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Abstract. We introduce a new type of Grobner bases in free difference modules that are associated
with a reduction respecting the effective order of module elements. We prove some properties
of such Grobner bases and present a Buchberger-type algorithm for their computation. Using the
obtained results, we prove the existence and give a method of computation of a bivariate dimension
polynomial of a finitely generated difference module that carries more module invariants than the
classical difference dimension polynomial. We also show how the new invariants can be applied
to the isomorphism problem for difference modules and to the equivalence problem for systems of
algebraic difference equations.
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1. Introduction

It is well-known that the classical Grobner basis method can be used for the efficient computation of
Hilbert polynomials of graded and filtered modules over polynomial rings. Similarly, the theory of
Grobner bases in free modules over rings of differential, difference and difference-differential oper-
ators developed in [15], [3] (differential case), [5, Chapter 4], [13], [7], [8], [9, Chapter 3], [16], [17]
(difference and difference-differential cases) and in some other works provides methods of compu-
tation of dimension polynomials of differential, difference and difference-differential modules, as
well as of the corresponding field extensions and systems of algebraic differential, difference and
difference-differential equations. The important role of difference dimension polynomials is deter-
mined by at least four factors. First, a dimension polynomial associated with a system of algebraic
difference equations expresses the strength of such a system in the sense of A. Einstein. (The signifi-
cant role of this characteristic in the theory of equations of mathematical physics is described in [2]).
The discussion of its difference counterpart can be found in [9, Chapter 7].) Second, a difference
dimension polynomial of a finitely generated difference field extension (or of a system of algebraic
difference equations that defines such an extension) carries certain invariants, that is, characteristics
of the extension that do not change when we switch to another system of difference generators (with
the corresponding change of the defining equations), see, for example, [6], [5, Chapter 6] and [9,
Chapter 4]. In this connection, one should mention the results on multivariate difference dimension
polynomials associated with partitions of the basic set of translations, see [8] and [9, Chapter 3]. It
turned out that they carry more such invariants than their univariate counterparts. Third, properties
of difference dimension polynomials associated with prime difference polynomial ideals provide a
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powerful tool in the dimension theory of difference algebras, see [5, Chapter 7], [9, Section 4.6], and
[10]. Finally, the results on difference dimension polynomials can be naturally extended to algebraic
and differential algebraic structures with a finitely generated commutative group action, see [12] and
[14].

In this paper we introduce the concept of a Grobner basis in a free difference module associated
with a reduction respecting the effective order of module elements. (The concept of the effective or-
der of an element of such a module is defined as a generalization of the notion of effective order of an
ordinary difference polynomial (see [1, Chapter 2, Section 4]) to the partial case.) We describe some
properties of the introduced Grobner bases and present a Buchberger-type algorithm for their com-
putation. Then we apply the obtained results to the computation of a bivariate dimension polynomial
of a finitely generated difference module M over a difference field K associated with a system of
module generators. This polynomial describes the dimensions of the K -vector spaces generated by
the transforms of the module generators whose orders lie between two given natural numbers. It car-
ries more module invariants than the classical difference dimension polynomial, so we obtain a new
tool for deciding whether two finitely generated difference modules are isomorphic. Furthermore,
the developed technique enables us to give an alternative proof of the existence of such bivariate
dimension polynomials. The first existence proof, which is based on the properties of generalized
characteristic sets in a free difference module, was given in [11]. That approach, however, does not
provide a method of computation of bivariate dimension polynomials, since there is no satisfactory
algorithm for computing difference characteristic sets. Finally, using the properties of modules of
Kaéhler differentials associated with field extensions, we obtain a method of computation of bivariate
dimension polynomials of finitely generated difference field extensions. We conclude with examples
that illustrate the advantage of applying our bivariate difference dimension polynomials to the iso-
morphism problem for difference modules and to the equivalence problem for systems of algebraic
difference equations.

2. Preliminaries

Throughout the paper, N, Z, and QQ denote the sets of all non-negative integers, integers, and rational
numbers, respectively. If m € Z, m > 1, then <p will denote the product order on N'", that is, a
partial order <p such that (ay,...,an) <p (a},...,al,) ifand only if a; < a} fori=1,...,m.

By aring we always mean an associative ring with unity. Every ring homomorphism is unitary
(maps unity to unity) and every subring of a ring contains the unity. Every field is supposed to
have zero characteristic. Furthermore, Q[¢1, . . ., ¢,] will denote the ring of polynomials in variables
t1,...,tp over Q. As usual, (t‘fl) will denote the polynomial (¢ +i)(t+i—1)...(t+1)/i! € Q[t].

By a difference ring we mean a commutative ring R considered together with a finite set 0 =
{a1, ..., a;} of injective endomorphisms of R (called translations) such that any two mappings «;
and o; commute. The set o is called the basic set of the difference ring R, which is also called a
o-ring. If R is a field, it is called a difference field or a o-field. (We will often use prefix o- instead
of the adjective “difference”.)

In what follows 7" denotes the free commutative semigroup generated by the set o, that is, the

semigroup of all power products 7 = o/fl ...aFm (k; € N). The number ord 7 = Z k; is called
i=1
the order of 7. Furthermore, for every r,s € N, s < r, we set
Try={reT|ord7<r} and T(r,s)={r €T |s<ordr <r}.

We consider 7" as an ordered set with the order < defined as follows: 7 = o/fl cooakm <o =

olt ... alm if and only if the (m + 1)-tuple (ord 7, k1, ..., k) is less than (ord 77,11, . . ,Im) with
respect to the lexicographic order on N™+1,
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A subring (respectively, ideal) S of a o-ring R is said to be a difference (or o-) subring of R
(respectively, a difference (or o-) ideal of R) if S is closed with respect to the action of any operator
in o. In this case the restriction of a mapping in ¢ to S is denoted by the same symbol. If a prime
ideal P of R is closed with respect to the action of o, it is called a prime o-ideal of R. If I’ C R,
then the intersection of all o-ideals of R containing F' is denoted by [F]. Clearly, [F] is the smallest
o-ideal of R containing F; as an ideal, it is generated by the set {7(a)|r € T,a € F'}. If the set F'
is finite, we say that the o-ideal [F] is finitely generated.

