, . . . } ⊆ N𝑝 and {(𝑘𝑖1 −
𝑛𝑖1, 𝑘𝑖2 − 𝑛𝑖2, . . . , 𝑘𝑖𝑝 − 𝑛𝑖𝑝 ) | 𝑖 = 1, 2, . . . } ⊆ N𝑝 . By [4, Chapter 0,

Section 17], there exists an infinite sequence 𝑖1 < 𝑖2 < . . . such that

(𝑙𝑖12−𝑘𝑖12, . . . , 𝑙𝑖1𝑝−𝑘𝑖1𝑝 ) ≤𝑃 (𝑙𝑖22−𝑘𝑖22, . . . , 𝑙𝑖2𝑝−𝑘𝑖2𝑝 ) ≤𝑃 . . . , (7)
(𝑘𝑖11−𝑛𝑖11, . . . , 𝑘𝑖1𝑝 −𝑛𝑖1𝑝 ) ≤𝑃 (𝑘𝑖21−𝑛𝑖21, . . . , 𝑘𝑖2𝑝 −𝑛𝑖2𝑝 ) ≤𝑃 . . . .

(8)

Then for 𝑗 = 2, . . . , 𝑝 and for 𝛾12 =

𝑢
(1)
𝑓𝑖
2

𝑢
(1)
𝑓𝑖
1

, we have (using (7))

ord𝑗 𝑢
( 𝑗 )
𝛾12 𝑓𝑖

1

≤ ord𝑗 𝛾12 + ord𝑗 𝑢
( 𝑗 )
𝑓𝑖
1

= 𝑘𝑖2 𝑗 − 𝑘𝑖1 𝑗 + 𝑙𝑖1 𝑗 ≤ 𝑘𝑖2 𝑗 +

𝑙𝑖2 𝑗 − 𝑘𝑖2 𝑗 = ord𝑗 𝑢
( 𝑗 )
𝑓𝑖
2

. Similar arguments with the use of (8) give

ord𝑗 (𝛾12𝑣 ( 𝑗 )𝑓𝑖
1

) ≥ ord𝑗 𝑣
( 𝑗 )
𝑓𝑖
2

(2 ≤ 𝑗 ≤ 𝑝). Thus, 𝑓𝑖2 is not 𝐸-reduced

with respect to 𝑓𝑖1 contrary to the fact that A is an 𝐸-autoreduced

set. □

In what follows, while considering 𝐸-autoreduced sets we always

assume that their elements are arranged in order of increasing rank.

Definition 3.13. Let A = {𝑔1, . . . , 𝑔𝑠 } and B = {ℎ1, . . . , ℎ𝑡 } be
two 𝐸-autoreduced sets in the ring 𝐾{𝑦1, . . . , 𝑦𝑛}∗. Then A is said
to have lower rank than B, written as rkA < rkB, if one of the
following two cases holds:

(1) rk𝑔1 < rkℎ1 or there exists 𝑘 ∈ N such that 1 < 𝑘 ≤ min{𝑠, 𝑡},
rk𝑔𝑖 = rkℎ𝑖 for 𝑖 = 1, . . . , 𝑘 − 1 and rk𝑔𝑘 < rkℎ𝑘 .

(2) 𝑠 > 𝑡 and rk𝑔𝑖 = rkℎ𝑖 for 𝑖 = 1, . . . , 𝑡 .
If 𝑠 = 𝑡 and rk𝑔𝑖 = rkℎ𝑖 for 𝑖 = 1, . . . , 𝑠 , then A is said to have

the same rank as B; in this case we write rkA = rkB
The proof of the following statement can be obtained by mim-

icking the proof of the corresponding theorem for differential poly-

nomial, see [5, Proposition 3.3.37].

Proposition 3.14. Every nonempty family of 𝐸-autoreduced sets
of 𝜎∗-polynomials contains an 𝐸-autoreduced set of lowest rank.

Let 𝐽 be any nonzero 𝜎∗-ideal of 𝐾{𝑦1, . . . , 𝑦𝑛}∗. Since the set
of all 𝐸-autoreduced subsets of 𝐽 is not empty (if 0 ≠ 𝑓 ∈ 𝐽 , then
{𝑓 } is an 𝐸-autoreduced subset of 𝐽 ), the last statement shows

that 𝐽 contains an 𝐸-autoreduced subset of lowest rank. Such an

𝐸-autoreduced set is called an 𝐸-characteristic set of the ideal 𝐽 .

Proposition 3.15. Let A = {𝑓1, . . . , 𝑓𝑑 } be an 𝐸-characteristic
set of a 𝜎∗-ideal 𝐽 of the ring 𝐾{𝑦1, . . . , 𝑦𝑛}∗. Then an element 𝑔 ∈ 𝐽
is 𝐸-reduced with respect to the set A if and only if 𝑔 = 0.
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Proof. If 𝑔 ≠ 0 and rk 𝑔 < rk 𝑓1, then rk {𝑔} < rk A that con-

tradicts A being an 𝐸-characteristic set of 𝐽 . Let rk 𝑔 > rk 𝑓1 and

let 𝑓1, . . . , 𝑓𝑗 (1 ≤ 𝑗 ≤ 𝑑) be all elements of A whose rank is lower

that the rank of 𝑔. Then A′ = {𝑓1, . . . , 𝑓𝑗 , 𝑔} is an 𝐸-autoreduced
set and rk A′ < rk A, a contradiction. Thus, 𝑔 = 0. □

The proof of the following statement can be obtained by mim-

icking the proof of [5, Theorem 6.5.3 and Corollary 6.5.4].

