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ARTICLE INFO ABSTRACT

Keywords: Projection-based reduced order models rely on offline-online model decomposition, where the
Reduced order modeling data-based energetic spatial basis is used in the expensive offline stage to obtain equations of
Incompressible flows reduced states that evolve in time during the inexpensive online stage. The online stage requires

Pressure correction a solution method for the dynamic evolution of the coupled system of pressure and velocity

states for incompressible fluid flows. The first contribution of this article is to demonstrate
the applicability of the incremental pressure correction scheme for the dynamic evolution of
pressure and velocity states. The evolution of a large number of these reduced states in the
online stage can be expensive. In contrast, the accuracy significantly decreases if only a few
reduced states are considered while not accounting for the interactions between unresolved
and resolved states. The second contribution of this article is to compare three closure model
forms based on global, modal and tensor artificial viscosity approximation to account for these
interactions. The unknown model parameters are determined using two calibration techniques:
least squares minimization of error in energy approximation and closure term approximation.
This article demonstrates that an appropriate selection of solution methods and data-driven
artificial viscosity closure models is essential for consistently accurate dynamics forecasting of
incompressible fluid flows.

Data-driven model calibration
Artificial viscosity

1. Introduction

Over the past decade, improvements in computational hardware and advancements in physical simulations have pushed the
envelope of complexity of scientific applications that can be modeled with adequate accuracy. High-fidelity simulations of many
challenging applications demand extensive computational resources and long computational time. The expensive nature of these
simulations prohibits their use in the context of multi-query applications, real-time simulation and dynamics forecasting. In such
situations, reduced order models (ROMs) are an attractive alternative as they can potentially simulate engineering systems at a
lower computational overhead without a significant loss in accuracy. ROMs often rely on offline-online task decomposition, where
the computationally expensive component is ideally performed in the offline stage and typically carried out only once. In contrast,
the inexpensive online stage is performed when the model is deployed in the actual application.

Projection-based ROMs [1,2] are the most popular among model reduction approaches. These models rely on high-fidelity data to
obtain spatial basis, using modal decomposition methods such as proper orthogonal decomposition (POD) [3,4] or reduced basis [5],
and optimally representing the data in terms of reduced states. Using this basis representation in the relevant physical equation and
projecting the solution to a lower-dimensional subspace, a set of equations for the evolution of reduced states is obtained. The
reduced states are classified as resolved states, which are the most energetic states whose dynamics are predicted, and unresolved
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states, which are less energetic states whose dynamics are neglected. These equations can be solved in the online stage of ROMs
to get the dynamic evolution of the solution. The cost of the online stage can scale highly with the number of resolved states;
for example, in the case of Navier—Stokes equations, the cost can scale as O(r>) where r is the number of resolved states. A lower
number of resolved states must be considered for such applications. This selection comes at the cost of more unresolved states,
which negatively influences the dynamics of the resolved states. Several approaches have been considered in ROM literature to
account for the interactions between resolved and unresolved states either directly [2,6,7] or indirectly [8,9]. Closure models
are direct approaches that add additional terms to the dynamic evolution of the resolved states to account for their interaction
with unresolved states. A comprehensive summary of several approaches under this category is given in [10]. Common indirect
approaches include stabilization methods [8,9,11-13] that typically use Petrov—Galerkin projection, which implicitly adds terms to
the dynamic evolution of reduced states to account for the interaction of unresolved states. Some of these Petrov—Galerkin projection
methods can also be considered a variational multiscale method [8,14] and categorized as closure models. These Petrov-Galerkin
projection ROMs often represent the dynamics of resolved states based on the optimality conditions [11,12].

