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ABSTRACT

We introduce a reduction of inversive difference polynomials that
is associated with a partition of the basic set of automorphisms and
uses a generalization of the concept of effective order of a differ-
ence polynomial. Then we develop the corresponding method of
characteristic sets and apply it to prove the existence and obtain
a method of computation of multivariate dimension polynomials
that describe the transcendence degrees of intermediate fields of
finitely generated inversive difference field extensions obtained by
adjoining transforms of the generators whose orders with respect to
the components of the partition of the basic set are bounded by two
sequences of natural numbers. We show that such dimension poly-
nomials carry essentially more invariants (that is, characteristics of
the extension that do not depend on its difference generators) than
standard (univariate) difference dimension polynomials. We also
show how the obtained results can be applied to the equivalence
problem for systems of algebraic difference equations.
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1 INTRODUCTION

The role of difference dimension polynomials in difference algebra
is similar to the role of Hilbert polynomials in commutative algebra
and algebraic geometry, as well as to the role of Kolchin differential
dimension polynomials in the study of differential field extensions
and algebraic differential equations. In particular, as it is shown in
[7] (see also [8, Chapter 7]), the univariate difference dimension
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polynomial of a system of algebraic difference equations expresses
its A. Einstein’s strength, that is, the difference counterpart of the
concept of strength of a system of partial differential equations
introduced in [3]. Furthermore, the important role of difference
dimension polynomials is determined by at least three more factors.
First, a difference dimension polynomial of a finitely generated
difference field extension (or of a system of algebraic difference
equations defining such an extension) carries certain invariants, i.e.,
characteristics of the extension that do not change when we switch
to another system of difference generators (with the corresponding
change of the defining equations), see [5, Chapter 6] and [8, Chapter
4]. In this connection, one should mention the results on multivari-
ate difference dimension polynomials associated with partitions
of the basic set of translations, see [7], [10], and [8, Chapter 3].
They carry more invariants than their univariate counterparts. (See
also [2], [12], [15], and [18] where the results on difference dimen-
sion polynomials are generalized to the difference-differential case.)
Second, properties of difference dimension polynomials associated
with prime difference polynomial ideals give a powerful tool in the
dimension theory of difference algebras, see [5, Chapter 7], [8, Sec-
tion 4.6], [11] and [17]. Finally, the results on difference dimension
polynomials can be naturally extended to algebraic and differential
algebraic structures with a finitely generated commutative group
action, see [9], [13], [14] and [16].

In this paper we introduce a reduction of inversive difference
polynomials that is associated with a fixed partition of the set of
basic translations and takes into account the effective orders of the
polynomials with respect to the elements of the partition (we gen-
eralize the concept of the effective order of an ordinary difference
polynomial defined in [1, Chapter 2, Section 4]). We consider a new
type of characteristic sets of inversive difference polynomials that
are associated with the introduced reduction and use their proper-
ties to prove the existence of a multivariate dimension polynomial
of a finitely generated inversive difference field extension that de-
scribes the transcendence degrees of intermediate fields obtained by
adjoining transforms of the generators whose orders with respect
to the elements of the partition lie between given natural numbers.
This dimension polynomial is a polynomial in 2p variables where p
is the number of subsets in the partition of the basic set of transla-
tions. We determine invariants of such polynomials, i. e., numerical
characteristics of the extension that are carried by any its dimension
polynomials and that do not depend on the system of difference gen-
erators the polynomial is associated with. Our Theorem 4.2 shows
that the introduced dimension polynomials carry more invariants
of the corresponding inversive difference field extensions than the
univariate difference dimension polynomials introduced in [6] and
their multivariate counterparts defined in [10]. Note that while the
study of difference algebraic structures deals with power products
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of translations with nonnegative exponents, inversive difference
rings are considered together with the free commutative group
generated by basic automorphisms. Therefore, while the dimension
theory of difference rings and modules is close to its differential
counterpart, the study of inversive difference algebraic structures
(including the study of their dimensional characteristics) encoun-
ters many problems caused by the fact that one has to consider
negative powers of translations.

2 PRELIMINARIES

Throughout the paper, N, Z<, Z, Q, R, and Q[t4, ..., tp] denote
the sets of all non-negative integers, non-positive integers, integers,
rational numbers, real numbers, and the ring of polynomials in
variables t1, ..., tp over Q, respectively. As usual, (t:.ri) will denote
the polynomial (¢t+i)(¢+i—1)...(t+1)/i! € Q[t].If S is a finite set,
then Card S denotes the number of its elements. If m € N, m > 0,
then, <p will denote the product order on N™, that is, a partial
order such that (as,...,am) <p (a’l, ...,ay,) ifand only if a; < a;
fori =1,..., m. The lexicographic order will be denoted by <j¢.

By a difference ring we mean a commutative ring R with unity
together with a finite set 0 = {1, ..., am} of mutually commuting
injective endomorphisms of R called translations (every ring homo-
morphism is unitary, that is, it maps unity to unity). The set o is
called the basic set of the difference ring R, which is also called a
o-ring. If R is a field, it is called a difference field or a o-field. (We will
often use prefix o- instead of the adjective “difference”.) In what fol-
lows, every field is supposed to have characteristic zero. If all trans-
lations of R are automorphisms, we set 6 = {a1, ..., am, al’l, el
'} and say that R is an inversive difference ring or a o*-ring. In
this case, I’ will denote the free commutative group of all power
products y = afl e afn’" where k; € Z (1 < i < m). The order
of y is defined as ord y = 2?;1 |ki|; furthermore, for every r € N,
we set T'(r) = {y € T'| ord y < r}. If a difference (respectively,
inversive difference) ring R is a field, it is called a difference (or o-)
field (respectively, an inversive difference (or o*-) field).

A subring (ideal) Ry of a o-ring R is said to be a difference (or
o-) subring of R (respectively, difference (or o-) ideal of R) if Ry is
closed with respect to the action of any «; € 0. A o-ideal I of R is
called reflexive if the inclusion a;(a) € I (a € R, @; € o) implies
that a € I. (If Ris a o*-ring, it means that I is closed with respect
to every automorphism from ¢*). If a prime ideal P of R is also
a o-ideal, it is called a prime difference (or o-) ideal of R.If R is a
o*-ring and P is reflexive, it is referred to as a prime o*-ideal of R.

