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Compiled Time-lapse
with Controlled Lighting

Captured Bursts of Data

Compile and Visualize Long-term Changes
We combine bursts of data captured during each observation to create a 3D
time-lapse visualization of the subject with consistent configuration and lighting,
making it easy to visualize subtle, long-term changes in the subject over time

Figure 1: We present a mobile application for capturing personal time-lapse (PTL), which visualizes gradual changes of a subject
over long periods of time. Recording PTL begins with the capture of a reference observation (left), which can be done by the
subject of capture or by a specialist. During recapture (middle), our tool uses custom tracking and novel visual guidance to help
the user reproduce the conditions of the reference observation. Users recapture new observations over an extended period of
time, which we process with computational illumination to visualize the subject under controlled lighting conditions (right).
Our final visualization is an interactive 3D visualization of long-term changes in the subject under consistent lighting. Our
work offers a convenient way to document and visualize long-term changes in the body, with many potential applications in

remote healthcare and telemedicine.

ABSTRACT

Our bodies are constantly in motion—from the bending of arms
and legs to the less conscious movement of breathing, our precise
shape and location change constantly. This can make subtler de-
velopments (e.g., the growth of hair, or the healing of a wound)
difficult to observe. Our work focuses on helping users record and
visualize this type of subtle, longer-term change. We present a mo-
bile tool that combines custom 3D tracking with interactive visual
feedback and computational imaging to capture personal time-lapse,
which approximates longer-term video of the subject (typically,
part of the capturing user’s body) under a fixed viewpoint, body
pose, and lighting condition. These personal time-lapses offer a
powerful and detailed way to track visual changes of the subject
over time. We begin with a formative study that examines what
makes personal time-lapse so difficult to capture. Building on our
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findings, we motivate the design of our capture tool, evaluate this
design with users, and demonstrate its effectiveness in a variety of
challenging examples.
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1 INTRODUCTION

The human body is constantly changing. Some changes are fast
and temporary, like the motion involved in walking or breathing.
Other changes are slower and more permanent, like those involved
in growth and healing. These slower and often more subtle changes
are important indicators of human health. Unfortunately, they are
also some of the hardest to capture and visualize, as their short-
term progress can be difficult to distinguish from transient changes
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of viewpoint, body pose, and lighting. For example, as a scraped
knee begins to heal, the wounded area will shrink. However, the
shrinkage observed in a day may be small compared to changes in
size caused by simply bending the knee, which stretches or loosens
skin around the kneecap. The color of the scrape may also change
over time, but that can be difficult to distinguish from the effects of
viewing the knee under different lighting conditions—for example,
cooler lighting in the morning versus warmer lighting at the end of
the day. Controlling transient factors that can affect the appearance
of a subject is especially important when capturing data for medical
applications. For this reason, medical professionals employ a variety
of tools and techniques to standardize the recording of patient
data in clinical settings [1, 10]. However, as the recent COVID-19
pandemic highlighted, existing strategies do not extend to remote
healthcare scenarios, creating an urgent need for new and more
scalable tools. Our work addresses this need by developing a mobile
application for capturing and visualizing long-term changes of the
body. Our strategy is to help users control the conditions of repeated
observations taken over long periods of time. To accomplish this,
we make three key contributions:

e Fast Geometry-Based Mobile 3D Tracking: Existing mo-
bile AR toolkits do not support tracking and registration
for non-rigid surfaces. We implement fast geometry-based
tracking on mobile devices to enable new types of real-time
user feedback and guidance. While the basic algorithms be-
hind our approach have been used for non-rigid tracking
before, to our knowledge, ours is the first interactive imple-
mentation on mobile devices, which lets us explore a new
space of interactive capture opportunities.

e Augmented Reality (AR)-Based User Guidance: Our task
involves simultaneously controlling the viewpoint of capture
and the configuration of the subject being captured. Building
on our custom mobile tracking, we offer novel interactive
guidance through the use of AR-based visual feedback.

o Computational Imaging: The ability to guide users back
to a consistent viewpoint and subject configuration creates
unique opportunities for computational imaging. For each
observation, we capture a rapid burst of data that lets us con-
trol subject lighting, even across data captured in different
environments.

Our resulting tool makes it easy for users to capture a subject under
specified conditions over an extended period of time. We then com-
pile these captured observations into an interactive visualization of
long-term changes that we call personal time-lapse (PTL).

1.1 Personal Time-Lapse (PTL)

Our goal is to highlight long-term changes of a subject by visualiz-
ing it under controlled conditions over time. Our challenge then
depends on the choice of subject and conditions we wish to control.
For this paper, we primarily focus on subjects that are part of the
capturing user’s body (e.g., their face, hand, or foot), though our
work can be used on other types of subjects as well (see Figure 7 and
supplemental material for examples). To support a flexible range of
downstream use cases, we derive the target conditions for capture
from an initial reference observation, which can be captured by the
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user themselves or by a third party, such as a physician specifying
observations for a patient to capture later from home.

We derive the conditions we wish to fix from a review of guide-
lines on medical and clinical photography (see Section 2.3), as well
as texts on stop-motion animation [34, 38], and discussions with a
professional filmmaker known for their work on time-lapse of the
body [23]. We primarily focus on controlling three capture criteria
for each observation:

e Viewpoint: The pose of the camera relative to the subject

e Configuration: The current shape of the subject. For ex-
ample, in the case of articulated subjects like a human hand,
this would include the angles of each joint.

e Lighting: The color, intensity, and angular distribution of
light illuminating the subject.

