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Abstract. We introduce a new type of Gröbner bases in free difference modules that are associated
with a reduction respecting the effective order of module elements. We prove some properties
of such Gröbner bases and present a Buchberger-type algorithm for their computation. Using the
obtained results, we prove the existence and give a method of computation of a bivariate dimension
polynomial of a finitely generated difference module that carries more module invariants than the
classical difference dimension polynomial. We also show how the new invariants can be applied
to the isomorphism problem for difference modules and to the equivalence problem for systems of
algebraic difference equations.
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1. Introduction
It is well-known that the classical Gröbner basis method can be used for the efficient computation of
Hilbert polynomials of graded and filtered modules over polynomial rings. Similarly, the theory of
Gröbner bases in free modules over rings of differential, difference and difference-differential oper-
ators developed in [15], [3] (differential case), [5, Chapter 4], [13], [7], [8], [9, Chapter 3], [16], [17]
(difference and difference-differential cases) and in some other works provides methods of compu-
tation of dimension polynomials of differential, difference and difference-differential modules, as
well as of the corresponding field extensions and systems of algebraic differential, difference and
difference-differential equations. The important role of difference dimension polynomials is deter-
mined by at least four factors. First, a dimension polynomial associated with a system of algebraic
difference equations expresses the strength of such a system in the sense of A. Einstein. (The signifi-
cant role of this characteristic in the theory of equations of mathematical physics is described in [2]).
The discussion of its difference counterpart can be found in [9, Chapter 7].) Second, a difference
dimension polynomial of a finitely generated difference field extension (or of a system of algebraic
difference equations that defines such an extension) carries certain invariants, that is, characteristics
of the extension that do not change when we switch to another system of difference generators (with
the corresponding change of the defining equations), see, for example, [6], [5, Chapter 6] and [9,
Chapter 4]. In this connection, one should mention the results on multivariate difference dimension
polynomials associated with partitions of the basic set of translations, see [8] and [9, Chapter 3]. It
turned out that they carry more such invariants than their univariate counterparts. Third, properties
of difference dimension polynomials associated with prime difference polynomial ideals provide a
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powerful tool in the dimension theory of difference algebras, see [5, Chapter 7], [9, Section 4.6], and
[10]. Finally, the results on difference dimension polynomials can be naturally extended to algebraic
and differential algebraic structures with a finitely generated commutative group action, see [12] and
[14].

In this paper we introduce the concept of a Gröbner basis in a free difference module associated
with a reduction respecting the effective order of module elements. (The concept of the effective or-
der of an element of such a module is defined as a generalization of the notion of effective order of an
ordinary difference polynomial (see [1, Chapter 2, Section 4]) to the partial case.) We describe some
properties of the introduced Gröbner bases and present a Buchberger-type algorithm for their com-
putation. Then we apply the obtained results to the computation of a bivariate dimension polynomial
of a finitely generated difference module M over a difference field K associated with a system of
module generators. This polynomial describes the dimensions of the K-vector spaces generated by
the transforms of the module generators whose orders lie between two given natural numbers. It car-
ries more module invariants than the classical difference dimension polynomial, so we obtain a new
tool for deciding whether two finitely generated difference modules are isomorphic. Furthermore,
the developed technique enables us to give an alternative proof of the existence of such bivariate
dimension polynomials. The first existence proof, which is based on the properties of generalized
characteristic sets in a free difference module, was given in [11]. That approach, however, does not
provide a method of computation of bivariate dimension polynomials, since there is no satisfactory
algorithm for computing difference characteristic sets. Finally, using the properties of modules of
Kähler differentials associated with field extensions, we obtain a method of computation of bivariate
dimension polynomials of finitely generated difference field extensions. We conclude with examples
that illustrate the advantage of applying our bivariate difference dimension polynomials to the iso-
morphism problem for difference modules and to the equivalence problem for systems of algebraic
difference equations.

2. Preliminaries
Throughout the paper, N, Z, andQ denote the sets of all non-negative integers, integers, and rational
numbers, respectively. If m ∈ Z, m ≥ 1, then ≤P will denote the product order on Nm, that is, a
partial order ≤P such that (a1, . . . , am) ≤P (a′1, . . . , a

′
m) if and only if ai ≤ a′i for i = 1, . . . ,m.

By a ring we always mean an associative ring with unity. Every ring homomorphism is unitary
(maps unity to unity) and every subring of a ring contains the unity. Every field is supposed to
have zero characteristic. Furthermore, Q[t1, . . . , tp] will denote the ring of polynomials in variables
t1, . . . , tp overQ. As usual,

(
t+i
i

)
will denote the polynomial (t+ i)(t+ i− 1) . . . (t+ 1)/i! ∈ Q[t].

By a difference ring we mean a commutative ring R considered together with a finite set σ =
{α1, . . . , αm} of injective endomorphisms of R (called translations) such that any two mappings αi
and αj commute. The set σ is called the basic set of the difference ring R, which is also called a
σ-ring. If R is a field, it is called a difference field or a σ-field. (We will often use prefix σ- instead
of the adjective ”difference”.)

In what follows T denotes the free commutative semigroup generated by the set σ, that is, the

semigroup of all power products τ = αk11 . . . αkmm (ki ∈ N). The number ord τ =
m∑
i=1

ki is called

the order of τ . Furthermore, for every r, s ∈ N, s < r, we set

T (r) = {τ ∈ T | ord τ ≤ r} and T (r, s) = {τ ∈ T | s ≤ ord τ ≤ r}.

We consider T as an ordered set with the order < defined as follows: τ = αk11 . . . αkmm < τ ′ =

αl11 . . . α
lm
m if and only if the (m+1)-tuple (ord τ, k1, . . . , km) is less than (ord τ ′, l1, . . . , lm) with

respect to the lexicographic order on Nm+1.
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A subring (respectively, ideal) S of a σ-ring R is said to be a difference (or σ-) subring of R
(respectively, a difference (or σ-) ideal of R) if S is closed with respect to the action of any operator
in σ. In this case the restriction of a mapping in σ to S is denoted by the same symbol. If a prime
ideal P of R is closed with respect to the action of σ, it is called a prime σ-ideal of R. If F ⊆ R,
then the intersection of all σ-ideals of R containing F is denoted by [F ]. Clearly, [F ] is the smallest
σ-ideal of R containing F ; as an ideal, it is generated by the set {τ(a)|τ ∈ T, a ∈ F}. If the set F
is finite, we say that the σ-ideal [F ] is finitely generated.

LetR and S be two difference rings with the same basic set σ, so that elements of σ act on each
of the rings as pairwise commuting endomorphisms. (More rigorously, we assume that there exist
injective mappings of σ into the sets of endomorphisms of the rings R and S such that the images of
any two elements of σ commute. For convenience we will denote these images by the same symbols
α1, . . . , αm). A ring homomorphism φ : R −→ S is called a difference (or σ-) homomorphism if
φ(αa) = αφ(a) for any α ∈ σ, a ∈ R. In this case the kernel of φ is a reflexive σ-ideal of R, that is,
a σ-ideal I such that for any α ∈ σ, the inclusion α(a) ∈ I (a ∈ R) implies a ∈ I . (Conversely, if I
is a reflexive σ-ideal of a σ-ring R, then R/I has a natural structure of a σ-ring.) If I is prime then
the quotient field of R/I has the natural structure of a σ-field.