IfRisao-ringand S C R, then the intersection I of all o-ideals of
R containing the set S is the smallest o-ideal of R containing S; it is
denoted by [S]. If the set S is finite, S = {ay, . . ., a, }, we say that the
o-ideal I is finitely generated (we write this as I = [ay, ..., a,]) and
callay, ..., a, difference (or o-) generators of I. If R is inversive, then
the smallest o*-ideal I of R containing a subset S of R is denoted by
[S]*. Elements of the set S are called o*-generators of this ideal; if
S=A{ai,...,ar}, wewrite I = [ay,...,a,]", say that the o*-ideal I
is finitely generated and call ay, ..., a, its o*-generators. Clearly,
[S]* is generated, as an ideal, by the set {y(a)|a € S, y € T}. (In
what follows we will often write ya instead of y(a).)

IfRisa o™ -ring, then an expression of the form ¥ cr ayy, where
ay € R for any y € T and only finitely many elements a, are

127

different from 0, is called a o*-operator over R. It is an endomor-
phism of the additive group of R; if C = Y\, cr ayy and f € R, then
C(f) = Zyer ayy(f). Two o*-operators Yy cr ayy and 3y cr byy
are considered to be equal if and only if a;, = by, for any y € I'. The
set of all *-operators over R will be denoted by Eg. This set, which
has a natural structure of an R-module generated by I', becomes a
ring if one sets ya = y(a)y forany a € R, y € I and extends this rule
to the multiplication of any two o*-operators by distributivity. The
resulting ring &g is called the ring of o*-operators over R. Clearly,
iflisac*-ideal of R, I = [fi,..., fi]*, then every element of I is of
the form Y7, C;(fi) (g € N) where Cy,...,Cq € Eg.

If L is a o-field and its subfield K is also a o-subring of L, then K
is said to be a o-subfield of L; L, in turn, is called a o-field extension
or a g-overfield of K. We also say that we have a o-field extension
L/K.If L is inversive and a(K) C K for any a € ¢*, we say that K
is an inversive difference (or o*-) subfield of L or that we have a
o*-field extension L/K. In the last case, if S C L, then the smallest
o*-subfield of L containing K and S is denoted by K(S)*. S is said
to be the set of o™-generators of K(S)* over K. If the set S is finite,
S ={n,...,n}, we say that L/K is a finitely generated o*-field
extension. As a field, L(S)* = K({ya|y €T, a € S}).

Let R and R’ be two difference rings with the same basic set o, so
that elements of ¢ act on each of the rings as pairwise commuting
endomorphisms. (More rigorously, we assume that there exist in-
jective mappings of o into the sets of endomorphisms of the rings
R and R’ such that the images of any two elements of ¢ commute.
For convenience we will denote these images by the same symbols).
A ring homomorphism ¢ : R — R’ is called a difference (or o-)
homomorphism if ¢(aa) = ad(a) for any a € o, a € R. Clearly, the
kernel of such a mapping is a reflexive difference ideal of R.

In what follows we deal with inversive difference (c*-) rings
and fields. If R is such a ring and Y = {y1,...,yn} is a finite set
of symbols, we can consider the polynomial ring R[I'Y], where
I'Y denotes the set of symbols {yyjly € I,1 < j < n},asa o*-
ring containing R as its o*-subring. The corresponding ¢*-ring
extension is defined by setting a(yy;) = (ay)y; for any a € ¢*,
y €T, 1< j < n;itis denoted by R{y1, ..., yn}* and called the ring
of inversive difference (or o*-) polynomials in o-indeterminates
Y1,...,Yn over R. A o*-ideal of R{y1, ..., yn}" is called linearif it is
generated (as a o*-ideal) by homogeneous linear o*-polynomials,
that is, o*-polynomials of the form Z?zl aiYiyk, (@i € R, y; €T,
1<kj<nfori=1,...,d).Itis shown in [8, Proposition 2.4.9] that
if R is a o*-field, then a linear o*-ideal of R{y1,...,yn}" is prime.

If K is a o*-field, f € K{y1,...,yn}* and 5 = (1,...,1p) is
an n-tuple with coordinates in a o*-overfield of K, then f(#) (or
f(n,...,nn)) denotes the result of the replacement of every entry
yyiin f withyn; (y eI, 1 <i<n).If7r:R=K{yi,....,yn}" —
L =K(n1,...,nn)" is a natural o-homomorphism (7 (a) = a for any
a € K and y; — n;), then P = Ker r is a prime o*-ideal of R called
the defining ideal of the extension L/K. In this case, L is isomorphic
to the o-field qf (R/P), the quotient field of R/P (n; < y; + P).

Let K be a o*-field and U a family of elements in some o*-overfield
of K. We say that U is o-algebraically dependent over K, if the family
T'U ={y(u) | y €T, u € U} is algebraically dependent over K.
Otherwise, the family U is said to be o-algebraically independent
over K. If L is a o*-overfield of K, then a set B C L is said to be a



o-transcendence basis of L over K if B is o-algebraically independent
over K and every element a € L is o-algebraic over K(B)* (that is,
the set {ya|y € I'} is algebraically dependent over K(B)*). If L is a
finitely generated o*-field extension of K, then all o-transcendence
bases of L over K are finite and have the same number of elements
(see [8, Proposition 4.1.6]). This number is called the o-transcendence
degree of L over K (or the o-transcendence degree of the extension
L/K); it is denoted by o-tr. degy L.

The following theorem, whose prove can be found in [5, Section
6.4], introduces the (univariate) dimension polynomial of a finitely
generated inversive difference field extension.

THEOREM 2.1. Let L = K(nj1,...,nn)* be a c*-field extension of
a o*-field K generated by a finite setn = {n1,...,nn}. Then there
exists a polynomial ¢,k (t) € Q[t] such that

() Gy (r) = tr.degg K({ynjly € T(r),1 < j < n}) forall
sufficiently larger € N;

(ii) deg ¢,k < m, where m = Card o, and ¢,k (t) can be written
as ¢px(t) = PN ai(”l.'i) where ag, ..., am € Z and 2™|ay, .

(iii) d = deg¢y k. am and ay do not depend on the set of o™~

a
generators 1y (ifd < m, ag # am). Moreover, 2—: = o-tr. degy L.

(iv) Ifthe elementsny, ..., ny, are o-algebraically independent over
K, then gy ic (1) = n X (—1)™ K2k (1) (1F) .

The polynomial ¢,k (¢) is called the o™ -dimension polynomial
of the o*-field extension L/K associated with the system of ¢*-
generators 1. Methods and algorithms for computation of such
polynomials can be found in [5].

DIMENSION POLYNOMIALS OF SUBSETS OF Z™

In what follows we give some results on numerical polynomials
associated with subsets of Z™ (m is a positive integer). The proofs
of the corresponding statements can be found in [5, Chapter 2].