Proposition 3.16. Let ⪯ be a preorder on 𝐾{𝑦1, . . . , 𝑦𝑛}∗ such
that 𝑓 ⪯ 𝑔 if and only if 𝑢 (1)𝑔 is a transform of 𝑢 (1)

𝑓
. Let 𝑓 be a linear

𝜎∗-polynomial in𝐾{𝑦1, . . . , 𝑦𝑛}∗\𝐾 . Then the set of all minimal with
respect to ⪯ elements of the set {𝛾 𝑓 | 𝛾 ∈ Γ} is an 𝐸-characteristic set
of the 𝜎∗-ideal [𝑓 ]∗.

4 A NEW TYPE OF DIMENSION POLYNOMIALS
OF 𝜎∗-FIELD EXTENSIONS

In this sectionwe use properties of 𝐸-characteristic sets to obtain the

following result that generalizes Theorem 2.1 and introduces a new

type of multivariate dimension polynomials of finitely generated

𝜎∗-field extensions that carry more invariants than the standard

(univariate) difference dimension polynomials. (By an invariant of

a 𝜎∗-field extension we mean a numerical characteristic that does

not depend on the set of its 𝜎∗-generators.) We still deal with a

𝜎∗-field 𝐾 and partition (5) of its basic set 𝜎 . For any two 𝑝-tuples

(𝑟1, . . . , 𝑟𝑝 ), (𝑠1, . . . , 𝑠𝑝 ) ∈ N𝑝 with 𝑠𝑖 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝 , we set

Γ(𝑟1, . . . , 𝑟𝑝 ; 𝑠1, . . . , 𝑠𝑝 ) = {𝛾 ∈ Γ | 𝑠𝑖 ≤ ord𝑖 𝛾 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝}.

Theorem 4.1. Let 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩∗ be a 𝜎∗-field extension gen-
erated by a set 𝜂 = {𝜂1, . . . , 𝜂𝑛}. Then there exists a polynomial
Φ𝜂 | 𝐾 (𝑡1, . . . , 𝑡2𝑝 ) in 2𝑝 variables with rational coefficients and num-

bers 𝑟 (0)
𝑖
, 𝑠

(0)
𝑖
, 𝑠

(1)
𝑖

∈ N (1 ≤ 𝑖 ≤ 𝑝) with 𝑠 (1)
𝑖

< 𝑟
(0)
𝑖

− 𝑠 (0)
𝑖

such that
Φ𝜂 | 𝐾 (𝑟1, . . . , 𝑟𝑝 , 𝑠1, . . . , 𝑠𝑝 ) =
tr. deg𝐾 𝐾 ({𝛾𝜂 𝑗 | 𝛾 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ; 𝑠1, . . . , 𝑠𝑝 ), 1 ≤ 𝑗 ≤ 𝑛})

for all (𝑟1, . . . , 𝑟𝑝 , 𝑠1, . . . , 𝑠𝑝 ) ∈ N2𝑝 with 𝑟𝑖 ≥ 𝑟 (0)𝑖
, 𝑠 (1)
𝑖

≤ 𝑠𝑖 ≤ 𝑟𝑖 −
𝑠
(0)
𝑖

. Furthermore, degΦ𝜂 | 𝐾 ≤ 𝑚, deg𝑡𝑖 Φ𝜂 | 𝐾 ≤ 𝑚𝑖 for 𝑖 = 1, . . . , 𝑝

and deg𝑡 𝑗 Φ𝜂 | 𝐾 ≤ 𝑚 𝑗−𝑝 for 𝑗 = 𝑝 + 1, . . . , 2𝑝 .

Proof. Let 𝑃 ⊆ 𝑅 = 𝐾{𝑦1, . . . , 𝑦𝑛} be the defining 𝜎∗-ideal of
the extension 𝐿/𝐾 and A = {𝑓1, . . . , 𝑓𝑞} an 𝐸-characteristic set of
𝑃 . For any 𝑟 = (𝑟1, . . . , 𝑟𝑝 ), 𝑠 = (𝑠1, . . . , 𝑠𝑝 ) ∈ N𝑝 with 𝑠 ≤𝑃 𝑟 , let
𝑊 (𝑟, 𝑠) = {𝑤 ∈ Γ𝑌 | 𝑠𝑖 ≤ ord𝑖 𝑤 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝},
𝑊𝜂 (𝑟, 𝑠) = {𝑤 (𝜂) |𝑤 ∈𝑊 (𝑟, 𝑠)},
𝑈 ′ (𝑟, 𝑠) = {𝑢 ∈ Γ𝑌 | 𝑠𝑖 ≤ ord𝑖 𝑢 ≤ 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑝) and 𝑢 is not a

transform of any𝑢
(1)
𝑓𝑗

(1 ≤ 𝑗 ≤ 𝑞)}, 𝑈 ′
𝜂 (𝑟, 𝑠) = {𝑢 (𝜂) |𝑢 ∈ 𝑈 ′ (𝑟, 𝑠)},

𝑈 ′′ (𝑟, 𝑠) = {𝑢 ∈ Γ𝑌 | 𝑠𝑖 ≤ ord𝑖 𝑢 ≤ 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑝) and whenever

𝑢 = 𝛾𝑢
(1)
𝑓𝑗

(𝛾 ∈ Γ, 𝛾 ∼ 𝑢
(1)
𝑓𝑗

), there exists 𝑘 ∈ {2, . . . , 𝑝} such that

ord𝑘 (𝑢
(𝑘 )
𝛾 𝑓𝑗

) > 𝑟𝑘 or there exists 𝑖 ∈ {1, . . . , 𝑝} such that

ord𝑖 𝑣
(𝑖 )
𝛾 𝑓𝑗

< 𝑠𝑖 (“or” is inclusive)},
𝑈 ′′
𝜂 (𝑟, 𝑠) = {𝑢 (𝜂) |𝑢 ∈ 𝑈 ′′ (𝑟, 𝑠)},
𝑈 (𝑟, 𝑠) = 𝑈 ′ (𝑟, 𝑠) ∪𝑈 ′′ (𝑟, 𝑠) and𝑈𝜂 (𝑟, 𝑠) = 𝑈 ′

𝜂 (𝑟, 𝑠) ∪𝑈 ′′
𝜂 (𝑟, 𝑠) .