If L is a σ-field and K a subfield of L which is also a σ-subring of L, then K is said to be a
σ-subfield of L; L, in turn, is called a σ-field extension or a σ-overfield of K (we also say that we
have a σ-field extension L/K). If U ⊆ L, then the intersection of all σ-subfields of L containing
K and U is the unique σ-subfield of L containing K and U and contained in every σ-subfield of
L containing K and U . It is denoted by K〈U〉. If U is finite, U = {η1, . . . , ηn}, then L is said
to be a finitely generated σ-field extension of K with the set of σ-generators {η1, . . . , ηn}. In this
case we write L = K〈η1, . . . , ηn〉. It is easy to see that K〈η1, . . . , ηn〉 coincides with the field
K({τηi | τ ∈ T, 1 ≤ i ≤ n}). (Here and below we often write τη for τ(η) where τ ∈ T , η ∈ L.)

LetK be a σ-field and U a family of elements of some σ-overfield ofK. We say that the family
U is σ-algebraically dependent over K, if the family TU = {τu | τ ∈ T, u ∈ U} is algebraically
dependent over K (that is, there exist elements u1, . . . , uk ∈ TU and a nonzero polynomial f in k
variables with coefficients in K such that f(u1, . . . , uk) = 0). Otherwise, the family U is said to be
σ-algebraically independent over R.

If L is a σ-overfield of a σ-field K, then a set B ⊆ L is said to be a σ-transcendence basis
of L over K if B is σ-algebraically independent over K and every element a ∈ L is σ-algebraic
over K〈B〉 (that is, the set {τa | τ ∈ T} is algebraically dependent over the field K〈B〉). If L is
a finitely generated σ-field extension of K, then all σ-transcendence bases of L over K are finite
and have the same number of elements (see [9, Proposition 4.1.6]). This number is called the σ-
transcendence degree of L over K (or the σ-transcendence degree of the extension L/K); it is
denoted by σ-tr. degK L.

Let K be a σ-field, σ = {α1, . . . , αm}. With the above notation, an expression of the form∑
τ∈T aτ τ , where aτ ∈ K for any τ ∈ T and only finitely many elements aτ are different from

0, is called a difference (or σ-) operator over K. Two σ-operators
∑
τ∈T aτ τ and

∑
τ∈T bτ τ are

considered to be equal if and only if aτ = bτ for any τ ∈ T . The set of all σ-operators over K will
be denoted by D. This set, which has a natural structure of aK-vector space with a basis T , becomes
a ring if one sets τa = τ(a)τ for any a ∈ K, τ ∈ T and extends this rule to the multiplication of
any two σ-operators by distributivity. The resulting ring D is called the ring of σ-operators over K.
Since the set T is a basis of D as a K-vector space, every nonzero σ-K-operator g ∈ D has a unique
representation in the form g = a1τ1 + · · · + akτk where τ1, . . . , τk are distinct elements of T and
a1, . . . , ak ∈ K. Then the greatest and the smallest elements of the set {τ1, . . . , τk} are called the
leader and coleader of g, respectively. They are denoted, respectively, by ug and vg .
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A left D-module is called a differenceK-module or a σ-K-module. In other words, aK-vector
spaceM is a σ-K-module, if the elements of σ act onM in such a way that α(x+y) = α(x)+α(y),
α(βx) = β(αx), and α(ax) = α(a)α(x) for any x, y ∈M ; α, β ∈ σ; a ∈ K.

If M is a σ-K-module and U ⊆ M , then the D-submodule of M generated by U is denoted
by [U ]. A σ-K-module is said to be finitely generated (respectively, free) if it is finitely generated
(respectively, free) as a left D-module. If M and N are two σ-K-modules, then a homomorphism
of D-modules φ : M → N is said to be a difference (or σ-) homomorphism if φ(αx) = αφ(x) for
any x ∈M , α ∈ σ.

IfM is a σ-K-module, then the maximal number of elements f1, . . . , fk ∈M such that the set
{τfi | τ ∈ T, 1 ≤ i ≤ k} is linearly independent over K is called the difference (or σ-) dimension
of M over K; it is denoted by σ-dimKM .

The following theorem proved in [6] (see also [5, Section 6.2]) introduces a Hilbert-type di-
mension polynomial associated with a finite system of generators of a σ-K-module.

Theorem 2.1. Let K be a difference field with a basic set σ = {α1, . . . , αm}, D the ring of σ-
operators over K, and M a finitely generated σ-K-module with generators x1, . . . , xn (that is,

M =
n∑
i=1

Dxi). For any r ∈ N, let Mr denote the K-vector space generated by all elements of the

form τxi (τ ∈ T , 1 ≤ i ≤ n) with ord τ ≤ r. Then there exists a polynomial φ(t) ∈ Q[t] such that
(i) φ(r) = dimKMr for all sufficiently large r ∈ N (that is, there exists r0 ∈ N such that the

last equality holds for all integers r ≥ r0).

(ii) deg φ(t) ≤ m and the polynomial φ(t) can be written as φ(t) =
m∑
i=0

ci

(
t+ i

i

)
where

c0, c1, . . . , cm ∈ Z.
(iii) The integers d = deg φ(t), cm and cd (if d < m) do not depend on the choice of the

system of generators of M over D. Furthermore, cm = σ-dimKM .

The polynomial φ(t) is called a σ-dimension polynomial of the σ-K-module M associated
with the system of σ-generators x1, . . . , xn.

DIMENSION POLYNOMIALS OF SUBSETS OF Nm

A polynomial in p variables f(t1, . . . , tp) ∈ Q[t1, . . . , tp] is called numerical if f(r1, . . . , rp) ∈
Z for all sufficiently large (r1, . . . , rp) ∈ Np. (It means that there exist s1, . . . , sp ∈ N such that the
property holds for all (r1, . . . , rp) ∈ Np with r1 ≥ s1, . . . , rp ≥ sp.).

Clearly, every polynomial with integer coefficients is numerical. As an example of a numer-
ical polynomial in p variables with non-integer coefficients (p ≥ 1) one can consider

∏p
i=1

(
ti
mi

)
where m1, . . . ,mp ∈ N. Note that the σ-dimension polynomial φ(t) introduced in Theorem 2.1 is a
univariate numerical polynomial.

As it is proved in [5, Chapter 2], every numerical polynomial in p variables can be written as

f(t1, . . . tp) =

m1∑
i1=0

. . .

mp∑
ip=0

ai1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)
(2.1)

with uniquely defined integer coefficients ai1...ip (mi is the degree of this polynomial with respect
to ti, 1 ≤ i ≤ p).

In what follows, if A ⊆ Nm (m is a positive integer), then VA will denote the set of all m-
tuples v = (v1, . . . , vm) ∈ Nm such that a �P v for every a ∈ A (i. e., for any a = (a1, . . . , am) ∈
A, there exists i, 1 ≤ i ≤ m, such that ai > vi). Furthermore, for any r ∈ N, we set A(r) =

{(a1, . . . , am) ∈ A |
m∑
i=1

ai ≤ r}.
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The following theorem about a univariate numerical polynomial associated with a subset of
Nm is due to E. Kolchin, see [4, Chapter 0, Lemma 16].

