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Reference Capture
A reference observation of the target body part is 

captured to indiciate the viewpoint and con�guration 
(subject pose) that should be recorded

Recapture
We use custom real-time 3D tracking and AR-based 

visual guidance to help the user repeatedly re-capture 
the target viewpoint and con�guration over time

Captured Bursts of Data Compiled Time-lapse
with Controlled Lighting

We combine bursts of data captured during each observation to create a 3D 
time-lapse visualization of the subject with consistent con�guration and lighting, 

making it easy to visualize subtle, long-term changes in the subject over time

Compile and Visualize Long-term Changes

3D TrackingVisual Guidance

Figure 1: We present a mobile application for capturing personal time-lapse (PTL), which visualizes gradual changes of a subject 
over long periods of time. Recording PTL begins with the capture of a reference observation (left), which can be done by the 
subject of capture or by a specialist. During recapture (middle), our tool uses custom tracking and novel visual guidance to help 
the user reproduce the conditions of the reference observation. Users recapture new observations over an extended period of 
time, which we process with computational illumination to visualize the subject under controlled lighting conditions (right). 
Our fnal visualization is an interactive 3D visualization of long-term changes in the subject under consistent lighting. Our 
work ofers a convenient way to document and visualize long-term changes in the body, with many potential applications in 
remote healthcare and telemedicine. 

ABSTRACT 
Our bodies are constantly in motion—from the bending of arms 
and legs to the less conscious movement of breathing, our precise 
shape and location change constantly. This can make subtler de-
velopments (e.g., the growth of hair, or the healing of a wound) 
difcult to observe. Our work focuses on helping users record and 
visualize this type of subtle, longer-term change. We present a mo-
bile tool that combines custom 3D tracking with interactive visual 
feedback and computational imaging to capture personal time-lapse, 
which approximates longer-term video of the subject (typically, 
part of the capturing user’s body) under a fxed viewpoint, body 
pose, and lighting condition. These personal time-lapses ofer a 
powerful and detailed way to track visual changes of the subject 
over time. We begin with a formative study that examines what 
makes personal time-lapse so difcult to capture. Building on our 
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fndings, we motivate the design of our capture tool, evaluate this 
design with users, and demonstrate its efectiveness in a variety of 
challenging examples. 
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1 INTRODUCTION 
The human body is constantly changing. Some changes are fast 
and temporary, like the motion involved in walking or breathing. 
Other changes are slower and more permanent, like those involved 
in growth and healing. These slower and often more subtle changes 
are important indicators of human health. Unfortunately, they are 
also some of the hardest to capture and visualize, as their short-
term progress can be difcult to distinguish from transient changes 

https://doi.org/10.1145/3654777.3676383
https://doi.org/10.1145/3654777.3676383
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3654777.3676383&domain=pdf&date_stamp=2024-10-11


UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Tran, et al. 

of viewpoint, body pose, and lighting. For example, as a scraped 
knee begins to heal, the wounded area will shrink. However, the 
shrinkage observed in a day may be small compared to changes in 
size caused by simply bending the knee, which stretches or loosens 
skin around the kneecap. The color of the scrape may also change 
over time, but that can be difcult to distinguish from the efects of 
viewing the knee under diferent lighting conditions—for example, 
cooler lighting in the morning versus warmer lighting at the end of 
the day. Controlling transient factors that can afect the appearance 
of a subject is especially important when capturing data for medical 
applications. For this reason, medical professionals employ a variety 
of tools and techniques to standardize the recording of patient 
data in clinical settings [1, 10]. However, as the recent COVID-19 
pandemic highlighted, existing strategies do not extend to remote 
healthcare scenarios, creating an urgent need for new and more 
scalable tools. Our work addresses this need by developing a mobile 
application for capturing and visualizing long-term changes of the 
body. Our strategy is to help users control the conditions of repeated 
observations taken over long periods of time. To accomplish this, 
we make three key contributions: 

• Fast Geometry-Based Mobile 3D Tracking: Existing mo-
bile AR toolkits do not support tracking and registration 
for non-rigid surfaces. We implement fast geometry-based 
tracking on mobile devices to enable new types of real-time 
user feedback and guidance. While the basic algorithms be-
hind our approach have been used for non-rigid tracking 
before, to our knowledge, ours is the frst interactive imple-
mentation on mobile devices, which lets us explore a new 
space of interactive capture opportunities. 

• Augmented Reality (AR)-Based User Guidance: Our task 
involves simultaneously controlling the viewpoint of capture 
and the confguration of the subject being captured. Building 
on our custom mobile tracking, we ofer novel interactive 
guidance through the use of AR-based visual feedback. 

• Computational Imaging: The ability to guide users back 
to a consistent viewpoint and subject confguration creates 
unique opportunities for computational imaging. For each 
observation, we capture a rapid burst of data that lets us con-
trol subject lighting, even across data captured in diferent 
environments. 

Our resulting tool makes it easy for users to capture a subject under 
specifed conditions over an extended period of time. We then com-
pile these captured observations into an interactive visualization of 
long-term changes that we call personal time-lapse (PTL). 

1.1 Personal Time-Lapse (PTL) 
Our goal is to highlight long-term changes of a subject by visualiz-
ing it under controlled conditions over time. Our challenge then 
depends on the choice of subject and conditions we wish to control. 
For this paper, we primarily focus on subjects that are part of the 
capturing user’s body (e.g., their face, hand, or foot), though our 
work can be used on other types of subjects as well (see Figure 7 and 
supplemental material for examples). To support a fexible range of 
downstream use cases, we derive the target conditions for capture 
from an initial reference observation, which can be captured by the 

user themselves or by a third party, such as a physician specifying 
observations for a patient to capture later from home. 