We will prove that for every 𝑟, 𝑠 ∈ N𝑝 with 𝑠 <𝑃 𝑟 , the set

𝑈𝜂 (𝑟, 𝑠) is a transcendence basis of the field 𝐾 (𝑈𝜂 (𝑟, 𝑠)) over 𝐾 .
First, note that𝑈𝜂 (𝑟, 𝑠) is algebraically independent over 𝐾 . Indeed,

if 𝑓 (𝑤1 (𝜂), . . . ,𝑤𝑘 (𝜂)) = 0 for some𝑤1, . . . ,𝑤𝑘 ∈ 𝑈 (𝑟, 𝑠), then the

𝜎∗-polynomial 𝑓 (𝑤1, . . . ,𝑤𝑘 ) lies in 𝑃 and it is 𝐸-reduced with re-

spect toA. (If 𝑓 contains a term𝑤 = 𝛾𝑢
(1)
𝑓𝑗

, with𝛾 ∼ 𝑢 (1)
𝑓𝑗

, deg𝑤 𝑓 ≥
deg

𝑢
(1)
𝑓𝑗

𝑓𝑗 , then 𝑤 ∈ 𝑈 ′′ (𝑟, 𝑠), so there exists 𝑘 ∈ {2, . . . , 𝑞} such

that ord𝑘 𝑢
(𝑘 )
𝛾 𝑓𝑗

> 𝑟𝑘 ≥ ord𝑘 𝑢
(𝑘 )
𝑓

or there exists 𝑖 ∈ {1, . . . , 𝑝}

such that ord𝑖 𝑣
(𝑖 )
𝛾 𝑓𝑗

< 𝑠𝑖 ≤ ord𝑖 𝑣
(𝑖 )
𝑓

; “or” is inclusive). Then 𝑓 is

𝐸-reduced with respect to A.) By Proposition 3.15, 𝑓 = 0, so the set

𝑈𝜂 (𝑟, 𝑠) is algebraically independent over 𝐾 .

Now let us prove that if 0 ≤ 𝑠𝑖 ≤ 𝑟𝑖 − 𝑠
(0)
𝑖

, where 𝑠
(0)
𝑖

=

max{Eord𝑖 𝑓𝑗 | 1 ≤ 𝑗 ≤ 𝑞} (1 ≤ 𝑖 ≤ 𝑝), then every element

𝛾𝜂𝑘 ∈ 𝑊𝜂 (𝑟, 𝑠) \ 𝑈𝜂 (𝑟, 𝑠) (𝛾 ∈ Γ, 1 ≤ 𝑘 ≤ 𝑛) is algebraic over

the field 𝐾 (𝑈𝜂 (𝑟, 𝑠)). In this case, since 𝛾𝑦𝑘 ∉ 𝑈 (𝑟, 𝑠), 𝛾𝑦𝑘 is equal

to some term 𝛾 ′𝑢 (1)
𝑓𝑗

(1 ≤ 𝑗 ≤ 𝑞) where 𝛾 ′ ∈ Γ, 𝛾 ′ ∼ 𝛾 ′𝑢 (1)
𝑗

,

ord𝑖 𝑢
(𝑖 )
𝛾 ′ 𝑓𝑗

≤ 𝑟𝑖 (2 ≤ 𝑖 ≤ 𝑝), and ord𝑙 𝑣
𝑙
𝛾 ′ 𝑓𝑗

≥ 𝑠𝑙 for 𝑙 = 1, . . . , 𝑝 .

Let us represent 𝑓𝑗 as a polynomial in 𝑢
(1)
𝑓𝑗

:

𝑓𝑗 = 𝐼
( 𝑗 )
𝑑 𝑗

(𝑢 (1)
𝑓𝑗

)𝑑 𝑗 + · · · + 𝐼 ( 𝑗 )
1
𝑢
(1)
𝑓𝑗

+ 𝐼 ( 𝑗 )
0

where 𝐼
( 𝑗 )
0
, 𝐼

( 𝑗 )
1
, . . . 𝐼

( 𝑗 )
𝑑 𝑗

do not contain 𝑢
(1)
𝑓𝑗

(therefore, all their

terms are lower than 𝑢
(1)
𝑓𝑗

with respect to <1). Since 𝑓𝑗 ∈ 𝑃 ,

𝐼
( 𝑗 )
𝑑 𝑗

(𝜂) (𝑢 (1)
𝑓𝑗

(𝜂))𝑑 𝑗 + · · · + 𝐼 ( 𝑗 )
1

(𝜂)𝑢 (1)
𝑓𝑗

(𝜂) + 𝐼 ( 𝑗 )
0

(𝜂) = 0. (9)

Note that 𝐼
( 𝑗 )
𝑑 𝑗

(𝜂) ≠ 0. Indeed, since rk 𝐼
( 𝑗 )
𝑑 𝑗

< rk 𝑓𝑗 , the equality

𝐼
( 𝑗 )
𝑑 𝑗

(𝜂) = 0 would imply that 𝐼
( 𝑗 )
𝑑 𝑗

∈ 𝑃 . Then the family of all 𝑓𝑙

with rk 𝑓𝑙 < rk 𝐼
( 𝑗 )
𝑑 𝑗

and 𝐼
( 𝑗 )
𝑑 𝑗

would form an 𝐸-autoreduced set in 𝑃

whose rank is lower than the rank ofA, contrary to the fact thatA
is an 𝐸-characteristic set of 𝑃 . Similarly, 𝐼

( 𝑗 )
𝜈 ∉ 𝑃 for 0 ≤ 𝜈 < 𝑑 𝑗 (and

any 𝑗 = 1, . . . , 𝑞), and since 𝑃 is a 𝜎∗-ideal, 𝛾 (𝐼 ( 𝑗 )𝜈 ) ∉ 𝑃 for any 𝐼
( 𝑗 )
𝜈 ,

𝛾 ∈ Γ. Therefore, if we apply 𝛾 ′ to both sides of (9), the resulting

equality will show that the element 𝛾 ′𝑢 (1)
𝑓𝑗

(𝜂) = 𝛾𝜂𝑘 is algebraic

over the field 𝐾 ({𝛾𝜂𝑙 | 𝑠𝑖 ≤ ord𝑖 𝛾 ≤ 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑝), 𝛾𝑦𝑙 <1 𝛾
′𝑢 (1)
𝑓𝑗

}).

