Journal of Computational Science 78 (2024) 102278

Contents lists available at ScienceDirect ONAL
ENCE

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Check for

HybridOctree_Hex: Hybrid octree-based adaptive all-hexahedral mesh o
generation with Jacobian control

Hua Tong?, Eni Halilaj ¢, Yongjie Jessica Zhang

a Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
b Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
¢ Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA

ARTICLE INFO ABSTRACT

Keywords: We present a new software package, “HybridOctree_Hex,” for adaptive all-hexahedral mesh generation based
All-hexahedral mesh generation on hybrid octree and quality improvement with Jacobian control. The proposed HybridOctree_Hex begins by
Hybrid octree detecting curvatures and narrow regions of the input boundary to identify key surface features and initialize
Dual nfmh an octree structure. Subsequently, a strongly balanced octree is constructed using the balancing and pairing
Adaptive mesh

Jacobian rules. Inspired by our earlier preliminary hybrid octree-based work, templates are designed to guarantee an all-

hexahedral dual mesh generation directly from the strongly balanced octree. With these pre-defined templates,
the sophisticated hybrid octree construction step is skipped to achieve an efficient implementation. After that,
elements outside and around the boundary are removed to create a core mesh. The boundary points of the
core mesh are connected to their corresponding closest points on the surface to fill the buffer zone and build
the final mesh. Coupled with smart Laplacian smoothing, HybridOctree Hex takes advantage of a delicate
optimization-based quality improvement method considering geometric fitting, Jacobian and scaled Jacobian,
to achieve a minimum scaled Jacobian that is higher than 0.5. We empirically verify the robustness and
efficiency of our method by running the HybridOctree_Hex software on dozens of complex 3D models without
any manual intervention or parameter adjustment. We provide the HybridOctree_Hex source code, along with
comprehensive results encompassing the input and output files and statistical data in the following repository:
https://github.com/CMU-CBML/HybridOctree_Hex.

Quality improvement

1. Introduction

Hexahedral (hex) mesh generation is a widely adopted volumetric
discretization method that is crucial for solving partial differential
equations in diverse fields such as computer graphics, medical mod-
eling, and engineering simulations [1]. Compared with tetrahedral
meshes, all-hex elements are often preferred due to their superior per-
formance in terms of increased accuracy, smaller element counts, and
improved reliability [2,3]. Despite the acknowledged benefits of hex
meshes, the automatic generation of high-quality, conforming meshes
remains a challenging problem [4,5]. Due to the geometrical stiffness
of hex elements, it is difficult to introduce local modifications or
adapt mesh refinement strategies compared to quadrilateral (quad)
or tetrahedral meshes [6]. Existing techniques for automation have
significant trade-offs, and there is a need for further research to over-
come technical hurdles and develop improved hex-meshing algorithms
and software packages [7]. The complexities also involve decomposing
geometry, handling assembly models with multiple components and

* Corresponding author.
E-mail address: jessicaz@andrew.cmu.edu (Y.J. Zhang).

https://doi.org/10.1016/j.jocs.2024.102278

materials, and propagating the mesh across shared surfaces. Addressing
these challenges requires sophisticated algorithms and tools [8]. In
addition, all-hex mesh generation poses significant challenges due to
the complexity of satisfying geometric and topological constraints, the
limitations of current algorithms in handling diverse and complex ge-
ometries, and the open questions regarding the untangling of elements,
prediction of element quality, and extension of meshing algorithms
to implicitly satisfy a broader range of constraints [9]. In addition,
all-hex meshing also requires sharp feature preservation, robust qual-
ity improvement, and high-order element construction for intricate
domains [5,10].

Recent research efforts have largely focused on developing polycube
or cross-field methods. The volumetric polycube method facilitates the
conversion of a volume to an all-hex mesh by initially embedding
axis-aligned boxes within the 3D volume, followed by mapping the vol-
ume onto multiple interconnected boxes [11]. The modified centroidal
Voronoi tessellation is taken into account in the space of normals or

Received 14 January 2024; Received in revised form 23 February 2024; Accepted 16 March 2024

Available online 22 March 2024

1877-7503/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).

https://www.elsevier.com/locate/jocs
https://www.elsevier.com/locate/jocs
https://github.com/CMU-CBML/HybridOctree_Hex
mailto:jessicaz@andrew.cmu.edu
https://doi.org/10.1016/j.jocs.2024.102278

H. Tong et al.

eigenfunctions to segment the surface and construct polycubes [12,13].
The input model can also be parameterized into a polycube structure to
integrate geometry design with isogeometric analysis [14]. CubeCover
employs a valid 3D frame field to globally parametrize and generate
all-hex meshes [15]. A sophisticated all-hex meshing framework is
introduced, which is guided by a singularity-restricted field for volume
parameterization [16]. The octahedral field method is improved with
singularity graph correction and hex-meshable constrained octahedral
field [17]. While these methods are capable of producing near-optimal
meshes that follow sharp features, they often struggle to guarantee
all-hex or adaptive meshes or to avoid inverted elements.

In recent years, the generation of all-hex meshes using octree data
structures is the only solution with the capability to satisfy rigorous
scalability and robustness criteria for arbitrary shapes based on adap-
tive Cartesian grids. Extending the dual contouring method to achieve
crack-free interval volume 3D meshing with boundary feature-sensitive
adaptation enables the rapid extraction of adaptive and high-quality
3D finite element meshes from volumetric imaging data [18,19]. Oc-
tree data structure is exploited to generate high-quality meshes for
implicit solvation models of biomolecular structures [20]. Grid-based
methods have proven effective in addressing multi-material scenar-
ios [21,22], and they are capable of managing intricate non-manifold
computer-aided design (CAD) assemblies as well [23]. An integrated
tool, LBIE-Mesher, is designed for constructing 2D or 3D finite el-
ement meshes from improved images, supporting features such as
multiscale modeling, automatic mesh generation for heterogeneous
domains, sharp feature preservation in all-hex meshes, robust quality
improvement for non-manifold meshes, and construction of high-order
elements [1,5].

In the octree-based pipeline, we need to fit a 3D grid of hexes in the
volume and then add hex elements at the boundaries to fill gaps. The
interior hexes are filled with templates so that the mesh is adaptive
(dense at the boundary and coarse inside). Conversely, the boundary
elements need to align with the input geometry, albeit without any
guarantee of quality. There are two challenges in octree-based methods.
The first challenge is the occurrence of hanging nodes, which arise
when neighboring cells possess differing resolution levels, leading to
nodes positioned in the middle of adjacent faces or edges. An algorithm
that resolves hanging nodes by connecting them with polyhedra has
been previously introduced, enabling the extraction of all-hex meshes
as duals of polyhedral cells [24]. The cutting process is improved to
reduce the number of elements in the interior mesh [25]. The same dual
mesh scheme is adopted in [26], but with a different approach, whereas
the templates are not thoroughly covered in the paper. By weakly
balancing the octree, the class of adaptive meshes can be expanded,
thereby relaxing the strong topological constraints. This leads to an
enhanced convergence towards valid solutions, optimization of the
number and distribution of singular mesh edges, and a reduction in
the element count [27]. The generalized pairing criterion is capable of
notably decreasing both grid and mesh size while ensuring to produce
an all-hex mesh [28].