Theorem 2.2. Let A ⊆ Nm. Then there exists a numerical polynomial ωA(t) such that
(i) ωA(r) = Card VA(r) for all sufficiently large r ∈ N.
(ii) deg ωA ≤ m.
(iii) deg ωA = m if and only if A = ∅. In this case, ωA(t) =

(
t+m
m

)
.

(iv) ωA = 0 if and only if (0, . . . , 0) ∈ A.

The polynomial ωA(t) is called the Kolchin polynomial of the set A ⊆ Nm.

Remark 2.3. As it is shown in [4, Ch. 0, Lemma 15], every infinite sequence of elements of a set
Nm × {1, . . . , q} (m, q ≥ 1) has an infinite subsequence strictly increasing with respect to the
product order, in which every element has the same last coordinate. (Therefore, if A ⊆ Nm and A′

is the set of all minimal elements of A with respect to the product order, then the set A′ is finite.)

The following proposition about decreasing sequences of certain subsets of Zm with respect to
the lexicographic order will be used in the proof of the termination of a Buchberger-type algorithm
considered in section 3.

Proposition 2.4. Let A = {(
∑m
i=1(ai − bi), a1 − b1, . . . , am − bm) ∈ Zm+1 | ai, bi ∈ N

(1 ≤ i ≤ m),
∑m
i=1(ai − bi) ≥ 0, and (b1, . . . , bm) ≤lex (a1, . . . , am)}. Then A does not contain

strictly decreasing sequences with respect to the lexicographic order.

Proof. Suppose that the set A contains an infinite sequence

a1,a2, . . . (2.2)

such that a1 ≥lex a2 ≥lex . . . . Let ak = {(
∑m
i=1(aki − bki), ak1 − bk1, . . . , akm − bkm) for some

ak1, . . . , akm, bk1, . . . , bkm ∈ Nwith
∑m
i=1(aki−bki) ≥ 0 and (bk1, . . . , bkm) ≤lex (ak1, . . . , akm)

(k = 1, 2, . . . ). Then
∑m
i=1(a1i − b1i) ≥lex

∑m
i=1(a2i − b2i) ≥lex . . . is a decreasing sequence in

N, hence there exists p ∈ N such that
∑m
i=1(api − bpi) =

∑m
i=1(ap+1,i − bp+1,i) = . . . . Therefore,

without loss of generality we can assume that
∑m
i=1(a1i−b1i) =

∑m
i=1(a2i−b2i) = . . . in sequence

(2.2). Now, since a1 ≥lex a2 ≥lex . . . and (ak1, . . . , akm) ≥lex (bk1, . . . , bkm) for k = 1, 2, . . . ,
we have a decreasing sequence a11 − b11 ≥ a21 − b21 ≥ . . . in N that stabilizes, that is, there exists
a positive integer q such that aq1 − bq1 = aq+1,1 − bq+1,1 = . . . . Thus, without loss of generality
we can assume that

∑m
i=1(a1i− b1i) =

∑m
i=1(a2i− b2i) = . . . and a11− b11 = a21− b21 = . . . in

(2.2). Repeating the same argument for the third, fourth, etc., coordinates of element of the sequence
(2.2), we obtain that the sequence (2.2) stabilizes at some place. This completes the proof. �

The following theorem proved in [5, Chapter 2] gives an explicit formula for the Kolchin
polynomial of a finite subset of Nm.

Theorem 2.5. Let A = {a1, . . . , an} be a finite subset of Nm and let ak = (ak1, . . . , akm) (1 ≤
k ≤ n). For any l ∈ N, 0 ≤ l ≤ n, let Γ(l, n) denote the set of all l-element subsets of the set
Nn = {1, . . . , n}. Let ā∅j = 0 and for any γ ∈ Γ(l, n), γ 6= ∅, let āγj = max{aij | i ∈ γ}
(1 ≤ j ≤ m). Then

ωA(t) =
n∑
l=0

(−1)l
∑

γ∈Γ(l,n)

(
t+m−

∑m
j=1 āγj

m

)
(2.3)
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3. Gröbner bases respecting the effective order
Let K be a difference field with a basic set σ = {α1, . . . , αm} and F a free σ-K-module with free
generators f1, . . . , fn (i. e., these elements form a basis of the free left module F over the ring of
σ-operators D overK). In what follows, elements of the form τfν (τ ∈ T, 1 ≤ ν ≤ n) will be called
terms; the set of all terms will be denoted by Tf . Clearly, Tf is a basis of F treated as a K-vector
space.

The order of a term u = τfi (denoted by ordu) is defined as the order of τ . If τ, τ ′ ∈ T , we
say that τ divides τ ′ (and write τ | τ ′) if τ ′ = ττ ′′ for some τ ′′ ∈ T . In this case we write τ ′′ = τ ′

τ . If
u = τfi, v = τ ′fj ∈ Tf , we say that u divides v (and write u|v) if i = j and τ |τ ′. We also say that
v is a transform of u and define the ratio v

u as τ ′

τ . The least common multiple of two terms u = τ1fi
and v = τ2fj is defined as usual: lcm(u, v) = lcm(τ1, τ2)fi if i = j and lcm(u, v) = 0 if i 6= j.

By a ranking on Tf we mean a well-ordering ≤ of the set of terms Tf that satisfies the
following two conditions:

(i) u ≤ τu for any u ∈ Tf, τ ∈ T . (We denote the ordering of Tf by the usual symbol ≤ and
write u < v or v > u if u ≤ v and u 6= v.)

(ii) If u, v ∈ Tf and u ≤ v, then τu ≤ τv for any τ ∈ T .
A ranking is said to be orderly if the inequality ord u < ord v (u, v ∈ Tf ) implies u <

v. In what follows, we assume that the following orderly ranking ≤ on Tf is fixed: if u1 =
αk11 . . . αkmm fi, u2 = αl11 . . . α

lm
m fj ∈ Tf , then u1 ≤ u2 if and only if

(ordu1, k1, . . . , km, i) ≤lex (ordu2, l1, . . . , lm, j)

(≤lex denotes the lexicographic order on Nm+2).
Since the set Tf is a basis of the vectorK-space F , every nonzero element f ∈ F has a unique

(up to the order of the terms in the sum) representation in the form

g = a1τ1fi1 + · · ·+ apτpfip (3.1)

where τ1fi1 , . . . , τpfip are distinct elements of Tf (1 ≤ i1, . . . , ip ≤ n) and a1, . . . , ap are nonzero
elements of K.

Definition 3.1. Let g be an element of the free σ-K-module F written in the form (3.1) and let
τrfir and τsfis (1 ≤ r, s ≤ p) be the greatest and the smallest terms in the set {τ1fi1 , . . . , τpfip},
respectively, relative to the introduced order on Tf . Then the terms τrfir and τsfis are called,
respectively, the leader and coleader of the element g; they are denoted by ug and vg , respectively.
The coefficients of ug and vg in g will be denoted by lc(g) and mc(g), respectively.

Definition 3.2. If 0 6= g ∈ F , then the nonnegative integer ordug − ord vg is called the effective
order of g ; it is denoted by Eord(g).

It follows from the last definition that for any g ∈ F and for any τ ∈ T , Eord(τg) = Eord(g).