Our challenge is to control these three factors in uncontrolled
environments using only a handheld mobile phone. We developed
our solution as an iOS application and show results from a user
study with 14 participants demonstrating dramatic improvements
in geometric accuracy for data captured with our tool of hands,
feet, and faces (p < 0.001). We also validate our approach with two
compelling longitudinal case studies. Additional results, as well as
a link to our free app, can be found on our project website.

1.2 Background & Motivation

Our work has many possible downstream uses, with medical ap-
plications (e.g., wound tracking and telemedicine) being our single
biggest motivation. Whereas many previous efforts in this space
have focused on supporting specific clinical tasks (discussed in
Section 2.3), we instead focus on more general challenges related
to geometry and usability. This focus is motivated by recent trends
and observations in remote healthcare, which we review here for
context.

1.2.1  Patient Photography in Remote Healthcare Settings. The re-
cent COVID-19 pandemic greatly accelerated the increasing trend
of using patient-captured data in healthcare and telemedicine [13,
25,31, 35]. This acceleration has highlighted a need for more general
tools to support remote and asynchronous healthcare. In particular,
mobile apps that capture data for specific diagnostic tasks tend not
to generalize well, which is why standard photography tools have
remained the dominant way for patients to communicate visual
information to specialists in remote scenarios [32].! With this ob-
servation in mind, we focus our effort on developing a general tool
for capturing parts of the human body, which we evaluate on the
basis of usability and geometric accuracy.

1.2.2  Current Limits of 3D Tracking On Mobile Devices. A major
limitation of mobile photography for remote healthcare has been the
inability to determine at capture time whether a user has recorded
data correctly. Guidelines for making this determination often exist
(see Section 2.2), but those guidelines depend on information that
cannot be evaluated with existing mobile tracking APIs. Current 3D
tracking APIs on mobile phones are designed to support AR applica-
tions where the goal is to render virtual objects into real scenes. For
this, 3D pose estimation is based on visual SLAM that derives 3D
information from static rigid features in a scene. However, humans

This includes standard camera interfaces used in apps designed for HIPAA compliance.
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are neither static nor rigid, which causes this tracking to fail on
most parts of the human body. Specialized human body pose esti-
mators do exist (e.g., in Apple’s ARKit and Google’s MediaPipe) but
are based on approximate mappings to a canonical human model
derived from frequently inaccurate priors. We address these limits
by developing our own 3D mobile tracking system based on a fast
variant of projective ICP [18, 36] that has been shown to work well
with non-rigid surfaces [14, 26]. Our custom tracking module lets us
overcome various limitations inherited by previous related efforts
by exploring more general interactive capture strategies that were
not possible with previous tracking APIs.

2 RELATED WORK

2.1 Augmented Reality & HCI

2.1.1 Guided Photography Systems. AR-based guidance has been
explored for particular photography tasks in prior work. Adams
et al. [2] visualize scene coverage during panoramic image capture.
Bae et al. [4] explore the problem of re-photographing older photos,
mostly focusing on architecture. More recently, Kim and Lee [21]
explore the use of AR-based guidance for framing photographs, and
works by E. et al use AR guidance to help users apply photography
principles related to framing [11], decluttering of compositions [12],
and to teach users about these principles. Yan et al. [42] address
handheld time-lapse capture with mobile devices, which bears some
resemblance to our own task, but focuses on subjects that are farther
from the camera and fixed in their environment. This avoids some
of the most significant technical challenges facing PTL capture as
we examine further in our formative study.

2.2 Guidelines for Medical Photography

Medical and clinical photography have come to play critical roles in
healthcare. As such, several efforts have explored recommendations
and guidelines for photography in different medical settings, includ-
ing general guidelines [1, 5, 17] as well as those more specific to
photography on mobile devices [44], photography of skin surfaces
[20], and cosmetic procedures [33, 39, 40]. While specific guidelines
vary across specific settings, several features are common. Our
work focuses on controlling three of the most common properties
described: the viewpoint of the camera relative to the subject, the
configuration of the subject (often referred to as “pose"), and the
lighting. For a more detailed discussion of the role these play in
existing guidelines, we refer to the work of Davda and Pasquali
[10].

2.3 Mobile Apps for Medical Photography

Several previous works have explored the design of mobile appli-
cations for aiding specific monitoring or diagnostic tasks such
as the early detection of melanoma [7, 41] or tracking of diabetic
foot ulcers [6, 28, 43]. Other works have focused on the secure
transfer of more general clinical image data through mobile appli-
cations apps, e.g. for HIPAA compliance [24]. We refer to several
related surveys for additional information [7, 15, 25, 37]. Notably,
most patient-captured data used in health contexts do not come
from specialized capture apps [31, 35] which motivates our general
purpose approach as discussed in Section 1.2.
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2.4 Real-time 3D Tracking

Real-time 3D tracking involves continuously estimating the cam-
era’s position and orientation relative to a 3D representation of
the scene. Most real-time mobile 3D tracking implementations are
based on multi-threaded versions of visual SLAM (e.g., [22, 29]),
which rely on static, rigid visual features. This typically causes pose
estimation to ignore or fail on non-rigid subjects, a limitation that
is acknowledged in documentation for common mobile APIs (e.g.,
Apple’s ARKit [3]).