The second challenge is to maintain the quality of the surface
mesh. Laplacian smoothing is a straightforward and easy-to-implement
technique that repositions a vertex to the average of its neighbors [29].
While this method is cost-effective and simple to implement, it carries
the risk of inverting surrounding elements. To address this challenge,
an optimization-based approach that assesses the quality of elements
surrounding a node and strives to improve them is proposed [19,30].
A hybrid approach, integrating Laplacian smoothing with optimization,
is advocated to balance efficiency and robustness [29,31]. A novel
method for enhancing the quality of non-manifold hex meshes in
microstructure materials, employing a vertex categorization approach
and a comprehensive technique involving pillowing, geometric flow,
and optimization, addresses challenges in previous works [32]. Iterative
smoothing techniques are proposed to gradually relocate vertices to-
wards the boundary, prohibiting local smoothing adjustments in case of

Journal of Computational Science 78 (2024) 102278

hex flipping [24,33]. These methods are computationally efficient but
may occasionally fail to preserve the geometry. A global deformation
method exhibits robust alignment of the resulting mesh with the input
surface with sharp features and ensures the alignment within an error
bound [26]. However, the robustness comes at the cost of increased
computational and memory resources, which might be prohibitive for
standard hardware configurations.

In this paper, we introduce a new software package, “HybridOc-
tree_Hex,” designed for the automatic, robust, and efficient generation
of adaptive and quality all-hex meshes with Jacobian control. Our
method ensures the absence of self-intersections and produces high
scaled Jacobians (> 0.5), which well surpass the minimum scaled Ja-
cobian of interior template elements. Moreover, this innovation is par-
ticularly adept at capturing intricate, detailed features with precision.
Given a 3D closed manifold surface as the starting point, our method
first initializes an octree structure and builds a strongly balanced octree.
Inspired by our earlier preliminary hybrid octree mesh generation
technique [25], we catalog all possible transition scenarios encoun-
tered during the all-hex dual mesh generation process into pre-defined
templates. This comprehensive approach allows better mesh adapta-
tion and exhibits faster template transformation. We also name the
software after “HybridOctree” to emphasis the templates are derived
from the hybrid octree technique which guarantees an all-hex mesh
generation. Subsequently, we remove elements outside and around
the boundary and then connect the boundary points of the interior
core mesh with their corresponding closest points on the boundary
surface to fill the buffer zone. During the final step of meshing the
buffer zone, we incorporate geometric fitting, the scaled Jacobian, and
the Jacobian into our energy function, leverage the smart Laplacian
smoothing to expedite convergence, and address issues of surface points
getting trapped in local minima. Our extensive experimental results,
obtained by processing dozens of models, serve as a testament to the
robustness and efficacy of our proposed HybridOctree Hex package. In
comparison to the current state-of-the-art technique outlined in [26],
our method produces superior-quality meshes with a reduced number
of elements. To facilitate further research and collaboration, we have
made available our HybridOctree_Hex software source code and a com-
prehensive collection of meshes generated using our algorithm, along
with corresponding input and output data, at https://github.com/CMU-
CBML/HybridOctree_Hex.

The paper structure is outlined as follows: Section 2 delineates
the comprehensive algorithm for initializing an octree, generating a
strongly balanced octree, designing templates based on our earlier
preliminary hybrid octree work, generating the interior core mesh,
and meshing the buffer zone with geometric fitting Jacobian control.
Section 3 presents meshing results and Section 4 concludes the paper
and outlines future research.

2. Hybrid octree and all-hex mesh generation

Starting from a closed, manifold surface triangular mesh that defines
the domain to mesh, our goal is to generate high-quality adaptive
all-hex meshes based on a hybrid octree. The detailed algorithm can
be explained in five steps. As shown in Fig. 1, we first initialize
an octree structure refined at high-curvature and narrow regions to
capture detailed features. The octree is further refined to be strongly
balanced following the balancing and pairing rules. Inspired by our
earlier preliminary hybrid octree work [25], we design templates for
transition configurations to enable an all-hex dual mesh extraction
from the strongly balanced octree. After that, the elements outside the
boundary and in the buffer zone are cleared. The buffer zone is then
meshed by connecting the outmost points of the core mesh with their
closest points on the input surface. In the final step, the smart Laplacian
smoothing and optimization are coupled to improve the mesh quality
with geometric fitting and minimum scaled Jacobian control. Here are
definitions of an octree and the level of octree.

https://github.com/CMU-CBML/HybridOctree_Hex
https://github.com/CMU-CBML/HybridOctree_Hex
https://github.com/CMU-CBML/HybridOctree_Hex

H. Tong et al.

Journal of Computational Science 78 (2024) 102278

Fig. 1. HybridOctree Hex overview. (a) Initializing the octree from the surface triangular mesh (red) with feature preservation; (b) Transforming the initialized octree into a
strongly balanced octree, satisfying the balancing rule and the pairing rule; (c¢) Constructing an all-hex dual mesh using pre-defined templates; (d) Clearing elements outside and
around the boundary; (e) Meshing the buffer zone (yellow) with geometric fitting and Jacobian control.

Octree: An octree is a tree-based data structure used in the three-
dimensional space. It recursively subdivides a cubic space into eight octants
(or children) until a desired level of detail or termination criterion is
reached. Each node in the octree represents a cubic volume, and the children
of a node represent the eight subdivisions of that volume.

Level of Octree: The level of an octree refers to the depth or hierarchy of
the tree structure. The root node, representing the entire space, is at level
0. Each subsequent level represents a finer subdivision of space. The level
increases as traversing down the octree, indicating a higher level of detail
or smaller cubic volumes being represented. The children of a node at level
n are at level n + 1. The maximum level of an octree is determined by the
desired resolution.

2.1. Initializing the octree and building a strongly balanced octree structure

The input surface triangular mesh describes the boundary surface
with a set of triangular elements. The triangular mesh is embedded
into a cube, which is the root of the octree, marked as level 0. Then,
the octants are recursively subdivided based on the surface feature.
Numerical simulations aim to use a minimal number of elements, while
still preserving crucial features on the boundary surface, to ensure
both efficiency and accuracy in calculations. To better capture high
curvatures and narrow regions on the surface, we need to refine these
regions to desired octree levels.

The Gaussian curvature G at point P, is computed by
||ZJ.EM,.)(cot a;; +cot f;;)(P; — P)|l,/(44;), where j € N(i) is the index
of vertices directly adjacent to P, «;; and f;; are two angles opposite
to edge P,P;, and A; is the Voronoi cell area around P; [34]. Five
curvature thresholds Gy,., = {0.5,1,2,4,8} are adopted. If an octree
cell at level / +4 (I = 0,1,...,4) containing or intersecting with the

triangular boundary [35] satisfies G(I + 4) > Gy;,.,[I1, we refine it to
level / + 5. We use curvature to preserve detailed surface features. In
addition, the thickness T at point P, is measured by shooting a ray
from P, along its normal direction to find the shortest intersection
with other triangular elements on the boundary. We set five thickness
thresholds T,;,,, = {16,8,4,2,1}, and refine all the octree cells with
T +4) < Tl to level I +5. An octree structure is initialized after
these operations, where the resulting octree level of each octant ranges
from level 5 to 9. The following two rules are applied to convert the
initialized octree to a strongly balanced one [25].