Definition 3.3. Let g, h ∈ F . We say that g is E-reduced with respect to h if g does not contain
any τuh (τ ∈ T ) such that τvh ≥ vg . If g does not contain any τvh (τ ∈ T ) such that τuhl ≤ ug ,
we say that g is E∗-reduced with respect to h. If U ⊆ F , then an element g ∈ F is said to be E-
reduced (respectively, E∗-reduced) with respect to U if g is E-reduced (respectively, E∗-reduced)
with respect to every element of U .

Remark 3.4. It follows from Proposition 2.4 that F cannot contain an infinite sequence h1, h2, . . .
such that hi is E-reduced with respect to {h1, . . . , hi−1} for i = 2, 3, . . . . Indeed, by Remark
2.3, if such a sequence exists, then it contains a subsequence {hik} such that uhik |uhik+1

, hik+1

is E-reduced with respect to all hil with l < k + 1 (k = 1, 2, . . . ), and all elements vhik (k =
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1, 2, . . . ) contain the same free generator fp (1 ≤ p ≤ n). Without loss of generality we can as-

sume that uhi |uhi+1 (i = 1, 2, . . . ),
(
uhj
uhi

)
vhi < vhj whenever i < j, and all elements vhi

(i = 1, 2, . . . ) contain the same free generator fp. If uhi = αai11 . . . αaimm , vhi = αbi11 . . . αbimm ,

uhj = α
aj1
1 . . . α

ajm
m , and vhj = α

bj1
1 . . . α

bjm
m , then the inequality

(
uhj
uhi

)
vhi < vhj is equivalent to

the inequality ai >lex aj in Proposition 2.4. However, this proposition states that there is no infinite
sequence satisfying such inequalities.

Definition 3.5. Let N be a D-submodule of F . A finite set G = {g1, . . . , gr} ⊆ N is called an
E-Gröbner basis of N if for any h ∈ N , there exists gi ∈ G such that ugi |uh and uh

ugi
vgi ≥ vh.

A set G = {g1, . . . , gr} ⊆ F is said to be an E-Gröbner basis if G is an E-Gröbner basis of
N =

∑r
i=1 Dgi.

Remark 3.6. If one removes the condition uh
ugi

vgi ≥ vh in the last definition, we obtain the definition
of a “standard” Gröbner basis in a free difference module in the sense of Theorem 4.1.33 of [5]
(algorithms for computing such Gröbner bases are presented in [5, Section 4.2]). The theorem gives
17 equivalent definitions of such a Gröbner basis. In particular, the fact that G = {g1, . . . , gr} is
a Gröbner basis of a D-submodule N of F is equivalent to the condition that f ∈ N if and only

if f =
r∑
i=1

higi where h1, . . . , hr ∈ D and uf = max{uhigi | 1 ≤ i ≤ r}. It follows that every

E-Gröbner basis of N is also a ”standard” Gröbner basis of N . Therefore, every E-Gröbner basis
of N generates N as a left D-module.

Definition 3.7. Given f, g, h ∈ F , with g 6= 0, we say that the element f E-reduces to h modulo g
in one step and write f

g−→
E

h if and only if f contains some term w with a coefficient a such that

ug|w, h = f − a(τ(lc(g)))−1τg, where τ = w
ug

, and τvg ≥ vf .

We say that f E∗-reduces to hmodulo g in one step and write f
g−−→
E∗

h if and only if f contains

some term w with a coefficient a such that vg|w, h = f − a(τ(mc(g)))−1τg, where τ = w
vg

, and
τug ≤ uf .

Note that both E- and E∗- reductions of an element f ∈ F do not increase the effective order of f .

Definition 3.8. Let f, h ∈ F and let G = {g1, . . . , gr} be a finite set of non-zero elements of F .
We say that f E-reduces (respectively, E∗-reduces) to h modulo G and write f G−→

E
h (respectively,

f
G−−→
E∗

h) if and only if there exists a sequence of elements g(1), g(2), . . . g(q) ∈ G and a sequence of

elements h1, . . . , hq−1 ∈ F such that

f
g(1)−−→
E

h1
g(2)−−→
E

. . .
g(q−1)

−−−−→
E

hq−1
g(q)−−→
E

h (respectively, f
g(1)−−→
E∗

h1
g(2)−−→
E∗

. . .
g(q−1)

−−−−→
E∗

hq−1
g(q)−−→
E∗

h).

Proposition 3.9. With the above notation, let S = {g1, . . . , gk} ⊆ F and h ∈ F . Then there exists
an element h∗ ∈ F such that h∗ is E-reduced with respect to S and h− h∗ ∈ [S].

Proof. If h is E-reduced with respect to S, the statement is obvious (one can set h∗ = h). Suppose
that h is not E-reduced with respect to S. In what follows, if element t ∈ F is not E-reduced with
respect to S, then a term wt that appears in t will be called the S-leader of t if wt is the greatest term
among all terms τugj (τ ∈ T , 1 ≤ j ≤ k) that appear in t and satisfy the condition τvgj ) ≥ vt.

Let wh be the S-leader of h and let ch be the coefficient of wh in h. Then wh = τugj for some
τ ∈ T and for some j (1 ≤ j ≤ k) such that τvgj ≥ vh. Let us choose such j that corresponds
to the maximum leader ugj in the set of all leaders of elements of S and consider the element
h′ = h − ch

τ(lc(gj))
τgj . Obviously, h′ does not contain wh and uh′ ≤ uh. Furthermore, h′ cannot
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contain any term τ ′ugi (τ ′ ∈ T, 1 ≤ i ≤ k) that is greater than wh and satisfies the condition
τ ′vgi ≥ vh′ . Indeed, since vh′ ≥ vh, such a term τ ′ugi cannot appear in h. Such a term cannot
appear in τgj either, since uτgj = τugj = wh < τ ′ugi . Thus, the S-leader of h′ is strictly less than
the S-leader of h. Applying the same procedure to the element h′ and continuing in the same way,
we obtain an element h∗ ∈ F such that h− h∗ ∈ [S] and h∗ is E-reduced with respect to S. �

The process of E-reduction described in the proof of Proposition 3.9 can be realized by the
following algorithm that clearly terminates and results in an element which isE-reduced with respect
to S. (The set of terms is well-ordered and each step of the algorithm decreases the S-leader.) Also,
it is easy to see that analogs of Proposition 3.9 and Algorithm I hold for the E∗-reduction.

Algorithm I. (h, k, g1, . . . , gk; h∗)
Input: h ∈ F , a positive integer k, S = {g1, . . . , gk} ⊆ F where gi 6= 0 for i = 1, . . . , k
Output: h∗ ∈ F and A1, . . . , Ak ∈ D such that h = A1g1 + · · ·+Akgk + h∗ and h∗ is
E-reduced with respect to S
Begin
A1 := 0, . . . , Ak := 0, h∗ := h
While there exist i, 1 ≤ i ≤ k, and a term w, that appears in h∗ with a (nonzero)
coefficient cw, such that ugi |w and w

ugi
vgi ≥ vh∗ do

z:= the greatest of the terms w that satisfy the above conditions.
j:= the smallest number i for which ugi is the greatest leader of an element of S such that
ugi |z and z

ugi
vgi ≥ vh∗

τ := z
ugj

Aj := Aj + cz
τ(lc(gj))

τ where cz is the coefficient of z in h∗

h∗ := h∗ − cz
τ(lc(gj))

τgj
End

Theorem 3.10. Let K be a σ-field, F a free σ-K-module with free generators f1, . . . , fn, N a
σ-K-submodule of F , and G = {g1, . . . , gr} ⊆ N (r ≥ 1). Then the following statements are
equivalent.