We derive the conditions we wish to fx from a review of guide-
lines on medical and clinical photography (see Section 2.3), as well 
as texts on stop-motion animation [34, 38], and discussions with a 
professional flmmaker known for their work on time-lapse of the 
body [23]. We primarily focus on controlling three capture criteria 
for each observation: 

• Viewpoint: The pose of the camera relative to the subject 
• Confguration: The current shape of the subject. For ex-
ample, in the case of articulated subjects like a human hand, 
this would include the angles of each joint. 

• Lighting: The color, intensity, and angular distribution of 
light illuminating the subject. 

Our challenge is to control these three factors in uncontrolled 
environments using only a handheld mobile phone. We developed 
our solution as an iOS application and show results from a user 
study with 14 participants demonstrating dramatic improvements 
in geometric accuracy for data captured with our tool of hands, 
feet, and faces (� < 0.001). We also validate our approach with two 
compelling longitudinal case studies. Additional results, as well as 
a link to our free app, can be found on our project website. 

1.2 Background & Motivation 
Our work has many possible downstream uses, with medical ap-
plications (e.g., wound tracking and telemedicine) being our single 
biggest motivation. Whereas many previous eforts in this space 
have focused on supporting specifc clinical tasks (discussed in 
Section 2.3), we instead focus on more general challenges related 
to geometry and usability. This focus is motivated by recent trends 
and observations in remote healthcare, which we review here for 
context. 

1.2.1 Patient Photography in Remote Healthcare Setings. The re-
cent COVID-19 pandemic greatly accelerated the increasing trend 
of using patient-captured data in healthcare and telemedicine [13, 
25, 31, 35]. This acceleration has highlighted a need for more general 
tools to support remote and asynchronous healthcare. In particular, 
mobile apps that capture data for specifc diagnostic tasks tend not 
to generalize well, which is why standard photography tools have 
remained the dominant way for patients to communicate visual 
information to specialists in remote scenarios [32].1 With this ob-
servation in mind, we focus our efort on developing a general tool 
for capturing parts of the human body, which we evaluate on the 
basis of usability and geometric accuracy. 

1.2.2 Current Limits of 3D Tracking On Mobile Devices. A major 
limitation of mobile photography for remote healthcare has been the 
inability to determine at capture time whether a user has recorded 
data correctly. Guidelines for making this determination often exist 
(see Section 2.2), but those guidelines depend on information that 
cannot be evaluated with existing mobile tracking APIs. Current 3D 
tracking APIs on mobile phones are designed to support AR applica-
tions where the goal is to render virtual objects into real scenes. For 
this, 3D pose estimation is based on visual SLAM that derives 3D 
information from static rigid features in a scene. However, humans 
1This includes standard camera interfaces used in apps designed for HIPAA compliance. 
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are neither static nor rigid, which causes this tracking to fail on 
most parts of the human body. Specialized human body pose esti-
mators do exist (e.g., in Apple’s ARKit and Google’s MediaPipe) but 
are based on approximate mappings to a canonical human model 
derived from frequently inaccurate priors. We address these limits 
by developing our own 3D mobile tracking system based on a fast 
variant of projective ICP [18, 36] that has been shown to work well 
with non-rigid surfaces [14, 26]. Our custom tracking module lets us 
overcome various limitations inherited by previous related eforts 
by exploring more general interactive capture strategies that were 
not possible with previous tracking APIs. 

2 RELATED WORK 
2.1 Augmented Reality & HCI 
2.1.1 Guided Photography Systems. AR-based guidance has been 
explored for particular photography tasks in prior work. Adams 
et al. [2] visualize scene coverage during panoramic image capture. 
Bae et al. [4] explore the problem of re-photographing older photos, 
mostly focusing on architecture. More recently, Kim and Lee [21] 
explore the use of AR-based guidance for framing photographs, and 
works by E. et al use AR guidance to help users apply photography 
principles related to framing [11], decluttering of compositions [12], 
and to teach users about these principles. Yan et al. [42] address 
handheld time-lapse capture with mobile devices, which bears some 
resemblance to our own task, but focuses on subjects that are farther 
from the camera and fxed in their environment. This avoids some 
of the most signifcant technical challenges facing PTL capture as 
we examine further in our formative study. 

2.2 Guidelines for Medical Photography 
Medical and clinical photography have come to play critical roles in 
healthcare. As such, several eforts have explored recommendations 
and guidelines for photography in diferent medical settings, includ-
ing general guidelines [1, 5, 17] as well as those more specifc to 
photography on mobile devices [44], photography of skin surfaces 
[20], and cosmetic procedures [33, 39, 40]. While specifc guidelines 
vary across specifc settings, several features are common. Our 
work focuses on controlling three of the most common properties 
described: the viewpoint of the camera relative to the subject, the 
confguration of the subject (often referred to as “pose"), and the 
lighting. For a more detailed discussion of the role these play in 
existing guidelines, we refer to the work of Davda and Pasquali 
[10]. 

2.3 Mobile Apps for Medical Photography 
Several previous works have explored the design of mobile appli-
cations for aiding specifc monitoring or diagnostic tasks such 
as the early detection of melanoma [7, 41] or tracking of diabetic 
foot ulcers [6, 28, 43]. Other works have focused on the secure 
transfer of more general clinical image data through mobile appli-
cations apps, e.g. for HIPAA compliance [24]. We refer to several 
related surveys for additional information [7, 15, 25, 37]. Notably, 
most patient-captured data used in health contexts do not come 
from specialized capture apps [31, 35] which motivates our general 
purpose approach as discussed in Section 1.2. 

2.4 Real-time 3D Tracking 
Real-time 3D tracking involves continuously estimating the cam-
era’s position and orientation relative to a 3D representation of 
the scene. Most real-time mobile 3D tracking implementations are 
based on multi-threaded versions of visual SLAM (e.g., [22, 29]), 
which rely on static, rigid visual features. This typically causes pose 
estimation to ignore or fail on non-rigid subjects, a limitation that 
is acknowledged in documentation for common mobile APIs (e.g., 
Apple’s ARKit [3]). 