(Note that if 𝐼 = 𝐼
( 𝑗 )
𝜈 for some 𝑗 ∈ {1, . . . , 𝑞} and 𝜈 ∈ {0, . . . , 𝑑 𝑗 },

then ord𝑖 (𝛾 ′𝑢 (𝑖 )𝐼 ) ≤ ord𝑖 𝑢
(𝑖 )
𝛾 ′𝐼 ≤ 𝑟𝑖 (2 ≤ 𝑖 ≤ 𝑝) and ord𝑘 (𝛾 ′𝑣

(𝑘 )
𝐼

) ≥

ord𝑘 𝑣
(𝑘 )
𝛾 ′𝐼 ≥ 𝑠𝑘 (1 ≤ 𝑘 ≤ 𝑝) ). By induction on thewell-ordered (with

respect to <1) set Γ𝑌 we obtain that𝑈𝜂 (𝑟, 𝑠) is a transcendence basis
of the field 𝐾 (𝑊𝜂 (𝑟, 𝑠) over 𝐾 .

In order to evaluate the size of 𝑈𝜂 (𝑟, 𝑠) we are going to evaluate

the sizes of𝑈 ′
𝜂 (𝑟, 𝑠) and𝑈 ′′

𝜂 (𝑟, 𝑠), that is, the sizes of the sets𝑈 ′ (𝑟, 𝑠)
and𝑈 ′′ (𝑟, 𝑠). For every 𝑘 = 1, . . . , 𝑛, let

𝐴𝑘 = {(𝑖1, . . . , 𝑖𝑚) ∈ Z𝑚 | 𝛼𝑖1
1
. . . 𝛼

𝑖𝑚
𝑚 𝑦𝑘 is the 1-leader

of some element of A}.
ByTheorem 2.4, there exists a numerical polynomial𝜔𝑘 (𝑡1, . . . , 𝑡𝑝 )

such that 𝜔𝑘 (𝑟1, . . . , 𝑟𝑝 ) = Card𝑊𝐴𝑘
(𝑟1, . . . , 𝑟𝑝 ) for all sufficiently

large (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 . Therefore, if we set 𝜓𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝 ) =
𝑛∑︁
𝑘=1

𝜔𝑘 (𝑡1, . . . , 𝑡𝑝 ), then there exist 𝑟
(0)
𝑖
, 𝑠

(0)
𝑖
, 𝑠

(1)
𝑖

∈ N (1 ≤ 𝑖 ≤ 𝑝)

with 𝑠
(1)
𝑖

< 𝑟
(0)
𝑖

− 𝑠
(0)
𝑖

such that for all 𝑟 = (𝑟1, . . . , 𝑟𝑝 ), 𝑠 =
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(𝑠1, . . . , 𝑠𝑝 ) ∈ N𝑝 with 𝑟𝑖 ≥ 𝑟 (0)𝑖
, 𝑠

(1)
𝑖

≤ 𝑠𝑖 ≤ 𝑟𝑖 − 𝑠 (0)𝑖
, one has

Card𝑈𝜂 (𝑟, 𝑠) = 𝜓𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝 ) −𝜓𝜂 |𝐾 (𝑠1 − 1, . . . , 𝑠𝑝 − 1) . (10)

Furthermore, deg𝜓𝜂 |𝐾 ≤ 𝑚, and deg𝜓𝜂 |𝐾 = 𝑚 if and only if at

least one of the sets 𝐴𝑘 (1 ≤ 𝑘 ≤ 𝑛) is empty.

In order to evaluate Card𝑈 ′′ (𝑟, 𝑠), note that 𝑈 ′′ (𝑟, 𝑠) consists
of all terms 𝛾𝑢

(1)
𝑓𝑗

(𝛾 ∈ Γ, 𝛾 ∼ 𝑢
(1)
𝑓𝑗
, 1 ≤ 𝑗 ≤ 𝑞) such that 𝑠𝑖 ≤

ord𝑖 𝑢
(1)
𝛾 𝑓𝑗

≤ 𝑟𝑖 and there exists 𝑘 ∈ {2, . . . , 𝑝} such that ord𝑘 𝑢
(𝑘 )
𝛾 𝑓𝑗

>

𝑟𝑘 or there exists 𝑖 ∈ {1, . . . , 𝑝} such that ord𝑖 𝑣
(𝑖 )
𝛾 𝑓𝑗

< 𝑠𝑖 (“or” is

inclusive). It follows from Remark 3.6 and formula (4) that if we fix

𝑗 , the number of such transforms 𝛾𝑢
(1)
𝑓𝑗

of 𝑢
(1)
𝑓𝑗

with the conditions

ord𝑖 𝑣
(𝑖 )
𝛾 𝑓𝑗

= ord𝛾 + 𝑏𝑖 𝑓𝑗 < 𝑠𝑖 , ord𝑖 (𝛾𝑢 (1)𝑓𝑗 ) = ord𝑖 𝛾 + 𝑎
1𝑓𝑗 ≥ 𝑠𝑖 for

𝑖 ∈ {𝑘1, . . . , 𝑘𝑑 } ⊆ {1, . . . , 𝑝}, ord𝑖 (𝑣 (𝑖 )𝛾 𝑓𝑗 ) = ord𝛾 + 𝑏𝑖 𝑓𝑗 ≥ 𝑠𝑖 for