DEFINITION 2.2. A polynomial f(t1,...,tp) € Q[t1,...,1p] is
called numerical if f(ry,...,rp) € Z for all sufficiently large
(re,....7p) € NP. (That is, there exist $1,...,8p € N such that
flri,....rp) € Zforall(ry,...,rp) € NP withry > s1,...,rp 2 sp.)

Polynomials in Z[t1, ..., t,] and polynomials Hle (;l’l) with
my,...,mp € N are examples of numerical polynomials in p vari-
ables. The following theorem proved in [5, Chapter 2] gives the
“canonical” representation of such polynomials.

THEOREM 2.3. Let f(t1,...,tp) be a numerical polynomial in p
variables and m; = deg,, f (1 < i < p). Then this polynomial can be
represented in the form

& K t+i ty+1i

— 17h PP
f(tl,,..tp)—Z...Zaili_,ip( _ )( _ ) &

=0 iy=0 2! p

with integer coefficients a;, i, (0 < ix < my fork =1,...,p) that
are uniquely defined by the numerical polynomial.

In what follows we deal with subsets of Z™. Also, we fix a parti-
tion of the set Np, = {1,...,m} into p disjoint subsets (p > 1):

Nm=A1UA2U...Ap )

where Ay = {1,...,m1}, A = {m1+1,...,my+ma}, ..., Ap = {m1+
~~-+mp_1+1,...,m} (m; = Card A fori = L...,pymy+--+mp =
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m). If a = (ay,...,am) € Z™, we denote the numbers Z;;“l lail,
Zm1+mz m
i=my+1 U Hi=myttmyp o1+l

tively; ordg a (1 < k < p) is called the order of a with respect to Ay).
Furthermore, we consider the set Z™ as the union

ail, .. aj|byord; a,...,ord, a,respec-
y p P

m _ (m)
zZm = U z 3)
1<j<em
where Zim), .. ,,Zgz) are all distinct Cartesian products of m sets

each of which is either N or Z<(y. We assume that Zim) =Nand
call Zj(.m) the jth orthant of Z™ (1 < j < 2™).
The set Z™ will be considered as a partially ordered set with

the order < such that (ey,...,em) < (ef,...,ey,) if and only if
(e1,...,em) and (ei, ..., e},) lie in the same orthant and
(lel,- ... leml) <p (lefl,. ... lep .

If A € Z™, then Wy will denote the set of all elements of Z™ that
do not exceed any element of A with respect to <. Furthermore, for
anyry,....rp €N, A(ry, ..., rp) will denote the set of all elements
x=(x1,...,%m) € Asuchthatord;x <r; (i=1,...,p).

THEOREM 2.4. [5, Theorem 2.5.5] Let A C Z™ and let partition (2)
of the set Ny, be fixed. Then there exists a numerical polynomial in p
variables $(t1, . . ., tp) such that
(@) pa(r1,....,rp) = CardWa(r1, ..., 1p) for all sufficiently large
p-tuples (r1,...,rp) € NP.
(i) degpa < m and deg, $a < m; (1 < i < p). Furthermore, if
Pa(ts,...,tp) is written in the form (1), then 2m|am1___mp.
(iii) IfA = 0, then
PISA i (mi\ [t +
patti,.tp) =] | ;(—1) iip ( i )( i )

j=1

. @

The polynomial ¢4 (t1, . . ., tp) is called the dimension polynomial
of the set A C Z™ associated with partition (2) of Nj,. Algorithms
for computing such polynomials can be found in [5, Chapter 2].

3 E-REDUCTION OF INVERSIVE DIFFERENCE
POLYNOMIALS. E-CHARACTERISTIC SETS

Let K be an inversive difference field with a basicseto = {ay, ..., am}.
Let us fix a partition of the set o into p disjoint subsets (p > 1):

O'=O'1U"'U0'p (5)

where o1 = {a1,...,am, }, 02 = {omy 415 -, Amyamy 1> - - -
op = {am1+...+mp71+1, conamt (mp+---+ mp = m).

The order of an element y = afl ...(xfn’" € T with respect to
0 (1 < i < p)is defined as 3"+ |k |; it is denoted by

v=mi+---+m;_1+1

ord; y. If i = 1, the sum is Z:}n:ll |ky|. For any rq, ..., rp € N, we set
[(r,....rp)={y €l ordjy <r; (1 <i<p)}.
Let us consider p total orderings <j, ..., <p of the group I' such

k
that)/:afl...agm <i y’=a11...afn’" (1 <i < p)ifand only if

the (2m + p)-tuple (ord; y,ord; y,...,ord;—1 y,0rdj+1¥,...,0ordp y,

|km1+---+m,-,1+1 |, cees |km1+---+m,- |, km1+~~~+mi,1+1: CEE) km1+4..,+m,~’
|k1|, D) |km1+'~+m,-,1 |’ |km1+~~~+ml-+1, cees |km|)k1, cees km1+'~+mi,1s
kmy+---+m+1, - - - » km) is less than the corresponding (2m + p)-tuple

for y’ with respect to the lexicographic order on Z2™*P.

Two elements y; = a]fl ...a,]f,l'” and yp = ot ...af,’{’ are called

similarif (ky,...,km) and (Iy, ..., ;) lie in the same orthant of Z™.



Then we write y1 ~ y2. We say that y; divides y, (or y2 is a multiple
of y1) and write y1|y2 if y1 ~ y2 and y2 = yy; forsomey € I, y ~ y1.

Let R = K{y1,...,yn}" be the algebra of ¢*-polynomials in o*-
indeterminates y1, . . ., y, over K. Then R can be viewed as a polyno-
mial ring in the set of indeterminates I'Y = {yy; |y € I, 1 <i < n}
whose elements are called terms. We define the order of a term u =
Yyi with respect to o; (denoted by ord; u) as ord; y. Furthermore,

ki afn’" €

considering representation (3) of Z™, we set I; = {a;
Tl (ky,....km) € 2™} and T;Y = {yys |y € Tj,1 < i < ).
Terms u = yy; and v = y'y; are called similarif y ~ y’; in this
case we write u ~ 0. If u = yy; is a term and y’ € T, we say that
u is similar to y’ and write u ~ y’ if y ~ y’. Clearly, if u € TY,
y €T and y ~ u, then ord;(yu) = ord; y + ordjufor j = 1,...,p.
Furthermore, if u,v € T'Y, we say that u divides v (or v is a transform
or a multiple of u) and write u | v, if u = y'y;, v = y”'y; for some y;
andy’|y”. (Ify”’ =yy’ forsomey €T, y ~ y/, we write ? for Y
We consider p orders <y, .. ., <pon the set T'Y that corrgspond to
the orders on the group I' (we use the same symbols for the orders
onT and T'Y). These orders are defined as follows: yy; <; y’yy if
andonlyify <; y/inTory=y"andj<k(1<i<p, 1<jk<n).
DEFINITION 3.1. Let f € K{y1,...,yn}* \K and1 < k < p. Then
the greatest with respect to <j. term in f is called the k-leader of the
o*-polynomial f; it is denoted by uj(rk). The smallest with respect to
(k)
!
DEFINITION 3.2. Let f € K{y1,...,yn} \ K and let u}k) and v}k)
be the k-leader and k-coleader of f, respectively (1 < k < p). Then the
nonnegative integer ordy ulF) - ordy o'®) is called the kth effective
order of f; it is denoted by Eordy f.