An alternative approach to 3D tracking makes use of geomet-
ric data (e.g., point clouds) like that provided by a depth camera. 
KinectFusion [18, 30] accomplish this by using a coarse-to-fne it-
erative closest point (ICP) algorithm to average depth images into 
a volumetric signed distance function (SDF) for representing the 
scene. This approach is quite efective and more robust to non-rigid 
subjects than most visual SLAM-based approaches, but it can be 
expensive. The SDF requires signifcant memory, and their pose 
estimation used a highly optimized CUDA implementation of pro-
jective ICP, which is likely why there are no known open-source 
implementations on mobile platforms. Our tracking implementa-
tion overcomes the memory issue by only registering against a 
fxed reference view of the subject, and the speed issue with our 
own highly optimized implementation of projective ICP for mobile 
GPUs on iOS devices. 

3 FORMATIVE RESEARCH 
With the exception of photo-a-day montages that align a sequence 
of photos on a specifc person’s face (e.g. [9, 19]), time-lapse of 
the human body is quite rare. Our formative fndings in this work 
suggest that this rarity stems from the difculty of capture, which 
our work is meant to help address. 

3.1 Expert Interview 
The closest examples to our vision of personal time-lapse we could 
fnd came from a YouTube channel specializing in time-lapse. We 
contacted the channel’s creator, who turned out to be Bálint Kolozsvári, 
an accomplished flmmaker known for his expertise in time-lapse 
[16]. Kolozsvári agreed to an interview about his work for this 
paper, and his full responses can be found in our supplemental 
material. Our most informative discussion centered around a time-
lapse he created of a wounded fnger healing, which has been seen 
by millions of viewers across diferent video platforms. Despite 
capturing this video in a carefully controlled environment with 
fxed studio lighting, a tripod-mounted camera, and a plaster mold 
to control the positioning of his hand, Kolozsvári reported that he 
still found controlling the precise confguration of his fnger for 
each frame to be challenging: 

“...I made a plaster mold for the lower part of my hand. But with 
that, I still had to position my fnger very carefully ... At times 
I was able to position and take the photo in less than a minute, 
and some other time it took me up to 15 minutes to fnd the right 
position." 

This illustrates the need for precise guidance over the viewpoint 
and confguration of subjects. 

https://www.youtube.com/@KoloTimeLapse
https://www.youtube.com/watch?v=YDmnOiZ5vhc
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Figure 2: Formative Study: In the upper left, we show the overlay mode from ReCapture, used in Conditions B-D as a baseline, 
which overlays the reference image onto the current view during capture. Below it, we show our interactive simulator which 
visualizes the accuracy of recaptured images by blending renders of a hand from noisy camera poses where users adjust the 
noise variance with a slider. This allows users to score their accuracy before capturing as a prediction, and after recapturing as 
a post-assessment for the various conditions (Section 3.2.2) as shown on the right-hand side. For each condition, we report the 
average prediction (left) and post-assessment scores (right) and visualize them with our simulator as seen by users. We also 
include a representative result captured by a user (middle). Across all conditions, users generally scored their performance 
worse than their prediction, indicating they found capturing PTL harder than expected. 

3.2 Formative Study 
To better understand what makes capturing PTL difcult, we con-
ducted a formative study aimed at investigating two questions: 

• RQ1: What difculties do users encounter when capturing 
PTL with existing tools, and how does the level of difculty 
compare with expectations? 

• RQ2: What impacts do diferent types of guidance related 
to viewpoint and confguration have on the accuracy of PTL 
capture? 

Our IRB-approved study (IRB0147654) involved fve participants 
(2 males and 3 females ages 20-30) recruited through social con-
nections and public forums. No participant had prior experience 
capturing time-lapses of body parts, but two reported experience 
capturing time-lapses of landscapes using existing commercial tools. 
Each participant was compensated with money for their efort. 

3.2.1 Task. Participants were tasked with capturing four small 
time-lapses of their hands under four diferent capture conditions. 
The conditions were randomly ordered for each participant, who 
then captured a reference photograph for each condition. They 
then cycled through the conditions, re-capturing the reference each 
time, until they had cycled through the conditions four times. 

3.2.2 Conditions. To address RQ2, we designed our conditions to 
include existing tools as a baseline, then added conditions with 
additional guidance related to viewpoint and subject confguration. 
ReCapture app refers to a capture mode ofered in the ReCapture 
Time-Lapse mobile app for iOS [42] that shows a visual overlay of 
the reference image being recaptured (see Figure 2 upper left): 

• Condition A: Capture with the standard iOS camera app as 
a baseline. 

• Condition B: Capture using ReCapture app. 

• Condition C: Same as Condition B, but users are also given 
paper and pen that can be used to trace the confguration of 
their hand for guidance of later captures. 

• Condition D: Same as Condition C, but capture is performed 
with a dedicated camera that is fxed to a static tripod for all 
captures (i.e., the viewpoint is fxed). 

Conditions A and B use existing tools as baselines. Conditions C 
and D progressively add additional constraints, with the paper and 
pen added in C designed to help users control confguration, and 
the tripod added in D to control viewpoint. We did not include a 
condition exploring the third capture criteria mentioned in Sec-
tion 1.1, lighting, because we planned to pursue a computational 
approach to control lighting. 