𝑖 ∈ {1, . . . , 𝑝}, 𝑖 ≠ 𝑘𝜈 (1 ≤ 𝜈 ≤ 𝑑) and ord𝑖 𝑢
(𝑖 )
𝛾 𝑓𝑗

= ord𝛾 + 𝑎𝑖 𝑓𝑗 ≤ 𝑟𝑖

for 𝑖 = 1, . . . , 𝑝 is

∏
1≤𝑖≤𝑝,
𝑖≠𝑘1,...,𝑘𝑑

[
𝑚𝑖∑︁
𝜇=0

(−1)𝑚𝑖−𝜇
2
𝜇

(
𝑚𝑖

𝜇

) ((
𝑟𝑖 − 𝑎𝑖 𝑓𝑗 + 𝜇

𝜇

)
−

(
𝑠𝑖 − 𝑏𝑖 𝑓𝑗 + 𝜇 − 1

𝜇

))]
·
𝑑∏
𝜈=1

[𝑚𝑘𝜈∑︁
𝜇=0

(−1)𝑚𝑘𝜈 −𝜇2𝜇
(
𝑚𝑘𝜈
𝜇

)
·((

𝑠𝑘𝜈 − 𝑏𝑘𝜈 𝑓𝑗 − 1 +𝑚𝑘𝜈
𝑚𝑘𝜈

)
−

(
𝑠𝑘𝜈 − 𝑎

1𝑓𝑗 − 1 +𝑚𝑘𝜈
𝑚𝑘𝜈

))]
(11)

and a similar formula holds for the number of terms with the con-

ditions ord𝑖 𝑢
(𝑖 )
𝛾 𝑓𝑗

> 𝑟𝑖 for 𝑖 ∈ {𝑙1, . . . , 𝑙𝑒 } ⊆ {2, . . . , 𝑝}, (𝛾 ∼ 𝑢
(1)
𝑓𝑗

),

ord𝑖 𝑣
(𝑖 )
𝛾 𝑓𝑗

≥ 𝑠𝑖 (1 ≤ 𝑖 ≤ 𝑝) and ord𝑖 𝑢
(𝑖 )
𝛾 𝑓𝑗

≤ 𝑟𝑖 for 𝑖 ≠ 𝑙𝜈 (1 ≤ 𝜈 ≤ 𝑒).
Applying the principle of inclusion and exclusion (taking into

account terms that are multiples of more than one 1-leaders), we

obtain that Card𝑈 ′′ (𝑟, 𝑠) is an alternating sum of polynomials in

𝑟1, . . . , 𝑟𝑝 , 𝑠1, . . . , 𝑠𝑝 that are products of 𝑘 (0 ≤ 𝑘 ≤ 𝑝) terms of

the form

(𝑟𝑖 − 𝑎𝑖 +𝑚𝑖
𝑚𝑖

)
−

(𝑠𝑖 − 𝑏𝑖 +𝑚𝑖
𝑚𝑖

)
with 𝑎𝑖 , 𝑏𝑖 ∈ N (1 ≤ 𝑖 < 𝑝)

and 𝑝 − 𝑘 terms of the form either

(𝑠𝑖 − 𝑐𝑖 +𝑚𝑖
𝑚𝑖

)
−

(𝑠𝑖 − 𝑑𝑖 +𝑚𝑖
𝑚𝑖

)
or(𝑟𝑖 − 𝑐𝑖 +𝑚𝑖

𝑚𝑖

)
−

(𝑟𝑖 − 𝑑𝑖 +𝑚𝑖
𝑚𝑖

)
with 𝑐𝑖 , 𝑑𝑖 ∈ N, 𝑐𝑖 < 𝑑𝑖 . Since each

such a polynomial has total degree at most𝑚 − 1 and its degree

with respect to 𝑟𝑖 or 𝑠𝑖 (1 ≤ 𝑖 ≤ 𝑝) does not exceed𝑚𝑖 , we obtain

that Card𝑈 ′′ (𝑟, 𝑠) = 𝜆(𝑟1, . . . , 𝑟𝑝 , 𝑠1, . . . , 𝑠𝑝 ) where 𝜆(𝑡1, . . . , 𝑡2𝑝 ) is
a numerical polynomial in 2𝑝 variables such that deg 𝜆 < 𝑚 and

deg𝑡𝑖
𝜆 ≤ 𝑚𝑖 , deg𝑡 𝑗 𝜆 ≤ 𝑚 𝑗−𝑝 for 𝑖 = 1, . . . , 𝑝 , 𝑗 = 𝑝 + 1, . . . , 2𝑝 . It

follows that the numerical polynomial

Φ𝜂 | 𝐾 = 𝜓𝜂 |,𝐾 (𝑡1, . . . , 𝑡𝑝 )−𝜓𝜂 | 𝐾 (𝑡𝑝+1−1, . . . , 𝑡2𝑝−1)+𝜆(𝑡1, . . . , 𝑡2𝑝 )

satisfies conditions of our theorem. □

The numerical polynomial Φ𝜂 |𝐾 (𝑡1, . . . , 𝑡2𝑝 ) is called the 2𝑝-
variate 𝜎∗-dimension polynomial of the 𝜎∗-field extension 𝐿/𝐾 as-