(i) G is an E-Gröbner basis of N .

(ii) Let f ∈ F . Then f ∈ N if and only if f G−→
E

0.

(iii) Every element f ∈ N can be represented as f =
∑r
i=1 higi where h1, . . . , hr ∈ D,

uf = max{uhigi | 1 ≤ i ≤ r}, and vf = min{vhivgi | 1 ≤ i ≤ r}.

Proof. (i)⇒ (ii). Clearly, if f ∈ F and f G−→
E

0, then f ∈ N . Conversely, let f ∈ N . By Proposition

3.8, there exists h∗ ∈ F such that f G−→
E
h∗, f − h∗ ∈ [G] = N , and h∗ is E-reduced with respect to

G. If h∗ 6= 0, then h∗ ∈ N and there exists gi ∈ G such that ugi |uh and uh
ugi

vgi ≥ vh. It contradicts
the fact that h∗ is E-reduced with respect to G.

(ii)⇒ (iii). Let f ∈ N . By (ii), f G−→
E

0. Now, the process of reduction described in the

proof of Proposition 3.9 shows that f =
∑r
i=1 higi for some hi ∈ D (1 ≤ i ≤ r) such that

uf = max{uhigi | 1 ≤ i ≤ r} and vf ≤ min{vhivgi | 1 ≤ i ≤ r}. Clearly, the last inequality cannot
be strict, so we have the equality.

(iii)⇒ (i). If f =
∑r
i=1 higi (h1, . . . , hr ∈ D) and uf = max{uhigi | 1 ≤ i ≤ r}, then there

exists j ∈ {1, . . . , r} such that ugj |uf and uf = uhjugj = uhjgj . Since vf ≤ min{vhigi | 1 ≤ i ≤
r}, we have vf ≤ vhjvgj ≤ uhjvgj , so G is an E-Gröbner basis of N . �
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Remark 3.11. The equivalence of parts (ii) and (iii) of the last theorem implies that if 0 6= f ∈ F , G
is a finite subset of F , and f G−−→

E∗
0 (hence f has a representation given in part (iii), as one can easily

obtain by mimicking the proof (iii)⇒ (i) above), then f G−→
E

0. Therefore, if 0 6= f ∈ F is already

E∗-reduced with respect to G and f G−→
E
f ′, then f ′ 6= 0.

Definition 3.12. Let f and g be two elements in the free D-module F . Then the element

Sv(f, g) =

(
lcm(vf , vg)

vf
(mc(f))

)−1
lcm(vf , vg)

vf
f −

(
lcm(vf , vg)

vg
(mc(g))

)−1
lcm(vf , vg)

vg
g

is called the Sv-polynomial of f and g.

Proposition 3.13. With the above notation, let f, g1, . . . , gr ∈ F (r ≥ 1) and let f =
r∑
i=1

ciωigi

where ωi ∈ T , ci ∈ K (1 ≤ i ≤ r). Let ui = ugi , vi = vgi , and vνj = lcm(vν , vj) (1 ≤ i, ν, j ≤ r).
Suppose that ω1v1 = · · · = ωrvr = v, vf > v, and ωiui ≤ uf for i = 1, . . . , r. Then there exist
elements cνj ∈ K (1 ≤ ν ≤ s, 1 ≤ j ≤ t for some s, t ∈ N) such that

f =
s∑

ν=1

t∑
j=1

cνjθνjSv(gν , gj)

where θνj = v
vνj

and θνjvSv(gν ,gj) > v, θνjuSv(gν ,gj) ≤ uf (1 ≤ ν ≤ s, 1 ≤ j ≤ t).

Proof. Let di = mc(ωigi) = ωi(mc(gi)) (1 ≤ i ≤ r). Since ω1v1 = · · · = ωrvr = v and
vf > v,

∑r
i=1 cidi = 0. Let hi = d−1

i ωigi so mc(hi) = 1 (1 ≤ i ≤ r) and f =
∑r
i=1 ciωigi =

c1d1(h1−h2)+(c1d1 +c2d2)(h2−h3)+ · · ·+(c1d1 + · · ·+cr−1dr−1)(hr−1−hr). (To represent
an identity, the last sum should end (c1d1 + · · ·+ crdr)hr, but this term is equal to zero.)

Let τνj =
vνj
vν

and γνj =
vνj
vj

(1 ≤ ν, j ≤ r, ν 6= j). Then

θνjSv(gν , gj) = θνj [(τνj(mc(gν)))−1τνjgν−(γνj(mc(gj)))
−1γνjgj ] = [θνj(τνj(mc(gν)))]−1 v

vν
gν

−[θνj(γνj(mc(gj)))]
−1 v

vj
gj = [ων(mc(gν))]−1ωνgν− [ωj(mc(gj))]

−1ωjgj = hν−hj . Therefore,

f = c1d1θ12Sv(g1, g2)+(c1d1+c2d2)θ23Sv(g2, g3)+· · ·+(c1d1+· · ·+cr−1dr−1)θr−1,rSv(gr−1, gr).

Also, θi,i+1uSv(gi,gi+1) = uθi,i+1Sv(gi,gi+1) = uhi−hi+1
≤ uf and vhi−hi+1

> v, since the colead-
ers of hi and hi+1 are equal and mc(hi) = mc(hi+1) = 1 (1 ≤ i ≤ r − 1). �

Theorem 3.14. Let G = {g1, . . . , gr} be a “standard” Gröbner basis of an D-submodule N of F

(see Remark 3.5). Suppose that Sv(gi, gj)
G−−→
E∗

0 for any i, j ∈ {1, . . . , r}, i 6= j. Then G is an

E-Gröbner basis of N .

Proof. By Theorem 3.10, it is sufficient to show that every element f ∈ N can be represented as

f =
r∑
i=1

higi (3.2)

where h1, . . . , hr ∈ D and

uf = max{uhigi | 1 ≤ i ≤ r}, vf ≤ min{vhivgi | 1 ≤ i ≤ r}. (3.3)

Since G is a “standard” Gröbner basis of N , an element f ∈ N can be written as

f =
r∑
i=1

Higi (3.4)
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where H1, . . . ,Hr ∈ D and

uf = max{uHigi | 1 ≤ i ≤ r} = max{uHiugi | 1 ≤ i ≤ r}. (3.5)

Let us choose such a representation of f with the greatest possible term v = min{vHivgi | 1 ≤ i ≤
r}. (Clearly, v ≤ vf .) Let di = mc(Hi) (i = 1, . . . , r). Then the element f can be written as

f =
∑

vHivgi=v

divHigi +
∑

vHivgi=v

(Hi − divHi)gi +
∑

vHivgi>v

Higi. (3.6)

Note that if v = vf , then the representation (3.6) satisfies conditions (3.2) and (3.3). Suppose that
vf > v. Since v = min{vHivgi | 1 ≤ i ≤ r}, vHi−divHi > v in the second sum of (3.6). Also, it is
clear that vHivgi = vHigi = v for any term in the sum

f̃ =
∑

vHivgi=v

divHigi (3.7)

and uf̃ ≤ max{vHiugi | i ∈ I} ≤ max{uHiugi | i ∈ I} ≤ uf where I denotes the set of indices
i ∈ {1, . . . , r} that appear in (3.7).