Let R and S be two difference rings with the same basic set o, so that elements of ¢ act on each
of the rings as pairwise commuting endomorphisms. (More rigorously, we assume that there exist
injective mappings of ¢ into the sets of endomorphisms of the rings R and S such that the images of
any two elements of ¢ commute. For convenience we will denote these images by the same symbols
Qq, ..., 0Qny). A ring homomorphism ¢ : R — S is called a difference (or o-) homomorphism if
¢(aa) = ag(a) for any o € o, a € R. In this case the kernel of ¢ is a reflexive o-ideal of R, that is,
a o-ideal I such that for any « € o, the inclusion a(a) € I (a € R) implies a € I. (Conversely, if I
is a reflexive o-ideal of a o-ring R, then R/ has a natural structure of a o-ring.) If I is prime then
the quotient field of R/I has the natural structure of a o-field.

If L is a o-field and K a subfield of L which is also a o-subring of L, then K is said to be a
o-subfield of L; L, in turn, is called a o-field extension or a o-overfield of K (we also say that we
have a o-field extension L/K). If U C L, then the intersection of all o-subfields of L containing
K and U is the unique o-subfield of L containing K and U and contained in every o-subfield of
L containing K and U. It is denoted by K(U). If U is finite, U = {n,...,n,}, then L is said
to be a finitely generated o-field extension of K with the set of o-generators {71, ...,n,}. In this
case we write L = K {(m,...,n,). It is easy to see that K(n;,...,n,) coincides with the field
K({rn;|7 € T,1 <1i<n}).(Here and below we often write 77 for 7(n) where 7 € T, n € L.)

Let K be a o-field and I/ a family of elements of some o-overfield of K. We say that the family
U is o-algebraically dependent over K, if the family TU = {ru|7 € T, u € U} is algebraically
dependent over K (that is, there exist elements u1,...,u; € TU and a nonzero polynomial f in k
variables with coefficients in K such that f(u,...,u) = 0). Otherwise, the family ¢/ is said to be
o-algebraically independent over R.

If L is a o-overfield of a o-field K, then a set B C L is said to be a o-transcendence basis
of L over K if B is o-algebraically independent over K and every element a € L is o-algebraic
over K (B) (that is, the set {Ta |7 € T} is algebraically dependent over the field K(B)). If L is
a finitely generated o-field extension of K, then all o-transcendence bases of L over K are finite
and have the same number of elements (see [9, Proposition 4.1.6]). This number is called the o-
transcendence degree of L over K (or the o-transcendence degree of the extension L/K); it is
denoted by o-tr. degy L.

Let K be a o-field, 0 = {aq,...,a;,}. With the above notation, an expression of the form
ZTeT arT, where a, € K for any 7 € T and only finitely many elements a., are different from
0, is called a difference (or o-) operator over K. Two o-operators » . a,7 and ) __, b7 are
considered to be equal if and only if a, = b, for any 7 € T The set of all o-operators over K will
be denoted by ®. This set, which has a natural structure of a K -vector space with a basis 7', becomes
a ring if one sets Ta = 7(a)7 for any @ € K, 7 € T and extends this rule to the multiplication of
any two o-operators by distributivity. The resulting ring ® is called the ring of o-operators over K.
Since the set T is a basis of © as a K-vector space, every nonzero o-K -operator g € © has a unique
representation in the form g = ay7m + - - - + ai7r where 71,. .., 7% are distinct elements of 7" and
ai,...,ar € K. Then the greatest and the smallest elements of the set {71, ..., 7} are called the
leader and coleader of g, respectively. They are denoted, respectively, by u, and v,,.
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A left ®-module is called a difference K-module or a - K -module. In other words, a K -vector
space M is a o- K-module, if the elements of o act on M in such a way that a(x+y) = a(x)+a(y),
a(Bz) = B(ax), and a(azx) = a(a)a(z) forany x,y € M; a, 8 € 0; a € K.

If M is a o-K-module and U C M, then the ®-submodule of M generated by U is denoted
by [U]. A o-K-module is said to be finitely generated (respectively, free) if it is finitely generated
(respectively, free) as a left ©®-module. If M and N are two o-K-modules, then a homomorphism
of ®-modules ¢ : M — N is said to be a difference (or o-) homomorphism if ¢p(ax) = ag(x) for
anyz € M, € 0.

If M is a o- K-module, then the maximal number of elements f1, ..., fr € M such that the set
{rfi|7 € T,1 < i < k} is linearly independent over K is called the difference (or o-) dimension
of M over K itis denoted by o-dim g M.

The following theorem proved in [6] (see also [5, Section 6.2]) introduces a Hilbert-type di-
mension polynomial associated with a finite system of generators of a o- K -module.

Theorem 2.1. Let K be a difference field with a basic set 0 = {a1,...,qn}, D the ring of o-
operators over K, and M a finitely generated o-K-module with generators x1,...,x, (that is,
n

M = Z Dx;). For any r € N, let M, denote the K-vector space generated by all elements of the
i=1

formTa, (1 € T, 1 <i < n)withordr < r. Then there exists a polynomial ¢(t) € Ql[t] such that
(1) ¢(r) = dimg M, for all sufficiently large r € N (that is, there exists o € N such that the

last equality holds for all integers v > rg).

m .
t
(ii) deg ¢(t) < m and the polynomial ¢(t) can be written as $(t) = Z ci( —i—z) where
i=0
€Oy Cly vy Cm € 7.
(iii) The integers d = deg P(t), ¢y and cq (if d < m) do not depend on the choice of the

system of generators of M over ®. Furthermore, ¢, = o-dimg M.

The polynomial ¢(t) is called a o-dimension polynomial of the o-K-module M associated
with the system of o-generators x1, ..., Z,.

DIMENSION POLYNOMIALS OF SUBSETS OF N

A polynomial in p variables f(t1,...,tp) € Q[t1,...,t,]is called numerical if f(ry,...,rp) €
Z for all sufficiently large (r1,...,7,) € NP, (It means that there exist s1, ..., s, € N such that the
property holds for all (rq,...,7,) € NP withry > s1,...,7, > sp.).

Clearly, every polynomial with integer coefficients is numerical. As an example of a numer-
ical polynomial in p variables with non-integer coefficients (p > 1) one can consider Hle (T’;Lz)
where my1, ..., m, € N. Note that the o-dimension polynomial ¢(¢) introduced in Theorem 2.1 is a
univariate numerical polynomial.