sociated with the system of 𝜎∗-generators 𝜂 and partition (5) of the

set 𝜎 . The following theorem describes some invariants of such a

polynomial, that is, characteristics of the extension 𝐿/𝐾 that do not

depend on the set of 𝜎∗-generators of 𝐿/𝐾 . In what follows, for any

permutation ( 𝑗1, . . . , 𝑗2𝑝 ) of the set {1, . . . , 2𝑝}, let < 𝑗1,..., 𝑗2𝑝 denote

the lexicographic order on N2𝑝 such that (𝑘1, . . . , 𝑘2𝑝 ) < 𝑗1,..., 𝑗2𝑝

(𝑙1, . . . , 𝑙2𝑝 ) if and only if either 𝑘 𝑗1 < 𝑙 𝑗1 or there exists 𝑞 ∈ N,
2 ≤ 𝑞 ≤ 2𝑝 , such that 𝑘 𝑗𝜈 = 𝑙 𝑗𝜈 for 𝜈 < 𝑞 and 𝑘 𝑗𝑞 < 𝑙 𝑗𝑞 .

Theorem 4.2. Let

Φ𝜂 | 𝐾 =

𝑚1∑︁
𝑖1=0

· · ·
𝑚𝑝∑︁
𝑖𝑝=0

𝑚1∑︁
𝑖𝑝+1=0

· · ·
𝑚𝑝∑︁
𝑖2𝑝=0

𝑎𝑖1 ...𝑖2𝑝

(
𝑡1 + 𝑖1
𝑖1

)
. . .

(
𝑡2𝑝 + 𝑖2𝑝
𝑖2𝑝

)
be the 2𝑝-variate 𝜎∗-dimension polynomial of the 𝜎∗-field extension
𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩∗. Let 𝐸𝜂 = {(𝑖1, . . . , 𝑖2𝑝 ) ∈ N2𝑝 | 0 ≤ 𝑖𝑘 , 𝑖𝑝+𝑘 ≤
𝑚𝑘 (𝑘 = 1, . . . , 𝑝) and 𝑎𝑖1 ...𝑖2𝑝 ≠ 0}. Then the total degree 𝑑 of Φ𝜂 | 𝐾
and the coefficients of the terms of total degree 𝑑 in Φ𝜂 | 𝐾 do not
depend on the set of 𝜎∗-generators 𝜂. Furthermore, if (𝜇1, . . . , 𝜇𝑝 ) is
any permutation of {1, . . . , 𝑝} and (𝜈1, . . . , 𝜈𝑝 ) is any permutation of
{𝑝 + 1, . . . , 2𝑝}, then the maximal element of 𝐸𝜂 with respect to the
lexicographic order <𝜇1,...,𝜇𝑝 ,𝜈1,...,𝜈𝑝 and the corresponding coefficient
𝑎𝜇1,...,𝜇𝑝 ,𝜈1,...,𝜈𝑝 do not depend on the 𝜎∗-generators of 𝐿/𝐾 either.
Finally, 𝑎𝑚1 ...𝑚𝑝0...0 = 𝑎0...0𝑚1 ...𝑚𝑝

= 𝜎-tr. deg𝐾 𝐿.

Proof. Let 𝜁 = {𝜁1, . . . , 𝜁𝑙 } be another set of 𝜎∗-generators of
𝐿/𝐾 , that is, 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩∗ = 𝐾 ⟨𝜁1, . . . , 𝜁𝑙 ⟩∗. Let

Φ𝜁 | 𝐾 =

𝑚1∑︁
𝑖1=0

· · ·
𝑚𝑝∑︁
𝑖𝑝=0

𝑚1∑︁
𝑖𝑝+1=0

· · ·
𝑚𝑝∑︁
𝑖2𝑝=0

𝑏𝑖1 ...𝑖2𝑝

(
𝑡1 + 𝑖1
𝑖1

)
. . .

(
𝑡2𝑝 + 𝑖2𝑝
𝑖2𝑝

)
be the 2𝑝-variate dimension polynomial of the extension 𝐿/𝐾 as-

sociated with the system of 𝜎∗-generators 𝜁 . Then there exist

ℎ1, . . . , ℎ𝑝 ∈ N such that 𝜂𝑖 ∈ 𝐾 (⋃𝑙
𝑗=1 Γ(ℎ1, . . . , ℎ𝑝 )𝜁 𝑗 ) and 𝜁𝑘 ∈

𝐾 (⋃𝑛
𝑗=1 Γ(ℎ1, . . . , ℎ𝑝 )𝜂 𝑗 ), 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑙 . (If Γ′ ⊆ Γ,

then Γ′𝜁 𝑗 denotes the set {𝛾𝜁 𝑗 | 𝛾 ∈ Γ′}.) It follows that there exist
𝑟
(0)
𝑖
, 𝑠

(0)
𝑖
, 𝑠

(1)
𝑖

∈ N (1 ≤ 𝑖 ≤ 𝑝) with 𝑠
(1)
𝑖

< 𝑟
(0)
𝑖

− 𝑠 (0)
𝑖

such that

whenever 𝑟𝑖 ≥ 𝑟 (0)𝑖
, 𝑠

(1)
𝑖

≤ 𝑠𝑖 ≤ 𝑟𝑖 − 𝑠 (0)𝑖
(1 ≤ 𝑖 ≤ 𝑝),

Φ𝜂 | 𝐾 (𝑟1, . . . , 𝑟2𝑝 ) ≤ Φ𝜁 | 𝐾 (𝑟1+ℎ1, . . . , 𝑟𝑝+ℎ𝑝 , 𝑟𝑝+1−ℎ1, . . . , 𝑟2𝑝−ℎ𝑝 ),
Φ𝜁 | 𝐾 (𝑟1, . . . , 𝑟2𝑝 ) ≤ Φ𝜁 | 𝐾 (𝑟1+ℎ1, . . . , 𝑟𝑝+ℎ𝑝 , 𝑟𝑝+1−ℎ1, . . . , 𝑟2𝑝−ℎ𝑝 ) .
These inequalities immediately imply the statement of the the-

orem about the maximal elements of 𝐸𝜂 with respect to the or-

ders <𝜇1,...,𝜇𝑝 ,𝜈1,...,𝜈𝑝 and the corresponding coefficients. The equal-

ity of the coefficients of the corresponding terms of total degree

𝑑 = degΦ𝜂 | 𝐾 = degΦ𝜁 , | 𝐾 in Φ𝜂, | 𝐾 and Φ𝜁 | 𝐾 can be shown as in

the proof of [9, Theorem 3.3.21].