In this article, we focus on the closure models to account for the influence of unresolved states on the resolved states. These
models can be broadly classified into physics-driven and data-driven models. Physics-driven models [2,15,16] typically use physical
insight to add terms to equations of the resolved states to account for their interaction with unresolved states. For example,
artificial/eddy viscosity model forms [2,7,16,17] are based on the assumption that unresolved states are primarily responsible for
dissipating energy from the system. Augmented versions of these models based on modal artificial viscosity enable energy dissipation
characteristics to vary for individual resolved states [6,15,16] and provide more accurate dynamics of resolved states [18]. Alternate
models based on the theory developed in the context of large eddy simulation (LES) [19], variational multiscale method [14,20] and
regularization [21] have also been developed. The model parameters in these models are typically obtained using several calibration
techniques like manual tuning, statistical averages [16,18], data-assimilation [22-24] and least squares minimization [16]. With the
growing interest in modern machine learning algorithms, data-driven models for closure modeling in ROMs [10,25] and LES [26-
29] are becoming popular. These data-driven models rely on raw data to determine the approximate operators or correction to
the operators in the resulting dynamic system. Often, these models assume a model form, such as models with a linear term [30],
models with both linear and quadratic terms [25,31] and neural network model forms [32]. As the development and deployment
of ROMs are typically in a data-rich environment, data-driven closure models can directly leverage the data used for constructing
the energetic spatial basis. These models are generally ill-posed and require regularization to work well [25,33]. The selection of
an appropriate regularization scheme and parameters depends on the application scenario and model selection, thereby adding an
expensive model-tuning process to obtain efficient ROMs.

In addition to the closure problem, ROMs of incompressible fluid flows require unique solution methods for coupled continuity
and momentum equations in the incompressible Navier-Stokes equations. Most ROMs for incompressible flows neglect the role of
pressure gradient in the momentum equations by assuming the discretely divergence free nature of the velocity data. However, in
most situations, this assumption is not satisfied. For example, data from commonly used numerical methods, like finite element
methods with Lagrange elements, is also not discretely divergence free. Furthermore, obtaining discretely divergence free velocities
may not be possible with common experimental measurement techniques. ROMs of shear layers are sensitive to the approximation
of pressure gradient; thereby, neglecting this term can reduce ROM accuracy [34]. Accurate dynamics prediction of pressure states
is also essential for several applications such as fluid-structure interaction [35]. Therefore, ROMs that avoid such assumptions and
accurately solve coupled equations of velocity and pressure reduced states are essential. In these coupled equations, the role of the
pressure states is to enforce the incompressibility condition. Improper solution methods can result in spurious pressure modes or
pressure instabilities and several studies have focused on mitigating them [35-38].

Based on the discussion above, an ideal ROM for incompressible flows needs to have two key features: (1) an accurate and
stable solution method for the dynamic evolution of velocity and pressure states and (2) an adequate closure model to account
for interactions between unresolved and resolved states while reducing the costly human-in-loop involvement of parameter tuning,
such as parameter tuning while adding regularization or manually tuning parameters for physics-driven models. Inspired by these
challenges, the main contributions of this article are two-fold:

» The incremental pressure correction scheme to solve coupled equations of velocity and pressure states while providing a
second-order accurate temporal evolution.

» New artificial viscosity closure models with unknown parameters determined using two data-driven calibration techniques:
least squares minimization of error in energy approximation and error in closure term approximation.

The first contribution is to demonstrate the applicability of incremental pressure correction schemes through numerical experiments.
This solution method has been commonly used in FOM [39]; however, to the extent of the authors knowledge, this solution
method has not been used previously in the context of ROMs. This solution method gives us velocity and pressure states without
requiring the pressure and velocity states to satisfy inf-sup condition, thereby avoiding the need for a more expensive supremizer
enrichment method [36]. The second contribution is to demonstrate the applicability of several artificial viscosity closure models
for resolving the closure problem in ROMs. In addition to the two physics-driven model forms discussed above, which are global [2]
and modal [15,16] artificial viscosity model forms, we also propose a tensor artificial viscosity model form. This model form is
inspired by the concept of tensor eddy viscosity subgrid models for LES [40,41]. The unknown parameters for these three model
forms are learned using the least squares minimization technique, typically used for data-driven closure models. In this article, we
compare six closure models obtained by combining each of these three physics-driven model forms with two data-driven calibration
techniques for determining unknown model parameters. These closure models lie between physics-driven and data-driven models
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and we refer to them as data-driven artificial viscosity closure models. Unlike the data-driven closure models that approximate
the quadratic operator [25,31], these closure models did not require additional regularization for the numerical experiments in
this article as these physics-driven model forms have fewer unknown parameters to calibrate. Together with the proposed solution
method for incompressible flows, we validate and compare the proposed six closure models for forecasting the flow dynamics over
a 2-D cylinder at three Reynolds numbers.