An alternative approach to 3D tracking makes use of geomet-
ric data (e.g., point clouds) like that provided by a depth camera.
KinectFusion [18, 30] accomplish this by using a coarse-to-fine it-
erative closest point (ICP) algorithm to average depth images into
a volumetric signed distance function (SDF) for representing the
scene. This approach is quite effective and more robust to non-rigid
subjects than most visual SLAM-based approaches, but it can be
expensive. The SDF requires significant memory, and their pose
estimation used a highly optimized CUDA implementation of pro-
jective ICP, which is likely why there are no known open-source
implementations on mobile platforms. Our tracking implementa-
tion overcomes the memory issue by only registering against a
fixed reference view of the subject, and the speed issue with our
own highly optimized implementation of projective ICP for mobile
GPUs on i0S devices.

3 FORMATIVE RESEARCH

With the exception of photo-a-day montages that align a sequence
of photos on a specific person’s face (e.g. [9, 19]), time-lapse of
the human body is quite rare. Our formative findings in this work
suggest that this rarity stems from the difficulty of capture, which
our work is meant to help address.

3.1 Expert Interview

The closest examples to our vision of personal time-lapse we could
find came from a YouTube channel specializing in time-lapse. We

contacted the channel’s creator, who turned out to be Balint Kolozsvari,

an accomplished filmmaker known for his expertise in time-lapse
[16]. Kolozsvari agreed to an interview about his work for this
paper, and his full responses can be found in our supplemental
material. Our most informative discussion centered around a time-
lapse he created of a wounded finger healing, which has been seen
by millions of viewers across different video platforms. Despite
capturing this video in a carefully controlled environment with
fixed studio lighting, a tripod-mounted camera, and a plaster mold
to control the positioning of his hand, Kolozsvari reported that he
still found controlling the precise configuration of his finger for
each frame to be challenging:

“..I made a plaster mold for the lower part of my hand. But with
that, I still had to position my finger very carefully ... At times
I was able to position and take the photo in less than a minute,
and some other time it took me up to 15 minutes to find the right
position."

This illustrates the need for precise guidance over the viewpoint
and configuration of subjects.
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Figure 2: Formative Study: In the upper left, we show the overlay mode from ReCapture, used in Conditions B-D as a baseline,
which overlays the reference image onto the current view during capture. Below it, we show our interactive simulator which
visualizes the accuracy of recaptured images by blending renders of a hand from noisy camera poses where users adjust the
noise variance with a slider. This allows users to score their accuracy before capturing as a prediction, and after recapturing as
a post-assessment for the various conditions (Section 3.2.2) as shown on the right-hand side. For each condition, we report the
average prediction (left) and post-assessment scores (right) and visualize them with our simulator as seen by users. We also
include a representative result captured by a user (middle). Across all conditions, users generally scored their performance
worse than their prediction, indicating they found capturing PTL harder than expected.

3.2 Formative Study

To better understand what makes capturing PTL difficult, we con-
ducted a formative study aimed at investigating two questions:

e RQ1: What difficulties do users encounter when capturing
PTL with existing tools, and how does the level of difficulty
compare with expectations?

e RQ2: What impacts do different types of guidance related
to viewpoint and configuration have on the accuracy of PTL
capture?

Our IRB-approved study (IRB0147654) involved five participants
(2 males and 3 females ages 20-30) recruited through social con-
nections and public forums. No participant had prior experience
capturing time-lapses of body parts, but two reported experience
capturing time-lapses of landscapes using existing commercial tools.
Each participant was compensated with money for their effort.

3.2.1 Task. Participants were tasked with capturing four small
time-lapses of their hands under four different capture conditions.
The conditions were randomly ordered for each participant, who
then captured a reference photograph for each condition. They
then cycled through the conditions, re-capturing the reference each
time, until they had cycled through the conditions four times.

3.2.2 Conditions. To address RQ2, we designed our conditions to
include existing tools as a baseline, then added conditions with
additional guidance related to viewpoint and subject configuration.
ReCapture app refers to a capture mode offered in the ReCapture
Time-Lapse mobile app for iOS [42] that shows a visual overlay of
the reference image being recaptured (see Figure 2 upper left):

e Condition A: Capture with the standard iOS camera app as
a baseline.

e Condition B: Capture using ReCapture app.

e Condition C: Same as Condition B, but users are also given
paper and pen that can be used to trace the configuration of
their hand for guidance of later captures.

e Condition D: Same as Condition C, but capture is performed
with a dedicated camera that is fixed to a static tripod for all
captures (i.e., the viewpoint is fixed).

Conditions A and B use existing tools as baselines. Conditions C
and D progressively add additional constraints, with the paper and
pen added in C designed to help users control configuration, and
the tripod added in D to control viewpoint. We did not include a
condition exploring the third capture criteria mentioned in Sec-
tion 1.1, lighting, because we planned to pursue a computational
approach to control lighting.

3.2.3 Evaluation. We designed an interactive metric for evaluating
the quality of captures to help standardize the meaning of our
observations across users. Our metric, shown in Figure 2, is based
on rendered images of a simulated hand. Users are shown a blend
of images sampled with a given variance around some central
reference view of the hand. The amount of variance represents the
accuracy of recaptured images: setting it to zero means all images
are recaptured with perfect accuracy, which results in a blended
image that is perfectly sharp. Increasing the variance leads to less
consistent viewpoints, which create increasingly large ghosting
artifacts when blended. We let users control the amount of variance
with a slider to specify different levels of capture accuracy. Before
the experiment, we explained each condition to users and asked
them to predict their own accuracy for each condition using our
metric (prediction). Then, after they finished capturing data, we
blended the images they captured in each condition and asked them
to approximately match the slider in our metric with the variance
they observed for each blend of captures (post-assessment). This
gave us an approximate measure of perceived accuracy for each
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Figure 3: User Prediction vs. Post-Task Scores: The differ-
ences between the prediction and post-task assessment scores
across all four conditions. Participants consistently found
capturing PTL unexpectedly challenging,.

condition, which we could compare with the predictions given prior
to capture. We report the average prediction and post-assessment
scores for each condition in the upper right-hand corners of Figure 2.
We also surveyed participants on what they found challenging.

