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Abstract—Differential Privacy (DP) is a power-
ful technology, but not well-suited to protecting
corporate proprietary information while computing
aggregate industry-wide statistics. We elucidate this
scenario with an example of cybersecurity manage-
ment data, and consider an alternative approach
that relies on a pragmatic assessment of harm to
add noise to the data.

Index Terms—Public Policy Issues, Data Sharing,
Privacy

I. Introduction
Differential Privacy (DP) is widely recognized

as a useful and powerful privacy-enhancing tech-
nology, but there are contexts in which it is
currently not well suited because the underlying
data models or needs of data users do not match
existing DP approaches. This paper explores
using DP in one such context: protecting cor-
porate proprietary information while computing
aggregate industry-wide query results.

Some firms are willing to support research
by providing sensitive and potentially damaging
confidential data, making the assumption that
their corporate interests will be protected if their
data are aggregated with data from other firms
prior to release. Dwork and Roth’s Fundamental
Law of Information Recovery [1] states that this
is a fallacy, and recommends using differential
privacy to protect confidential information.

This paper’s contribution includes a brief
overview of DP’s goals, a worked example that
shows why DP poorly addresses some reputa-
tional harms that firms might suffer from some
kinds of aggregate statistics, and a discussion of
why changing the specifics of the questions being
asked of the confidential data—the query set—
may make it easier to both apply DP and reason
about possible harms. For our example, we use
synthetic cybersecurity management data.

Finally, we consider an alternative approach
for performing privacy-preserving data analysis
that is inspired by DP’s intuition and episte-
mological principles, but where the amount of
noise added is derived based on a pragmatic
assessment of harm.

II. Background

There are distinct and complex challenges
when trying to protect proprietary information
at the firm level. First, firms have fundamentally
different concerns regarding the disclosure of
their proprietary information than individuals
have regarding the disclosure of their personal
data, as the kinds of harms that firms can suffer
are fundamentally different from the harms
experienced by individuals. Second, the sample
size (the number of firms providing data) is
often small, which is a challenge for DP. The
challenge is further exacerbated by the signif-
icant differences between individual firms: in
general there are considerably more differences
in measurable characteristics between firms than
between people.

There are also practical challenges in using
DP. First, DP is formally described in terms
of a mathematical abstraction called privacy
loss, which maps to some relative potential
improvement in capability that an attacker may
enjoy as a result of a data release, but does not
map well to absolute increases in harm. While
the ultimate goal of DP is to prevent harm to
the data subjects, the potential for actual harm
must take into account the context of the query.

Our goal here is to avoid the traditional math-
ematical framing of DP as much as possible, and
instead focus on the utility (and limitations) of
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DP in an intuitive way based on visualizations
of simulated results.

There are a number of ways to think about
and use DP, but the simple version we use in this
paper is to imagine that there is a database with
a number of records, each with a fixed number of
fields. Each record represents confidential data
from a different entity. The goal is to produce
a useful statistical release while providing some
degree of protection for the confidential data.

DP provides protection by adding a degree
of noise to the result of each query against
the confidential records. The noise makes it
difficult to reconstruct one or more of the true,
confidential values of any record or combination
of records. Equivalently, DP limits the ability of
an attacker (which we will call the data hacker)
to ascertain if data from a particular entity are
or are not included in the confidential dataset.

In general, DP mechanisms fall into three
broad modes of operation:

1) Local mode. Noise is added to every
element of every record of the entire
database, after which the entire noisy
database can be used for any number
of statistical operations without further
privacy loss. Alternatively, the entire noisy
database can be publicly released. The
local mode requires comparatively high
levels of noise to achieve significant privacy
protection, which limits the usefulness of
this approach.

2) Trusted curator mode. A trusted data cu-
rator collects confidential data, computes
statistics, and adds noise to each result.
Multiple queries that address the same
records increase the overall privacy loss
that data subjects experience.

3) Trusted curator with synthetic data. The
trusted curator performs queries on the
data to produce a noisy statistical model,
which it then uses to generate synthetic
data. This data can be used or pub-
lished without additional privacy loss. The
challenge with this approach is creating
synthetic data that have sufficient fidelity

and accuracy. In practice, this is an open
research problem.

In this paper we explore the use of DP solely
in the trusted curator mode, avoiding the high
levels of noise required by the local mode and
the immaturity of methods to generate synthetic
data.

The goal of DP is to assure that an analysis of
a database containing an individual’s confiden-
tial data should not differ by more than a small
amount from an analysis of a similar database
that does not contain the individual’s data.