Balancing rule: The level difference between two neighboring octants is at
most one.

Pairing rule: If an octant is subdivided to comply to the balancing rule, its
siblings (the other seven octants belonging to the same parent) are subdivided
along with it.

After implementing the balancing and pairing rules, the resulting
strongly balanced octree consists of cubes with hanging nodes scattered
within the octree structure due to the size variation. In this paper,
we design templates based on the cutting procedure algorithm in our
earlier preliminary work [25], and the all-hex dual mesh is constructed
using these templates. In the following, we provide key definitions
pertinent to the subsequent algorithmic description.

Hanging node: A hanging node is a corner vertex hanging in the middle
of neighboring faces or edges. In other words, it is a corner vertex for some
elements but not for other adjacent elements containing it.

Octree (Quadtree) block: In a 3D octree, eight children cells belonging to
the same parent cell form an octree block. Similarly in a 2D quadtree, four
children cells belonging to the same parent cell form a quadtree block.
Transition face: A transition face is a face in an octree block that is shared
by two octree cells with different octree levels.

H. Tong et al.

Transition edge: A transition edge is an edge in an octree block that is
shared by three octree cells with different octree levels.

Hybrid octree: A hybrid octree is derived from a strongly balanced octree
to remove all hanging nodes and ensure each interior grid point is always
shared by eight leaf cells [25]. The leaf cells of the hybrid octree can be
polyhedra instead of all-hex.

2.2. Designing templates and constructing all-hex dual mesh

The strongly balanced octree exhibits gradual size variations, al-
though it still contains hanging nodes throughout. A cutting algorithm,
designed in [25], aims to eliminate hanging nodes in both 2D quadtrees
and 3D octrees. This algorithm cuts strongly balanced quadtree/octree
blocks into polygonal/ polyhedral cells and extracts the dual mesh from
the resulting hybrid quadtree/octree to obtain an all-quad/ hex dual
mesh. In 2D, the process involves cutting along the transition edge,
while in 3D, it is more intricate, addressing five transition cases on
faces and edges. The key point of the cutting method is to ensure that
within the hybrid quadtree/octree derived from the strongly balanced
quadtree/octree via the cutting procedure, every grid point is shared by
four polygonal cells in 2D and eight polyhedral cells in 3D. This results
in an all-quad/ hex dual mesh generation. In this paper, we combine
the two steps of creating a hybrid octree from a strongly balanced
octree and generating a dual mesh of the hybrid octree together in our
implementation by designing templates. We develop five templates in
3D to construct all-hex dual mesh directly by detecting transition faces
and edges in the strongly balanced octree, which skips the sophisticated
implementation of a hybrid octree and accelerates the entire meshing
process. In 2D, only one template is needed.

2D template. In a strongly balanced quadtree, four quadrants be-
longing to the same parent form a quadtree block. A transition edge
is formed when two neighboring quadtree blocks have different levels.
Four possible configurations occur in 2D. In Fig. 2(a), when one of the
two adjacent quadtree blocks (blue) is subdivided, there is a transition
edge (golden) between the pink and blue blocks. There are two hanging
nodes on the edge, marked by red dots. Note that each hanging node
is shared by three cells while each regular grid point is shared by four
cells. To obtain the dual mesh of the strongly balanced quadtree [19,
30], each cell center is selected as the associated mesh vertex. For each
grid point, its dual element is created by connecting the mesh vertices
from cells sharing it. Given that every grid point is shared by either
three or four cells, the resulting dual mesh consists of triangles and
quads.

The resulting triangles in the dual mesh need to be removed. We
design a template in Fig. 2(e) to transform those two triangles and one
quad in between into four quads without affecting the surrounding con-
nectivity. Furthermore, when transitions occur in different directions
to the same quadtree block, we transform them independently with
the help of the pairing rule. Fig. 2(b-d) show configurations with both
horizontal and vertical transition edges, and each direction is similar
to Fig. 2(a). By checking all the possible configurations, we obtain one
unique transition template as shown in Fig. 2(e) to achieve all-quad
dual mesh extraction from the strongly balanced quadtree.

Lemma 1. For dual mesh extraction from the strongly balanced quadtree,
only one transition template is needed: the hybrid elements consisting of two
triangles and one quad in between are converted to four quads, as shown in
Fig. 2(e).

Discussion 2.1. In the case of a strongly balanced quadtree, we
directly detect the transition edges and generate all-quad dual meshes
using the designed template. This eliminates the need to generate a
complex and memory-intensive hybrid quadtree, leading to significant
improvements in computational efficiency. By independently address-
ing each transition edge with the dedicated template, we ensure a
seamless mesh transformation process.

Journal of Computational Science 78 (2024) 102278

Table 1
Number of polyhedra and hexes in each template.

Element type Transition on Face Transition on Edge

Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d) Fig. 3(e)
Polyhedra 9 3 3 3 3
Hexes 13 5 4 3 3

3D templates. The 3D transition configurations are similar to the
2D cases, albeit with significantly greater complexity [25]. Following
the 2D cases, we check all the possible configurations and design
a template to transform each configuration independently. Based on
the pairing rule, an octree block is created by grouping eight child
octants that originate from the same parent octant. This grouping
occurs because these child octants have identical behavior — either
all of them are further subdivided, or none of them is subdivided. A
transitional scenario arises when the adjacent blocks have level dif-
ferences. Degenerated elements appear on the transition faces/ edges,
necessitating their conversion into all-hex elements. Similar to 2D, the
face transition case is shown in Fig. 3(a). Octants of the same color
(blue or pink) belong to the same block. Only half of each block
adjacent to the transition face is depicted. There is a yellow transition
face between these two blocks since the blue block is subdivided, the
red dots represent hanging nodes on the transition face, and the dual
mesh of the strongly balanced octree is shaded in light green, consisting
of one hex, four pyramids, and four triangular prisms. The designed
template can generate an all-hex dual mesh to deal with the face
transition scenario. Unlike 2D transitions, 3D transitions maintain quad
elements on the top and bottom faces of the frustum but introduce
two new vertices on each side face. Therefore, we must enumerate
all transition cases involving neighboring octree blocks and devise a
transitional template for each to accommodate the two new vertices
generated by the face transition template.

By checking all the possible configurations, the position relationship
between two transition faces falls into four distinct cases, corresponding
to four octree blocks sharing a transition edge at different levels. One,
two, and three of the four octree blocks are subdivided to a finer level
as shown in Fig. 3(b-e). Only one-fourth of each block adjacent to the
transition edge is drawn, octants with the same color (blue, green, or
purple) belong to the same block. Fig. 3(b, d) are the configurations
between two vertically placed face transitions. Two new points are
placed at the diagonal to match face transition templates. Fig. 3(c)
depicts the configuration between two face transitions placed side by
side. Two new points are placed on each side face to match the face
transition. Fig. 3(e) is a special case of Fig. 3(b, d), where four face
transitions are placed in a cross. Two new points are placed at the
two diagonals to match the face transitions on both diagonals. For each
transition case, the number of polyhedra and the resulting hexes after
transformation is listed in Table 1. The number of polyhedra and hexes
in Fig. 3(a) is greater than the other configurations because Fig. 3(a) is
the face transition case, and the other configurations are edge transition
cases.