The outline of this article is given below. Section 2 discusses the incompressible Navier-Stokes equations. Section 3 discusses POD
for dimensionality reduction. Section 4 mentions the construction of projection-based ROMs with a POD basis while highlighting
the closure problem and several models proposed in this work to overcome it. This section also discusses the incremental pressure
correction scheme for solving coupled equations for resolved velocity and pressure states. Section 5 validates the solution method
for ROMs and several closure models for an incompressible fluid flow case: flow over a 2-D cylinder. Section 6 concludes this article
by summarizing its main contributions and highlighting possible directions for future research.

2. Incompressible Navier-Stokes equations

Incompressible Navier-Stokes equations are commonly solved to obtain discrete approximations, denoted by superscript A, of
velocity u" : [0,T]x 2 — R? and pressure p" : [0,T]x 2 — R in an incompressible flow in a domain 2 c R? of dimensionality d at
time T € R*. The approximate velocity and pressure lie in respective function spaces, u* € V" and p"* € Q", which are appropriately
chosen to represent the flow physics. These equations consist of the continuity equation

v.u' =0, @
which ensures the conservation of mass, and the momentum equation

% +u v = —Vph vV, 2
which ensures the conservation of flow momentum. From here onwards, we will remove superscript 4 and use u and p to refer to
discrete approximations of velocity and pressure, respectively. The solution to incompressible Navier-Stokes equations exhibits a
saddle-point structure, which is accompanied by the role of the pressure to enforce the incompressibility constraint. For this scenario,
the equation that governs the dynamic evolution of pressure is unavailable, unlike compressible Navier-Stokes equations, where
such an equation can be obtained. The saddle point nature of these equations often restricts selecting appropriate function spaces
for velocity and pressure. For such saddle point problems, the Ladyzhenskaya-Babuska-Brezzi (LBB) or inf-sup condition [42,43] is
a sufficient condition to ensure the uniqueness of the solution.

3. Proper orthogonal decomposition

An effective ROM relies on constructing the basis and determining reduced states that can effectively represent the flow dynamics.
POD is one of the most common methods for dimensionality reduction and obtaining an effective spatial basis for the dynamic
system [3,4]. Velocity and pressure fields are decomposed using POD as

n n
ux, ) &, () + Y, a0 (x)  and  p(x,0) & p(x) + Y biOw(x), ©)
i=1 i=1
where n is the number of modes/states, a; : [0,7] — R and b; : [0,T] — R are the temporally evolving reduced states of velocity
and pressure respectively, ¢; : 2 — R? and y, : 2 — R are spatial modes of velocity and pressure respectively and u,, and p,, are
the reference velocity and pressure respectively which are taken to be respective mean values in this article. When finite element
methods are used to solve PDEs, the spatial modes are unknown and determined by assembling a large system of equations and
solving them. Meanwhile, ROMs use high-fidelity simulation or experimental data as spatial modes to reduce the dimensionality of
the problem and study the temporal evolution of these reduced states. POD basis optimally represents the energy of incompressible
flows. Through numerical experiments, we observed that the coupled approach, where velocity and pressure POD basis are computed
together [8], did not result in a monotonic decrease in energy error with increased modes. Therefore, this article follows a decoupled
approach where velocity and pressure POD basis are computed separately [35].
For generating velocity and pressure POD basis, the velocity data X ,(x) and pressure data X ,(x) at each spatial coordinate
location x € 2 are represented as

X,(x) = @) w?x) - w'®)]  and  X,x) :=[p'(x) pP(x) - prX)], @)

where u'(x) = u(x,1;) — u,, and p'(x) = p(x,1;) — p,, for t; € {1],15,..., t,}. The selection of the POD velocity modes is based on
minimizing the approximation error

n

! ) 2
o= agmin Y [[W'@ - Y a0, (5)
b=[¢).bs,...4,] i=1 j=1
such that
(¢[>¢j) = 5,',', for i,j=12,....n, (6)
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where ||v(x)| |2L2 = /_Q v(x) - v(x)dx is the norm introduced by the inner product (-, -) and §; ; is the Kronecker delta. Other weighed
norms and inner products have been considered in the past [44,45] for better stability properties. However, these are not considered
in this article. The velocity POD modes are obtained using the relation