3.2.3 Evaluation. We designed an interactive metric for evaluating 
the quality of captures to help standardize the meaning of our 
observations across users. Our metric, shown in Figure 2, is based 
on rendered images of a simulated hand. Users are shown a blend 
of images sampled with a given variance around some central 
reference view of the hand. The amount of variance represents the 
accuracy of recaptured images: setting it to zero means all images 
are recaptured with perfect accuracy, which results in a blended 
image that is perfectly sharp. Increasing the variance leads to less 
consistent viewpoints, which create increasingly large ghosting 
artifacts when blended. We let users control the amount of variance 
with a slider to specify diferent levels of capture accuracy. Before 
the experiment, we explained each condition to users and asked 
them to predict their own accuracy for each condition using our 
metric (prediction). Then, after they fnished capturing data, we 
blended the images they captured in each condition and asked them 
to approximately match the slider in our metric with the variance 
they observed for each blend of captures (post-assessment). This 
gave us an approximate measure of perceived accuracy for each 
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Figure 3: User Prediction vs. Post-Task Scores: The difer-
ences between the prediction and post-task assessment scores 
across all four conditions. Participants consistently found 
capturing PTL unexpectedly challenging. 

condition, which we could compare with the predictions given prior 
to capture. We report the average prediction and post-assessment 
scores for each condition in the upper right-hand corners of Figure 2. 
We also surveyed participants on what they found challenging. 

3.2.4 Findings. We observe improved overall accuracy as the level 
of guidance increases, with the most signifcant gap being between 
Condition A (standard camera app) and the other conditions. This 
indicates that ofering some live visual comparison to the reference 
image being recaptured is very important. The simple overlay of 
Condition B had some issues: users reported sometimes having 
difculty diferentiating the overlay from the live camera image, 
and commented that attempting to align one local region of the 
hand sometimes led to misalignment in other regions. This sec-
ond challenge can be attributed to the ambiguity of whether to 
use camera translation, rotation, or changes in confguration to 
align diferent parts of the image. Section 4 describes how our tool 
addresses these ambiguities with feedback based on a comparison 
of current and reference scene geometry. 

Comparing the predicted and post-assessment accuracy of each 
condition (Figure 3) shows that capturing PTL is generally harder 
than people expect, especially when using existing tools. A paired 
t-test for Condition C shows that post-assessment scores increased 
beyond the predicted values, with � = 0.008, even with the added 
confguration guidance provided by the pen and paper. 

One user noted that tapping the shutter button often caused the 
camera to shake, which decreased capture accuracy. Based on this 
observation, we implemented automatic capture triggering in our 
tool, which we describe in Section 4. 

4 APPLICATION DESIGN 
Building on our fndings from the formative study, we developed a 
mobile-AR iOS application for capturing PTL. 

4.1 PTL Data 
A single PTL consists of a sequence of samples representing obser-
vations of the subject at diferent times. One sample is designated 
as a reference, and the criteria for capturing new samples is mea-
sured relative to this reference (i.e., users are guided to reproduce 
the conditions of this reference when capturing new data). Each 
sample consists of two RAW RGB images (explained in Section 4.7) 
and corresponding depth maps, as well as metadata about the time, 
location, and camera parameters used for each captured image. 

4.2 Workfow 
Our application opens to a gallery of thumbnails representing PTLs 
stored on the current device. From here, users can create a new PTL, 
or select an existing one to view or capture new samples. During 
capture, RGB and depth data are streamed from the front-facing 
sensors of the device. We feed depth images to our custom 3D 
tracker to compute camera pose, and visual guidance for users is 
overlaid on top of the live RGB camera feed, as depicted in Figure 4. 

Creating New PTL: Users create new PTL by simply capturing an 
initial reference sample of their subject under desired conditions. 
The only guidance we provide for capturing this initial sample is a 
visualization of pixels that are too close to the camera for accurate 
focus or depth readings, which helps ensure the quality of captured 
data. After capturing a reference sample, users can optionally draw 
a mask on the captured image or set a range of depths to indicate 
what part of the captured scene is their subject (Section 4.5.1). 

Recapturing Subsequent PTL Samples: Our tracker computes 
3D pose by aligning the incoming depth image at each frame with 
the depth map of the current reference sample. We use this infor-
mation to guide the user’s control of the camera and subject, and 
to automatically trigger the capture of a new samples when certain 
viewpoint and confguration conditions are met. Figure 4 shows 
our guidance interface, which we describe later in this section. 

Viewing PTL: To visualize a PTL, we frst align all the collected 
samples with a robust ofine ICP implementation, then we apply 
the computational illumination strategy described in Section 4.7 
to calculate a time-lapse of the subject under fxed lighting condi-
tions. Our fnal visualization is a 3D time-lapse of the subject under 
controlled lighting. Example interactive 3D visualizations can be 
found on our project website. 

4.3 Representing Viewpoint & Confguration 
Mathematically, we can defne the viewpoint �� and confguration 
�� of an observation in terms of the transformation that relates 
our observed geometry at time � to the geometry of our reference 
sample. �� represents the rigid component of this transformation, 
while �� represents any residual non-rigid component of the trans-
formation. This factorization has three key advantages. First, it 
aligns well with the colloquial meaning of viewpoint and confg-
uration. Second, it is convenient to compute; we fnd the current 
viewpoint by using ICP to solve for the rigid transformation that 
minimizes the sum of squared distances between corresponding 
points in the current observed geometry and our reference sample 
geometry. Finally, the third advantage of our factorization has to do 

https://www.cs.cornell.edu/abe/projects/mecapture/
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Figure 4: User Interface: Here, we show an annotated inter-
face of what is displayed to the user during capture. Guid-
ance for confguration is conveyed through the overlay and 
heatmap, while guidance for viewpoint is conveyed through 
the crosshairs and rings. Note that our app ofers other con-
fgurable options not shown here, including the ability to 
hide the background. 

with user guidance—more specifcally, it separates alignment into 
a viewpoint component with fxed degrees of freedom (DOF) and 
a spatially-varying residual. This lets us use high-precision sym-
bolic feedback to guide viewpoint alignment, and spatially-varying 
visualizations for guiding confguration. 

4.4 Confguration Guidance 
The degrees of freedom that govern confguration vary across dif-
ferent subjects, and are generally unbounded for very deformable 
surfaces. With this in mind, our strategy for guiding confguration 
focuses on spatially-varying visualizations that convey alignment 
on a per-pixel basis. 