Let vνj = lcm(vgν , vgj ) and τνj = v
vνj

for any ν, j ∈ I , ν 6= j. (Since v = vHivgi for
every i ∈ I , vgν | v and vgj | v, hence vνj | v.) By Proposition 3.13, there exist elements cνj ∈ K
(1 ≤ ν ≤ s, 1 ≤ j ≤ t for some s, t ∈ N) such that

f̃ =
s∑

ν=1

t∑
j=1

cνjτνjSv(gν , gj), (3.8)

and
τνjvSv(gν ,gj) = vτνjSv(gν ,gj) > v, τνjuSv(gν ,gj) ≤ uf̃ (3.9)

(1 ≤ ν ≤ s, 1 ≤ j ≤ t). Since for any i, j ∈ {1, . . . , r}, i 6= j, Sv(gi, gj)
G−−→
E∗

0, there ex-

ist qiνj ∈ D (1 ≤ i ≤ r) such that Sv(gν , gj) =
r∑
i=1

qiνjgi where vqiνjvgi ≥ vSv(gν ,gj) and

uqiνjugi ≤ uSv(gν ,gj) (see Theorem 3.10). Thus, for any indices ν and j in the sum (3.8), we have

τνjSv(gν , gj) =
r∑
i=1

(τνjqiνj)gi where vτνjqiνjvgi = τνjvqiνjvgi ≥ τνjvSv(gν ,gj) > v.

Setting H̃i =
∑s
ν=1

∑t
j=1 cνjτνjqiνj (1 ≤ i ≤ r), we obtain that

f̃ =
s∑

ν=1

t∑
j=1

cνj

r∑
i=1

(τνjqiνj)gi =
r∑
i=1

H̃igi (3.10)

where vH̃ivgi > v and uH̃iugi ≤ max{τνjuqiνjugi | 1 ≤ ν ≤ s, 1 ≤ j ≤ t} ≤ max{τνjuSv(gν ,gj) | 1 ≤
ν ≤ s, 1 ≤ j ≤ t} ≤ uf̃ (see (3.9)).

Substituting (3.10) into (3.6) we get

f =
r∑
i=1

H̃igi +
∑

vHivgi=v

(Hi − divHi)gi +
∑

vHivgi>v

Higi. (3.11)

Let I1, I2 and I3 be sets of indices for terms in the first, second and third sums in (14), respectively.
Setting H ′i = Hi − divHi for every i ∈ I2 we obtain that vH̃ivgi > v for every i ∈ I1, vH′ivgi > v
for every i ∈ I2, and vHivgi > v for every i ∈ I2. Furthermore, the inequality uH̃iugi ≤ uf̃ (i ∈ I1)
implies that uH̃iugi ≤ uf . Also, if i ∈ I2, then uH′iugi ≤ uHiugi ≤ uf , and if i ∈ I3, then
uHiugi ≤ max{uHiugi | 1 ≤ i ≤ r} = uf . Thus, (3.11) is a representation of f in the form (3.4)
with condition (3.5). We have arrived at a contradiction with the choice of the representation (3.4)
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with condition (3.5) and the greatest possible term v = min{vHivgi | 1 ≤ i ≤ r}. thus, every f ∈ N
can be represented in the form (3.2) with conditions (3.3). �

The last theorem leads to the following Buchberger-type algorithm for constructing an E-
Gröbner basis of a D-submodule N of F starting with a standard Gröbner basis. Its termination
follows from the fact that every time when the algorithm requires adding a new element to G∗, we
obtain a larger set where every two elements are E-reduced with respect to each other. As it follows
from Remarks 3.4 and 3.11, this process of adding new elements to G∗ must terminate, resulting in
an E-Gröbner basis of N .

Algorithm II. (r, g1, . . . , gr; g
∗
1 , . . . g

∗
s )

Input: G = {g1, dots, gr} (r ∈ N, r > 0), a standard Gröbner basis of a D-submodule N
of F Output: G∗ = {g∗1 , . . . g∗s}, an E-Gröbner basis of N
Begin
G∗ := G, U := {{gi, gj} | gi 6= gj ∈ G∗}
While U 6= ∅ do
Choose any {f, g} ∈ U
U := U− {{f, g}}
Sv(f, g)

G∗−−→
E∗

h where h is E-reduced with respect to G∗

If h 6= 0, then
h

G∗−−→
E

h∗

U := U ∪ {{t, h∗} | t ∈ G∗}, G∗ := G∗ ∪ {h∗}.
End

4. Bivariate Difference Dimension Polynomials
Let K be a difference field with a basic set σ = {α1, . . . , αm} and M a finitely generated σ-K-
module with generators x1, . . . , xn (that is, M =

∑n
i=1 Dxi where D is the ring of σ-operators

over K). For any r, s ∈ N, let Mrs =
∑n
i=1 Drsxi where Drs denotes the K-vector subspace

of D generated by all elements τ ∈ T (r, s). Furthermore, let F be a free D-module with a basis
f1, . . . , fn, and π : F −→ M the natural D-epimorphism of F onto M (π(fi) = xi for i =
1, . . . , n). Let N = Ker π and let G = {g1, . . . , gp} be an E-Gröbner basis of N . Let ui and vi
denote the leader and coleader of gi, respectively (1 ≤ i ≤ p), and for any r, s ∈ N such that s ≤ r,
let Tf = {τfi | τ ∈ T, 1 ≤ i ≤ m} and

W (r, s) = {w ∈ Tf | s ≤ ordw ≤ r}, WM (r, s) = π(W (r, s)),

U ′(r, s) = {u ∈ Tf | s ≤ ordu ≤ r and ui - u (i = 1, . . . , p)}, U ′M (r, s) = {π(u) |u ∈ U ′(r, s)},
U ′′(r, s) = {u ∈ Tf | s ≤ ordu ≤ r, u is divisible by some ui (1 ≤ i ≤ p) and whenever u = τui,

for some τ ∈ T one has ord(τvi) < s}, and U ′′M (r, s) = {π(u) |u ∈ U ′′(r, s)}.
Furthermore, let U(r, s) = U ′(r, s)

⋃
U ′′(r, s) andUM (r, s) = U ′M (r, s)

⋃
U ′′M (r, s).

Proposition 4.1. With the above notation, let s0 = max{Eord gi | 1 ≤ i ≤ p}. Then for every
(r, s) ∈ N2, s ≤ r − s0, the set UM (r, s) is a basis of the K-vector space Mrs.

Proof. First, we are going to show that the set UM (r, s) (s ≤ r − s0) is linearly independent over
K. Let

∑k
i=1 aiπ(wi) = 0 for some elements w1, . . . , wk ∈ U(r, s) and a1, . . . , ak ∈ K. Then

h =
∑k
i=1 aiwi is an element ofN which isE-reduced with respect toG. Indeed, if a term w = τfj

appears in h (so that w = wi for some i, 1 ≤ i ≤ k), then either w is not a transform of any uν
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(1 ≤ ν ≤ p) or w = τuν for some τ ∈ T, 1 ≤ ν ≤ p, such that ord(τvν) < s ≤ ord vh, hence
τvν < vh. Thus, h is E-reduced with respect to the E-Gröbner basis of G, hence (see Theorem
3.10) h = 0 and a1 = · · · = ak = 0.