@ =X,P/A7" %)
The components of &(= [¢; ¢, - ¢,]) and components of A,, which is a diagonal matrix (4, = diag(4%, 2%, ..., A4)), are obtained
by solving the eigenproblem

R'g; = i$:. ®
where the ijth component of the velocity correlation matrix R" is given as

RY = / u'(x) - (x)dx. ©

T Je
Similarly, the selection of POD pressure modes is based on minimizing the approximation error
n n 2
w= argmin Y ||p@ - Y b)), (10)
Y=y 1y, Wal i=1 Jj=1

such that

Wi, w)) =6y, for i,j=12,...,n. (11)

The pressure POD modes are obtained using the relation
7 —1
¥ =X,¥\/A", (12)

where components of ¥(= [, #, - ¥,]) and components of A, which is a diagonal matrix (A, = diag(4], 43, ..., 4})), are obtained
by solving the eigenproblem

Ry, = Ay, (13)
The ijth component of the pressure correlation matrix R’ is determined using

R}, = /Q p'(x) - p/(x)dx. 14)
The orthonormality of velocity and pressure modes ensures that the reduced states at time #; are obtained using

a;(t;) = (¢;,u(ty)) and b)) = (w;, p(t))). (15)

The temporal evolution of reduced states governs the dynamics of the solution. Depending on the availability of computational
resources, it may be computationally unaffordable to determine the dynamics of all n reduced states. Therefore, these reduced
states are further decomposed as resolved (denoted by subscript ¢) and unresolved states (denoted by subscript f). Keeping this in
mind, POD for velocity can be rewritten as

u(x,1) & u(x,1) +up(x,1), ae)
where
r n
u(x,0) =u,(x)+ Y a,p(x) and u;(x,)= Y a,)p;x). a7
i=1 i=r+1
The reduced states a; for i = 1,2, ..., r are the resolved velocity states and a; for i = r+ 1,r + 2, ..., n are the unresolved velocity

states. Similarly, POD for pressure is rewritten as

p(x, 1) & p.(X,1) + ps(x,1), (18)
where
r n
Pe(X,1) = p,y(x) + Z b(ty;(x) and py(x,t) = Z by (x). (19
i=1 i=r+l1
The reduced states b; for i = 1,2,..., r are the resolved pressure states and b; for i = r+ 1,r +2, ..., n are the unresolved pressure

states. Even though different number of velocity and pressure states can be used, we use the same number of states in this article.
4. Reduced order modeling
As the introduction suggests, ROMs are critical for multi-query applications, such as optimization and uncertainty quantification,

real-time control, and dynamics forecasting. ROMs have two main components: representation of the high-dimensional solution in
terms of reduced states and dynamical evolution of these reduced states. In Section 3, we explored using POD to obtain the set
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of energy-dominant spatial bases and corresponding reduced states. This section focuses on the evolution of these reduced states
for dynamics forecasting. Recently, there has been a growing trend towards fully data-based ROMs involving machine learning
to represent the reduced states and evolve them in time [10]. Unfortunately, these fully data-based ROMs often have limited
applicability for dynamics forecasting problems, where the goal is to predict future states that are not part of the high-fidelity
training data used to learn these models. This article restricts our discussion to traditional ROMs involving physical equations to
evolve the reduced states. These latter ROMs are better suited for forecasting problems where the model is evaluated for future time
instances that do not inform the generation of the energy-dominant basis.

4.1. Projection-based reduced order modeling and closure problem
Projection-based ROMs are a model reduction approach where high-fidelity data is used to generate the spatial modes and the

temporal evolution of reduced states is governed by physical equations. For incompressible flows, the reduced states can be obtained
by substituting POD of velocity (Eq. (16)) and pressure (Eq. (18)) in Eq. (1) and Eq. (2) to obtain