4.4.1 Overlay and Masking. Our formative study found that a sim-
ple overlay of the reference sample image is quite useful for guid-
ance. With this in mind, we use such an overlay as the starting point 
for confguration guidance. Since each sample may be captured in 
a diferent environment with a diferent background, we also allow 
users to specify a mask of their subject, which we can use to remove 
the background from our overlay and pose estimation. Users can 
create a mask by painting it directly onto the reference subject view, 
and by using a slider to mask all pixels within a selected range of 
depths in the scene. 

4.4.2 Depth Heatmap. Simple overlay guidance helps with align-
ing silhouettes and visible edges of objects, but is less useful for 
conveying misalignment in texture-less surfaces, or displacements 
along the optical axis of the camera. To help with this, we also 
use a heatmap to visualize the diference in depth between our 
current observation and our reference observation at each pixel. 
This heatmap is blended with the overlay as shown in Figure 4. The 
meanings of colors in this map are illustrated in Figure 5: surface 
points that are too close to the current camera are colored red, 

Figure 5: Depth guidance: Colors change depending on the 
distance between the current and reference subject. 

points that are too far are colored blue, and points approaching the 
correct depth turn green. 

4.5 Viewpoint Guidance 
Viewpoints have six degrees of freedom (DOF), which can be fur-
ther factored into three degrees of rotation and three degrees of 
translation. Previous work (e.g., Yan et al. [42]) and our formative 
study both found that users often struggle to diferentiate between 
local ofsets in translation and rotation, which motivates the use 
of visual feedback that makes this distinction clear. However, our 
representation of viewpoints is a relative one that does not dif-
ferentiate between rigid transformations of our camera and rigid 
transformations of our subject, which makes decomposition into 
rotation and translation somewhat ambiguous. We can resolve this 
ambiguity by choosing an anchor point in our reference observa-
tion of the subject. By default, we choose a point along the optical 
axis of our reference sample view, at the average depth of points 
observed in our reference subject geometry. 

4.5.1 Rotation. We found that overlay guidance is quite efective 
at helping users point their camera toward the subject. This leaves a 
rotational ambiguity that amounts to orienting a subject that is fxed 
in the center of the current view. To address this, we ofer visual 
guidance in the form of two crosshairs. A white crosshair is fxed 
in the center of the screen for reference, and a blue crosshair moves 
according to the current relative orientation of our subject. From 
the user’s perspective, the correct orientation is achieved when the 
blue crosshair matches up with the white one. Geometrically, we 
accomplish this behavior by positioning the blue crosshair based 
on a projection of a vector from our anchor point to the camera 
location in our reference viewpoint onto the current image plane 
(see Figure 6). The rotation of the blue crosshair is then set to 
the rotation of the reference viewpoint’s �� axes relative to the 
current view. We experimented with several diferent designs for 
guiding rotation and found this one to be particularly efective for 
its simplicity and near-invariance to camera motion that is parallel 
to the current camera’s image plane. 

4.5.2 Translation Guidance. Our visual guidance for translation 
focuses on motion parallel to the current camera’s image plane, 
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Figure 6: Rotation Guidance. To confgure rotation, the user’s 
goal is to align the blue crosshair with the white one which 
acts as a visual indicator of the user’s current relative ori-
entation. Geometrically, the position of the blue crosshair 
on the screen is determined based on a projection depicted 
here as the intersection of the blue arrow with the camera 
frustum. 

as translation along the z-axis of our camera (i.e., changing the 
distance to a subject) is already visualized in our depth heatmap. We 
use two rings to guide translation along the �� plane: one stationary 
ring at the center of the view used as a target, and a second ring 
that is translated proportional to the current �� ofset relative to the 
reference camera (see Figure 4). Aligning the two rings indicates 
that the camera has reached the target �� translation. 

4.6 Automatic Recapture 
Our ability to continuously evaluate viewpoint and confguration 
lets us automatically trigger capture when these criteria are within 
a threshold of our target reference sample. This addresses an issue 
discovered in our formative study, where users found that the need 
to manually press the camera shutter tended to ruin alignment right 
at the moment of capture. For subjects that are more physically 
difcult to capture, like the bottom of the foot, this efect can be 
particularly signifcant. We trigger automatic recapture based on 
viewpoint thresholds for translation and rotation, and a confgu-
ration threshold for the net depth disparity between the current 
masked depth and the reference masked depth. Additional details 
about these thresholds can be found in our supplemental material. 

4.7 Computational Lighting 
The ability to capture data in diferent lighting environments is cru-
cial to supporting regular and convenient capture. Our key insight 
is that the only illumination we can reliably control during capture 
is the light that comes from our capturing device. Our strategy 
to control illumination works by isolating this lighting that we 
can control and computationally removing all the environmental 
lighting that we cannot control from each observation. To do this, 
we capture a rapid burst of two images for each sample: one with 
the camera fash turned of, and another with the camera fash 
turned on. Our no-fash image contains only the uncontrolled envi-
ronment lighting in the scene, while the fash image controls the 
same environment lighting in addition to the light coming from our 
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Figure 7: Computational Illumination: Our technique con-
trols for lighting by taking the diference between two images 
taken with and without the fash in rapid succession. The 
fnal computed results have consistent lighting, despite being 
captured in drastically diferent lighting conditions (night vs 
day), which clearly shifts the focus to the change in growth 
as shown in the rightmost column. 

device. Taking the diference between these two images then gives 
us an image showing only the controlled light coming from our 
device (Figure 7). We found this approach extremely efective when 
applied to calibrated RAW photos, which we capture by default in 
our tool. Figure 13 shows several examples of samples captured un-
der diferent lighting conditions that are rendered with consistent 
lighting using our approach. 

5 IMPLEMENTATION 
Our application runs on iOS devices, and is written in Swift and 
Metal. Our computational illumination pipeline runs ofine in 
Python, and the resulting PTL can be re-loaded into the app or 
viewed in a browser with a separate WebGL-based viewer. Our 
mobile app also ofers an interactive preview of each PTL without 
any ofine computation. 