It is worth noting that when an octree block has three transition
faces in the XYZ directions, our templates leave a hex at the corners
of the transition, which is not shown in Fig. 3. By placing hexes at
those corners, we achieve an all-hex dual mesh. Additionally, we have
a minimum scaled Jacobian of 0.258 in the designed templates which
will be further improved in the resulting dual mesh through quality
improvement.

Lemma 2. For dual mesh extraction from the strongly balanced octree,
five transformation templates are specifically designed to handle one face
transition and, additionally, four edge transitions. These templates are based
on the resulting dual mesh of the hybrid octree described in [25]. The
cutting procedure ensures that each grid point in the obtained hybrid octree
is always shared by eight polyhedra, resulting in an all-hex dual mesh.

H. Tong et al.

PR

Journal of Computational Science 78 (2024) 102278

Strongly balanced quadtree Dual mesh All-quad mesh

(a)

=

J]

Strongly balanced quadtree

Dual mesh

(b)

All-quad mesh
I ; \ ’ \

=
)

Dual mesh

(c)

Strongly balanced quadtree All-quad mesh

Strongly balanced quadtree

| Eﬁ
All-quad mesh

Dual mesh

(d)

A N

Hybrid mesh

All-quad mesh

Fig. 2. Quadtree transition configurations (a-d) showing the strongly balanced quadtree, hybrid dual mesh, and the resulting all-quad mesh after applying the transformation
template in (e). There are two red hanging nodes on each golden transition edge. (a) Two neighboring quadtree blocks with one being refined; (b, ¢) Three neighboring quadtree
blocks in an L shape with the left and right blocks refined or the corner block refined, respectively; (d) Four neighboring quadtree blocks with a pair of diagonal blocks refined.

(a) Transition on face

(b) Transition on edge

(c) Transition on edge

(d) Transition on edge (e) Transition on edge

Fig. 3. Octree transition configurations (a-e) showing the strongly balanced octree (first row), hybrid dual mesh (second row), and the transformation template (third and fourth
row). Hanging nodes are in red, transition faces are in yellow, and octants with the same color belong to the same block. (a) Two neighboring octree blocks with one being
refined, resulting in the transition on the face. The hexes with the minimum scaled Jacobian 0.258 among all the templates are highlighted and extracted; (b-e) Four neighboring

octree blocks at different levels sharing a transition edge.

Therefore after applying the transition templates, our resulting mesh is
guaranteed to be all-hex.

Discussion 2.2. In contrast to the cutting method described in [25],
our approach not only produces the same all-hex meshes but also
introduces template-based transformations specifically tailored for in-
dependently handling transition edges and faces. The cutting method
involves complex polygonal/ polyhedral cells in the hybrid quadtree/
octree, which are challenging to store and manipulate during software

implementation. Instead, our octree transformation employs five pre-
defined templates to independently address each transition face or
edge, simplifying the mesh generation process and enhancing the ease
of implementation. Specifically, we directly detect transition faces and
edges in the strongly balanced octree and apply these pre-defined tem-
plates to generate an all-hex mesh. This approach obviates the need for
a complex and memory-intensive hybrid octree, thereby significantly
improving computational efficiency.

H. Tong et al.

2.3. Clearing buffer zone

After generating the all-hex dual mesh, the interior core mesh is
obtained by removing elements outside and in the vicinity of the
boundary surface. The region near the boundary is referred to as the
buffer zone. Similar to [36], if the minimum distance from a vertex to
the boundary falls below a threshold ¢, = s,,,,, /2, where s,,,, represents
the maximum size among the elements sharing that vertex, all elements
connected to it are deleted. During the implementation, we observed
that this setting can be sensitive to large elements located in size
transition regions, potentially leaving holes in the surface. To address
this issue, we calculate the signed distance function for corner points
associated with every hex element [37,38]. Each hex has eight signed
distance functions f(x’), where i = 0, 1, -, 7, attached to the eight
corner points. We compute f,;, and f,., and remove the hex element
if the condition f;, + 0.1 X f,.x <0 is met.

A buffer zone exists between the interior core mesh and the input
surface. The extracted core mesh cannot be used directly for buffer
layer meshing, and we need a more precise operation to remove
elements on the boundary of the core mesh that may lead to poor-
quality elements in the buffer zone. We adopt the scaled Jacobian as
our metric for this purpose [19]. Within each hex, for every corner
node x, three edge vectors are defined as ¢; = x; —x (i = 0, 1, 2).
Then the Jacobian matrix at x is defined as [e, e}, e,], and its Jacobian
J(x) is the determinant of the Jacobian matrix. We obtain the Scaled
Jacobian SJ(x) if e;, e, e, are normalized. For each hex, we compute
the (scaled) Jacobian at eight corners and the body center. For the body
center, ¢; (i = 0, 1, 2) is computed using three pairs of opposite face
centers.

Here we introduce a restriction on the buffer zone clearance. As-

sume x is a boundary point of the core mesh, and it is shared by m quad
faces on the core mesh boundary. We consider the triangles formed
by point x and its two adjacent points. Denoting the normal vectors
of these triangles as n;, where i = 0,1,...,m — 1, we have a total of
m triangles being considered. This also represents that m new hexes
will be generated around x after meshing the buffer zone. These hexes
are denoted as h;,i = 0, 1, -, m — 1. The edge vector from x to its
corresponding surface point is denoted as e. According to the scaled
Jacobian definition, a valid e needs to satisfy min SJ(h;) < minSJ(x) <
min(n; - e), where i =0, 1, -, m — 1. If min(n; - e) < 0, then we have
min SJ(h;) < 0. Therefore we define the restriction:
Restriction for buffer zone clearance: Any three normals n;, n; and
ny of the m quad faces surrounding x need to satisfy (n; X n;) - nj > 0.
In the implementation, we remove one hex attached to x iteratively until
(n,-><nj)-nk>0foralli, j, k=0,1, -, m—1landi#j#k.

As shown in Fig. 4(a), our buffer zone clearance restriction is differ-
ent from [36], which deletes the single elements sharing only a point,
an edge, or a face with other elements, as well as elements with non-
manifold connectivity. We notice that the non-manifold criterion is not
sufficient to ensure good element quality in the buffer zone. Instead, the
normals around a boundary point of the core mesh are the key factors,
and we believe this is the main reason why we could improve the buffer
zone element quality to surpass the interior template element quality
(the minimum scaled Jacobian of the template elements is 0.258, which
will be improved to higher than 0.5 after quality improvement; see
Section 2.4).

Finally, it is worth mentioning that we iterate over all the surface
points of the core mesh. For each surface point, we iteratively remove
one hex in each iteration until all the surface points satisfy the re-
striction. In each iteration, we record the hexes that are attached to
boundary points and that violate the restriction, along with the number
of boundary faces they share. We prioritize deleting the hex with the
most boundary faces to prevent leaving holes in the resulting core
mesh.