V-(u +up)=0 (20)
and
o(u, + uf) )
— + @, +up) -V, +up) ==V, +pp)+vViu, +uy). (21)
Using Galerkin projection [2], the continuity equation is projected onto a linear subspace spanned by y, for k = 1,2,..., r. The
resulting continuity equation is
r
(Wk,v.u,,,)+2a,.(wk,v.¢,.)+1);(a)=o, (22)
i=
where D{(a) = }I_, ¢ g)wk, V- ¢,~) is the closure term for continuity equation. On the other hand, the momentum equation is
projected onto a linear subspace spanned by ¢, for k = 1,2, ..., r. The resulting momentum equation is
r r r r
a+ Y Lygai+ D Y Byyaia,+ Y Lo, +Cy + Dji(a, b) =0, (23)
i=1 i=1 j=1 i=1
where
Ly = —v(¢k,V2¢[) + <¢k’¢/ : V”m) + <¢k’um : V¢/>, e
By = (9091 V9, ). 25)
Lh = (¢ Vw). (26)
C, = <¢k,um . Vum> + (¢k, me) - v<¢k,V2um> (27)
and
r n n r n n
Dj(a,b) = Z Z aiaj(¢ka¢i : V¢j> + Z Zaiaj(¢k=¢i : V¢j> + Z Z aiaj<¢kv¢i . Vd’,')
i=1 j=r+1 i=r+1 j=1 i=r+1 j=r+1
n n n n
Y a,.(¢k,v2¢,.) + Y a,.(¢k,um : V¢,.) + Y a,.(¢k,¢,. : Vu,,,) + Y b,.(¢k,vw,.) (28)
i=r+l i=r+l i=r+1 i=r+l

is the closure term for the momentum equation. This approach is often referred to as the variational multiscale (VMS) method
for ROMs and D}’ can be thought of as the closure term that accounts for coarse and fine-scale interactions defined in VMS
methods [14,17]. This article neglects the effect of unresolved pressure states in the closure term. With this approximation, the
resulting closure modeling becomes

r n n r n n
D}(a,b) ~ D}(a) = Z z a;a; <¢ka¢i : V¢j) + Z Zaia/ <¢k»¢i : V¢/) + Z Z a;a; <¢k7¢i : V¢/)
i=1 j=r+l i=r+l1 j=1 i=r+1 j=r+l
n n n
-V Z ai(ﬁbksvzd’i) + Z ai(¢k’um : V¢i> + Z ai(¢k’¢i : V”m>~ (29)
i=r+l i=r+l i=r+l1
For practical near real-time prediction, it is desirable to have r <« n, especially for non-linear equations where the cost of the
non-linear terms can scale with a high exponent. For example, the cost of the online stage for the incompressible Navier-Stokes
equations is O(r3), which is very expensive for large values of r. Unfortunately, this also implies that a cost-effective approach
involves a relatively higher number of unresolved and fewer resolved states. As the dynamic evolution of unresolved states is not
computed, the influence of these unresolved states on the resolved states are neglected. Therefore, if r < n, the accuracy of the
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dynamics prediction is affected, especially for strongly advective flows where the decay of Kolmogorov n-width is slow [46]. If the
influence of unresolved states is ignored by setting a; =0 and b; =0 for i =r+ 1,r+2,..., n, the closure terms Dz and Df become
zero and the equations Eq. (22) and Eq. (23) reduce to

(v ) + (w7 0) =0 (30

i=

and

r r r r
a+ Y Lya;+ Y Y Byaa;+ Y LEb +C =0. (31)
i=1 i=1 j=1 i=1

We refer to this as the Galerkin projection-based ROMs without closure modeling. Suppose the influence of unresolved states on
the dynamics of resolved states is significant, the accuracy and stability of the predicted resolved states can be severely affected
in these ROMs. Therefore, accurate models that approximate D}’ without incurring a significant evaluation cost are essential. For
incompressible flows, Dj may not severely affect the dynamics of ¢; and b; and is set to zero in this article.

4.2. Closure models for ROMs

As discussed in the introduction, several closure models have been proposed over the years that account for the interaction of the
unresolved states with the resolved states. These models can be classified as physics-driven or data-driven. Physics-driven models
involve analysis of equations and physical insights to determine a model form and calibrate the model parameters [2,6,7,18]. These
model forms typically have fewer parameters to ease the process of calibrating them. Most common physics-driven models involve
the assumption of a model form as a linear term in Eq. (23), that is

r
D (a) ~ DYl @) = Y a, Ly, (32)
i=1
where I,; is the unknown closure term. Three model forms can approximate L,;. The first model form, which we refer to as the
global artificial viscosity, approximates L,; as