In order to prove the last part of the theorem, note that the

degree of the polynomial (11) is less than 𝑚. It follows that the

coefficients of the terms of total degree𝑚 in 𝑡1, . . . , 𝑡𝑝 and terms of

total degree𝑚 in 𝑡𝑝+1, . . . , 𝑡2𝑝 in the polynomial Φ𝜂 | 𝐾 are equal to

the corresponding coefficients in the polynomials𝜓𝜂 | 𝐾 (𝑡1, . . . , 𝑡𝑝 )
and 𝜓𝜂 | 𝐾 (𝑡𝑝+1, . . . , 𝑡2𝑝 ), respectively (see the proof of Theorem

4.1). Now, using the fact that if elements 𝜂𝑖1 , . . . , 𝜂𝑖𝑘 (𝑖1, . . . , 𝑖𝑘 ∈
{1, . . . , 𝑛}) are 𝜎-algebraically independent over 𝐾 , then

tr. deg𝐾 𝐾 (({𝛾𝜂𝑖 𝑗 | 𝛾 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ; 𝑠1, . . . , 𝑠𝑝 ), 1 ≤ 𝑗 ≤ 𝑘}) =
𝑘
∏𝑝

𝑖=1

[∑𝑚𝑖

𝑗=0
(−1)𝑚𝑖− 𝑗

2
𝑗
(𝑚𝑖

𝑗

) ( (𝑟𝑖+𝑗
𝑗

)
−

(𝑠𝑖+𝑗−1
𝑗

) )]
for any 𝑟𝑖 , 𝑠𝑖 ∈

N with 𝑠𝑖 ≤ 𝑟𝑖 (1 ≤ 𝑖 ≤ 𝑝), one can mimic the proof of [5, Theorem

6.4.8] to obtain that 𝑎𝑚1 ...𝑚𝑝0...0 = 𝑎0...0𝑚1 ...𝑚𝑝
= 𝜎-tr. deg𝐾 𝐿. □

Example 4.3. Let𝐾 be a 𝜎∗-field with a basic set 𝜎 = {𝛼1, 𝛼2, 𝛼3}
considered with its partition 𝜎 = {𝛼1}∪ {𝛼2}∪ {𝛼3}. Let 𝐿 = 𝐾 ⟨𝜂⟩∗
be a 𝜎∗-field extension with the defining equation

𝛼𝑎
1
𝜂 + 𝛼−𝑎

1
𝜂 + 𝛼𝑏

2
𝜂 + 𝛼𝑐

3
𝜂 = 0 (12)
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where 𝑎, 𝑏, 𝑐 ∈ N, 𝑎 > 𝑏 > 𝑐 > 0. It means that the defining 𝜎∗-
ideal 𝑃 of the extension 𝐿/𝐾 is a linear 𝜎∗-ideal of the ring 𝐾{𝑦}∗
generated by the linear 𝜎∗-polynomial 𝑓 = 𝛼𝑎

1
𝑦 +𝛼−𝑎

1
𝑦 +𝛼𝑏

2
𝑦 +𝛼𝑐

3
𝑦.

By Proposition 3.16, the𝜎∗-polynomials 𝑓 and𝛼−1
1
𝑓 = 𝛼

−(𝑎+1)
1

𝑦+
𝛼𝑎−1
1

𝑦 +𝛼−1
1
𝛼𝑏
2
𝑦 +𝛼−1

1
𝛼𝑐
3
𝑦 form an 𝐸-characteristic set of 𝑃 . Setting

𝑟 = (𝑟1, 𝑟2, 𝑟3), 𝑠 = (𝑠1, 𝑠2, 𝑠3) and using the notation of the proof of

Theorem 4.1, we obtain (applying [5, Theorem 2.5.5]) that for all

sufficiently large (𝑟1, 𝑟2, 𝑟3, 𝑠1, 𝑠2, 𝑠3) ∈ N6,
Card𝑈 ′

𝜂 (𝑟, 𝑠) = 𝜙{ (𝑎,0,0),(−𝑎−1,0,0) } (𝑟1, 𝑟2, 𝑟3, 𝑠1, 𝑠2, 𝑠3) =
2𝑎(2𝑟2 − 2𝑠2 + 2) (2𝑟3 − 2𝑠3 + 2) .
Furthermore, using the method of inclusion and exclusion (as it

is indicated in the proof of Theorem 4.1), we get Card𝑈 ′′
𝜂 (𝑟, 𝑠) =

(2𝑎 + 1) (2𝑟2 − 2𝑠2 + 2) (2𝑟3 − 2𝑠3 + 2) + 4𝑏 (𝑟1 −𝑠1 + 1) (2𝑟3 − 2𝑠3 + 2) +
4𝑐 (𝑟1 − 𝑠1 + 1) (2𝑟2 − 2𝑠2 + 2) − 2𝑏 (2𝑎 + 1) (2𝑟3 − 2𝑠3 + 2) − 2𝑐 (2𝑎 +
1) (2𝑟2 − 2𝑠2 + 2) − 8𝑏𝑐 (𝑟1 − 𝑠1 + 1) + 8𝑎𝑏𝑐 + 4𝑏𝑐.