< termin f is called the k-coleader of f and is denoted by v

DEFINITION 3.3. Let f,g € K{y1,...,yn}". We say that f has
lower rank than g and writerk f <tk g ifeither f € K,g ¢ K, or

(u}l),degu(fl) f,ordy uj(cz), . .,,ordp u}p),Eordl f. ..,Eordp ) <lex

(2)

(uél), deg (1) f,ords ug ,..,,ordp u;p),Eordl g,.. .,Eordp 9)
Ug

(6)

1) gre compared with respect to the order <1 onT'Y). If

andu

@

the two (2p + 1)-tuples are equal (or f,g € K) we say that f and g
are of the same rank and writerk f = rkg.

DEFINITION 3.4. Let f,g € K{y1,...,yn}" and letd = deg () g.

9
We say that f is E-reduced with respect to g if at least one of the
following two conditions holds.

(i) f does not contain (yu(l))e (y €T) withy ~ u(l) ande > d;

(ii) f contains some (yu(l))e withy e T,y ~ u(l) e >d, and
either there isk € N, 2 < k < p, such that ordy u( ) > ordk(u(k))
orthereis j € N,1< j < p, such that ord; v)(,]) < ord; (U(j))

Thus, f is not E-reduced with respect to g if f contains some
(yug(l))e such thaty e I,y ~ u(l), ( ) <

J “%)

deg o g, ordg uy

ordk(u}k)) (2 <k <p),and ord; > ord; (ZJJ(C])) forj=1,...p.
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REMARK 3.5. If f,g € K{y1,...,yn}" then f is reduced with re-
spect to g in the sense of [5, Definition 3.4.22] with respect to the term
ordering <1, if condition (i) of the last definition holds. Clearly, in this
case f is E-reduced with respect to g as well.

REMARK 3.6. It follows from [18, Lemma 3.3] that for all f € R =
K{y1,....yn}t" j€{1,...,2™} andk € {1,..., p}, there exist terms
upjk and vgj in f such that for all elementsy = af a,];”‘ €T
with sufficiently large (|kil, ..., |km|) € N™ (in the sense of Defi-
nition 2.2), one has u)(/]}) = yupjk and u)(/l}) = youfjk- Therefore, if
f€eR andu}l) = y1yx whereyy € Tj (1 < j < 2™), then there exist

aif, by € Z (2 <i < p,1 <k < p)such that for any suchy € T},

(i) (k)
vf vf

ProposiTION 3.7. If f,g9 € K{y1,..
f is E-reduced with respect to g.

ordju . =ordy+a;r andordgv 0 = ordy +bys.

Yntt andrk f < rkg, then

PRrOOF. Suppose that f is not E-reduced with respect to g. Then
f contains some (yu( ))e wherey €T,y ~ u< )

(1)

(hence y = 1, since otherwise u,

,e>d= degu(n g
9

<1 yu; ) <4 uj(rl) that con-

tradicts the condition (6) for rk f < rkg), and also ordy u;k) <

ordy u}k) fork =2,...,pandord U;k) > ordg vj(,k) fork=1,...,p.

Then Eordg g < Eordg f (1 < k < p), contrary to the inequality
rk f < rkg. Therefore, f is E-reduced with respect to g. O

ProrosITION 3.8. Let A = {g1,...,9:} be a finite set of o™~
polynomials in the ring R = K{y1,...,yn}* and let ul(cl) denote the

i-leader of g 1 < k < t,1 < i < p). Letdy = degu(l) gi and
3

let Iy, be the coefficient of (ul(cl))dk when gy is written as a poly-

nomial in u](cl) (1 < k < t). Furthermore, let (A) = {f € R|
either f = 1 or f is a product of finitely many o*-polynomials of
the formy(I) (y € I,k = 1,...,t)}. Then for any h € R, there exist
JeI(A) and h € R such that h is E-reduced with respect to A and
Jh = h(mod [A]*) (that is, Jh — h € [A]*).

Proor. If h is E-reduced with respect to A, one can set h=h
Suppose that h is not E-reduced with respect to A. In what follows,
if a o-polynomial f € R is not E-reduced with respect to A, then a
term wy that appears in f will be called the A-leader of f if wy is the
(1)

greatest (w1th respect to <) term among all terms yug,

(1 < k < t) such that f contains (yu( ))e with e > dp,

withy €
Ly~ ugk >
ord; u)(,lg)k < ord; u](c) fori=2,...,p, and ord; U}(,g)k > ord; U](Cj) for
Jj=1,...,p. Let wy, be the A-leader of the element h, d = degwh

and ¢y, the coefficient of wd when h is written as a polynomial in

wp. Then wy, = yu( ) for some k € {1,...,t} and y € T such that
Yy~ ;k),d > di, ord; )(/9)k < ord; }(l) (2 <i<p),andord; v)(,éi >

ord; v}(l]) (1 £ j £ p). Let us choose such k that corresponds to
the maximum (with respect to <;) 1-leader ul.(l) (1 <i<t)and

dk (y9x)- Clearly,
, ( )

(y/ €T,1 < v < t) that is greater than wy, with respect to <3 (such

consider the o*-polynomial ' = y([;)h — chwd7
deg,,, K < deg,, hand K’ does not contain any A-leader y’u



a term cannot a; i i (1) (1) =

ppear in y(Ix)h or ygy, since uyg, = yug,’ = wp).
Applying the same procedure to b’ and continuing in the same way,
we will arrive at a o-polynomial h € R such that h is E-reduced

with respect to A and Jh — h € [A]* for some J € I(A). O

The process of reduction described in the proof of the last propo-
sition can be realized by the following algorithm. (Recall that &g de-
notes the ring of o*-operators over the o*-ring R = K{y1,...,yn}".)