5.1 Geometry-Based Mobile 3D Tracking 
Our 3D tracker is inspired by the ICP-based tracking used in Kinect-
Fusion [18, 30], which calculates the current camera pose by per-
forming multi-scale projective ICP to align the current depth image 
with a reference model of the scene. Current open-source imple-
mentations of KinectFusion are not suitable for mobile devices for 
two reasons: frst, they are written in CUDA to run on machines 
with dedicated GPUs, and second, they extract reference geometry 
from an expensive volumetric SDF that needs to be updated every 
frame. To run on mobile devices, our tracker uses the depth map 
from our reference sample in place of one extracted from a SDF, 
which saves signifcant memory and removes the cost of updating 
and extracting geometry at each frame. Our remaining challenge 
was to refactor the fast projective ICP algorithm to work efciently 
on mobile hardware. For this, we perform fast projective data asso-
ciation on the GPU. Using shaders written in Metal, we construct a 
three-level, coarse-to-fne representation of each depth maps and 
their corresponding normals. For each iteration, projective data as-
sociation for point correspondences is performed on the GPU, and 
then an optimal transformation based on the point-to-plane metric 
[8, 27] is performed on the CPU, leveraging Apple’s Accelerate 
framework for high-performance vector and matrix computations. 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Tran, et al. 

The algorithmic diferences between our tracker and ICP-based 
tracking in previous work are made solely to enable efcient execu-
tion on mobile devices, which enables the exploration of exciting 
new directions in guided capture. 

6 USER STUDY 
We evaluated our capture tool in an IRB-approved (IRB0147654) 
user study. The main goals of our user study were to evaluate 
the efectiveness of our capture tool relative to an existing baseline 
(simple overlay-based guidance) for capturing PTL of diferent parts 
of the body, and to gather feedback from users about diferent types 
of guidance. We conducted a within-subjects experiment with 14 
participants (11 males, 3 females, ages 20-30) recruited through 
message boards. None of our participants had experience capturing 
time-lapses of their body, but four had prior experience creating 
other types of time-lapses, including landscape time-lapse and stop-
motion video. Participants were compensated monetarily for their 
eforts. As this study focuses on new users of our tool, we also 
conducted two longer-term case studies, described in Section 7. 

6.1 Task Design 
We tasked each user with capturing PTL of three diferent body 
parts—their face, hand (fst), and foot—using two diferent capture 
modes. The frst mode, MeCapture, includes all the features of our 
capture tool. The second mode, OverlayOnly, includes only the RGB 
overlay of the reference sample for guidance, similar to the Overlay 
Mode used by Yan et al. [42]. The study had four parts: 

(1) Tutorial: Participants were shown how to use each capture 
mode and given a chance to practice re-capturing data with 
each mode. 

(2) Reference Capture: The experiment administrator cap-
tured reference samples of participants’ face and hand, and 
the participant captured a reference sample of their own 
foot. 

(3) Recapture: Participants rotated through diferent locations, 
capturing each of the three body parts at each station before 
moving to the next. We randomized which of the two capture 
modes each participant used at even stations, and which they 
used at odd stations. 

(4) Post-study: Participants reviewed their captured PTL data 
and answered a series of questions. This included comparing 
data from each capture mode without knowing which data 
came from which mode. 

6.2 Quantitative Evaluation 
Depth Variation: One way to measure the success of confgura-
tion guidance is by analyzing geometric variation across captured 
samples. When a subject’s underlying geometry changes between 
samples, this creates a lower bound for such variation, but ideal 
confguration guidance should still be the best way to achieve this 
lower bound. To measure depth variation we frst compute the stan-
dard deviation of depth values corresponding to each pixel in our 
subject mask. We then average these per-pixel values to get a global 
value. Lower values indicate more consistent confgurations across 
captured samples. Figure 8 compares depth variation achieved with 
each of our capture modes. We see that our full tool, MeCapture, 
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Figure 8: Depth Variation: Here, we plot the average and 
standard error of our depth variation metric for each capture 
target. Lower values indicate users were more accurately able 
to return to consistent confgurations. Users consistently 
performed better using our method over the baseline across 
all targets. 
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Figure 9: Overlap Ratio: A higher overlap ratio (OR) indi-
cates better consistency and alignment between the depth 
captures. Plot of face, hand, and foot with mean overlap ratio 
and standard error. The diference in the face OR is not statis-
tically signifcant, suggesting that participants are profcient 
in re-capturing selfes, while for other body parts like the 
hand and foot, MeCapture statistically improves the overlap 
ratio metric. 

achieves signifcantly better (lower) depth variation than Overlay-
Only (� < 0.001 for each of the three body parts). Figure 10 shows 
some examples visualizing this metric on data from our user study. 
Overlap Ratio: While depth variation is efective at measuring 
accuracy along the optical axis of captured data, this metric can fail 
to capture misalignment in orthogonal directions when the subject 
is locally planar. To address this, we also evaluate overlap ratio, 
which measures how well-aligned samples are along the image 
plane of captured viewpoints. To calculate this, we frst compute 
a cleaned subject mask for each sample by taking the mask used 
during capture and further refning it with a manually tuned depth 
range to remove any background pixels. The overlap ratio �� for 
recaptured sample � is then: 

�� − � � 
�� = (1)

�� 
where �� is the number of subject pixels in the reference sample, 
and � � is the number of subject pixels in a recaptured sample that 
do not overlap with subject pixels in the reference sample. We 
average �� over all of the recaptured samples in a PTL to calculate 
an aggregated overlap ratio. Higher ratios indicate more accurate 
capture. MeCapture led to improved overlap ratios for all three 
subject types. However, the improvement for hands and feet was 
signifcantly higher (� < 0.001) than for faces (� = 0.120). We 
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Figure 10: Depth Variation Comparisons from Data Captured in Our User Study: for each body part, we show a grid of results 
visualizing the consistency of data captured in our user study. The RGB composite images are shown on the left of each grid 
(hand, face, foot). Each composite is a blend of images captured in a single PTL. On the right of each grid, the heatmaps visualize 
per-pixel depth variation for each of the corresponding PTLs. In each grid, the top row of results comes from data captured 
with the baseline OverlayOnly guidance, and the bottom row of results comes from data captured with our full MeCapture 
guidance. Darker regions of heatmaps correspond to lower depth variation. The composite blend visualizations show that PTL 
captured with MeCapture is much sharper, and the heatmaps show signifcantly lower depth variation. 