3.24 Findings. We observe improved overall accuracy as the level
of guidance increases, with the most significant gap being between
Condition A (standard camera app) and the other conditions. This
indicates that offering some live visual comparison to the reference
image being recaptured is very important. The simple overlay of
Condition B had some issues: users reported sometimes having
difficulty differentiating the overlay from the live camera image,
and commented that attempting to align one local region of the
hand sometimes led to misalignment in other regions. This sec-
ond challenge can be attributed to the ambiguity of whether to
use camera translation, rotation, or changes in configuration to
align different parts of the image. Section 4 describes how our tool
addresses these ambiguities with feedback based on a comparison
of current and reference scene geometry.

Comparing the predicted and post-assessment accuracy of each
condition (Figure 3) shows that capturing PTL is generally harder
than people expect, especially when using existing tools. A paired
t-test for Condition C shows that post-assessment scores increased
beyond the predicted values, with p = 0.008, even with the added
configuration guidance provided by the pen and paper.

One user noted that tapping the shutter button often caused the
camera to shake, which decreased capture accuracy. Based on this
observation, we implemented automatic capture triggering in our
tool, which we describe in Section 4.

4 APPLICATION DESIGN

Building on our findings from the formative study, we developed a
mobile-AR iOS application for capturing PTL.
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4.1 PTL Data

A single PTL consists of a sequence of samples representing obser-
vations of the subject at different times. One sample is designated
as a reference, and the criteria for capturing new samples is mea-
sured relative to this reference (i.e., users are guided to reproduce
the conditions of this reference when capturing new data). Each
sample consists of two RAW RGB images (explained in Section 4.7)
and corresponding depth maps, as well as metadata about the time,
location, and camera parameters used for each captured image.

4.2 Workflow

Our application opens to a gallery of thumbnails representing PTLs
stored on the current device. From here, users can create a new PTL,
or select an existing one to view or capture new samples. During
capture, RGB and depth data are streamed from the front-facing
sensors of the device. We feed depth images to our custom 3D
tracker to compute camera pose, and visual guidance for users is
overlaid on top of the live RGB camera feed, as depicted in Figure 4.

Creating New PTL: Users create new PTL by simply capturing an
initial reference sample of their subject under desired conditions.
The only guidance we provide for capturing this initial sample is a
visualization of pixels that are too close to the camera for accurate
focus or depth readings, which helps ensure the quality of captured
data. After capturing a reference sample, users can optionally draw
a mask on the captured image or set a range of depths to indicate
what part of the captured scene is their subject (Section 4.5.1).

Recapturing Subsequent PTL Samples: Our tracker computes
3D pose by aligning the incoming depth image at each frame with
the depth map of the current reference sample. We use this infor-
mation to guide the user’s control of the camera and subject, and
to automatically trigger the capture of a new samples when certain
viewpoint and configuration conditions are met. Figure 4 shows
our guidance interface, which we describe later in this section.

Viewing PTL: To visualize a PTL, we first align all the collected
samples with a robust offline ICP implementation, then we apply
the computational illumination strategy described in Section 4.7
to calculate a time-lapse of the subject under fixed lighting condi-
tions. Our final visualization is a 3D time-lapse of the subject under
controlled lighting. Example interactive 3D visualizations can be
found on our project website.

4.3 Representing Viewpoint & Configuration

Mathematically, we can define the viewpoint V; and configuration
C; of an observation in terms of the transformation that relates
our observed geometry at time ¢ to the geometry of our reference
sample. V; represents the rigid component of this transformation,
while C; represents any residual non-rigid component of the trans-
formation. This factorization has three key advantages. First, it
aligns well with the colloquial meaning of viewpoint and config-
uration. Second, it is convenient to compute; we find the current
viewpoint by using ICP to solve for the rigid transformation that
minimizes the sum of squared distances between corresponding
points in the current observed geometry and our reference sample
geometry. Finally, the third advantage of our factorization has to do
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Figure 4: User Interface: Here, we show an annotated inter-
face of what is displayed to the user during capture. Guid-
ance for configuration is conveyed through the overlay and
heatmap, while guidance for viewpoint is conveyed through
the crosshairs and rings. Note that our app offers other con-
figurable options not shown here, including the ability to
hide the background.

Appreaching
Alignment

with user guidance—more specifically, it separates alignment into
a viewpoint component with fixed degrees of freedom (DOF) and
a spatially-varying residual. This lets us use high-precision sym-
bolic feedback to guide viewpoint alignment, and spatially-varying
visualizations for guiding configuration.

4.4 Configuration Guidance

The degrees of freedom that govern configuration vary across dif-
ferent subjects, and are generally unbounded for very deformable
surfaces. With this in mind, our strategy for guiding configuration
focuses on spatially-varying visualizations that convey alignment
on a per-pixel basis.

4.4.1 Overlay and Masking. Our formative study found that a sim-
ple overlay of the reference sample image is quite useful for guid-
ance. With this in mind, we use such an overlay as the starting point
for configuration guidance. Since each sample may be captured in
a different environment with a different background, we also allow
users to specify a mask of their subject, which we can use to remove
the background from our overlay and pose estimation. Users can
create a mask by painting it directly onto the reference subject view,
and by using a slider to mask all pixels within a selected range of
depths in the scene.