Ly = V(90 V01, (33)

where V' is the unknown global artificial viscosity. The second model form, which we refer to as the modal artificial viscosity,
approximates L,; as

Ly = vi (9. V2;). (34)

where v;( is the unknown modal artificial viscosity. These two model forms are common in the literature [2,15,18]. In addition to

these model forms, we propose a third model form, which we refer to as the tensor artificial viscosity, that approximates L,; as

L, = V}ig(d’k’ V2¢i>’ (35)

where v, is the kith component of the unknown tensor artificial viscosity. Several strategies have been used to determine the

unknown parameters in Eq. (33) and Eq. (34). The mean energy balance was used in [18] to obtain v'. On the other hand, the mean
of modal energy was used in [18,34] to obtain vf{. Data-assimilation techniques were used in [22,23] to obtain the relevant unknown
closure term parameters. Recently, data-driven models that use high-fidelity simulation data and machine learning techniques have
been proposed. These models approximate D}’ using linear [30] or quadratic operators [25,31] instead of assuming a physical
model form like artificial viscosity-based closure models. As projection-based ROMs are data-intensive and rely on data to obtain the
energy-dominant spatial modes, substantial data needed for determining unknown parameters in closure models is readily available.
Sensitivity analysis can also be used to identify the role of each component of tensor artificial viscosity on closure model performance
and reduce the number of unknown closure model parameters. Such analysis can reduce the offline stage cost of determining model
parameters, although the online stage cost for the closure models proposed in this article will remain the same.

Data-driven models [25,30,31] often used least squares minimization to obtain the unknown parameters in the model form.
However, there is limited work on utilizing this calibration technique for determining the unknown parameters in physics-driven
closure models [16]. Even in [16], only the modal artificial viscosity was determined using least squares minimization, but not used
as a closure model in ROMs. Therefore, one of the main contributions of this article is to provide a systematic feasibility study on
using least squares minimization for learning unknown parameters in three artificial viscosity closure model forms. The least squares
minimization for obtaining unknown parameters can be applied in two ways. The first and more common calibration technique is to
approximate the closure term DZ in Eq. (29) as accurately as possible. We refer to this technique as the closure term approximation.
This technique is typically followed in the data-driven closure model literature. [25,30,31].

The alternate calibration technique accurately captures the energetic interactions between resolved and unresolved states. We
refer to this technique as the energy approximation. The influence of closure terms on the energy equation can be determined by
examining the energy equation. This equation can be derived from the Navier-Stokes equations by taking the inner product of Eq.
(2) with velocity to obtain

%(u, u) + (u,u . Vu) + (u, Vp) - v(u, Vzu) =0. (36)
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Table 1

List of the six closure models considered in this article.

Closure model Model form Calibration technique
GV-GE Global artificial viscosity: Eq. (33) Global energy: Y _, a, Dy
MV-ME Modal artificial viscosity: Eq. (34) Modal energy: a, D}’
TV-ME Tensor artificial viscosity: Eq. (35) Modal energy: a, ka

GV-C Global artificial viscosity: Eq. (33)

MV-C Modal artificial viscosity: Eq. (34) Closure term: Dy, Eq. (29)
TV-C Tensor artificial viscosity: Eq. (35)

Substituting POD for velocity and pressure in this equation and simplifying it, we get

r da2 ror ror r roor r
Z d_tk + Z z a;a Ly + Z z Z a;a;a; By, + Z z bia LY + 2 @, (C + D}(a)) = 0. 37)
k=1 i=1 k=1 k=1

i=1 j=1 k=1 i=1 k=1

The energetic interactions of the unresolved states and their contribution towards the energy of all resolved states are accounted
for in the last term: Y7, a, D}'. Each component of this term, a; D}, accounts for energetic interactions of unresolved states to the
energy of the resolved state a;. These interactions comprise dyadic energetic interactions due to linear terms and triadic energetic
interactions due to non-linear terms. Similarly, the energy equation for the kth resolved state is