Journal of Computational Science 78 (2024) 102278
2.4. Quality improvement with Jacobian control

In the last step, we mesh the buffer zone by connecting each
boundary point x; of the core mesh with its closest point on the input
triangular surface x! to form hex elements 4, as shown in Fig. 4(b).
The resulting elements in the buffer layer may exhibit poor quality
or even possess a negative Jacobian. The objective is to preserve the
positions of boundary points on the surface while relocating corners of
worst-Jacobian elements to enhance the overall mesh quality. Here, we
couple optimization with smart Laplacian smoothing. The optimization
is performed in each iteration to identify the worst-Jacobian element in
the entire mesh and adjust its corner points, whereas smart Laplacian
smoothing is performed every 1000 iterations on the outmost two
layers of vertices only to expedite the quality improvement. Specif-
ically, within the smart Laplacian smoothing procedure, for surface
points, we compute the average position of their neighboring surface
points and determine the closest point on the input surface to this
average position; for interior points, we calculate the average of their
neighboring points. We only relocate a point if the minimum scaled
Jacobian of the elements affected by the movement exceeds eg; or if
the distance from the point to the input surface is the greatest.

In the optimization, we propose a new energy function, consisting
of the geometry fitting, scaled Jacobian and Jacobian terms. We have

E=Egr—Eg; - E;

nvert—1 np—1 nn—1
= Y lx-xI3- Y minSJI(h)— Y minJ(hy). m
i=0 Jj=0 k=0

where nvert is the number of surface vertices, np is the number of
positive-Jacobian hexes, and nn is the number of negative-Jacobian
hexes. We adopt a gradient-based method to iteratively minimize the
energy function. All the mesh vertices are optimized by

xi—>xi—aVE|xi, i=0,1,...,2 X nvert — 1, (2)

where we choose the weight a = 0.8 x 10~3 for all the tested models in
this paper.

In finding the closest surface point x; for each boundary point x;
of the core mesh efficiently, we iterate through all the triangles in
a bounding box with the size of 10 times the local triangular edge
length and compute the closest point on each triangle to x;. For faster
computation, the closest triangle number to each x; is updated every
1000 iterations. If the maximum value of the minimum distance from
all points to the surface is < 107, we directly pull every x; onto its
corresponding x*.

The scaled Jacobian and Jacobian terms in Eq. (1) are only applied
to hexes with the scaled Jacobian below a pre-defined threshold ey,
which is initialized as 0.01. In every 1000 iterations, we increase cg,
by 0.01 until all the hexes have min . SJ(h;) > €5, and all the boundary
points are on the input surface, and finish the optimization if the mesh
quality cannot be further improved. Note that when only using the
scaled Jacobian in the optimization, one problem arises: the scaled
Jacobian is in-differentiable at | Py P;| = 1, 4 as shown in Fig. 5(b) or has
a valley at |VE| = 1.161 as shown in Fig. 5(d). To address this issue, we
use the combined scaled Jacobian and Jacobian approach. The scaled
Jacobian term is selected for optimization when it is differentiable and
positive. Otherwise, the Jacobian term is chosen, which is differentiable
in the entire domain and does not have minima in the negative-
Jacobian region. It worth noting that the Jacobian value cannot be used
in the region of min J(#;) > 0, because the to-be-optimized point cannot
converge to the optimal position |PyP,| or |[VE| = 0 and will continue
to |PyP,| or [VE| - —oo as shown in Fig. 5(c, e).

Discussion 2.3. For quality improvement, previous methods first
remove non-manifold points on the core mesh surface and then ap-
ply geometric flow to enhance the overall mesh quality [20,30]. Af-
terward, optimization-based smoothing is employed to improve the

H. Tong et al.

Journal of Computational Science 78 (2024) 102278

(b)

Fig. 4. (a) Four cases comparing with [36]. Hexes removed by both methods are in red, hexes removed only by [36] are in green, and the hex removed by our method only is
in blue. Shaded yellow triangles represent their normals violating our restriction and one adjacent hex needs to be removed; (b) The buffer layer is formed by connecting core
mesh boundary points (black dots) and their corresponding points (red dots) on the input surface.

i
1
1
21 i
< 1
o 1
S 0f--—--—----- = === === === -
Q 1
2' 1
S JPo 1) |
- JP23))
— J(Po) |
. } . .
-2 0 2 4
PoP1
(©

Ly .

1
i
1
< 1
o :
3
S i 8 077 DN —
= 00T— s =7t S o] — o
o — P 8 — JP) 1
8 —05{— s | —a]— s |
“n SjPs) JP3) |
— SJ(P. 1 —64 — Jpy !
104 S . 6 JPd |
-2 0 2 4 -1 0 1 2 3 4
VE VE
(d) (e)
Fig. 5. (a) A hex with |P)P;| = 1 is to be optimized, where P, moves along the PP, direction (green arrow) in (b, c¢) or an arbitrary direction VE (blue arrow) in (d, e).

The optimum point is |PyP;| or |VE| = 0, marked as dashed green lines in (b-e). The intervals of adopting Jacobian or scaled Jacobian in the algorithm are shaded in red. The
in-differentiable points and valleys are marked as dashed red lines in (b, d); (b, d) The scaled Jacobian at P,, P,, P, P;, and the body center P,; (c,) The Jacobian curves.

lowest-quality elements of the mesh [31]. In contrast to this, our
approach involves computing face normal directions around each sur-
face point. Subsequently, we remove one or multiple hexes, ensuring
that no strict angle limitations exist during the meshing of the buffer
zone. Within the gradient-based optimization, we utilize a combined
scaled Jacobian and Jacobian method to avert the optimizer from
getting stuck in local minima. Numerical results presented in Section 3
further indicate that our novel buffer zone clearance and mesh quality
enhancement techniques lead to a significantly higher minimum scaled
Jacobian (> 0.5).

3. Numerical results and discussion

We run HybridOctree Hex on a range of complex models without
the need for parameter adjustments and compare our algorithm with
previous methods [25,26]. Twelve representative meshing outcomes
are displayed in Figs. 6 and 7. Our results were computed on a PC
equipped with a 3.6 GHz Intel i7-12700 CPU and 32 GB of memory.

The presented models demonstrate a range of intricate features such
as high curvature and narrow regions, which are widely present in
Fig. 6(b, d, e, f) through tips, as well as slim cylindrical structures in
Fig. 7(b, e, f). High-genus topologies can also lead to narrow regions;
see Figs. 6(a, €) and 7(e, f). If these narrow regions are not adequately

detected and refined, the resulting mesh may exhibit holes, as exem-
plified in the zoom-in picture [26] of Fig. 6(c’). By incorporating the
thickness measurement, our algorithm maintains the input topology
faithfully. Note that the model’s thickness bears a direct proportion
to cosf, where 0 is the angle between the thickness direction and
the octree structure orientation. In the worst case following the long
diagonal direction of the octree structure, we have 0 = arcsin(\/g /3) ~
35.3° and more elements are needed to preserve the narrow region. In
the oil pump model (Genus-4) shown in Fig. 7(e), the octree orientation
exhibits § = 30° with the thin plate’s thickness direction. Our algorithm
demonstrates its ability to preserve the model’s topology correctly with-
out leaving holes on the thin plates, although it requires a higher mesh
density. Figs. 6(c-f) and 7(a-d, f) showcase a diverse array of detailed
features. Without proper detection and refinement, these features may
appear blurred in the final mesh. Our findings reveal that the curvature
function is remarkably proficient in pinpointing such crucial surface
details, and the quality improvement algorithm faithfully reproduces
them in the resulting meshes. This is evident in the representation of
eyes in Figs. 6(c, f) and 7(a), as well as noses in Figs. 6(c, d, f) and 7(a,
b).