As it is proved in [5, Chapter 2], every numerical polynomial in p variables can be written as

Fltr ) =Y 0> ai, (tl +“> <t” + i”) 2.1

=0 =0 U '
with uniquely defined integer coefficients a;, . ;, (m; is the degree of this polynomial with respect
tot;, 1 <i < p).
In what follows, if A C N™ (m is a positive integer), then V4 will denote the set of all m-

tuples v = (v1,...,0,) € N™ such thata £p v foreverya € A (i.e., forany a = (ay,...,a,) €
A, there exists i,1 < i < m, such that a; > v;). Furthermore, for any r € N, we set A(r) =

{(a17~--aam) EA‘ Zai ST}

i=1
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The following theorem about a univariate numerical polynomial associated with a subset of
N™ is due to E. Kolchin, see [4, Chapter 0, Lemma 16].

Theorem 2.2. Let A C N™. Then there exists a numerical polynomial w 4 (t) such that
(i) wa(r) = Card Va(r) for all sufficiently large r € N.
(i) deg wq < m.
(ii)) deg wa = m ifand only if A = (. In this case, w(t) = (tj;m).
(iv) wa =0ifandonlyif (0,...,0) € A.

The polynomial w4 (¢) is called the Kolchin polynomial of the set A C N™.,

Remark 2.3. As it is shown in [4, Ch. 0, Lemma 15], every infinite sequence of elements of a set
N™ x {1,...,q} (m,q > 1) has an infinite subsequence strictly increasing with respect to the
product order, in which every element has the same last coordinate. (Therefore, if A C N™ and A’
is the set of all minimal elements of A with respect to the product order, then the set A’ is finite.)

The following proposition about decreasing sequences of certain subsets of Z™ with respect to
the lexicographic order will be used in the proof of the termination of a Buchberger-type algorithm
considered in section 3.

Proposition 2.4. Ler A = {(}.7" (a; — b;),a1 — b1,...,ap — by,) € Z™ | a;,b; €N
1<i<m),>" (a;i—b;) >0,and (by,...,by) <iez (a1,...,am)}. Then A does not contain
strictly decreasing sequences with respect to the lexicographic order.

Proof. Suppose that the set A contains an infinite sequence
ai,az,... (22)

such that a3 >jc; a2 >y ... Letax = {(O°0% (@i — bri), ax1 — bk1s - - -, Ak — b)) for some
Ak1y -~y Qkms Ok1s - - -, b € N with Zﬁl(aki—bki) > 0and (bkla ey bkm) <lex (akl, . ,akm)
(k=1,2,...). Then ;" (a1; — b1;) Ziex Y oiey(a2i — b2i) >jes .. is a decreasing sequence in
N, hence there exists p € N such that > | (ap; — bpi) = Y1y (@p+1, — bpt1,i) = - ... Therefore,
without loss of generality we can assume that Y .~ | (a1;—b1;) = Y ;v (a2;—b2;) = ... in sequence
(2.2). Now, since a1 >jer a2 Ziex .. and (a1, ..., Gem) Ziew (Ok1y-- - bpm) fork =1,2,...,
we have a decreasing sequence a11 — b1; > ao1 — b1 > ... in N that stabilizes, that is, there exists
a positive integer ¢ such that aqg1 — bq1 = ag+1,1 — bg+1,1 = . ... Thus, without loss of generality
we can assume that > " (a1; — by;) = D v (a2 —bo;) = ... and a11 —byy = ag1 —bgy = ... in
(2.2). Repeating the same argument for the third, fourth, etc., coordinates of element of the sequence
(2.2), we obtain that the sequence (2.2) stabilizes at some place. This completes the proof. ]

The following theorem proved in [5, Chapter 2] gives an explicit formula for the Kolchin
polynomial of a finite subset of N,

Theorem 2.5. Let A = {a1,...,a,} be a finite subset of N™ and let a, = (ag1,...,am) (1 <
k <n). Foranyl € N, 0 < [ < n, let T'(l,n) denote the set of all l-element subsets of the set
N, = {1,...,n}. Let ay; = 0 and for any v € T'(I,n), v # 0, let a,; = max{a;;|i € v}
(1 <5 <m). Then

WA(t):i:(_l)l > (Hm_zﬁla“) 2.3)

m
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3. Grobner bases respecting the effective order

Let K be a difference field with a basic set 0 = {a1,...,a,, } and F a free o-K-module with free
generators f1,..., f, (i. e., these elements form a basis of the free left module F' over the ring of
o-operators ® over K). In what follows, elements of the form 7 f,, (7 € T, 1 < v < n) will be called
terms; the set of all terms will be denoted by T'f. Clearly, T f is a basis of F treated as a K -vector
space.

The order of a term u = 7 f; (denoted by ord u) is defined as the order of 7. If 7,7 € T', we
say that 7 divides 7’ (and write 7| 7) if 7/ = 77" for some 7" € T'. In this case we write 7"/ = 77/ If
u=r7f;,v="7"f; € Tf, wesay that u divides v (and write u|v) if ¢ = j and 7|7’. We also say that
v is a transform of u and define the ratio ;. as T?/ The least common multiple of two terms u = 71 f;
and v = 7o f; is defined as usual: lem(u, v) = lem(m, 72) f; if i = j and lem(u, v) = 0if ¢ # j.

By a ranking on T'f we mean a well-ordering < of the set of terms 7'f that satisfies the
following two conditions:

() u < Tuforany u € Tf,7 € T. (We denote the ordering of 7' f by the usual symbol < and
write u < vorv > uifu <wvandu # v.)

(i) If u,v € Tf and u < v, then Tu < 7v forany 7 € T
A ranking is said to be orderly if the inequality ord u < ord v (u,v € Tf) implies u <
v. In what follows, we assume that the following orderly ranking < on T'f is fixed: if u; =

o/fl ...Oél;:nm’fi,UQ = ozlll ...ozly;yfj € Tf, then uy < us if and only if

(Ordula kla <. '7kmai) Sler (OrdUQ;llv e 7lm7j)

(Leq denotes the lexicographic order on Nm+2),
Since the set T'f is a basis of the vector K -space F', every nonzero element f € F has a unique
(up to the order of the terms in the sum) representation in the form

g:alTlfi1+"'+ap7—pfip 3.1

where 1 f;, ..., 7 fi, are distinct elements of T'f (1 < 4y,...,4, < n)and ay, ..., a, are nonzero
elements of K.