da? r ror r
d_tk +a; Z a;Ly; + a; Z 2 a;a;By;; + ai z b; LY + a,Cy + a, D' (a) = 0. (38)
i=1 i=1 j=1 i=1
The modal energy equation determines the temporal evolution of energy for each resolved state. Based on these two equations,
the energy approximation calibration technique for determining unknown parameters can be further classified as global and modal
energy approximation techniques. The global energy approximation aims to ensure that the global energy balance (in Eq. (37))
is accurate. Therefore, this technique estimates unknown model parameters such that Y, _, a, D} is accurately calculated. On
the other hand, the modal energy approximation involves ensuring that the modal energy balance is accurate. Therefore, this
technique estimates unknown model parameters such that a, DZ’ is accurately calculated. Determining parameters using global energy
approximation is appealing for a global artificial viscosity approximation. Meanwhile, determining parameters using modal energy
approximation is a better-posed problem for modal and tensor artificial viscosity models.

The two alternate pathways for calibrating closure models, accurate closure term and accurate energy contribution, will yield
different model parameters, and it is important to study which calibration technique is better suited. Combining three closure
model forms, namely global, modal, and tensor eddy artificial viscosity model forms, with these two least squares minimization-
based calibration techniques, namely minimization of error in energy approximation and closure term approximation, results in six
possible combinations of data-driven artificial viscosity closure models as shown in Table 1. In this article, we pose the closure
model calibration process as a linear regression problem which provides a deterministic model without uncertainty estimates. A
Bayesian regression-based approach, such as the one used in [47], can also be used to calibrate closure models while providing
uncertainty estimates. Only the former approach is considered in this article, although the latter one is an ideal extension that will
be considered in the future.

4.2.1. GV-GE model
GV-GE model assumes the model form in Eq. (33), where the optimal value of the global artificial viscosity (v') ensures that the
contribution from the closure term on global energy Y, _, a, D;("(a) is accurately estimated. Mathematically, this model is posed as

V' = arg min [0 Z Z aiak(d)k, v2¢,.) - Z ak[_)'k"(a)Hz. (39)
v i=1 k=1 k=1

The same data used for obtaining POD modes is used to obtain projected reduced states ag;(¢) at time ¢ = ¢, where / = 1,2, ..., n. Using
this data, this problem transforms to

Vi =arg min HOz - bHi (40)
v

where the /th component of the vector z is

o= % T aao)(d. V'4)) 1)

i=1 k=1

and the /th component of the vector b is

by =Y a(t)D}(a(t))). (42)

k=1
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The solution of this regression problem yields the following expression for artificial viscosity:
-1
V= (sz) z"bh. (43)

For this model, we obtain a single artificial velocity that best approximates the energy at all sampled timesteps. If the flow is not
stationary, the optimal global viscosity may not be the best approximation of the energetic interactions at different time instances.
Therefore, this closure model is more suited for stationary flows. Despite the model form appearing very similar to the model
in [18], this model differs in the calibration technique to determine the value of v'. In [18], the mean value of global energy is used
to determine V', whereas raw data of global energy with least squares minimization is used in this article.

4.2.2. MV-ME model
The MV-ME model assumes the model form in Eq. (34), where the optimal value of the modal artificial viscosity (vl’() ensures
that the contribution of closure term on modal energy a; [_)Z'(a) is accurately estimated. Mathematically, this model is posed as

v, = arg min [|9a, Z a,.(¢k, V2¢,.) - akD;"(a)Hz. (44)
v 1

Following the procedure for other models, we use the sampled data. This problem transforms to
2
v,’c =arg }11in HOz - sz, (45)
where the /th component of the vector z is
2= at) Y, a )b V0, (46)
i=1
and the /th component of the vector b is
by = a, (1) D" (a(t)). 47)
The solution of this regression problem yields the following expression for artificial viscosity for the kth mode:
-1
v, = (sz) z'bh. (48)

This model can better approximate the dynamic interaction between unresolved and resolved states than the GV-GE model, as it is
more expressive. Although the model form appears very similar to the model in [18], this model differs in the calibration technique
used to determine the v; value. In [18], the mean value of modal energy is used to determine v;, whereas least squares minimization
with raw data of modal energy is directly used in this article. This model is similar to the one mentioned in [16] where the least
squares minimization is used to obtain vl’(. However, the applicability of this closure model for ROMs was not demonstrated in [16].