Now let us prove that if s ∈ N and s ≤ r− s0, then every element τxj ∈WM (r, s)\UM (r, s)
(τ ∈ T , 1 ≤ j ≤ n) is a finite linear combination of elements of UM (r, s) with coefficients in K.
Indeed, in this case τfj /∈ U(r, s), hence τfj = τ ′ui for some τ ′ ∈ T and i ∈ {1, . . . , p} such
that ord(τ ′vi) ≥ s. Let us consider the element gi = ciui + . . . (ci ∈ K, ci 6= 0), where dots
are placed instead of the linear combination of terms that are less than ui. Since gi ∈ N = Ker π,
π(gi) = ciπ(ui)+ · · · = 0, whence π(τ ′gi) = cjπ(τ ′ui)+ · · · = ciπ(τfj)+ · · · = ciτxj + · · · = 0,
so that τxj is a finite linear combination with coefficients in K of some elements τ̃xl (1 ≤ l ≤ n)
such that τ̃ ∈ T (r, s) and τ̃ fl < τ ′ui. Applying the induction on the well-ordered set Tf , we obtain
that every element τxi (τ ∈ T (r, s), 1 ≤ i ≤ n) is a finite linear combination of elements of the set
π(U(r, s)) with coefficients inK. It follows that UM (r, s) is a basis of theK-vector spaceMrs. �

Proposition 4.1 implies the following result whose proof can be obtained by repeating the arguments
of the proof of Theorem 4.1 of [11] (and using Theorem 3.10 instead of Proposition 3.13 of [11]).

Theorem 4.2. Let K be a difference field with a basic set σ = {α1, . . . , αm} and M a finitely
generated σ-K-module with generators x1, . . . , xn (that is, M =

∑n
i=1 Dxi where D is the ring of

difference (σ-) operators over K). For any r, s ∈ N, let Mrs =
∑n
i=1 Drsxi where Drs denotes the

K-vector subspace of D generated by all elements τxi (1 ≤ i ≤ n) with τ ∈ T (r, s). Then there
exists a polynomial ψ(t1, t2) ∈ Q[t1, t2] and numbers r0, s0, s1 ∈ N with s1 < r0 − s0 such that

(i) ψ(r, s) = dimKMrs for all (r, s) ∈ N2 with r ≥ r0, s1 ≤ s ≤ r − s0.
(ii) ψ(t1, t2) = ψ(1)(t1)− ψ(2)(t2) where deg ψ(i)(t) ≤ m (i = 1, 2), so

ψ(t1, t2) =
m∑
i=0

ai

(
t1 + i

i

)
−

m∑
j=0

bj

(
t2 + j

j

)
where ai, bj ∈ Z.

(iii) For all sufficiently large r ∈ N,ψ(1)(r) = φ(r) where φ(t) is the difference (σ-) dimension

polynomial ofM associated with the filtration (Mr =
n∑
i=1

Drxi)r∈Z where Dr denotes theK-vector

subspace of D generated by all elements τxi (1 ≤ i ≤ n) with τ ∈ T (r).
(iv) am = bm = σ-dimKM . Furthermore, d = degt1 ψ, and ad are invariants of the σ-

K-module M , that is, they do not depend on the finite system of σ-generators of M over K the
polynomial ψ(t1, t2) is associated with.

(v) degψ(1) ≥ degψ(2) and if degψ(1) = degψ(2) = e < m, then be is an invariant of M .

Definition 4.3. The bivariate numerical polynomial ψ(t1, t2) whose existence is established by The-
orem 4.2 is called a σ-E-dimension polynomial of the σ-K-module M associated with the system
of σ-K-generators {x1, . . . , xn}.

Note that the presented E-Gröbner basis method gives an algorithm for computing σ-E-
dimension polynomials while [11] give just an existence theorem. The following example shows
that a σ-E-dimension polynomial ψM (t1, t2) of a finitely generated σ-K-module M can carry more
invariants (i. e., numbers that do not depend on the set of generators of M over D the polynomial
ψM (t1, t2) is associated with) than the univariate difference dimension polynomial introduced in [6]
and studied in [5], [9] and many other works (see Theorem 2.1).

Example 4.4. Let K be a difference field with a basic set σ = {α1, α2} and let M be a σ-K-module
with two generators x1 and x2 (as a module over the ring of σ-operators D) and with the system of
defining equations

αa1x1 + αa−b2 x2 = 0 and αa+b
1 x2 + αa−b2 x2 = 0 (4.1)
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where a and b are positive integers, a > b ≥ 1. In other words, if F denotes the free D-module with
free generators f1 and f2 and g1 = αa1f1 +αa−b2 f2, g2 = αa+b

1 f2 +αa−b2 f2, thenN = [g1, g2] is the
kernel of the natural epimorphism of D-modules F → M (f1 7→ x1, f2 7→ x2). Since ug1 = αa1f1

and ug2 = αa+b
1 f2, lcm(ug1 , ug2) = 0, the standard S-polynomial of g1 and g2 (in the sense of [5,

Chapter 4]) is 0, so {g1, g2} is a “standard” Gröbner basis of N . Now, vg1 = vg2 = αa−b2 f2, so
Sv(g1, g2) = g2 − g1 = αa+b

1 f2 − αa1f1. We see that the least common multiples of the coleader
αa1f1 of the element g3 = g2 − g1 and coleaders of g1 and g2 are zeros, hence G = {g1, g2, g3}
is an E-Gröbner basis of N . (Note that {g1, g2} is not an E-Gröbner basis of N , since the element
g3 ∈ N is E-reduced with respect to {g1, g2}: ug2 |ug3 , but ug3ug2

vg2 = αa−b2 f2 < vg3 = αa1f1.)
Using the notation introduced at the beginning of this section (with ug1 = αa1f1, ug2 = ug3 =

αa+b
1 f2, vg1 = vg2 = αa−b2 f2, and vg3 = αa1f1), we obtain that if s is sufficiently large and
s ≤ r − 2b, then

U ′(r, s) = {u = αk1α
l
2f ∈ Tf | s ≤ k + l ≤ r, ugi - u (i = 1, 2, 3)}.

Using the notation of Section 2 and Theorem 2.4, we get

CardU ′(r, s) =

[
CardV{(a,0)}(r)−CardV{(a,0)}(s−1)

]
+

[
CardV{(a+b,0)}(r)−

CardV{(a+b,0)}(s−1)

]
=

[(
r + 2

2

)
−
(
r + 2− a

2

)]
−
[(
s+ 1

2

)
−
(
s+ 1− a

2

)]
+[(

r + 2

2

)
−
(
r + 2− (a+ b)

2

)]
−
[(
s+ 1

2

)
−
(
s+ 1− (a+ b)

2

)]
= (2a+b)r−(2a+b)s−b,

U ′′(r, s) = {αk1αl2αa1f1 | s ≤ k+ l+ a ≤ r, ord(αk1α
l
2α

a−b
2 f2) < s}

⋃
{αk1αl2αa+b

1 f2 | s ≤ k+ l+

a+ b ≤ r, ord(αk1α
l
2α

a−b
2 f2) < s}

⋃
{αk1αl2αa+b

1 f2 | s ≤ k+ l+a+ b ≤ r, ord(αk1α
l
2α

a
1f1) < s}.