Since the 6-variate 𝜎∗-dimension polynomial Φ𝜂 | 𝐾 𝑡1, . . . , 𝑡6)
expresses the number of elements of the set 𝑈 ′

𝜂 (𝑟, 𝑠) ∪𝑈 ′′
𝜂 (𝑟, 𝑠),

Φ𝜂 | 𝐾 = 8𝑐𝑡1𝑡2+8𝑏𝑡1𝑡3−8𝑐𝑡1𝑡5−8𝑏𝑡1𝑡6+4(4𝑎+1)𝑡2𝑡3−8𝑐𝑡2𝑡4
−4(4𝑎+1)𝑡2𝑡6−8𝑏𝑡3𝑡4−4(4𝑎+1)𝑡3𝑡5+8𝑐𝑡4𝑡5+8𝑏𝑡4𝑡6+4(4𝑎+1)𝑡5𝑡6+
a linear combination of monomials of degree ≤ 1. (13)

By [5, Theorem 6.4.8], the univariate 𝜎∗-dimension polynomial

𝜙𝜂 | 𝐾 (𝑡) (see Theorem 2.1) coincides with the dimension polyno-

mial of the set 𝐴 = {(𝑎, 0, 0), (−𝑎 − 1, 0, 0)} ⊂ Z3). Therefore
𝜙𝜂 | 𝐾 = 4𝑎𝑡2 + a linear combination of monomials of degree ≤ 1.

By Theorem 4.3, deg Φ𝜂 | 𝐾 = 2 and the coefficients of the terms

𝑡𝑖𝑡 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 6) are invariants of the extension 𝐿/𝐾 . Therefore,
the polynomial Φ𝜂 | 𝐾 (𝑡1, . . . , 𝑡6) carries all three parameters 𝑎, 𝑏

and 𝑐 of the defining equation (12). At the same time, the univariate

polynomial 𝜙𝜂 | 𝐾 (𝑡) carries only the parameter 𝑎.

The fact that the 2𝑝-variate 𝜎∗-dimension polynomial carries

more invariants than its univariate counterpart can be applied to the

equivalence problem for systems of algebraic difference equations.

Suppose we have two such systems over a 𝜎∗-field 𝐾 (i. e., systems

𝑓𝑖 = 0 (𝑖 ∈ 𝐼 ) where all 𝑓𝑖 lie in some ring of 𝜎∗-polynomials) that

are defining systems of equations for 𝜎∗-field extensions 𝐿/𝐾 and

𝐿′/𝐾 (that is, the left-hand sides of the systems generate prime 𝜎∗-
ideals 𝑃 and 𝑃 ′ in the corresponding rings of 𝜎∗-polynomials 𝑅 and

𝑅′ (possibly of different numbers of 𝜎∗-generators) such that 𝐿 and

𝐿′ are 𝜎-isomorphic to qf (𝑅/𝑃) and qf (𝑅′/𝑃 ′), respectively). These
systems are said to be equivalent if there is a 𝜎-isomorphism be-

tween 𝐿 and 𝐿′ which is identity on𝐾 . The 2𝑝-variate 𝜎∗-dimension

polynomial given by Theorem 4.1 allows one to determine that two

systems of algebraic difference equations are not equivalent even

if the corresponding 𝜎∗-field extensions have the same univari-

ate 𝜎∗-dimension polynomials. As an example, consider difference

equations

𝛼𝑎
1
𝜂 + 𝛼−𝑎

1
𝜂 + 𝛼𝑏

2
𝜂 + 𝛼𝑐

3
𝜂 = 0, (14)

𝛼𝑎
1
𝜂 + 𝛼−𝑎

1
𝜂 + 𝛼𝑑

2
𝜂 + 𝛼𝑒

3
𝜂 = 0 (15)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ N, 𝑎 > 𝑏 > 𝑐 > 0, 𝑎 > 𝑑 > 𝑒 > 0 and 𝑏 ≠ 𝑑 ,

𝑐 ≠ 𝑒 .

The invariants carried by the univariate 𝜎∗-dimension polyno-

mials associated with these equations (the equation (14) was con-

sidered in the last Example) are the same, the degree 1 and 𝑎. At

the same time, the 6-variate dimension polynomials for these equa-

tions (they are of the form (13)) carry invariants 𝑎, 𝑏, 𝑐 , and 𝑎, 𝑑, 𝑒 ,

respectively. Thus, the difference equations (14) and (15) are not

equivalent, even though the corresponding 𝜎∗-field extensions have
the same invariants carried by the univariate 𝜎∗-dimension poly-

nomials. (Note that the problem of finding a complete system of

invariants in our settings is still open.)

We conclude with a remark on an analytic interpretation of the

obtained results. Consider a system of equations in finite differences

with respect to 𝑛 unknown functions in𝑚 independent variables

𝑥1, . . . , 𝑥𝑚 over R and shifts of arguments 𝛼𝑖 : 𝑥𝑖 ↦→ 𝑥𝑖 +ℎ𝑖 (ℎ𝑖 ∈ R,
1 ≤ 𝑖 ≤ 𝑚). Given a partition of the set of variables into 𝑝 dis-

joint subsets, the 𝜎∗-dimension polynomial introduced by Theorem

4.1 (𝜎 = {𝛼1, . . . , 𝛼𝑚}) gives the maximal number of algebraically

independent values the solution functions take at nodes of the

ℎ1 × · · · × ℎ𝑚 grid in R𝑚 whose orders with respect to the 𝑖th set

of the partition lie between two given positive integers 𝑠𝑖 and 𝑟𝑖 ,

1 ≤ 𝑖 ≤ 𝑝 . (The orders of nodes are considered with respect to some

fixed node (the origin), see [8, Section 7.7] for details.) It gives a

more delicate characterization of the system than its Einstein-type

strength discussed in [8, Section 7.7].
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