speculate two possible reasons for this: frst, the face is probably 
the most commonly captured part of the human body, so it is a 
familiar task; and second, when capturing the face, the user’s eyes 
are coincident with the subject of capture, which likely makes 
alignment easier. These possible explanations aside, our observation 
here is consistent with our observation in Section 3 that far more 
time-lapse of faces exist than for other body parts. 
Capture Time: As has also been observed in previous work, there 
is often a trade-of between the speed and quality of captured data. 
To better understand this, we also recorded the amount of time 
users took to capture each sample. Time was recorded from when 
guidance began to when a capture action was triggered. On aver-
age, users did take longer to capture data with MeCapture than 
with OverlayOnly (face: +24.02� , hand: +35.83� , foot: +89.36�). This 
increase in capture time was accompanied by signifcant improve-
ments to both objective and subjective accuracy measures, illus-
trating the trade-of between speed and quality. However, we note 
that the increase in capture time appears to diminish with extended 
use. For example, after extended use, our longer-term case study 
participants were able to recapture data signifcantly faster than 
the participants of our user study. 

6.3 Qualitative Evaluation 
User Confdence: Participants rated their confdence in achieving 
accurate alignment with each of the two capture modes on a 5-point 
Likert scale. Participants reported signifcantly higher confdence 
with MeCapture (� = 4.214, �� = 0.699) compared to OverlayOnly 
(� = 2.5, �� = 1.019). A paired samples t-test revealed a statistically 
signifcant diference between these two conditions (� < 0.001). 
Feedback on Individual Features Participants were also asked 
to rate how useful they found individual features on a 5-point 
Likert scale. Figure 12 summarizes the responses. All of our added 
features were rated on the positive side of the scale by a majority 
of participants, but with variation in the specifc scores for each 
feature. We note that these values refect the perceived usefulness of 

each feature, which does not necessarily refect the impact that each 
feature has on capture quality. However, it does tell us something 
about how users experienced each feature. 

Subjective Comparison of Captured Data: After completing all 
capture tasks, participants were asked to compare blended compos-
ites of data captured with each capture mode. For each subject, we 
generated a blended composite for each of the two capture modes 
and showed these composites to the user side-by-side. The com-
posites were unlabeled, and the ordering of capture modes was 
randomized so that users could not tell which composite came from 
which mode. Users were then asked to select the more consistent 
composite (i.e., the one with better-aligned images and therefore 
fewer ghosting artifacts). Participant responses (plotted in Figure 
11) show a signifcant overall preference for data captured with 
MeCapture for hand (� = 0.006) and foot (� = 0.006) captures. For 
face captures, participants still preferred MeCapture, but only 71% 
of the time (� = 0.090). This diference echos our fndings when 
analyzing overlap ratio. 

6.4 Open-Ended User Feedback 
Participants were also prompted to provide open-ended feedback 
about their experience, from which we highlight several themes. 
Full responses can be found in our supplemental material. 

Coarse and Fine Guidance: All users found some form of visual 
guidance useful, with some commenting that the basic 2D overlay 
was particularly helpful for coarse alignments, “The overlay made 
initial alignment easy...”. For fner adjustments, the color heatmap 
was particularly efective: “The color heatmap was useful when mak-
ing fne-tuned adjustments, especially in the fst example, where it 
helped convey how I needed to move my hand and individual fngers 
to best line up with the reference scan.” 

Disambiguating Rotation and Translation: As noted in previ-
ous work and our formative study, disambiguating rotation, trans-
lation, and confguration, is one of the hardest parts of fne-scale 
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Figure 11: Subjective Comparison of Captured Data: In the 
post-task assessment, participants reviewed pairs of captured 
images representing their face, hand, and foot, with the left 
and right images randomized without knowing which came 
from which mode. They were then asked to select the image 
that demonstrated better alignment consistency. 

alignment. While our added guidance helps a great deal with this, it 
remains a signifcant challenge. As one participant noted, “It’s hard 
to manage all three dimensions at once. Adjusting one throws of the 
others.” Part of this challenge may also relate to physical control of 
the camera and subject, which cannot be addressed with guidance 
alone. Understanding the limits of how much visual guidance can 
help with alignment could be an interesting question for future 
work. 

Tension between Speed and Accuracy: While our quantitative 
analysis shows a signifcant improvement in the quality of data 
captured with our tool, it also shows that capturing this data tended 
to take longer. This makes sense, given that much of our guidance 
amounts to highlighting alignment errors that might otherwise 
go unnoticed. Most users recognized the value in this; as one user 
said “It takes practice, but the 3D guidance allows much more precise 
alignment.” However, some saw this guidance as a burden, inter-
preting the guidance as placing higher requirements on capture. 
One participant wrote, “I got tired relatively quickly trying to sat-
isfy all the alignment constraints.” One possible strategy to avoid 
frustrating users who favor speed over accuracy could be to adjust 
the guidance visualizations and automatic recapture threshold to 
be less sensitive to alignment errors. 

Automatic Recapture: Users overwhelmingly found automatic 
recapture to be a useful feature. Much of this opinion seemed to 
come from negative experiences with manually triggering capture 
in OverlayOnly mode, “It was nice not having to press the button 
and risk misaligning the camera.” However, some users found it 
difcult to trigger automatic recapture at times, “It was difcult to 
know when automatic capture would trigger.” Our study used the 
same accuracy thresholds to trigger automatic recapture for all 
participants, but we could change this to something more adaptive. 
For example, we could gradually relax the threshold if we detect 
that a user is taking a particularly long time to capture. 