ArGorIiTHM 3.9. (b, t,g1,...,9s; Z)

Input: h € R, a positive integer t, A = {g1, ..
gi#0fori=1,...,t

Output: Element h € R, elementsCy, ...,Cy € Er and J € I(A)
such that Jh = 21?:1 Ci(gi) + h and h is E-reduced with respect to A

Begin

C1:=0,...,Ct = O,E =h

While thereexistk,1 < k < t, and a termw that appears inh with

. 1 T
a (nonzero) coefficient c,,, such that u;k) | w, deguéz gk < deg,, h,

.9t} € R where

p, where ., = (1> , and

ordi(ykwu;,?) < ord; u(ﬁi) fori=2,...,
Ugy
ordj(ykwuéi)) > ord; U%J) forj=1,..

z:= the greatest of the terms w that satisfy the above conditions.

( )

.,p,do

= the smallest number k for whichug,” is the greatest (with resect

to <1) 1-leader of an element ofﬂ such that uéi) | z, degu(l) g <
9k

deg, h, ordi(ykz ) < ord; u— forl =2,...,p, whereyg, = %5,
ugk

and ordj(ykzv;i)) > ord; U%]) forj=1,....p,

J=yIDJ], C:=Cr+ czzd_d’ylz where d = deg, h, d; = degum g1,
91

and ¢, is the coefficient of 2% when h is written as a polynomial in z.

ho= r()h* - czzd_d’(ygl)
End

DEFINITION 3.10. A set A K{y1,...,yn}" is said to be E-
autoreduced if either it is empty or A (K = 0 and every element
of A is E-reduced with respect to all other elements of the set A.

C

ExAMPLE 3.11. Let K be an inversive difference field with a basic
set 0 = {a1, a2} considered with a partition o = o1 U oo where
o1 = {1} and oy = {a2}. Let A = {g,h} € K{y}* (the ring of
o -polynomials in one o™ -indeterminate y) where

gzafaz_zy+agy+agy, hzafaz_ly+a1_1a§y+a1agy.
Thenuél) = a%az_zy, (1) _ v(z) = azy, u(z) = ady,ulV

291,
”;(ll) _ Z)(2) = aiazy, and ”;(l) = al—lagy We see that ug
(1)

M, -1 }(:) Fur-

transform of u, ', ug " = yu,’ wherey = ma
3,-2 N
yh =%y

thermore, yh = aja; “y + aly + apy, so u( ) =
(2) _ 4

0(;1) = apy, and U(h) = aly. Thus, ords u(h) = 2 < ordy ug

_ -1
0‘10‘2 Y,

(1)

isa

2

ord; Z)}(/}l) =0 = ord; v_,;l), but ordy U)(jl) =0 < ordy véz) = 1. There-
fore, g is E-reduced with respect to h. Since h is clearly E-reduced
with respect to g, A = {g, h} is an E-autoreduced set. At the same
time, this set is not autoreduced in the sense of [5] where an analog of
Definition 3.4 does not assume option (ii) of our definition.

PROPOSITION 3.12. Every E-autoreduced set is finite.

130

Proor. Suppose that there is an infinite E-autoreduced set A.
Since every infinite sequence of elements of I' contains an infinite
subsequence whose elements are similar to each other (there are
only finitely many orthants of Z™), it follows from [4, Chapter 0, Sec-
tion 17] that A contains a sequence of o*-polynomials {fi, f2,...}

such that uj([l) | u}l) fori=1,2,.... Moreover, we can assume that

all leaders and coleaders of ¢ —polynomlals in this sequence are
similar to each other. Since the sequence {degu(l) fi} cannot have

an infinite decreasing subsequence, without loss of generality we
can assume that deg wfi deg @ finn(i=12...).
Uy fz+1
Let k;j = ord; u](ci ), l;j = ord; uf
Obviously, lj; > kij > njj (i = 1,2,.

nij —ord]v}j) (1<j<p).
sj=1...,p), so {(ln —

kit = 0,1;5 — kiz,...,lip - kl‘p)|i = 1,2,...} C NP and {(kj1 -
ni1, kip — ni, .. wkip - n,'p) |i=1,2,...} C NP, By [4, Chapter 0,
Section 17], there exists an infinite sequence i1 < iz < ... such that
(liya=kiy2, .. .. Lip=kip) <p (li2—kipo, ..., liyp—kip) <p ..., (7)
(ki1 =niy1, .. kiyp = nip) <p (Kiyt =niy1, ... kiyp —nipp) <p ...
®)
o
Then for j = 2,...,p and for y12 = (1) we have (using (7))
“fi
() . ) o .
ord; u < ordjyi2 + ordju = kiyj — ki + Liyj < ki +

Y12 f1 ﬁl
liyj = ki,j = ord; uj(ﬁjz) Similar arguments with the use of (8) give

ordj(ylgv}j)) > ord; v}_j) (2 < j < p). Thus, f;, is not E-reduced
1 2

with respect to f;, contrary to the fact that A is an E-autoreduced
set. [m}

In what follows, while considering E-autoreduced sets we always
assume that their elements are arranged in order of increasing rank.

DEFINITION 3.13. Let A ={g1,...,9s} and B = {hy,..., ht} be
two E-autoreduced sets in the ring K{y1,...,yn}". Then A is said
to have lower rank than B, written as tk A < rk B, if one of the
following two cases holds:

(1) tk g1 < rk hy orthere existsk € N such that1 < k < min{s, t},
rkg; =tkh; fori=1,...,k — 1 andrkgg < rkhg.

(2) s> tandrkg; =tkh; fori=1,...,t

Ifs =t andrkg; = 1tkh; fori = 1,...,s, then A is said to have
the same rank as B; in this case we writetk A = rk B

The proof of the following statement can be obtained by mim-
icking the proof of the corresponding theorem for differential poly-
nomial, see 5, Proposition 3.3.37].

ProPoOSITION 3.14. Every nonempty family of E-autoreduced sets
of o™ -polynomials contains an E-autoreduced set of lowest rank.

Let J be any nonzero o*-ideal of K{y1,...,yn}". Since the set
of all E-autoreduced subsets of J is not empty (if 0 # f € J, then
{f} is an E-autoreduced subset of J), the last statement shows
that J contains an E-autoreduced subset of lowest rank. Such an
E-autoreduced set is called an E-characteristic set of the ideal J.

ProPOSITION 3.15. Let A = {fi,..., fy} be an E-characteristic
set of a o*-ideal J of the ring K{y1,...,yn}". Then an element g € |
is E-reduced with respect to the set A if and only if g = 0.