Therefore, CardU ′′(r, s) = Card{(k, l) ∈ N2 | s−a ≤ k+ l < s− (a− b)}+ Card{(k, l) ∈ N2 |

s−(a+b) ≤ k+l < s−(a−b)} =

[(
s− (a− b) + 1

2

)
−
(
s− a+ 1

2

)]
+

[
|D
(
s− (a− b) + 1

2

)
−(

s− (a+ b) + 1

2

)]
= 3bs+

1

2
(b2 − 4ab− 2a+ b). It follows that

CardU(r, s) = CardU ′(r, s) + CardU ′′(r, s) = (2a+ b)r− (2a− 2b)s+ 1
2 (b2 − 4ab− 2a− b),

so the σ-E-dimension polynomial of M associated with the generators x1 and x2 and defining
system (4.1) is as follows:

ψ(t1, t2) = (2a+ b)t1 − (2a− 2b)t2 +
1

2
(b2 − 4ab− 2a− b).

Since {g1, g2} is a “standard” Gröbner basis of N and leaders of g1 and g2 are αa1f1 and αa+b
1 f2,

respectively, the “classical” univariate difference dimension polynomial φ(t) associated with the
generators x1 and x2 and defining system (4.1) is

φ(t) = ω{(a,0)}(t) + ω{(a+b,0)}(t) =

[(
t+2

2

)
−
(
t+2−a

2

)]
+

[(
t+2

2

)
−
(
t+2−(a+b)

2

)]
= (2a+ b)t−

1
2 (2a2 + 2ab+ b2 − 6a− 3b).
(see [5, Theorem 4.3.5]; as before, ωA(t) denotes the Kolchin polynomial of a set A ⊂ N2).

The invariants of φ(t) are its degree 1 and the leading coefficient 2a+ b (see Theorem 2.1). At
the same time, ψ(t1, t2) carries three such invariants: degt1 ψ = 1, 2a+ b (the coefficient of t1), and
2a− 2b (the coefficient of t2). Thus, ψ(t1, t2) gives both parameters a and b of the defining system
(4.1) while φ(t) gives just the sum of the parameters.
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The following example illustrates an important application of the obtained results to the iso-
morphism problem for difference modules. It shows that two non-isomorphic finitely generated σ-
K-modules can have the same set of invariants carried by their univariate difference dimension
polynomials, but different sets of invariants carried by their σ-E-dimension polynomials. Thus,the
fact that two σ-K-modules are not isomorphic can be proved by comparing the corresponding σ-E-
dimension polynomials computed via the E-Gröbner basis method (while the test based on consid-
eration of univariate dimension polynomials is inconclusive).

Example 4.5. With the assumption of Example 4.4, let M ′ be a σ-K-module with two generators z1

and z2 over the ring of σ-operators D and with the system of defining equations

αa+b
2 z2 + αa1z1 = 0 and αa1z1 + αb1z2 = 0 (4.2)

(a and b are positive integers, a > b ≥ 1). If F is the free D-module with free generators f1 and f2

and h1 = αa+b
2 f2 + αa1f1, h2 = αa1f1 + αb1f2, then M ′ ∼= F/N where N = [h1, h2] is the kernel

of the natural epimorphism of D-modules F → M ′ (f1 7→ z1, f2 7→ z2). Here uh1
= αa+b

2 f2,
uh2 = αa1f1, vh1 = αa1f1, and vh2 = αb1f2, so lcm(uh1 , uh2) = 0 and Sv(h1, h2) = 0. It follows
that {h1, h2} is an E-Gröbner basis of N . Proceeding as in Example 4.4, we obtain that the σ-E-
dimension polynomial and the univariate difference dimension polynomial of M ′ associated with
the generators z1, z2 and the defining system (4.2) are ψ∗(t1, t2) = (2a+b)t1− (a+b)t2 + 1

2 (2b2−
a2 + 5a) and φ∗(t) = (2a + b)t − 1

2 (2a2 + 2ab + b2 − 6a − 3b), respectively. We see that in this
case the univariate difference dimension polynomial is the same as the corresponding dimension
polynomial for module M in Example 4.4. At the same time, the σ-E-dimension polynomials of
M and M ′ show that these σ-K-modules are not isomorphic, since the coefficients of t2 in these
polynomials are different (2b− 2a and −a− b, respectively).

As it is shown in [11], Theorem 4.2 implies the following result for difference field extensions.

Theorem 4.6. Let L = K〈η1, . . . , ηn〉 be a σ-field extension generated by a set η = {η1, . . . , ηn}.
(As before, σ = {α1, . . . , αm}.) Then there exists a polynomial ψη|K(t1, t2) ∈ Q[t1, t2] and
r0, s0, s1 ∈ N with s1 < r0 − s0 such that

(i) ψη|K(r, s) = tr. degK K({τηj | τ ∈ T (r, s), 1 ≤ j ≤ n}) for all (r, s) ∈ N2 with r ≥ r0,
s1 ≤ s ≤ r − s0.

(ii) ψη|K(t1, t2) = ψ
(1)
η|K(t1)− ψ(2)

η|K(t2) where deg ψ
(i)
η|K(t) ≤ m (i = 1, 2), so ψη|K(t1, t2)

can be written as

ψη|K(t1, t2) =
m∑
i=0

ai

(
t1 + i

i

)
−

m∑
j=0

bj

(
t2 + j

j

)
, where ai, bj ∈ Z.

(iii) am = bm = σ-tr. degK L. Furthermore, d = degt1 ψη|K , and ad are also invariants of

the extension L/K (they do not depend on the system of σ-generators of L/K). Finally, degψ
(1)
η|K ≥

degψ
(2)
η|K and if degψ

(1)
η|K = ψ

(2)
η|K = e < m, then be is an invariant of the extension as well.

The polynomial ψη|K(t1, t2) is called a σ-E-dimension polynomial of the σ-field extension L/K
associated with the system of σ-generators η. As it is shown in the proof of Theorem 4.5 of [11],
ψη|K(t1, t2) coincides with the σ-E-dimension polynomial of the σ-L-module of Kähler differen-
tials associated with the extension L/K, so it can be computed via the E-Gröbner basis method.

Suppose that we have two systems of difference (σ-) algebraic equations that are defining
equations of finitely generated σ-field extensions L/K and L′/K (it means that they generate prime
reflexive σ-ideals P and P ′ of the ring of difference (σ-) polynomials R = K{y1, . . . , yn}, respec-
tively, such that L and L′ are σ-isomorphic to the quotient fields of R/P and R/P ′, respectively).
These systems are said to be equivalent if there is a σ-isomorphism between L and L′ which is
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identity on K. The last theorem allows one to use σ-E-dimension polynomials to figure out that two
systems of σ-algebraic equations whose corresponding σ-field extensions have the same univariate
σ-dimension polynomial are not equivalent. Say, two systems of algebraic difference equations
αa1y1 + αa−b2 y2 = 0, αa+b

1 y2 + αa−b2 y2 = 0 and αa+b
2 y2 + αa1y1 = 0, αa1y1 + αb1z2 = 0,

which correspond to the systems of equations on generators in Examples 4.4 and 4.5, define dif-
ference field extensions with the same univariate σ-dimension polynomial, but their σ-E-dimension
polynomial are different and carry different invariants. Therefore the systems are not equivalent.
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