Definition 3.1. Let g be an element of the free o-K-module F' written in the form (3.1) and let
7 fi, and 75 f;, (1 < 7, s < p) be the greatest and the smallest terms in the set {71 f;,,...,7p fip},
respectively, relative to the introduced order on T'f. Then the terms 7, f; and 7,f;, are called,
respectively, the leader and coleader of the element g; they are denoted by u, and vy, respectively.
The coefficients of u, and v, in g will be denoted by lc(g) and mc(g), respectively.

Definition 3.2. If 0 # g € F), then the nonnegative integer ord u, — ord v, is called the effective
order of g ; it is denoted by Eord(g).

It follows from the last definition that for any g € F and for any 7 € T, Eord(7g) = Eord(g).

Definition 3.3. Let g,h € F. We say that g is E-reduced with respect to & if g does not contain
any Tup (7 € T') such that Tv, > vg. If g does not contain any vy, (7 € T') such that Tupl < ug,
we say that g is E*-reduced with respect to h. If U C F, then an element g € F' is said to be E-
reduced (respectively, E*-reduced) with respect to U if g is F-reduced (respectively, F*-reduced)
with respect to every element of U.

Remark 3.4. 1t follows from Proposition 2.4 that F' cannot contain an infinite sequence hq, hs, . . .
such that h; is E-reduced with respect to {hi,...,h;_1} for i = 2,3,.... Indeed, by Remark
2.3, if such a sequence exists, then it contains a subsequence {h;, } such that up, |un, ., hi.,

is [-reduced with respect to all h;, with ! < k+ 1 (k = 1,2,...), and all elements vy, (k =
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1,2,...) contain the same free generator f, (1 < p < n). Without loss of generality we can as-

. Uh ; . .
sume that up, |up,, (0 = 1,2,...), ™ ) vp; < wvp; whenever ¢ < j, and all elements vy,
(t = 1,2,...) contain the same free generator f,. If uy, = af™...a%m, vy, = al{“ o.abim,
;i im b, bim . . Uh ; . .
up, =0y’ .oy, and v, = ay’' .. op™, then the inequality (#) Un, < vp, is equivalent to
Vi

the inequality a; >, a; in Proposition 2.4. However, this proposition states that there is no infinite
sequence satisfying such inequalities.

Definition 3.5. Let N be a ©-submodule of F. A finite set G = {g1,...,9.} C N is called an
E-Grobner basis of N if for any h € N, there exists g; € G such that ug, | uj, and “—*ﬁvgi > vy,

Aset G ={g1,...,9-} C F is said to be an E-Grobner basis if G is an E-Ggrdbner basis of
N =319
Remark 3.6. If one removes the condition s—gh;vgi > vy, in the last definition, we obtain the definition
of a “standard” Grobner basis in a free difference module in the sense of Theorem 4.1.33 of [5]
(algorithms for computing such Grobner bases are presented in [5, Section 4.2]). The theorem gives
17 equivalent definitions of such a Grobner basis. In particular, the fact that G = {g1,...,g,} is
a Grobner basis of a ®-submodule N of F' is equivalent to the condition that f € N if and only

if f = Zhigi where hi,...,h, € © and uy = max{up,4, |1 < ¢ < r}. It follows that every
i=1

E-Grobner basis of N is also a “standard” Grobner basis of N. Therefore, every E-Grobner basis

of N generates IV as a left ®-module.

Definition 3.7. Given f, g, h € F, with g # 0, we say that the element f E-reduces to h modulo g
in one step and write f % h if and only if f contains some term w with a coefficient a such that

uglw, h = f —a(r(le(g))) ‘79, where T = wand Tvg > vy
We say that f E*-reduces to h modulo g in one step and write f %) h if and only if f contains

some term w with a coefficient a such that v, |w, h = f — a(r(mc(g))) ' 7g, where 7 = %, and
Tug < Ugp.

Note that both E- and E*- reductions of an element f € F' do not increase the effective order of f.

Definition 3.8. Let f,h € F and let G = {g1,..., 9.} be a finite set of non-zero elements of F.
We say that f E-reduces (respectively, E*-reduces) to h modulo G and write f % h (respectively,

f Ei> h) if and only if there exists a sequence of elements g1, (2, ... ¢(? € G and a sequence of

elements i, ..., hy—1 € F such that
) 2 (a-1) (a) (1 @) (a—1) (@)
AN g g . g g g g
1 ho—1 h (respectivel hy 1 h).
E E E a E (resp v/ E* E* E* = )

Proposition 3.9. With the above notation, let S = {g1,...,gr} € F and h € F. Then there exists
an element h* € F such that h* is E-reduced with respect to S and h — h* € [S].

Proof. If h is E-reduced with respect to .S, the statement is obvious (one can set h* = h). Suppose
that h is not E-reduced with respect to S. In what follows, if element ¢ € F' is not E-reduced with
respect to .S, then a term w; that appears in ¢ will be called the S-leader of ¢ if w;, is the greatest term
among all terms Tugy, (7 € T, 1 < j < k) that appear in ¢ and satisfy the condition Tv,) > v;.

Let wy, be the S-leader of 1 and let ¢;, be the coefficient of wy, in k. Then wy, = Tu,,; for some
7 € T and for some j (1 < j < k) such that vy, > vj. Let us choose such j that corresponds
to the maximum leader uy, in the set of all leaders of elements of S and consider the element
h = h— #’;J))ng. Obviously, i’ does not contain wy, and ups < up. Furthermore, A’ cannot
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contain any term 7’ Ug, (r" € T,1 < i < k) that is greater than wy, and satisfies the condition
7! Vg, = vp. Indeed, since vy, > vy, such a term T ug, cannot appear in h. Such a term cannot
appear in Tg; either, since u,y;, = Tuy, = wy, < 7'ug,. Thus, the S-leader of A’ is strictly less than
the S-leader of h. Applying the same procedure to the element i’ and continuing in the same way,
we obtain an element h* € F such that h — h* € [S] and h* is E-reduced with respect to .S. g

The process of E-reduction described in the proof of Proposition 3.9 can be realized by the
following algorithm that clearly terminates and results in an element which is E-reduced with respect
to .S. (The set of terms is well-ordered and each step of the algorithm decreases the S-leader.) Also,
it is easy to see that analogs of Proposition 3.9 and Algorithm I hold for the E*-reduction.