4.4.2 Depth Heatmap. Simple overlay guidance helps with align-
ing silhouettes and visible edges of objects, but is less useful for
conveying misalignment in texture-less surfaces, or displacements
along the optical axis of the camera. To help with this, we also
use a heatmap to visualize the difference in depth between our
current observation and our reference observation at each pixel.
This heatmap is blended with the overlay as shown in Figure 4. The
meanings of colors in this map are illustrated in Figure 5: surface
points that are too close to the current camera are colored red,
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Figure 5: Depth guidance: Colors change depending on the
distance between the current and reference subject.

points that are too far are colored blue, and points approaching the
correct depth turn green.

4.5 Viewpoint Guidance

Viewpoints have six degrees of freedom (DOF), which can be fur-
ther factored into three degrees of rotation and three degrees of
translation. Previous work (e.g., Yan et al. [42]) and our formative
study both found that users often struggle to differentiate between
local offsets in translation and rotation, which motivates the use
of visual feedback that makes this distinction clear. However, our
representation of viewpoints is a relative one that does not dif-
ferentiate between rigid transformations of our camera and rigid
transformations of our subject, which makes decomposition into
rotation and translation somewhat ambiguous. We can resolve this
ambiguity by choosing an anchor point in our reference observa-
tion of the subject. By default, we choose a point along the optical
axis of our reference sample view, at the average depth of points
observed in our reference subject geometry.

4.5.1 Rotation. We found that overlay guidance is quite effective
at helping users point their camera toward the subject. This leaves a
rotational ambiguity that amounts to orienting a subject that is fixed
in the center of the current view. To address this, we offer visual
guidance in the form of two crosshairs. A white crosshair is fixed
in the center of the screen for reference, and a blue crosshair moves
according to the current relative orientation of our subject. From
the user’s perspective, the correct orientation is achieved when the
blue crosshair matches up with the white one. Geometrically, we
accomplish this behavior by positioning the blue crosshair based
on a projection of a vector from our anchor point to the camera
location in our reference viewpoint onto the current image plane
(see Figure 6). The rotation of the blue crosshair is then set to
the rotation of the reference viewpoint’s xy axes relative to the
current view. We experimented with several different designs for
guiding rotation and found this one to be particularly effective for
its simplicity and near-invariance to camera motion that is parallel
to the current camera’s image plane.

4.5.2 Translation Guidance. Our visual guidance for translation
focuses on motion parallel to the current camera’s image plane,
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Figure 6: Rotation Guidance. To configure rotation, the user’s
goal is to align the blue crosshair with the white one which
acts as a visual indicator of the user’s current relative ori-
entation. Geometrically, the position of the blue crosshair
on the screen is determined based on a projection depicted
here as the intersection of the blue arrow with the camera
frustum.

as translation along the z-axis of our camera (i.e., changing the
distance to a subject) is already visualized in our depth heatmap. We
use two rings to guide translation along the xy plane: one stationary
ring at the center of the view used as a target, and a second ring
that is translated proportional to the current xy offset relative to the
reference camera (see Figure 4). Aligning the two rings indicates
that the camera has reached the target xy translation.

4.6 Automatic Recapture

Our ability to continuously evaluate viewpoint and configuration
lets us automatically trigger capture when these criteria are within
a threshold of our target reference sample. This addresses an issue
discovered in our formative study, where users found that the need
to manually press the camera shutter tended to ruin alignment right
at the moment of capture. For subjects that are more physically
difficult to capture, like the bottom of the foot, this effect can be
particularly significant. We trigger automatic recapture based on
viewpoint thresholds for translation and rotation, and a configu-
ration threshold for the net depth disparity between the current
masked depth and the reference masked depth. Additional details
about these thresholds can be found in our supplemental material.

4.7 Computational Lighting

The ability to capture data in different lighting environments is cru-
cial to supporting regular and convenient capture. Our key insight
is that the only illumination we can reliably control during capture
is the light that comes from our capturing device. Our strategy
to control illumination works by isolating this lighting that we
can control and computationally removing all the environmental
lighting that we cannot control from each observation. To do this,
we capture a rapid burst of two images for each sample: one with
the camera flash turned off, and another with the camera flash
turned on. Our no-flash image contains only the uncontrolled envi-
ronment lighting in the scene, while the flash image controls the
same environment lighting in addition to the light coming from our
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With Flash

Without Flash Difference

Nightime

Daytime

Figure 7: Computational Illumination: Our technique con-
trols for lighting by taking the difference between two images
taken with and without the flash in rapid succession. The
final computed results have consistent lighting, despite being
captured in drastically different lighting conditions (night vs
day), which clearly shifts the focus to the change in growth
as shown in the rightmost column.

device. Taking the difference between these two images then gives
us an image showing only the controlled light coming from our
device (Figure 7). We found this approach extremely effective when
applied to calibrated RAW photos, which we capture by default in
our tool. Figure 13 shows several examples of samples captured un-
der different lighting conditions that are rendered with consistent
lighting using our approach.

5 IMPLEMENTATION

Our application runs on iOS devices, and is written in Swift and
Metal. Our computational illumination pipeline runs offline in
Python, and the resulting PTL can be re-loaded into the app or
viewed in a browser with a separate WebGL-based viewer. Our
mobile app also offers an interactive preview of each PTL without
any offline computation.