Figure 12: User Feedback on Useful Features: In the post-
task assessment, participants were asked, “For each of the 
following features, how much do you agree with the statement 
‘I found the [feature] to be useful?”’. Their responses, ranging 
from “Strongly disagree” to “Strongly agree”, are presented in 
this chart. Features are sorted by average approval, providing 
a clear snapshot of user preferences. 

7 CASE STUDIES 
The purpose of PTL is to visualize long-term changes of a subject, 
which is difcult to assess in a typical short user study. To better 
understand long-term use, we also present two longer-term case 
studies involving users who captured part of their body regularly 
over an extended period. In both cases, the users captured data on 
their personal phones from a variety of locations (at home, work, 
etc). Samples from these case studies can be seen in Figure 13, and 
interactive visualizations of each captured PTL can be found on our 
project website. 

7.1 Case Study 1: Facial Hair 
User 1 used our app to capture the growth of their facial hair. They 
captured a reference sample shortly after shaving their face, then 
recaptured additional samples one or more times a day as their 
facial hair grew back. In total, they captured 60 samples over a 
period of 40 days. This user commented that as they became more 
familiar with the routine of recapturing new samples, they found it 
easier to do quickly and in a greater variety of settings, “It defnitely 
got easier over time. I could capture images while walking, sitting 
in the garage, or outdoors. I can also capture in the dark using the 
heat map.”. They also reported that the ability to preview a PTL 
visualization in the app helped motivate regular use, as it let them 
see the progress of capture over time. 

7.2 Case Study 2: Wound Healing Tracking 
User 2 began using our app after an accident that led to a burn on 
the back of their hand. They recaptured new samples of the burn 
one or more times a day as it healed, totaling 42 samples over a 
period of 35 days. The capture PTL shows the wound close and scab 
as it heals. User 2 commented positively on several aspects of the 
app, “The rotation guidance was useful in helping me rotate my fst 
correctly. I captured images at school, home, the ofce, and other places. 
This app helped me maintain consistent poses. It’s also satisfying to 

https://www.cs.cornell.edu/abe/projects/mecapture/
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Figure 13: Long-term results of Personal Time-Lapse using our system: Case Study 1: Hair Growth Monitoring over 40 days, 
showcasing the gradual growth of facial hair. Case Study 2: Wound Healing Tracking over 35 days, illustrating the progression 
of a burn wound’s healing process. 

have the time-lapse visualizer right in the app, allowing me to enjoy 
how many images I have taken and observe the alignment.” 

8 DISCUSSION 
Our work ofers a powerful, general tool for documenting and 
visualizing long-term changes of the body. Our longitudinal case 
studies, in particular, demonstrate the ability to create unique and 
compelling visualizations using a convenient capture process that 
is simple to integrate in daily routines. 

8.1 Limitations 
Our work makes capturing PTL much more practical than it was 
with existing tools, but it does not always make capturing PTL 
easy. 

8.1.1 Degrees of Freedom. Capture remains especially difcult for 
subjects with many degrees of freedom in their confguration. For 
example, hands can become very difcult to recapture if the fngers 
take on a very non-standard confguration. In such cases, every 
fnger joint becomes an additional degree of freedom that must be 
aligned, making recapture a much higher-dimensional problem for 
users to navigate. This limitation is partially a consequence of our 
tool being general-purpose. One possible solution would be to build 
tools that focus on specifc parts of the body with known degrees 
of freedom. This would make it easier to design visual guidance 
that helps disambiguate individual degrees for the user. 

8.1.2 Precise Control of Subject & Camera. Even with ideal visual 
guidance, the ease and accuracy of recapture can be limited by 
the user’s ability to precisely control the camera and subject. For 
example, small motions in the camera and subject can be caused 
by handshake, breathing, or even heartbeats. We can think of two 
possible ways to address this in future work. One would be to use 
some physical device to help constrain part of the subject or camera. 
The second would be to use some form of lucky imaging, where 

a stream of redundant observations are captured for each sample, 
and only the lowest-error data from this stream is used. 

8.2 Future Work 
Our current pipeline focuses on repeatedly capturing one viewpoint 
of a subject, but this could be extended to scan a more complete 
surface representation. The main challenge here is how to control 
the confguration and lighting of a subject as it is being scanned. 

Our current tool is relatively general-purpose in that it does not 
target any one specifc body part or diagnostic task. However, one 
could develop specialized variants of our tool for more specifc use 
cases, and in doing so improve performance on those use cases. 

8.3 Potential Downstream Applications 
8.3.1 Remote Healthcare: Our tool could enable new ways for pa-
tients and physicians to interact in remote healthcare settings. In 
particular, the ability to specify reference samples ofers physi-
cians and other experts a powerful way to collect information in 
outpatient settings. 

8.3.2 Field Sciences: While we primarily focus on the human body 
in this work, our tool can also be used for other types of subjects. 
This could be especially useful in scientifc feldwork, where there 
is often interest in observing long-term changes in specimens (e.g., 
plants, animals, or structures). 

9 CONCLUSION 
Our work flls an important need in remote healthcare that gained 
signifcant attention during the pandemic. We derive criteria for 
capturing and visualizing long-term changes in the body and iden-
tify the weaknesses in existing mobile tracking APIs that limit the 
ability to provide guidance for these criteria. To address these weak-
nesses, we developed a custom 3D mobile tracker and used it to 
design and build a novel guidance interface for capturing personal 
time-lapse. We combine this with a computational illumination 
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method to control the lighting of captured subjects as well. We val-
idated our work with a user study and two long-term case studies. 
Our work is the frst to tackle the challenging and important prob-
lem of personal time-lapse and has a high potential for real-world 
impact. 
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