Algorithm L. (h, k, g1,...,9x; h™)

Input: h € F, a positive integer k, S = {g1,...,9x} C F where g; #0fori=1,...,k
Output: h* € Fand Ay, ..., A € © suchthath = A1g1 + -+ + Argr + h* and h* is
E-reduced with respect to S

Begin

A1 :=0,..., A, :=0,h* :=h

While there exist i, 1 < i < k, and a term w, that appears in h* with a (nonzero)
coefficient c,,, such that ug, |w and ay Vai > v do

z:= the greatest of the terms w that satlsfy the above conditions.

Ji= the smallest number i for which g, is the greatest leader of an element of S such that

ug, |z and vy, > vp-
7= ui "
A; fjl + lc(g 5T where c, is the coefficient of z in h*
W= R = Sy 9
End

Theorem 3.10. Let K be a o-field, F' a free o-K-module with free generators fi1,..., fn, N a
o-K-submodule of F, and G = {q1,...,9-} C N (r > 1). Then the following statements are
equivalent.

(i) G is an E-Grobner basis of N.

(ii) Let f € F. Then f € N if and only if % 0.

(iii) Every element f € N can be represented as f = >.._, h;g; where hy,...,h, € D,
uy = max{up,q, |1 <1 <7}, and vy = min{vp,vg, |1 <@ <71}

Proof. ()= (ii). Clearly, if f € F and f —Z—> 0, then f € N. Conversely, let f € N. By Proposition

3.8, there exists h* € F such that f g> h*, f —h* € [G] = N, and h* is E-reduced with respect to
G.If h* # 0, then h* € N and there ex1sts gi € G such that ug, | up, and b Vg > vy, It contradicts
the fact that h* is E-reduced with respect to G.

(i)= (ii). Let f € N. By (i), f % 0. Now, the process of reduction described in the

proof of Proposition 3.9 shows that f = >"'_, h;g; for some h; € ® (1 < i < r) such that
uy = max{un,g, |1 <i <r}and vy < minfup,v,, |1 < @ < r}. Clearly, the last inequality cannot
be strict, so we have the equality.

(i)= @). If f =>7_, higi (h1,...,h, € D)and uy = max{up,y, |1 < i < r}, then there
exists j € {1,...,7} such that uy, |uys and Up = Up,Ug, = Up,g,. Since vy < minf{vp,g, |1 < i <
r}, we have vy < Up, Vg, < Up,Vg;, 80 G is an E- Grobner basis of N O
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Remark 3.11. The equivalence of parts (ii) and (iii) of the last theorem implies that if 0 # f € F', G
is a finite subset of F, and f Ei> 0 (hence f has a representation given in part (iii), as one can easily

obtain by mimicking the proof (iii)=- (i) above), then f %) 0. Therefore, if 0 # f € F'is already

E*-reduced with respect to G and f % f', then f" #£ 0.

Definition 3.12. Let f and g be two elements in the free ®-module F'. Then the element

Sy(f,g) = (W(mc(f))) ICm(Uf,vg)f _ (lcm(vf7ug) (mc(g))) Mg

vr Vg Vg

is called the S, -polynomial of f and g.

Proposition 3.13. With the above notation, let f,g1,...,9- € F(r > 1) and let f = Zciwigi
i=1

wherew; € T, ¢; € K (1 <@ <r). Let u; = ug,, v; = vg,, and v,; = lem(v,,v;) (1 <i,v,5 < 7).
Suppose that wivy = -+ = WpV, = v, vy > v, and wiu; < uy fori = 1,...,r. Then there exist
elementsc,; € K (1 <v <s, 1< j <t forsomes,t cN)suchthat
s t
f = chujaujsv(guvgj)
v=1j=1
where 0,,; = ﬁ and 0,5, (g, .9;) > Vs OujUs,(g,.9,) Sup (1 <v<s 1<j<H)
Proof. Let d; = mc(w;g;) = w;(me(g;)) 1 < ¢ < 7). Since wiv; = -+ = wpv, = v and

vy >0, >0 cid; = 0. Leth; = d; 'wigisome(h;) =1 (1 <i<r)and f =3 ciwigi =
c1dy (hl — hg) + (Cldl +ng2)(h2 — hg) + -+ (Cldl —+ .- +CT71dr,1)(hT,1 — h,«) (To represent
an identity, the last sum should end (¢1d; + - - - + ¢,d;.) h,., but this term is equal to zero.)

Let7,; = 2 and v,; = =% (1 < wv,j <r,v # j). Then
0350 (9u+ 95) = 0w (105 (mc(90))) ™ 70j 90— (Y05 (me(g5)) ™ 5] = 1005 (7 (me(g0))] " 90
=00 (yi (me(g;))] ™ 295 = lwo (me(gy))] wugy — [wj(me(g;))] ™ wjg; = hu —h;. Therefore,
f=1c1d160125,(91, g2)+(c1di1+cad2)0235, (g2, g3)+ - -+ (crdi+- - +cr_1dr—1)0r-1 7Sy (gr—1, gr)-
Also, 0i7i+1usv(gi;gi+l) = UG, 180 (9i,gie1) = Bhimhip < US and vy, —p,,, > v, since the colead-
ers of h; and h;4; are equal and mc(h;) = me(h;11) =11 <i<r—1). O
Theorem 3.14. Let G = {g1,...,9,} be a “standard” Grébner basis of an D-submodule N of F
(see Remark 3.5). Suppose that S,(9;, g;) ;Gj 0 foranyi,j € {1,...,r}, i # j. Then G is an
E-Grobner basis of N.