DP uses a parameter ϵ to quantify what we
mean by “a small amount.” If ϵ = 0, there should
be no difference, which means that queries on
the database can have no relationship to the
data stored in the database. If ϵ = ∞, then
any difference is acceptable. In practice, ϵ = ∞
allows a query to precisely release any value in
the database, or all of them.

We are interested in the range 0 < ϵ < ∞,
where there is a trade-off between the accuracy
of the output and the amount of privacy loss
incurred. The higher the accuracy, the more
privacy loss.

If the intended use of the data requires more
accuracy, or alternatively if the data does not
require so much protection, then less noise can
be used, and there is more privacy loss and more
accurate statistics.

Here is the formal statement of the protection
provided by any scheme that is consistent with
the traditional DP framework. For a query
function M that returns a noisy answer to a
query of a database:

• for all subsets of the database d1 and d2
that differ by one record:

• for all subsets S of the range(M):

P (M(d1) ∈ S

P (M(d2) ∈ S
< eϵ (1)

That is, the ratio of the probability that M()
operating on d1 produces some answer S to the
probability that the same function M() operat-
ing on the database d2 produces the same answer
S must approach 1 as ϵ approaches 0, which
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means that they produce the same answer with
high probability for different databases at this
limit, and there is little privacy loss. But when
ϵ grows larger, the probabilities that M(d1) and
M(d2) produce the same result become much
lower, so the results of the two queries can be
distinguished, implying increased privacy loss.
III. A simple example of harms from querying

firm-level data
Consider the following simple example:

100 firms using a well-known and
widely used system or application each
complete a survey reporting the frac-
tion of systems they are running that
have been upgraded to the latest se-
curity patch. Each of these reports
consists of a single number between 0.0
and 1.0 and is stored in database D
that is operated by the trusted curator.
Our goal is to get a sense, industry-
wide, of whether firms are keeping
their systems up-to-date with respect
to security patches.

Once the trusted curator receives the reports,
the curator computes one or more queries on the
confidential data and publishes the result to the
public.

One obvious query of public interest would be
the average of the values. In practice, we might
wish to weigh each sample based on the size of
the firm, but for this simple example, we assume
a query that solely computes the mean of the
values returned from each firm.

Our first question is whether releasing the
mean of these values (with no noise added)
can cause harm to the firms that provided
the inputs. What if the mean is 0.5? This
might imply that the contributing firms have all
upgraded half of their systems to the latest patch
level. Alternatively it might be that precisely
half of the firms reported patching all of their
systems, and half reported patching none.
A. The Data Hacker

In the specific case above, unless we assume
that the data hacker knows the statistic for

99 of the firms and is attempting to learn the
data for the firm that remains, it is unlikely
that revealing that the average is 0.5 will harm
any one firm. (We return to this assumption in
Section IV-C.)

However, this harmless situation may not hold
with other averages. What if the computed mean
is 0.0? Then it would have to be true (from
the math) that each of the firms returned the
value 0.0 as their firm’s response to the query.
No firm has upgraded any of their systems. The
release of the average would cause reputational
harm to all of the contributing firms. Note that
if the average had been 1.0, the firms might
be very happy to reveal that result—it would
show that they all did great. Actual harm (or
the potential for actual harm) depends on both
the result and the context of the query, not the
underlying math.

In this article we term this harm the binomial
pathology, making an intentional analogy to the
binomial theorem, in that there are many ways
to take 50 balls out of an urn with 100 balls in it
(without replacement), but only one way to take
out 0 or all 100. As the returned value of the
query gets closer to the minimum or maximum
of the possible range for the mean, there are
fewer and fewer combinations of data values that
can yield the result. So the potential for harm
is data dependent.

The binomial pathology can arise in other con-
texts. Consider a census block where the average
age is 45. There could be much younger and
much older people contributing to that average,
so we learn little about them as individuals. But
if the average is 85, it is a good guess that most
of the people in that block are old. The data
hacker, seeing that the average age is 85, can
only guess about a given individual in the census
block, but a guess can be good enough to cause
harm. Also, the guess can become arbitrarily
more accurate with additional public data—
for example, learning that a couple living on
the block married just before the husband was
drafted to serve in the Korean War.
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B. Privacy loss vs. harm
While the ultimate goal of DP is to prevent

harm to the data subject, the protection pro-
vided by DP is defined not by the possible harm
of a data release, but on the maximum amount
of privacy loss that could result.

It is the relative privacy loss that is data
independent: the absolute protection very much
depends upon the global data context. A given
amount of privacy loss will be more damaging in
the hands of a data hacker who has substantial
knowledge about the world in which the data
subjects reside.