Proor. If g # 0 and rk g < rk fi, then rk {g} < rk A that con-
tradicts A being an E-characteristic set of J. Let tk g > rk f; and
let fi,..., fj (1 £ j < d)be all elements of A whose rank is lower
that the rank of g. Then A’ = {f, .. ., fj»g} is an E-autoreduced
set and rk A’ < rk A, a contradiction. Thus, g = 0. m]

The proof of the following statement can be obtained by mim-
icking the proof of [5, Theorem 6.5.3 and Corollary 6.5.4].

PROPOSITION 3.16. Let < be a preorder on K{yi,...,yn}" such
that f < g if and only ifu_,gl) is a transform ofu}l). Let f be a linear
o*-polynomial inK{y1, ..., yn}" \K. Then the set of all minimal with

respect to < elements of the set {yf |y € T'} is an E-characteristic set
of the o*-ideal [ f]*.

4 A NEW TYPE OF DIMENSION POLYNOMIALS
OF ¢*-FIELD EXTENSIONS

In this section we use properties of E-characteristic sets to obtain the
following result that generalizes Theorem 2.1 and introduces a new
type of multivariate dimension polynomials of finitely generated
o*-field extensions that carry more invariants than the standard
(univariate) difference dimension polynomials. (By an invariant of
a 0" -field extension we mean a numerical characteristic that does
not depend on the set of its o*-generators.) We still deal with a
o*-field K and partition (5) of its basic set o. For any two p-tuples
(ri,....rp), (s1,...,5p) € NP withs; <rjfori=1,...,p, we set

I(ry,... P}

THEOREM 4.1. Let L = K(n1,...,nn)* be a o™ -field extension gen-
erated by a set = {n1,...,nn}. Then there exists a polynomial
@, x(t1, ..., t2p) in 2p variables with rational coefficients and num-

bersri(o),si(o),si(l) eN@1<i<p)with si(l) < rl.(o) —sl.(o)
,Sp) =

q>I7|K(r1’~~-:
tr.degg K({ynjly € T(r1,...,

forall (ry,...,

sfo). Furthermore, deg @, | g S m, deg, ®p g <m; fori=1,....p
anddegtj(ID,”K <mj_p forj=p+1,...,2p.

Proor. Let P € R = K{y1,...,yn} be the defining o*-ideal of
the extension L/K and A = {fi,.. ., fq} an E-characteristic set of
P.Forany 7 = (ri,...,rp),5 = (s1,...,5p) € NP withs <p 7, let
W(r,s)={weTlY|si<ordijw<r for i=1,...,p},

Wy (7,5) = {w(n) | w € W(F5)},

U'(r,s) ={uelY|si <ordju <rj(1 <i<p)anduisnota
transform of any u};) (1<) <@LUNFS) = {uln) |ue U 75}
U”(r,5) ={ueTlY|s; <ordju < r; (1 <i < p)and whenever
.,p} such that

TpiSte. . Sp) ={y €T |si<ordjy <rjfori=1,...

such that
rp, S15enn

ssp)y 1 <j<n})

sp) € N2P withr; > ri(o), sgl) <si<ri-—

rp;31,...

rp,$1,...,

u= yu}jl) (yel,y~ uj([jl)), there exists k € {2,..

ordk(u(k)) > rg or there exists i € {1,...,
(i )
f,
Uy (r.5) = {u(n) lu e U"(7,5)},
U(r 5) =U'(r,5) VU" (7,5) and Uy (7,5) = Up(7,5) U Uy (75).
We will prove that for every 7,5 € NP with 5 <p 7, the set
Uy (7,5) is a transcendence basis of the field K(Uy(,s)) over K.
First, note that Uy (7, 5) is algebraically independent over K. Indeed,

p} such that

ord; v, < s; (“or” is inclusive)},
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if f(w1(n),...,wr(n)) = 0 for some wy,..., w € U(7,5), then the

o*-polynomial f(w,..., wy) lies in P and it is E-reduced with re-
spect to A. (If f contains a term w = yuj(r ) ](C ) sdeg, f >

deg @ fj, then w € U”(7,5), so there exists k € {2,.
f

(k) (k)
vf > rp > ordkuf

such that ord; v)(/lf) <s; < ordjo

,withy ~
..,q} such

that ord u or there exists i € {1,...,p}

(i); “or” is inclusive). Then f is
J

E-reduced with respect to A.) By Proposition 3.15, f = 0, so the set

Uy (7,5) is algebraically independent over K.

Now let us prove that if 0 < s; < r; — sl.(o)
max{Eord; fj |1 < j < q} (1 < i < p), then every element
Yk € Wy(r,5) \ Uy(r,s) (y € T, 1 < k < n) is algebraic over
the field K (Uy (7,5)). In this case, since yyj ¢ U(T.,5), yy is equal

to some term y'uj(c ) ~ y’u(l),

0 _

, where s;

(1 £ j < q)wherey €T,y

ordju,, <ri(2<i<p), andordlv >gforl=1,...,p.

fJ v'fi
(1),

Let us represent f; as a polynomial in up

f} =I§j)(uj£}1))d] +- I(]) ](cl) I(])

where I(j),I(j), . ..I(j) do not contain uj([) (therefore, all their

J
terms are lower than u( )

5
1 )+

with respect to <1). Since f; € P,

w1 () + 1 () = 0. )

Note that I(j)(ty) # 0. Indeed, since rkI(j) < 1k fj, the equality
I(]) (1) = 0 would imply that I(J) € P. Then the family of all f;

w1th rk f; <1kl (] ) and 1; (] ) would form an E-autoreduced set in P
whose rank is lower than the rank of ‘A, contrary to the fact that A
is an E-characteristic set of P. Similarly, 11(,1 ) ¢ Pfor0 < v <dj(and
any j =1,...,q), and since P is a c*-ideal, y(Il(,j)) ¢ P for any Il(,j),
v € T. Therefore, if we apply y’ to both sides of (9), the resulting
equality will show that the element y’ u](;) (1) = yng is algebraic

over the field K({yn; | s; <ord;y <r; 1 <i < p),jy; <1 y’u}_l)}).
J

(Note that if I = I<j) for some j € {1,...,q} and v € {0,...,dj},
then ord; (y’u( )) < ord; u( D < ri(2<i<p)and ordk(y’ol(k)) >

ordy ZJ( ) >sp(1<k< p)).By induction on the well-ordered (with
respect to <1) set I'Y we obtain that Uy (7,5) is a transcendence basis
of the field K(Wy(,s) over K.

In order to evaluate the size of Uy (7,5) we are going to evaluate
the sizes of U,; (7,5) and U,;' (7,53), that is, the sizes of the sets U’ (7, 5)
and U”(7,5). Forevery k = 1,.. .,

A = {1, im) €Z™ | ol
of some element of A}.