Proof. By Theorem 3.10, it is sufficient to show that every element f € IV can be represented as

F=> " hig: (3.2)
i=1
where hy,...,h, € ® and
up = max{un,g, |1 <i <r}, vy <min{vp,vg, [1 <i <7} (3.3)

Since G is a “standard” Grobner basis of IV, an element f € N can be written as

f=Y_ Hyg (3.4)
=1
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where Hy,...,H,. € ® and

uy = max{um,g |1 < <r}=max{um,ug |1 <i<r} (3.5)

Let us choose such a representation of f with the greatest possible term v = min{vg, vy, |1 <@ <
r}. (Clearly, v < vy.) Letd; = mc(H;) (¢ = 1,...,r). Then the element f can be written as

f=> dwmgi+ >, (Hi—dww)gi+ Y, Hyg (3.6)
VH;Vg; =V VH; Vg; =V VH, vgb>v

Note that if v = vy, then the representation (3.6) satisfies conditions (3.2) and (3.3). Suppose that
vy > . Since v = min{vp, vy, [1 <@ <7}, VH,—d;vy, > v in the second sum of (3.6). Also, it is
clear that vy, vy, = vH,y, = v for any term in the sum

f= > dvng (3.7)
VH,;Vg; =V

and uy < max{vpy,ug, |i € I} < max{up,ug, [i € I} < uy where I denotes the set of indices
i €{1,...,r} that appear in (3.7).
Let v,; = lem(vy,,vy,) and 7,; = % for any v,j € I, v # j. (Since v = vg,v,, for
vj

every i € I, vy, |vand vy, |v, hence v, |v.) By Proposition 3.13, there exist elements ¢,; € K
1<v<s,1< 5 <tforsome s, teN)suchthat

Z Z CujTviSo (9w 95)5 (3.8)

v=1j=1
and
Tl’jvsv(gvagj) = UTVJ'SU(QV’QJ') >0, Tujusv(g,“gj) S Uf (39)

(1<wv<s1<j<t).Sinceforanyi,j € {1,...,r}.i # j. Su(gi,9;) ;(’3 0, there ex-

ist g;; € ® (1 < i < ) such that S,(g,,9;) E:qwjgZ where vy, Vg, > Vg, (g,,4,) and

Ugy,,; Ug; < US, (90,0, ) (see Theorem 3.10). Thus, for any 1nd1ces v and j in the sum (3.8), we have

TujSu (9v, gj) = Z(Tujqwj)gi where V1054505 V9i = TvjVqi,;Vg; 2 TujVS, (g,,9;) > V-
i=1
Setting H; = >0 _, Z;Zl CuiTviqiv (1 < i <), we obtain that

S t r
F= "> iy (Tuidivs)9 ZH 9i (3.10)

v=1j=1 i=1

where v vg, > vandug ug, < max{7, g, Uy |1 <v <s,1< 7 <t} <max{7,jug
v<s1<j<t}< uf (see (3.9)).
Substituting (3.10) into (3.6) we get

f= ZHngr > (Hi—dwou)gi+ Y, Hg. 3.11)

VH;Vg; =V 1)H/Ug7/>’l)

y11<

v (9v,9;

Let I, I> and I3 be sets of indices for terms in the first, second and third sums in (14), respectively.
Setting H! = H; — d;vy, for every i € I we obtain that Uy, Vg, >V forevery i € I, Vp!Vg, > U
for every i € I, and vy, vg, > v forevery i € I5. Furthermore, the inequality uj ug, < u Flie 1)
implies that Uy, Ug, < wuy. Also, if i € I, then Up!Ug, < um,ug, < uy, and if ¢ € I3, then
Uy, < max{upm,ug, |1 < i < r} = uy. Thus, (3.11) is a representation of f in the form (3.4)
with condition (3.5). We have arrived at a contradiction with the choice of the representation (3.4)



New Difference Grobner Bases and Bivariate Difference Dimension Polynomials 11

with condition (3.5) and the greatest possible term v = min{vg,vg, | 1 < i < r}. thus,every f € N
can be represented in the form (3.2) with conditions (3.3). O

The last theorem leads to the following Buchberger-type algorithm for constructing an E-
Grobner basis of a ®-submodule N of F starting with a standard Grobner basis. Its termination
follows from the fact that every time when the algorithm requires adding a new element to G*, we
obtain a larger set where every two elements are E'-reduced with respect to each other. As it follows
from Remarks 3.4 and 3.11, this process of adding new elements to G* must terminate, resulting in
an E-Grobner basis of N.

Algorithm IL. (v, g1,...,9-; 97,...9%)

Input: G = {g1,dots, g, } (r € N, > 0), a standard Gribner basis of a D-submodule N
of F Output: G* = {g7,... g%}, an E-Grobner basis of N

Begin

G* =G, U:={{gi,9;}|9: # 9, € G}
While ${ £ () do
Choose any {f, g} € U

w=U—{{fg}}

Sv(f,9) Z—:> h where h is E-reduced with respect to G*
If b # 0, then

h s b

=UU{{t,h*} |t € G*}, G* :=G*U{h*}.

End

4. Bivariate Difference Dimension Polynomials

Let K be a difference field with a basic set 0 = {a1,...,q,} and M a finitely generated o-K -
module with generators z1,...,z, (thatis, M = Y. Dx; where D is the ring of o-operators
over K). For any r,s € N, let M,; = Z?:l D,sx; where D, denotes the K -vector subspace
of D generated by all elements 7 € T(r, s). Furthermore, let F' be a free D-module with a basis
fis--sfnoand T : F — M the natural ®-epimorphism of F onto M (n(f;) = z; for i =
1,...,n). Let N = Ker 7 and let G = {g1,...,¢gp} be an E-Grobner basis of N. Let u; and v;
denote the leader and coleader of g;, respectively (1 < ¢ < p), and for any r, s € N such that s < r,
letTf={rfi|T€T,1<i<m}and

W(r,s)={weTf|s<ordw <r}, Wp(r,s)=rnW(rs)),
Ur,s)={ueTf|s<ordu<r and w;fu(i=1,...,p)}, Up(r,s) = {n(u)|ue€U'(r,s)},
U'(r,s) ={ueTf|s<ordu <, wuisdivisible by some u; (1 <i < p)and whenever u = Tu;,
for some 7 € T one has ord(7v;) < s}, and Uy, (r,s) = {m(u) |u € U"(r,s)}.

Furthermore, let U(r, s) = U'(r,s) | JU" (1, s) and Uy (1, 8) = Up,(r, 8) | JUY, (7, 5).

Proposition 4.1. With the above notation, let sy = max{Eordg; |1 < ¢ < p}. Then for every
(r,s) € N2, s <1 — s, the set Up;(r, 5) is a basis of the K -vector space M,..