DP’s protection is defined by the degree that
the potential harm caused by the result of a
query is independent of whether the individual’s
data were considered when evaluating the query.
The classic DP example is a query that tries to
establish a link between smoking and cancer.
If that linkage is accepted, a smoker might see
their health or life insurance rates go up. The
smoker is harmed by the result of the query, but
not because of privacy loss: it made no difference
whether the smoker’s confidential data were in
the database or not. So the difference between
the harm suffered whether or not the smoker’s
data were considered is zero, which is why
the approach is called differential privacy. The
smokers in the data were harmed, but so were
the smokers not in the data.

In our security example above, if we publish
that the average patch rate is 0.0, the firms
are individually harmed, but so is the broader
community: it will be guilt by association.

This kind of harm may not be acceptable in
the case of corporate confidentiality. If we seek
voluntary release of data (as opposed to data
release that is compelled by regulation or law),
the fear of this kind of harm may cause firms to
refuse to release data. For example, corporations
may fear that making confidential data available
to produce industry-wide statistics may help
create a body of evidence that will be used to
regulate the industry.

This is a harm that DP is not designed to
mitigate, because this is a harm outside of

DP’s definition of privacy loss. But recognizing
this limitation, can adding noise to a result
contribute to the mitigation of this sort of harm?

IV. Adding noise, in the DP way
DP protects privacy by adding noise to the

result of each query, creating uncertainty for a
data hacker attempting to learn the contents of
the confidential database.

There are many approaches for adding noise
that are consistent with DP; here we use the
Laplace Mechanism, which adds noise drawn
from a Laplace distribution with zero mean to
the result of each query. The zero mean assures
that the noise added to the true answer is equally
likely to be positive or negative, so that there
is no implicit bias added to the query results.
The magnitude of the noise added (the width
of the Laplace distribution) is determined by
two factors: ϵ (discussed above), and a factor
called sensitivity. While ϵ gets all the attention
in discussions of DP, the concept of sensitivity is
equally significant, as the amount of noise added
is a function of both.
A. Sensitivity

DP sensitivity (∆(f(D)−f(D′))) is the max-
imum amount that a query result (in this case,
mean) can change if the data associated with the
unit of protection—typically a single database
record—is changed or removed. (Here we ignore
the subtle difference between removing a record
and changing it.)

The sensitivity of a query is not based on
the actual values in the current database, but
on the theoretical maximal impact that a single
record change could cause for the universe of all
possible databases. In fact, it is an error to use
the contents of a particular database to compute
query sensitivity: it must be inferred from the
range of values that might be in the database.
In our example, with 100 samples between 0 and
1, the maximal impact than a single firm could
have would be the situation where (x1...x99) = 0
and x100 = 1. In this case, the mean will either
be x100

100 , or .01. or else 0, if x100 is changed to
0. So the global sensitivity S is .01.
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the remaining value is 1.0, the true mean would
be 0.505. (Note that we have just recomputed
the Global Sensitivity in this case–the difference
is 0.01.) In these two extreme cases, what would
the Laplace distributions be for the noisy answer
with an epsilon of 1?

Fig. 2. Range of noisy results depending on actual value
of the remaining data item.

The data hacker (as before) faces a 95%
certainty that the returned value is ±0.03 from
the actual answer. The hacker does not know
from which distribution (anywhere between the
lowest and highest pictured in Figure 2) the
returned value came. All the hacker sees is a
single number. If that number happened to be
.5, the value is equally likely to have come
from the lowest and the highest alternative, so
the hacker has learned nothing. However, if the
answer were (for example) .48, it is much more
likely that this result was from a distribution at
the lower range of the options. In other words,
the hacker cannot guess the true value of the
final value, knowing the other 99 values, but
may be able (for some noisy results) to guess
that the remaining value is “lowish” or “highish.”
Whether this degree of guess is harmful is not
a question of math, but must be answered from
the actual context.

One question we might ask is whether we
need to address the actual worst case. A hacker
that knows all but 2 of the values would learn

essentially nothing from the range of possible
noisy answers. If we allow ourselves to relax the
worst case assumption in assessing the potential
for actual harm, we may get a more realistic
assessment of what a data hacker can actually
learn, but the mathematical foundation of DP
are of no help to us.

V. Addressing the binomial pathology
The previous illustrations showed the distri-

bution of added noise if the actual mean was
0.5. What if the true mean was really 0.0—that
is, what if all of the firms had patched none
of their systems? Figure 3 shows the resulting
distribution of noisy answers.

Fig. 3. Range of noisy results if the true mean of the
100 values is 0.0.