Table 2 presents a thorough analysis of mesh statistics. When con-
sidering mesh size alongside refinement level, our method demon-
strates superior mesh adaptation. This is achieved by employing local

H. Tong et al.

Vozmimm=ca®®

Journal of Computational Science 78 (2024) 102278

23%
13.4%

0.5 0.6 0.7 0.8 09 1.0
Histogram of (a)

25.3%
11.2%

05 06 0.7 08 0.9 1.0
Histogram of (b)

17.6%

3.0%
2.0%
1.0%

0.0% - T T T T
05 0.6 0.7 0.8 0.9

Histogram of (c)

2 0%

o

18.1%
9.17%

2.0%
1.0%

0.0% -+ T T T T
05 0.6 0.7 08 09 1.0

Histogram of (d)

20.8%
8.96%

3.0%
2.0%
p 1.0%

0.0% -+ J
05 0.6 0.7 08 09 1.0

Histogram of (e)

3.0%
2.0%
1.0%

0.0% -
05 06 0.7 0.8 09 1.0

Histogram of (f)

—19%

Fig. 6. (a) The bottlel; (b) The bunny; (c) The david; (d) The deformed armadillo; (e) The dragon stand; and (f) The gargoyle. (a’, b’, ¢’, d’, d”, €’) show zoomed-in images; (c’)
shows a zoomed-in comparison between our mesh and [26] mesh, which generates a hole at the thin region; and the scaled Jacobian histograms are shown in the last column.
The red bar represents the minimum scaled Jacobian and purple bars are truncated ones due to a higher frequency (> 3%).

refinement exclusively in regions of high curvature and narrow regions,
resulting in meshes with elevated refinement levels that minimize
redundant elements. Through the utilization of face-normal-based core
mesh surface enhancement, coupled with the Jacobian and scaled
Jacobian optimization technique, we have attained notably improved
minimum scaled Jacobians (> 0.5). Additionally, our method excels
in terms of efficiency, generating meshes in the shortest time in most
models compared to [25,26]. This is attributed to our strategic im-
plementation of smart Laplacian smoothing, which is restricted to
the outermost two layers of vertices and executed once every 1000
iterations. Previous methods often employ this technique for every
mesh vertex on a global scale.

4. Conclusion and future work

In this paper, we have presented HybridOctree Hex, a software
package for adaptive all-hex mesh generation. Our approach leverages

an octree structure to efficiently detect key surface features with cur-
vature and thickness and construct a strongly balanced octree. From
the strongly balanced octree, we directly generate an all-hex dual mesh
using pre-defined templates, bypassing the implementation of sophisti-
cated hybrid octree construction steps in [25]. Then we clear the buffer
zone of the all-hex mesh with a face-normal-based surface improvement
technique to obtain a core mesh with the min SJ of 0.258. After that,
the buffer zone is meshed by connecting core mesh boundary points
with their corresponding points on the input surface. In the quality
improvement step, we fit the outmost points to the input surface by
iteratively minimizing a comprehensive energy function composed of
geometry fitting, scaled Jacobian, and Jacobian terms. Smart Laplacian
smoothing is performed every 1000 iterations to smooth the outmost
two layers of the vertices and drag surface points that are stuck in the
local minima. Our empirical evaluation demonstrates the robustness
and efficiency of HybridOctree_Hex, as it handles dozens of complex

H. Tong et al.

2
225

7
715
Z

=
Ak
T

(e)

e ; [2. 05 06 07 08 09

Journal of Computational Science 78 (2024) 102278

3.0%
2.0%
1.0%
0.0%

— 1.4%

P —25.4%

o

Histogram of (a)

19.8%
12.6%

0.5 0.6 07 08 0.9 1.0
Histogram of (b)

13.8%

0.6 0.7 0.8 09 1.0
Histogram of (c)

16.4%

N

—

3.0% B~
2.0%
1.0%

0.0% + |

05 06 0.7 08 09 1.0

Histogram of (d)

R N

< oo

© ~er

3.0% © M
2.0%
1.0%

0.0% - J
05 0.6 0.7 08 09 1.0

Histogram of (e)

12%

3.0%
2.0%
1.0%

0.0% -+
05 0.6 0.7 08 09 1.0

Histogram of (f)

—19.3%

Fig. 7. (a) The head; (b) The lion recon; (c) The ramses; (d) The red circular box; (e) The oil pump; and (f) The thai statue. (a’, ¢’, €’, f’) demonstrate zoomed-in images; and the
scaled Jacobian histograms are shown in the last column. The red bar represents the minimum scaled Jacobian, and the purple bars are truncated ones due to a higher frequency

(= 3%).

3D models without requiring manual intervention or parameter ad-
justment. Among all the models we tested, our algorithm generates
meshes in the shortest time compared to [25,26], with high adaptation
and the min SJ of > 0.5 after quality improvement. The source code
and comprehensive statistical and meshing results are made available
to facilitate further research and development in the field; see https:
//github.com/CMU-CBML/HybridOctree_Hex.

While HybridOctree Hex has demonstrated promising results in
terms of fast, robust, and high-quality all-hex mesh generation, there
remain several avenues for future research. One such direction is the ex-
ploration of more advanced techniques for curvature and narrow region
detection to further improve the identification of key surface features.
In our current approach, we employ pre-assigned thresholds, set conser-
vatively to ensure the correct topology of the resulting mesh. However,
this can lead to unnecessarily dense elements. A possible solution lies
in introducing machine learning, which has already shown potential

in 2D quad mesh generation [39]. Neural networks can be leveraged
to predict the octree level distribution on the surface, learning from
both successful and failed adaptive octree configurations. Another area
of focus is the energy function employed in the optimization process.
In theory, the energy terms can be expanded to generate customized
hex meshes. For example, we can substitute the Jacobian and scaled
Jacobian terms with alternative mesh quality metrics, enabling control
over mesh quality from diverse perspectives, such as anisotropic mesh
generation. Furthermore, the geometry fitting term can be strengthened
to preserve user-defined sharp features by fixing corner points and
constraining edge points to move exclusively along feature edges.
HybridOctree_Hex has already exhibited superior efficiency compared
to previous methods [25,26]. Nevertheless, there is scope for further
improvement in computational cost through the utilization of parallel
computing, paving the way for real-time applications.

https://github.com/CMU-CBML/HybridOctree_Hex
https://github.com/CMU-CBML/HybridOctree_Hex
https://github.com/CMU-CBML/HybridOctree_Hex