Proof. First, we are going to show that the set Ups(r, s) (s < r — s¢) is linearly independent over
K. Let Zle a;m(w;) = 0 for some elements wy,...,w, € U(r,s) and ay,...,ar € K. Then
h = Zle a;w; is an element of N which is E-reduced with respect to G. Indeed, if a term w = 7 f;
appears in h (so that w = w; for some i, 1 < ¢ < k), then either w is not a transform of any w,,
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(1 <v<porw=r7u, forsomer € T, 1 < v < p, such that ord(rv,) < s < ord v, hence
Tv, < vp. Thus, h is E-reduced with respect to the F-Grobner basis of GG, hence (see Theorem
310)h=0and ay =--- =a; = 0.

Now let us prove thatif s € Nand s < r — sg, then every element 7x; € Wi (r, s) \ Un (7, 5)
(r € T,1 < j < n)is a finite linear combination of elements of Uy, (r, s) with coefficients in K.
Indeed, in this case 7f; ¢ U(r,s), hence 7f; = 7'u; for some 7" € T and i € {1,...,p} such
that ord(7'v;) > s. Let us consider the element g; = c;u; + ... (¢; € K,¢; # 0), where dots
are placed instead of the linear combination of terms that are less than ;. Since g; € N = Ker m,
7(g:;) = e;m(u;)+--- = 0, whence 7(7'g;) = ¢;m(7'uy)+- - = em(vfj)+- - =ciTxj+--- =0,
so that 7x; is a finite linear combination with coefficients in K of some elements 7z; (1 <1 < n)
such that 7 € T'(r, s) and 7 f; < 7'u;. Applying the induction on the well-ordered set T'f, we obtain
that every element 7a; (1 € T'(r, s), 1 < i < n) is a finite linear combination of elements of the set
w(U(r, s)) with coefficients in K. It follows that Up (7, s) is a basis of the K-vector space M,.s. O

Proposition 4.1 implies the following result whose proof can be obtained by repeating the arguments
of the proof of Theorem 4.1 of [11] (and using Theorem 3.10 instead of Proposition 3.13 of [11]).

Theorem 4.2. Ler K be a difference field with a basic set o0 = {aq,...,am} and M a finitely

generated o-K-module with generators 1, . .., %, (thatis, M = >_"_| Dx; where D is the ring of

difference (o-) operators over K). For any r,s € N, let M,.s = Z?:l 2 .,s; where ©,.5 denotes the

K -vector subspace of © generated by all elements Tx; (1 < i < n) with T € T(r,s). Then there

exists a polynomial ¥(t1,t2) € Q[t1, t2] and numbers 1, so, s1 € N with s1 < 1o — So such that
() ¥(r,s) = dimg M, for all (r,s) € N? withr > 1, s1 < 8 <1 — 80.

(i) Y(t1,t2) = v (t)) — P (ty) where deg ™ (t) < m (i =1,2), so

m . m .
t t
Yty t2) ZZaz( 1;—2) —Zb]( 2;_J> where a;,b; € 7.

i=0 §=0
(iii) For all sufficiently large r € N, (V) (1) = ¢(r) where ¢(t) is the difference (o-) dimension

n
polynomial of M associated with the filtration (M, = Z D,x;)rez where ©,. denotes the K -vector
i=1
subspace of © generated by all elements Tx; (1 <i <n)witht € T(r).
(iv) am = by, = o-dimg M. Furthermore, d = deg, 1, and aq are invariants of the o-
K-module M, that is, they do not depend on the finite system of o-generators of M over K the
polynomial 1 (t,1ts) is associated with.

(v) deg ™ > deg® and if degp™M) = degh)® = e < m, then b, is an invariant of M.

Definition 4.3. The bivariate numerical polynomial v (¢, t2) whose existence is established by The-
orem 4.2 is called a o-E-dimension polynomial of the o-K-module M associated with the system
of o-K-generators {1, ...,Z,}.

Note that the presented E-Grobner basis method gives an algorithm for computing o-E-
dimension polynomials while [11] give just an existence theorem. The following example shows
that a o- F-dimension polynomial ¢,/ (¢1, t2) of a finitely generated o- K -module M can carry more
invariants (i. e., numbers that do not depend on the set of generators of M over © the polynomial
W (t1, to) is associated with) than the univariate difference dimension polynomial introduced in [6]
and studied in [5], [9] and many other works (see Theorem 2.1).

Example 4.4. Let K be a difference field with a basic set o = {a1, as} and let M be a o-K-module
with two generators z; and z5 (as a module over the ring of o-operators ©) and with the system of
defining equations

otz + agfbxg =0 and a‘f+bx2 + agfbxg =0 4.1
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where a and b are positive integers, a > b > 1. In other words, if F' denotes the free ©-module with
free generators f1 and fo and g1 = af f; +ag_bf2, go = o/ll"’bfg +ag_bf2, then N = [g1, go] is the
kernel of the natural epimorphism of ®-modules F' — M (f1 — x1, fa — x2). Since ugy, = af f1
and u,, = af* fy, lem(ug, ,u,y,) = 0, the standard S-polynomial of g; and g (in the sense of [3,
Chapter 4]) is 0, so {g1, g2} is a “standard” Grobner basis of N. Now, v,, = vy, = a5 " fa, so
Sv(91,92) = g2 — 1 = a1+b f2 — af f1. We see that the least common multiples of the coleader
af fy of the element g3 = g2 — g1 and coleaders of g; and go are zeros, hence G = {g1, 92,93}
is an E-Grobner basis of V. (Note that {g1, g2} is not an E-Grobner basis of NV, since the element
g3 € N is E-reduced with respect to {g1, g2 }: ug, | ug,, but - o3 Vg, = g™ by < Vgy = af f1.)