With this degree of noise, the hacker can
reasonably infer that the actual mean (that is,
the fraction of systems that have been patched
to the current release) has a 95% probably of
being less than 0.03. The hacker cannot know
that the actual value was 0.0, but knowing that
it is highly unlikely that the value was above
0.03 may be enough to cause harm. Would this
degree of uncertainty allow any single firm that
had contributed data to plausibly claim that
while the overall number was really low, they
had actually done a good job? Probably not.

Note that the returned protected value may
be less than zero or greater than 1. That is,
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Of course, none of the firms might have
patched more than 50% of their systems, so
100 would be in the lower bin, and none of
them in the upper bin. Would this outcome
represent a harm to an individual firm? None
of the firms have patched more than 50%–that
fact is known about each individual firm. But
the firms might find this degree of reputational
loss to be tolerable, since all the others are in
the same boat. And any single firm could argue
that they had done 49% of their systems.

With DP we protect histograms by adding
noise to the counts for each bin. If there are
100 firms with fewer than 50% of their systems
patched and 0 firms with more than 50% of their
systems patched, the DP computation might
add noise of +2 to the first number and -1 to
the second number, with the result of 102 firms
in the firm bin and -1 firms in the second.

Small counts is still a problem, however. If
there is a bin with 100 firms in it, adding or
subtracting one or two as we add noise does
not greatly change the utility. For a bin with
one firm in it, adding enough noise that the
answer might be two or zero or even negative
one is potentially a huge loss in the precision
(and utility) of that small bin size. If we created
more bins, the expected number of firms in each
bin would be lower, so the degree of uncertainty
in the results would go up. If there were only
10 firms in the data, and we split them up into
more than a very few bins, the added noise would
render the results less useful.

Alternatively, we could ask the median of the
percent of patched systems across all the firms.
If the median is 0.0, then at least half the firms
have done nothing, but we know nothing about
the other half. Again, we have to assess this
query through the lens of the potential harm to
the individual firms, and whether the use of DP
could further mitigate these potential harms.

C. Add noise based on the actual data
If it is necessary to use a query (such as

mean) that has a low-probability data disclo-
sure pathology, we could consider abandoning

the logic of DP and adding noise (or more
noise) only when the actual data triggers the
pathology. To do so steps completely outside
the philosophy of DP, because the fact that
additional noise has been added to a partic-
ular result (which has to be disclosed) itself
reveals important facts about the data. In our
example with 100 firms, the trusted agent could
add additional noise as the true value of the
result approaches 0.0. This would prevent a
data hacker from making a precise guess, but
would still make obvious that the number was
unfortunately low. Such ad hoc systems are
difficult to analyze and are brittle if there exists
external data that can be used to undo their
protection mechanisms: it was the analysis of
such schemes and the dissatisfaction with them
that led to the development of DP.

Once the trusted curator has committed to
releasing the query of a mean, there are no easy
ways to mask the pathological outcomes. Re-
fusing to return a result itself reveals something
about the data. Adding lots of noise based on the
data reveals something about the data, which is
why DP requires that the trusted curator must
make the decision about how much noise to add
before looking at the confidential data. This is
an example of the “Fienberg Problem.” [2]

It is critical to disclose the amount of noise
that a trusted curator has added to a result,
both to inform the legitimate data analyst and
as well a possible data hacker. A frustrating
harm can occur when an hacker does not un-
derstand how the added noise has limited the
validity of his conclusion, and publishes an un-
justified conclusion, causing reputational harm
that could have been prevented had the hacker
been aware of the added noise. Showing some
form of error bars on an answer may be a way
to make the point forcefully. However, the error
bars must not be presented in a way that reveals
anything further about the actual data.

VIII. Conclusions
The astute reader may have observed that we

could have written this paper from a different
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starting point, with a title such as: “The Hidden
Perils of Computing a Mean,” and gotten much
of the way through the development without
even mentioning DP. We chose this course
through the material both to introduce the
basic ideas of DP, and to point out that there
are queries on specific kinds of datasets that
must lead to either poor privacy or poor utility
outcomes even for systems that implement DP.

While most papers that discuss DP focus on
ϵ, perhaps the most important element of a
strategy for industry cooperation is to develop
types of queries that provide sufficient utility
but are free of low-probability disclosure of firm-
specific information. Query design is a critical
part of effective use of DP that is often not
discussed in introductory texts on DP.

One of the problems that DP faces is to help
practitioners map from a value of ϵ to a practical
assessment of harm. The approach we have taken
here (exploiting the simplicity of our example)
is to start with an assessment of harm, and tune
ϵ based on that assessment.

Adding noise to the result of a query can
be an important method to reduce potential
harm, even if the amount of noise added is not
framed as a form of DP, but in that case there
is no mapping from the noise to the formal DP
specification. Pragmatic assessment of potential
harm is a space that is fraught with failure.
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