H. Tong et al.

Journal of Computational Science 78 (2024) 102278

Table 2
Mesh statistics of the testing models.
Model Method Mesh Size Scaled Jacobian Refinement Time
(vertex f; element f}) [worst; best] Level (s)

Bottlel [26] (39,326; 33,635) [0.181; 0.999] 4 8,175
(Genus-1) ours (36,091; 30,145) [0.560; 1.0] 4 218
Bunn [25] (46,476; 39,605) [0.00100; 1.0] 3 462

Y [26] (35,330; 29,698) [0.292; 0.999] 4 3,569
(Genus-0) [36] (119,799; 106,730) [3.85x 107%; 1.0] 3 258

ours (26,375; 21,695) [0.570; 1.0] 4 358

David [26] (127,778; 112,314) [0.126; 0.999] 4 38,866
(Genus-0) ours (319,465; 282,957) [0.560; 1.0] 6 10,450
Deformed Armadillo [26] (43,591; 35,611) [0.0678; 0.999] 4 6,573
(Genus-0) ours (43,216; 34,939) [0.560; 1.0] 5 3,431
Dragon Stand2 [26] (74,618; 61,441) [0.0290; 0.999] 5 23,062
(Genus-1) ours (62,576; 50,853) [0.560; 1.0] 4 2,052
Gargoyle [26] (157,008; 135,737) [0.0702; 0.999] 4 -
(Genus-0) ours (273,704; 236,689) [0.550; 1.0] 4 8,769
Head [36] (64,258; 56,419) [0.0130; 1.0] 3 169
(Genus-0) ours (62,782; 55,038) [0.550; 1.0] 5 444
Lion Recon [26] (134,140; 115,245) [0.178; 0.999] 4 18,755
(Genus-0) ours (112,847; 95,251) [0.570; 1.0] 4 2,046
Oil Pump [26] (75,033; 63,012) [0.117; 0.999] 4 14,301
(Genus-4) ours (233,702; 196,455) [0.540; 1.0] 5 9,742
Ramses [26] (54,634; 46,923) [0.0161; 0.999] 4 9,395
(Genus-0) ours (44,790; 37,993) [0.590; 1.0] 4 713
Red Circular Box [26] (409,011; 367,583) [0.215; 0.999] 4 71,626
(Genus-0) ours (351,881; 313,866) [0.560; 1.0] 4 7,547
Thai Statue [26] (70,561; 59,470) [0.180; 0.999] 4 26,075
(Genus-3) ours (64,764; 53,831) [0.550; 1.0] 4 1,845

CRediT authorship contribution statement

Hua Tong: Writing — review & editing, Writing — original draft,
Visualization, Validation, Supervision, Software, Resources, Project ad-
ministration, Methodology, Investigation, Funding acquisition, Formal
analysis, Data curation, Conceptualization. Eni Halilaj: Writing — re-
view & editing, Project administration, Funding acquisition, Conceptu-
alization. Yongjie Jessica Zhang: Writing — review & editing, Writing —
original draft, Visualization, Validation, Supervision, Resources, Project
administration, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

H. Tong and Y. J. Zhang were supported in part by the US National
Science Foundation (NSF), USA grant CMMI-1953323 and a Honda
grant.

References

[1] Y.J. Zhang, Geometric Modeling and Mesh Generation from Scanned Images,
CRC Press, Taylor & Francis Group, 2016.
S.E. Benzley, E. Perry, K. Merkley, B. Clark, G. Sjaardama, A comparison of all
hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic
analysis, in: 4th International Meshing Roundtable, 1995, pp. 179-191.
J.F. Shepherd, C.J. Tuttle, C. Silva, Y. Zhang, Quality Improvement and Fea-
ture Capture in Hexahedral Meshes, Technical Report UUSCI-2006-029, The
University of Utah, 2006.
S.J. Owen, A survey of unstructured mesh generation technology, Int. Meshing
Roundtable 239 (267) (1998) 15.
Y. Zhang, Challenges and advances in image-based geometric modeling and mesh
generation, in: Image-Based Geometric Modeling and Mesh Generation, Springer,
2013, pp. 1-10.

[2]

[3]

[4]

[5]

10

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

R. Schneiders, Algorithms for quadrilateral and hexahedral mesh generation, in:
Proceedings of the VKI Lecture Series on Computational Fluid Dynamic, 2000.
T. Blacker, Meeting the challenge for automated conformal hexahedral meshing,
in: 9th International Meshing Roundtable, Citeseer, 2000, pp. 11-20.

T.J. Tautges, The generation of hexahedral meshes for assembly geometry: Survey
and progress, Internat. J. Numer. Methods Engrg. 50 (12) (2001) 2617-2642.
J.F. Shepherd, C.R. Johnson, Hexahedral mesh generation constraints, Eng.
Comput. 24 (3) (2008) 195-213.

J.F. Shepherd, Y. Zhang, C. Tuttle, C. Silva, Quality improvement and boolean-
like cutting operations in hexahedral meshes, in: The 10th ISGG Conference on
Numerical Grid Generation, 2007.

J. Gregson, A. Sheffer, E. Zhang, All-hex mesh generation via volumetric
polycube deformation, Comput. Graph. Forum 30 (5) (2011) 1407-1416.

K. Hu, Y.J. Zhang, Centroidal voronoi tessellation based polycube construction
for adaptive all-hexahedral mesh generation, Comput. Methods Appl. Mech.
Engrg. 305 (2016) 405-421.

K. Hu, Y.J. Zhang, T. Liao, Surface segmentation for polycube construction based
on generalized centroidal voronoi tessellation, Comput. Methods Appl. Mech.
Engrg. 316 (2017) 280-296.

Y. Yu, X. Wei, A. Li, J.G. Liu, J. He, Y.J. Zhang, HexGen and Hex2Spline:
Polycube-based hexahedral mesh generation and spline modeling for isogeomet-
ric analysis applications in LS-DYNA, in: Geometric Challenges in Isogeometric
Analysis, Springer, 2022, pp. 333-363.

M. Nieser, U. Reitebuch, K. Polthier, Cubecover—parameterization of 3D volumes,
Comput. Graph. Forum 30 (5) (2011) 1397-1406.

Y. Li, Y. Liuy, W. Xu, W. Wang, B. Guo, All-hex meshing using
singularity-restricted field, ACM Trans. Graph. 31 (6) (2012) 1-11.

H. Liu, P. Zhang, E. Chien, J. Solomon, D. Bommes, Singularity-constrained
octahedral fields for hexahedral meshing, ACM Trans. Graph. 37 (4) (2018) 1-17.
Y. Zhang, C. Bajaj, B.-S. Sohn, 3D finite element meshing from imaging data,
Comput. Methods Appl. Mech. Engrg. 194 (48-49) (2005) 5083-5106.

Y. Zhang, C. Bajaj, Adaptive and quality quadrilateral/hexahedral meshing
from volumetric data, Comput. Methods Appl. Mech. Engrg. 195 (9-12) (2006)
942-960.

Y. Zhang, G. Xu, C. Bajaj, Quality meshing of implicit solvation models of
biomolecular structures, Comput. Aided Geom. Design 23 (6) (2006) 510-530.
Y. Zhang, T.J. Hughes, C.L. Bajaj, Automatic 3D meshing for a domain
with multiple materials, in: 16th International Meshing Roundtable, 2008, pp.
367-386.