5.1 Geometry-Based Mobile 3D Tracking

Our 3D tracker is inspired by the ICP-based tracking used in Kinect-
Fusion [18, 30], which calculates the current camera pose by per-
forming multi-scale projective ICP to align the current depth image
with a reference model of the scene. Current open-source imple-
mentations of KinectFusion are not suitable for mobile devices for
two reasons: first, they are written in CUDA to run on machines
with dedicated GPUs, and second, they extract reference geometry
from an expensive volumetric SDF that needs to be updated every
frame. To run on mobile devices, our tracker uses the depth map
from our reference sample in place of one extracted from a SDF,
which saves significant memory and removes the cost of updating
and extracting geometry at each frame. Our remaining challenge
was to refactor the fast projective ICP algorithm to work efficiently
on mobile hardware. For this, we perform fast projective data asso-
ciation on the GPU. Using shaders written in Metal, we construct a
three-level, coarse-to-fine representation of each depth maps and
their corresponding normals. For each iteration, projective data as-
sociation for point correspondences is performed on the GPU, and
then an optimal transformation based on the point-to-plane metric
[8, 27] is performed on the CPU, leveraging Apple’s Accelerate
framework for high-performance vector and matrix computations.
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The algorithmic differences between our tracker and ICP-based
tracking in previous work are made solely to enable efficient execu-
tion on mobile devices, which enables the exploration of exciting
new directions in guided capture.

6 USER STUDY

We evaluated our capture tool in an IRB-approved (IRB0147654)
user study. The main goals of our user study were to evaluate
the effectiveness of our capture tool relative to an existing baseline
(simple overlay-based guidance) for capturing PTL of different parts
of the body, and to gather feedback from users about different types
of guidance. We conducted a within-subjects experiment with 14
participants (11 males, 3 females, ages 20-30) recruited through
message boards. None of our participants had experience capturing
time-lapses of their body, but four had prior experience creating
other types of time-lapses, including landscape time-lapse and stop-
motion video. Participants were compensated monetarily for their
efforts. As this study focuses on new users of our tool, we also
conducted two longer-term case studies, described in Section 7.

6.1 Task Design

We tasked each user with capturing PTL of three different body
parts—their face, hand (fist), and foot—using two different capture
modes. The first mode, MeCapture, includes all the features of our
capture tool. The second mode, OverlayOnly, includes only the RGB
overlay of the reference sample for guidance, similar to the Overlay
Mode used by Yan et al. [42]. The study had four parts:

(1) Tutorial: Participants were shown how to use each capture
mode and given a chance to practice re-capturing data with
each mode.

(2) Reference Capture: The experiment administrator cap-
tured reference samples of participants’ face and hand, and
the participant captured a reference sample of their own
foot.

(3) Recapture: Participants rotated through different locations,
capturing each of the three body parts at each station before
moving to the next. We randomized which of the two capture
modes each participant used at even stations, and which they
used at odd stations.

(4) Post-study: Participants reviewed their captured PTL data
and answered a series of questions. This included comparing
data from each capture mode without knowing which data
came from which mode.

6.2 Quantitative Evaluation

Depth Variation: One way to measure the success of configura-
tion guidance is by analyzing geometric variation across captured
samples. When a subject’s underlying geometry changes between
samples, this creates a lower bound for such variation, but ideal
configuration guidance should still be the best way to achieve this
lower bound. To measure depth variation we first compute the stan-
dard deviation of depth values corresponding to each pixel in our
subject mask. We then average these per-pixel values to get a global
value. Lower values indicate more consistent configurations across
captured samples. Figure 8 compares depth variation achieved with
each of our capture modes. We see that our full tool, MeCapture,
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Figure 8: Depth Variation: Here, we plot the average and
standard error of our depth variation metric for each capture
target. Lower values indicate users were more accurately able
to return to consistent configurations. Users consistently
performed better using our method over the baseline across
all targets.
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Figure 9: Overlap Ratio: A higher overlap ratio (OR) indi-
cates better consistency and alignment between the depth
captures. Plot of face, hand, and foot with mean overlap ratio
and standard error. The difference in the face OR is not statis-
tically significant, suggesting that participants are proficient
in re-capturing selfies, while for other body parts like the
hand and foot, MeCapture statistically improves the overlap
ratio metric.

achieves significantly better (lower) depth variation than Overlay-
Only (p < 0.001 for each of the three body parts). Figure 10 shows
some examples visualizing this metric on data from our user study.

Overlap Ratio: While depth variation is effective at measuring
accuracy along the optical axis of captured data, this metric can fail
to capture misalignment in orthogonal directions when the subject
is locally planar. To address this, we also evaluate overlap ratio,
which measures how well-aligned samples are along the image
plane of captured viewpoints. To calculate this, we first compute
a cleaned subject mask for each sample by taking the mask used
during capture and further refining it with a manually tuned depth
range to remove any background pixels. The overlap ratio ¢; for
recaptured sample i is then:

N, — X;

$i = N 1)

where N, is the number of subject pixels in the reference sample,
and X; is the number of subject pixels in a recaptured sample that
do not overlap with subject pixels in the reference sample. We
average ¢; over all of the recaptured samples in a PTL to calculate
an aggregated overlap ratio. Higher ratios indicate more accurate
capture. MeCapture led to improved overlap ratios for all three
subject types. However, the improvement for hands and feet was
significantly higher (p < 0.001) than for faces (p = 0.120). We
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Depth Variaton

Foot (mm)

Figure 10: Depth Variation Comparisons from Data Captured in Our User Study: for each body part, we show a grid of results
visualizing the consistency of data captured in our user study. The RGB composite images are shown on the left of each grid
(hand, face, foot). Each composite is a blend of images captured in a single PTL. On the right of each grid, the heatmaps visualize
per-pixel depth variation for each of the corresponding PTLs. In each grid, the top row of results comes from data captured
with the baseline OverlayOnly guidance, and the bottom row of results comes from data captured with our full MeCapture
guidance. Darker regions of heatmaps correspond to lower depth variation. The composite blend visualizations show that PTL
captured with MeCapture is much sharper, and the heatmaps show significantly lower depth variation.

speculate two possible reasons for this: first, the face is probably
the most commonly captured part of the human body, so it is a
familiar task; and second, when capturing the face, the user’s eyes
are coincident with the subject of capture, which likely makes
alignment easier. These possible explanations aside, our observation
here is consistent with our observation in Section 3 that far more
time-lapse of faces exist than for other body parts.