By Theorem 2.4, there exists a numerical polynomial wy (¢4, . . .,
such that wg (r1,...,7p) = Card Wy, (r1, .. .,

n, let
.. gy is the 1-leader

tp)
rp) for all sufficiently

large (rq,...,rp) € NP. Therefore, if we set t//,7|K(t1,...,tp) =
n

Z wy(t1,. .., tp), then there exist ri(o),sl.(o),sl.(l) eN(1<i<p)

Wlth s(l) < rl.(o) - si(o) such that for all ¥ = (r1,...,rp),§ =



) (1)

sp) € NP withr; 271,77, s; ©)

(s1,..., <si<ri—s; , one has

Card Uy (7.,5) = Yy g (r1, - . 7p) = Y (51— 1, (10)

Furthermore, deg ;) x < m, and degyy,|x = m if and only if at
least one of the sets Ay (1 < k < n) is empty.
In order to evaluate Card U”'(7,s), note that U’/ (7,s) consists
of all terms yu}l) yeTl,y~ u(l),l < j < g) such thats; <
J

5
(k)

< r; and there exists k € {2,..., p} such that ordy Uy >
J

()

vF < si (“or” is

Ssp—1).

d: 4V
ordiu,
ri or there exists i € {1,...,p} such that ord; v

inclusive). It follows from Remark 3.6 and formula (4) that if we fix
(1) (1)

J, the number of such transforms yu + ofu v with the conditions
J
ord; v (f) = ordy+bl~fj < sj, ordi(yu}j)) =ord;y + aif, 2 si for
i€ {ki,....kq} € {L....,p}, ordi(v)(/?) = ordy + bs, > s; for
J
ie{l,....,phi#k,(1<v<d) andordiu}(/}i = ordy+a,-fj <r
m; ) o
fori= 1,...,piS l_l [Z(_l)mi_#zﬂ(mz)((rl alfj +,U) _
1<i<p, Lp=0 H H
iikl,‘..,kd

Si bf +pu—1 d [y my
i — Uif; - . (_l)mkv—yzp( V)'
o) Bt
_bkvf’ -1+ my

p=0
((Skv i V) B (Skv — alfj -1+ mkv))} (1)
mkv mkv

and a similar formula holds for the number of terms with the con-
ditions ord; u'?) > rifori € {I,....Ie} C {2....p} (y ~ u}?>),
J

vfi
ord; U(l) >s; (1 <i<p)andord; u)(/;z <rifori#l,(1<v<e).
J

vfi

Applying the principle of inclusion and exclusion (taking into
account terms that are multiples of more than one 1-leaders), we
obtain that Card U” (7,5) is an alternating sum of polynomials in

r,... sp that are products of k (0 < k < p) terms of

%:— mi) with a;, b; e N(1 <i < p)

—ci+mi) _(si—di+m,~)
mj mj

s rp, S1ye vy
the form (ri - %i-'— mi) - (Si -

and p — k terms of the form either (si or

("~ ,crl;i"' iy — (" with ¢;,d; € N, ¢; < d;. Since each
such a polynomial has total degree at most m — 1 and its degree
with respect to r; or s; (1 < i < p) does not exceed m;, we obtain
that Card U”' (7,5) = A(r1,...,7p, 51, ..., 5p) where A(t1,...,t2p) is
a numerical polynomial in 2p variables such that degA < m and

—di + mi)
mj

deg,i/l < mj, degt]_/l <Smjpfori=1,...,p,j=p+1,....2p. It
follows that the numerical polynomial

Qp 1k =YLkt tp) =Y k (Bpr1 =1 t2p =D +A(t1, . ., T2p)
satisfies conditions of our theorem. )

The numerical polynomial <I>,7| x(t,. ..,tzp) is called the 2p-
variate o*-dimension polynomial of the o*-field extension L/K as-
sociated with the system of o*-generators  and partition (5) of the
set 0. The following theorem describes some invariants of such a
polynomial, that is, characteristics of the extension L/K that do not
depend on the set of 0*-generators of L/K. In what follows, for any
permutation (ji, ..., jzp) of the set {1,...,2p}, let <j;,_j,, denote
the lexicographic order on N%P such that (k.. - kap) ryoofop
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(I,..., lzp) if and only if either kj, < [;, or there exists ¢ € N,
2 < q <2p,suchthatk;, =1j, forv <gandkj, <Ij.

(tl + 11) (tzp + izp)
. . izp

be the 2p-variate o*-dimension polynomial of the o*-field extension
L=K(,....nn)" Let By = {(i1, ..., izp) € NP | 0 < ij, ipyp <
my (k=1,...,p) and aj,__i,, # 0}. Then the total degree d of ;)|
and the coefficients of the terms of total degree d in @, | g do not
depend on the set of 0™ -generators n. Furthermore, if (i1, ..., lp) is
any permutation of {1,...,p} and (v1,...,vp) is any permutation of
{p+1,...,2p}, then the maximal element of E;) with respect to the
lexicographic order Sfttyeeoflps Vi Vp and the corresponding coefficient
v, do not depend on the o*-generators of L/K either.
Finally, amy...m,0...0 = 40...0my...m, = O-tr. degg L

Proor. Let { = {{3,. ..,

THEOREM 4.2. Let

@y = Z DIDITP IS

= ip=0ip41=0 izp=0

i} be another set of o*-generators of

L/K, that is, L=K(r]1,...,ryn)* =K{{1,...,{))" Let
1+ i1 top +izp
=330 5 ') )
i1=0  ip=01ip41=0 P

be the 2p-variate dimension polynomial of the extension L/K as-
sociated with the system of o*-generators {. Then there exist
hi,....hp € N such that n; € K(nglr(hl,..‘,hp)gj) and {; €
K(Ujo T(h1,...ohp)yj), 1 < i <nand1 < k < L (IfI" C T,
then I'"{; denotes the set {y{;j |y € I'"}.) It follows that there exist
ri(o) sO W e N (1 <i < p)with s(l) < r(o) I(O) such that

»Si S
whenever r; > ri<0>, l.(l) <si<r —sl.( ) (1<i<p),

rep) < Ok (rithy, ...,

‘I>§ | xk(re,..., rzp) < @§|K(r1+h1, e, rp+hp, rp+1—h1, el rgp—hp).
These inequalities immediately imply the statement of the the-
orem about the maximal elements of E; with respect to the or-
ders Sfttyeeoflps Ve Vp and the corresponding coefficients. The equal-
ity of the coeflicients of the corresponding terms of total degree

d =deg®, g =degd; g in &y | g and &y k can be shown as in

the proof of [9, Theorem 3.3.21].