Y. Zhang, T.J. Hughes, C.L. Bajaj, An automatic 3D mesh generation method
for domains with multiple materials, Comput. Methods Appl. Mech. Engrg. 199
(5-8) (2010) 405-415.

J. Qian, Y. Zhang, Automatic unstructured all-hexahedral mesh generation from
B-reps for non-manifold CAD assemblies, Eng. Comput. 28 (2012) 345-359.

http://refhub.elsevier.com/S1877-7503(24)00071-1/sb1
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb1
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb1
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb2
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb2
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb2
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb2
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb2
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb3
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb3
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb3
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb3
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb3
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb4
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb4
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb4
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb5
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb5
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb5
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb5
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb5
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb6
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb6
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb6
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb7
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb7
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb7
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb8
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb8
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb8
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb9
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb9
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb9
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb10
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb10
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb10
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb10
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb10
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb11
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb11
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb11
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb12
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb12
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb12
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb12
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb12
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb13
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb13
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb13
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb13
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb13
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb14
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb14
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb14
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb14
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb14
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb14
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb14
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb15
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb15
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb15
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb16
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb16
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb16
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb17
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb17
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb17
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb18
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb18
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb18
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb19
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb19
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb19
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb19
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb19
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb20
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb20
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb20
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb21
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb21
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb21
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb21
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb21
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb22
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb22
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb22
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb22
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb22
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb23
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb23
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb23

H. Tong et al.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

L. Maréchal, Advances in octree-based all-hexahedral mesh generation: handling
sharp features, in: 18th International Meshing Roundtable, 2009, pp. 65-84.

K. Hu, J. Qian, Y. Zhang, Adaptive all-hexahedral mesh generation based on a
hybrid octree and bubble packing, in: 22nd International Meshing Roundtable,
Orlando, FL. Oct, 2013.

X. Gao, H. Shen, D. Panozzo, Feature preserving octree-based hexahedral
meshing, Comput. Graph. Forum 38 (5) (2019) 135-149.

M. Livesu, L. Pitzalis, G. Cherchi, Optimal dual schemes for adaptive grid based
hexmeshing, ACM Trans. Graph. 41 (2) (2021) 1-14.

L. Pitzalis, M. Livesu, G. Cherchi, E. Gobbetti, R. Scateni, Generalized adaptive
refinement for grid-based hexahedral meshing, ACM Trans. Graph. 40 (6) (2021)
1-13.

S.A. Canann, J.R. Tristano, M.L. Staten, et al., An approach to combined
Laplacian and optimization-based smoothing for triangular, quadrilateral, and
quad-dominant meshes, Int. Meshing Rountable 1 (1998) 479-494.

Y. Zhang, C. Bajaj, G. Xu, Surface smoothing and quality improvement of quadri-
lateral/hexahedral meshes with geometric flow, Commun. Numer. Methods. Eng.
25 (1) (2009) 1-18.

L.A. Freitag, On Combining Laplacian and Optimization-Based Mesh Smoothing
Techniques, Technical Report, Argonne National Lab, 1997.

J. Qian, Y. Zhang, W. Wang, A.C. Lewis, M.S. Qidwai, A.B. Geltmacher,
Quality improvement of non-manifold hexahedral meshes for critical feature
determination of microstructure materials, Internat. J. Numer. Methods Engrg.
82 (11) (2010) 1406-1423.

H. Lin, S. Jin, H. Liao, Q. Jian, Quality guaranteed all-hex mesh generation by
a constrained volume iterative fitting algorithm, Comput. Aided Des. 67 (2015)
107-117.

M. Meyer, M. Desbrun, P. Schroder, A.H. Barr, Discrete differential-geometry
operators for triangulated 2-manifolds, in: Visualization and Mathematics III,
Springer, 2003, pp. 35-57.

P. Guigue, O. Devillers, Fast and robust triangle-triangle overlap test using
orientation predicates, J. Graph. Tools 8 (1) (2003) 25-32.

Y. Zhang, X. Liang, G. Xu, A robust 2-refinement algorithm in octree or rhombic
dodecahedral tree based all-hexahedral mesh generation, Comput. Methods Appl.
Mech. Engrg. 256 (2013) 88-100.

N. Paragios, M. Rousson, V. Ramesh, Matching distance functions: A shape-
to-area variational approach for global-to-local registration, in: 7th European
Conference on Computer Vision, 2002, pp. 775-789.

M. Rousson, N. Paragios, Shape priors for level set representations, in: 7th
European Conference on Computer Vision, 2002, pp. 78-92.

H. Tong, K. Qian, E. Halilaj, Y.J. Zhang, SRL-assisted AFM: Generating
planar unstructured quadrilateral meshes with supervised and reinforcement
learning-assisted advancing front method, J. Comput. Sci. 72 (2023) 102109.

11

Journal of Computational Science 78 (2024) 102278

Hua Tong received his B.S. in Engineering Science from the
University of Science and Technology of China in 2022. He
is currently a Ph.D. student in the Department of Mechanical
Engineering at Carnegie Mellon University. His research
interests include mesh generation and machine learning.

Eni Halilaj received her B.A. in Engineering and Italian
Studies in 2008 and Ph.D. in Biomedical Engineering in
2015 from Brown University. She became an assistant
professor in Mechanical Engineering at Carnegie Mellon Uni-
versity with courtesy appointments in Biomedical Engineer-
ing and Robotics Institute in 2018. Her research interests
include biomechanics, imaging, modeling, orthopedics, and
osteoarthritis.

Yongjie Jessica Zhang holds B.Eng. in Automotive En-
gineering and M.Eng. in Engineering Mechanics from
Tsinghua University; and M.Eng. in Aerospace Engineering
and Engineering Mechanics and Ph.D. in Computational
Engineering and Sciences from the Institute for Computa-
tional Engineering and Sciences, The University of Texas
at Austin. She is the George Tallman Ladd and Flo-
rence Barrett Ladd Professor of Mechanical Engineering,
Carnegie Mellon University with a courtesy appointment in
Biomedical Engineering. Her research interests include com-
putational geometry, isogeometric analysis, finite element
method, data-driven modeling, image processing and mesh
generation.

http://refhub.elsevier.com/S1877-7503(24)00071-1/sb24
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb24
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb24
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb25
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb25
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb25
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb25
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb25
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb26
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb26
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb26
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb27
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb27
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb27
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb28
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb28
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb28
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb28
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb28
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb29
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb29
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb29
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb29
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb29
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb30
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb30
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb30
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb30
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb30
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb31
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb31
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb31
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb32
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb32
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb32
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb32
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb32
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb32
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb32
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb33
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb33
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb33
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb33
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb33
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb34
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb34
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb34
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb34
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb34
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb35
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb35
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb35
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb36
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb36
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb36
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb36
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb36
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb37
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb37
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb37
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb37
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb37
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb38
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb38
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb38
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb39
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb39
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb39
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb39
http://refhub.elsevier.com/S1877-7503(24)00071-1/sb39