Capture Time: As has also been observed in previous work, there
is often a trade-off between the speed and quality of captured data.
To better understand this, we also recorded the amount of time
users took to capture each sample. Time was recorded from when
guidance began to when a capture action was triggered. On aver-
age, users did take longer to capture data with MeCapture than
with OverlayOnly (face: +24.02s, hand: +35.83s, foot: +89.36s). This
increase in capture time was accompanied by significant improve-
ments to both objective and subjective accuracy measures, illus-
trating the trade-off between speed and quality. However, we note
that the increase in capture time appears to diminish with extended
use. For example, after extended use, our longer-term case study
participants were able to recapture data significantly faster than
the participants of our user study.

6.3 Qualitative Evaluation

User Confidence: Participants rated their confidence in achieving
accurate alignment with each of the two capture modes on a 5-point
Likert scale. Participants reported significantly higher confidence
with MeCapture (M = 4.214, SD = 0.699) compared to OverlayOnly
(M = 2.5,SD = 1.019). A paired samples t-test revealed a statistically
significant difference between these two conditions (p < 0.001).

Feedback on Individual Features Participants were also asked
to rate how useful they found individual features on a 5-point
Likert scale. Figure 12 summarizes the responses. All of our added
features were rated on the positive side of the scale by a majority
of participants, but with variation in the specific scores for each
feature. We note that these values reflect the perceived usefulness of

each feature, which does not necessarily reflect the impact that each
feature has on capture quality. However, it does tell us something
about how users experienced each feature.

Subjective Comparison of Captured Data: After completing all
capture tasks, participants were asked to compare blended compos-
ites of data captured with each capture mode. For each subject, we
generated a blended composite for each of the two capture modes
and showed these composites to the user side-by-side. The com-
posites were unlabeled, and the ordering of capture modes was
randomized so that users could not tell which composite came from
which mode. Users were then asked to select the more consistent
composite (i.e., the one with better-aligned images and therefore
fewer ghosting artifacts). Participant responses (plotted in Figure
11) show a significant overall preference for data captured with
MeCapture for hand (p = 0.006) and foot (p = 0.006) captures. For
face captures, participants still preferred MeCapture, but only 71%
of the time (p = 0.090). This difference echos our findings when
analyzing overlap ratio.

6.4 Open-Ended User Feedback

Participants were also prompted to provide open-ended feedback
about their experience, from which we highlight several themes.
Full responses can be found in our supplemental material.

Coarse and Fine Guidance: All users found some form of visual
guidance useful, with some commenting that the basic 2D overlay
was particularly helpful for coarse alignments, “The overlay made
initial alignment easy...”. For finer adjustments, the color heatmap
was particularly effective: “The color heatmap was useful when mak-
ing fine-tuned adjustments, especially in the fist example, where it
helped convey how I needed to move my hand and individual fingers
to best line up with the reference scan.”

Disambiguating Rotation and Translation: As noted in previ-
ous work and our formative study, disambiguating rotation, trans-
lation, and configuration, is one of the hardest parts of fine-scale
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Figure 11: Subjective Comparison of Captured Data: In the
post-task assessment, participants reviewed pairs of captured
images representing their face, hand, and foot, with the left
and right images randomized without knowing which came
from which mode. They were then asked to select the image
that demonstrated better alignment consistency.

alignment. While our added guidance helps a great deal with this, it
remains a significant challenge. As one participant noted, ‘Tt’s hard
to manage all three dimensions at once. Adjusting one throws off the
others.” Part of this challenge may also relate to physical control of
the camera and subject, which cannot be addressed with guidance
alone. Understanding the limits of how much visual guidance can
help with alignment could be an interesting question for future
work.

Tension between Speed and Accuracy: While our quantitative
analysis shows a significant improvement in the quality of data
captured with our tool, it also shows that capturing this data tended
to take longer. This makes sense, given that much of our guidance
amounts to highlighting alignment errors that might otherwise
go unnoticed. Most users recognized the value in this; as one user
said ‘It takes practice, but the 3D guidance allows much more precise
alignment.” However, some saw this guidance as a burden, inter-
preting the guidance as placing higher requirements on capture.
One participant wrote, ‘T got tired relatively quickly trying to sat-
isfy all the alignment constraints.” One possible strategy to avoid
frustrating users who favor speed over accuracy could be to adjust
the guidance visualizations and automatic recapture threshold to
be less sensitive to alignment errors.