In order to prove the last part of the theorem, note that the
degree of the polynomial (11) is less than m. It follows that the
coefficients of the terms of total degree m in t1,...,t, and terms of
total degree m in tp41, . . ., fzp in the polynomial ®, |  are equal to
the corresponding coefficients in the polynomials ¥, |k (t1, . ... tp)
and Yy | g (tp+1, . -, t2p), respectively (see the proof of Theorem
4.1). Now, using the fact that if elements #;,,...,7; (it,...,ig €
{1,...,n}) are o-algebraically independent over K, then
tr.degg K(({yni; ly € T(r1,-. ., 7p3st, .., 8p), 1 < j < k}) =

i i—JjoJ (Mi i+] itj-1
KT, |2 (nm=i2d () () = (7)) | for any rivs; €
Nwiths; <r; (1 <i < p), one can mimic the proof of [5, Theorem
6.4.8] to obtain that Amy...mp0...0 = A0...0m;...m,, = O-tr. degxg L. O

<I>,7|K(r1,..., rp+hp,rp+1—h1,...,rzp—hp),

ExAmPLE 4.3. Let K be a o*-field with a basic set o = {a1, a2, a3}
considered with its partition o = {a1} U{az} U{a3}. Let L = K(n)*
be a o*-field extension with the defining equation

(12)

-a b
aln+ain+ajn+asn=0



where a,b,c € N, a > b > ¢ > 0. It means that the defining ¢*-
ideal P of the extension L/K is a linear o*-ideal of the ring K{y}*
generated by the linear o™-polynomial f = afy+a; %y + aé’ y+agy.

By Proposition 3.16, the 6*-polynomials f and a; ' f = a;(a+l)y+
af_ly + al_lagy + al_lagy form an E-characteristic set of P. Setting
7 =(r1,r2,r3),s = (s1, s2, s3) and using the notation of the proof of
Theorem 4.1, we obtain (applying [5, Theorem 2.5.5]) that for all
sufficiently large (r1, o, r3, 51, 52, 53) € N°,

Card U,; (7,5) = $((4,0,0),(~a-1,0,0)} (11, 2, 73,51, 52, 83) =

2a(2ry — 2sy +2)(2r3 — 2s3 + 2).

Furthermore, using the method of inclusion and exclusion (as it
is indicated in the proof of Theorem 4.1), we get Card Uy (7,s) =
(2a+1)(2ry —2s2+2)(2r3 —2s3+2) +4b(r1 —s1 +1)(2r3 —2s3+2) +
4c(ry —s1+1)(2rp — 259 +2) — 2b(2a+ 1)(2r3 — 2s3 +2) — 2c(2a +
1)(2ry — 2s2 +2) — 8bc(r; — s1 + 1) + 8abce + 4bc.

Since the 6-variate o*-dimension polynomial | gt1, ..., t)
expresses the number of elements of the set U,; r,s5u U,;’ (7,5),

@,7 K = 8ctyto+8btyt3—8ct1t5—8bityte+4(4a+1)tats—8ctaty
—4(4a+1)tytg—8btsty—4(4a+1)t3t5+8ctyts+8btyte+4(4a+1)tste+
(13)

By [5, Theorem 6.4.8], the univariate ¢*-dimension polynomial
¢y |k (t) (see Theorem 2.1) coincides with the dimension polyno-

mial of the set A = {(4,0,0), (—a — 1,0,0)} c Z3). Therefore

Pyix = 4at? + alinear combination of monomials of degree < 1.

a linear combination of monomials of degree < 1.

By Theorem 4.3, deg @, | x = 2 and the coefficients of the terms
titj (1 < i, j < 6) are invariants of the extension L/K. Therefore,
the polynomial @, | (t1,...,t) carries all three parameters a, b
and ¢ of the defining equation (12). At the same time, the univariate
polynomial ¢, | x (t) carries only the parameter a.

The fact that the 2p-variate o*-dimension polynomial carries
more invariants than its univariate counterpart can be applied to the
equivalence problem for systems of algebraic difference equations.
Suppose we have two such systems over a 0*-field K (i. e., systems
fi =0 (i € I) where all f; lie in some ring of ¢*-polynomials) that
are defining systems of equations for o*-field extensions L/K and
L’ /K (that is, the left-hand sides of the systems generate prime o*-
ideals P and P’ in the corresponding rings of o*-polynomials R and
R’ (possibly of different numbers of o*-generators) such that L and
L’ are o-isomorphic to qf (R/P) and qf (R’ /P’), respectively). These
systems are said to be equivalent if there is a o-isomorphism be-
tween L and L’ which is identity on K. The 2p-variate o*-dimension
polynomial given by Theorem 4.1 allows one to determine that two
systems of algebraic difference equations are not equivalent even
if the corresponding o*-field extensions have the same univari-
ate o*-dimension polynomials. As an example, consider difference
equations

(14)
(15)

where a,b,c,dje e Nya>b>c>0,a>d>e>0and b # d,
cFe.

The invariants carried by the univariate ¢*-dimension polyno-
mials associated with these equations (the equation (14) was con-
sidered in the last Example) are the same, the degree 1 and a. At

- b
afn+ai®n+ayn+asn=0,

afq+a1_“n+agq+a§r7=0
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the same time, the 6-variate dimension polynomials for these equa-
tions (they are of the form (13)) carry invariants a, b, c, and a,d, e,
respectively. Thus, the difference equations (14) and (15) are not
equivalent, even though the corresponding o*-field extensions have
the same invariants carried by the univariate o*-dimension poly-
nomials. (Note that the problem of finding a complete system of
invariants in our settings is still open.)

We conclude with a remark on an analytic interpretation of the
obtained results. Consider a system of equations in finite differences
with respect to n unknown functions in m independent variables
X1, ..., Xm over R and shifts of arguments a; : x; — x; + h; (h; € R,
1 < i < m). Given a partition of the set of variables into p dis-
joint subsets, the o*-dimension polynomial introduced by Theorem
4.1 (0 =A{a1,...,am}) gives the maximal number of algebraically
independent values the solution functions take at nodes of the
h1 X -+ X hy, grid in R™ whose orders with respect to the ith set
of the partition lie between two given positive integers s; and r;,
1 < i < p. (The orders of nodes are considered with respect to some
fixed node (the origin), see [8, Section 7.7] for details.) It gives a
more delicate characterization of the system than its Einstein-type
strength discussed in [8, Section 7.7].
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