Using the notation 1ntroduced at the beginning of this sect1on (with ug, = af f1, ug, = ug, =

QT fo vy, = vy, = a8 Ufo, and vy, = affi), we obtain that if s is sufficiently large and
s < r — 2b, then

Ur,s) ={u=afabf €Tf|s<k+1<r uy fu(i=1,2,3)}

Using the notation of Section 2 and Theorem 2.4, we get

Card U’ (r, s) = [Card Vi(a,0)} (r)—Card Vi(4,0)} (s—l)] + {Card Vi(atb,0)3 (1) —

CardV{(aer,o)}(S—l)} _ [(r42r2>_<r +§f aﬂ _Ks ; 1)_<s + ; - a>]+
(27

U'(r,s) = {a¥abalfi|s < k+14+a <r ord(afabas™fs) < s} U{ahabat ™ fy|s < k4 1+
a+b<r ord(ababad™ fo) < s} U{akabatl fo|s < k+1+a+b<r ord(afabalfi) < s}.
Therefore, CardU"(r,s) = Card{(k,l) € N?|s—a <k+1<s—(a—0b)}+ Card{(k,1) € N?|

et <[ (3ol 0,

_ b) + 1 1
<5 (a;‘ )+ ﬂ :3bs+§(b2—4ab—2a+b).ltfollowsthat

CardU(r,s) = CardU'(r, s) + CardU"(r, s) = (2a + b)r — (2a — 2b)s + 3 (b? — 4ab — 2a — b),

so the o-FE-dimension polynomial of M associated with the generators x; and x5 and defining
system (4.1) is as follows:

¢(t17t2) = (2& + b)tl — (2a — 2b)t2 + %(bQ —4ab — 2a — b)

Since {g1, g2} is a “standard” Grobner basis of N and leaders of g; and g, are af f; and ™ f,,
respectively, the “classical” univariate difference dimension polynomial ¢(t) associated with the
generators 1 and zo and defining system (4.1) is

010) = (a0 + et = | (59) = (7579|4089 = (70 )| = a4 e

3(2a% + 2ab + b* — 6a — 3b).
(see [5, Theorem 4.3.5]; as before, w4 (t) denotes the Kolchin polynomial of a set A C N2).

The invariants of ¢(t) are its degree 1 and the leading coefficient 2a + b (see Theorem 2.1). At
the same time, 1)(¢1, t2) carries three such invariants: deg, ¥ =1, 2a+ b (the coefficient of ¢1), and
2a — 2b (the coefficient of t2). Thus, ©(t1, t2) gives both parameters a and b of the defining system
(4.1) while ¢(t) gives just the sum of the parameters.
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The following example illustrates an important application of the obtained results to the iso-
morphism problem for difference modules. It shows that two non-isomorphic finitely generated o-
K-modules can have the same set of invariants carried by their univariate difference dimension
polynomials, but different sets of invariants carried by their o- E-dimension polynomials. Thus,the
fact that two o-K-modules are not isomorphic can be proved by comparing the corresponding o-E-
dimension polynomials computed via the E-Grobner basis method (while the test based on consid-
eration of univariate dimension polynomials is inconclusive).

Example 4.5. With the assumption of Example 4.4, let M’ be a o- K -module with two generators z;
and zy over the ring of o-operators © and with the system of defining equations

04(2‘+b22 +afz =0 and afz + 0/1722 =0 4.2)

(a and b are positive integers, a > b > 1). If F is the free ®-module with free generators f; and f5
and hy = ag+bf2 +alfi, hg = adfi + ol fa, then M’ = F/N where N = [hy, hs] is the kernel
of the natural epimorphism of ©-modules FF — M’ (f1 — z1, fo — 22). Here up, = a%*bfg,
up, = affi, vn, = adfr, and vy, = alfo, so lem(up,, up,) = 0 and S, (hy, he) = 0. It follows
that {h1, ho} is an E-Grobner basis of N. Proceeding as in Example 4.4, we obtain that the o-F-
dimension polynomial and the univariate difference dimension polynomial of M’ associated with
the generators 21, 22 and the defining system (4.2) are ¢*(t1, t2) = (2a+b)t; — (a+b)to + 3 (2b% —
a? +5a) and ¢*(t) = (2a + b)t — 1(2a® + 2ab + b* — 6a — 3b), respectively. We see that in this
case the univariate difference dimension polynomial is the same as the corresponding dimension
polynomial for module M in Example 4.4. At the same time, the o-FE-dimension polynomials of
M and M’ show that these o-K-modules are not isomorphic, since the coefficients of £ in these
polynomials are different (2b — 2a and —a — b, respectively).

As itis shown in [11], Theorem 4.2 implies the following result for difference field extensions.

Theorem 4.6. Let L = K (11, ...,nm,) be a o-field extension generated by a setn = {n1,..., 0}
(As before, 0 = {au,...,qu}.) Then there exists a polynomial )y (t1,t2) € Q[t1,t2] and
70, S0, 51 € N with s1 < rg — so such that

() Yy (r,s) = tr.degg K({mn; |7 € T(r,s),1 < j <n}) forall (r,s) € N2 withr > ro,
s1 <s<r—sp

(i) Yy (tr,t2) = W (t1) — 9 (t2) where deg ¥V (£) < m (i = 1,2), 50 by (b1, 12)
can be written as

%[JnK(thtz)—Zaq(lJrZ) Zb <2+]>, where a;,b; € Z.
i=0

(ili) am = by, = o-tr.degy L. Furthermore, d = deg, 1y i, and aq are also invariants of
the extension L/ K (they do not depend on the system of o-generators of L/ K ). Finally, deg wfll‘}( >

deg 1&5]%( and if deg wfﬁ}( = ¢£,T%< = e < m, then b, is an invariant of the extension as well.

The polynomial 9,k (t1,t2) is called a o-E-dimension polynomial of the o-field extension L /K
associated with the system of o-generators 7). As it is shown in the proof of Theorem 4.5 of [11],
Yy i (t1,12) coincides with the o-E-dimension polynomial of the o-L-module of Kihler differen-
tials associated with the extension L/ K, so it can be computed via the E-Grobner basis method.
Suppose that we have two systems of difference (o-) algebraic equations that are defining
equations of finitely generated o-field extensions L/K and L'/ K (it means that they generate prime
reflexive o-ideals P and P’ of the ring of difference (o-) polynomials R = K{yi,...,yn}, respec-
tively, such that L and L’ are o-isomorphic to the quotient fields of R/P and R/P’, respectively).
These systems are said to be equivalent if there is a o-isomorphism between L and L’ which is
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identity on K. The last theorem allows one to use o-E-dimension polynomials to figure out that two
systems of o-algebraic equations whose corresponding o-field extensions have the same univariate
o-dimension polynomial are not equivalent. Say, two systems of algebraic difference equations
afyr + agfbyg =0, o/l”byz + agfbyg =0 and a%*byg +adyr =0,y + bz =0,

which correspond to the systems of equations on generators in Examples 4.4 and 4.5, define dif-
ference field extensions with the same univariate o-dimension polynomial, but their o- F-dimension
polynomial are different and carry different invariants. Therefore the systems are not equivalent.
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