Automatic Recapture: Users overwhelmingly found automatic
recapture to be a useful feature. Much of this opinion seemed to
come from negative experiences with manually triggering capture
in OverlayOnly mode, “It was nice not having to press the button
and risk misaligning the camera.” However, some users found it
difficult to trigger automatic recapture at times, ‘Tt was difficult to
know when automatic capture would trigger” Our study used the
same accuracy thresholds to trigger automatic recapture for all
participants, but we could change this to something more adaptive.
For example, we could gradually relax the threshold if we detect
that a user is taking a particularly long time to capture.
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Figure 12: User Feedback on Useful Features: In the post-
task assessment, participants were asked, “For each of the
following features, how much do you agree with the statement
‘I found the [feature] to be useful?”. Their responses, ranging
from “Strongly disagree” to “Strongly agree”, are presented in
this chart. Features are sorted by average approval, providing
a clear snapshot of user preferences.

7 CASE STUDIES

The purpose of PTL is to visualize long-term changes of a subject,
which is difficult to assess in a typical short user study. To better
understand long-term use, we also present two longer-term case
studies involving users who captured part of their body regularly
over an extended period. In both cases, the users captured data on
their personal phones from a variety of locations (at home, work,
etc). Samples from these case studies can be seen in Figure 13, and
interactive visualizations of each captured PTL can be found on our
project website.

7.1 Case Study 1: Facial Hair

User 1 used our app to capture the growth of their facial hair. They
captured a reference sample shortly after shaving their face, then
recaptured additional samples one or more times a day as their
facial hair grew back. In total, they captured 60 samples over a
period of 40 days. This user commented that as they became more
familiar with the routine of recapturing new samples, they found it
easier to do quickly and in a greater variety of settings, ‘It definitely
got easier over time. I could capture images while walking, sitting
in the garage, or outdoors. I can also capture in the dark using the
heat map.”. They also reported that the ability to preview a PTL
visualization in the app helped motivate regular use, as it let them
see the progress of capture over time.

7.2 Case Study 2: Wound Healing Tracking

User 2 began using our app after an accident that led to a burn on
the back of their hand. They recaptured new samples of the burn
one or more times a day as it healed, totaling 42 samples over a
period of 35 days. The capture PTL shows the wound close and scab
as it heals. User 2 commented positively on several aspects of the
app, “The rotation guidance was useful in helping me rotate my fist
correctly. I captured images at school, home, the office, and other places.
This app helped me maintain consistent poses. It’s also satisfying to
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Figure 13: Long-term results of Personal Time-Lapse using our system: Case Study 1: Hair Growth Monitoring over 40 days,
showcasing the gradual growth of facial hair. Case Study 2: Wound Healing Tracking over 35 days, illustrating the progression
of a burn wound’s healing process.

have the time-lapse visualizer right in the app, allowing me to enjoy
how many images I have taken and observe the alignment.”

8 DISCUSSION

Our work offers a powerful, general tool for documenting and
visualizing long-term changes of the body. Our longitudinal case
studies, in particular, demonstrate the ability to create unique and
compelling visualizations using a convenient capture process that
is simple to integrate in daily routines.

8.1 Limitations

Our work makes capturing PTL much more practical than it was
with existing tools, but it does not always make capturing PTL
easy.

8.1.1 Degrees of Freedom. Capture remains especially difficult for
subjects with many degrees of freedom in their configuration. For
example, hands can become very difficult to recapture if the fingers
take on a very non-standard configuration. In such cases, every
finger joint becomes an additional degree of freedom that must be
aligned, making recapture a much higher-dimensional problem for
users to navigate. This limitation is partially a consequence of our
tool being general-purpose. One possible solution would be to build
tools that focus on specific parts of the body with known degrees
of freedom. This would make it easier to design visual guidance
that helps disambiguate individual degrees for the user.

8.1.2  Precise Control of Subject & Camera. Even with ideal visual
guidance, the ease and accuracy of recapture can be limited by
the user’s ability to precisely control the camera and subject. For
example, small motions in the camera and subject can be caused
by handshake, breathing, or even heartbeats. We can think of two
possible ways to address this in future work. One would be to use

some physical device to help constrain part of the subject or camera.

The second would be to use some form of lucky imaging, where

a stream of redundant observations are captured for each sample,
and only the lowest-error data from this stream is used.

8.2 Future Work

Our current pipeline focuses on repeatedly capturing one viewpoint
of a subject, but this could be extended to scan a more complete
surface representation. The main challenge here is how to control
the configuration and lighting of a subject as it is being scanned.
Our current tool is relatively general-purpose in that it does not
target any one specific body part or diagnostic task. However, one
could develop specialized variants of our tool for more specific use
cases, and in doing so improve performance on those use cases.

8.3 Potential Downstream Applications

8.3.1 Remote Healthcare: Our tool could enable new ways for pa-
tients and physicians to interact in remote healthcare settings. In
particular, the ability to specify reference samples offers physi-
cians and other experts a powerful way to collect information in
outpatient settings.

8.3.2 Field Sciences: While we primarily focus on the human body
in this work, our tool can also be used for other types of subjects.
This could be especially useful in scientific fieldwork, where there
is often interest in observing long-term changes in specimens (e.g.,
plants, animals, or structures).

9 CONCLUSION

Our work fills an important need in remote healthcare that gained
significant attention during the pandemic. We derive criteria for
capturing and visualizing long-term changes in the body and iden-
tify the weaknesses in existing mobile tracking APIs that limit the
ability to provide guidance for these criteria. To address these weak-
nesses, we developed a custom 3D mobile tracker and used it to
design and build a novel guidance interface for capturing personal
time-lapse. We combine this with a computational illumination



UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

method to control the lighting of captured subjects as well. We val-
idated our work with a user study and two long-term case studies.
Our work is the first to tackle the challenging and important prob-
lem of personal time-lapse and has a high potential for real-world
impact.
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