4.2.3. TV-ME model

The TV-ME model assumes the model form in Eq. (35), where the optimal value of the tensor artificial viscosity (v,’(i) is obtained
to ensure that the contribution of closure term on modal energy a, Df(a) is accurately estimated. Mathematically, this model is
posed as

vi= arg min Hak Zr: 0iai(¢k,v2¢,-) - akD,(’"(a)H2 (49)

v=[0y, 0,0, 0] i=1

with v} as the ith element of vector v} . Following the procedure for other models, we use the sampled data. This problem transforms
to

T 2
Vi = arg min HVZ - b”z, (50)
v
where the /ith component of the matrix Z is
Z;= ak“ﬂ“:‘(’/)(‘/’ks V2¢i> (51)

and the /th component of the vector b is given in Eq. (47). The solution of this regression problem yields the following expression
for vector-valued artificial viscosity for the kth mode:

V= (sz)flsz. (52)

This model can better approximate the dynamic interaction between unresolved and resolved states than GV-GE and MV-ME models
as it is more expressive.
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4.2.4. GV-C model
The GV-C model assumes the model form in Eq. (33), where the optimal value of the artificial viscosity (v') ensures that the
closure term [)'k” is accurately estimated. Mathematically, this model is posed as

v =arg min [0 Y a6V, - 7@ (53)
0 i=1

where data from all r modes is used to learn the artificial viscosity. Following the procedure for other models, we use the sampled
data. This problem transforms to Eq. (40), where the oth component of the vector z is

Zo = Z ai(tl)<¢k’ V2¢i) (54)
i=1
and the oth component of the vector b is

b, = D{(a(t)), (55)

where o is a unique combination of k and /. The solution to this regression problem, shown in Eq. (43), provides the value of v'.
For this model, we identify a single artificial velocity that best approximates the closure term for all the modes at every time step.
Therefore, if the flow is not stationary, the optimal global viscosity may not best approximate the closure term at different time
instances.

4.2.5. MV-C model

The MV-C model assumes the model form in Eq. (34) where the optimal value of the modal artificial viscosity (v]’() ensures that
the closure term D,’(" is accurately estimated. Mathematically, this model is posed as

r .
v, = arg min
v

|oiai(¢k,v2¢i) -Df(a)Hz. (56)
i=1

Following the procedure for other models, we use the sampled data. This problem transforms to Eq. (45), where the /th component
of the vector z is
=Y ai(t,)(q}k, V2¢,.) (57)
i=1

and the /th component of the vector b is
b = DI (a(1))). (58)

The solution to this regression problem, shown in Eq. (48), provides the value of v;. This model better approximates the dynamic
interaction between unresolved and resolved states than the GV-C model, as it is more expressive. This model is similar to the one

mentioned in [16], although the applicability of the closure model for ROM was not demonstrated in that article.

4.2.6. TV-C model
The TV-C model assumes the model form in Eq. (35), where the optimal value of the artificial viscosity (V;c) ensures that the
closure term DY’ is accurately estimated. Mathematically, this model is posed as

.

_ 2

vi= argmin || o,.a,.(¢k, V2¢,.) - Dp(a| (59)
V=[01, 0,001 i)

with vj; as the ith element of vector v| . Following the procedure for other models, we use the sampled data. This problem transforms

to Eq. (50), where the /ith component of the matrix Z is

2y = a,(t)( b V) (60)

and the /th component of the vector b is given in Eq. (58). The solution to this regression problem, shown in Eq. (52), provides the
value of v} . This model better approximates the dynamic interaction between unresolved and resolved states than GV-C and MV-C
models as it is more expressive.

4.2.7. Differences compared to other closure modeling techniques

As discussed earlier, several other closure models exist for ROMs. Physics-driven models are better posed as the model form
is determined using the physical relationship between variables; for example, global and modal artificial viscosity models have
been demonstrated to tackle the closure problem adequately [10,17,18]. In contrast to the conventional physics-driven models
like Eq. (33) and Eq. (34), the tensor artificial viscosity model form in Eq. (35) is more expressive and can potentially give better
accuracy. On the other hand, data-driven closure models are naturally suited for ROMs due to their data-intensive nature. However,
common data-driven closure models that rely on least squares regression for closure modeling require regularization to remedy the
ill-conditioning in the model learning problem [25]. The selection of the ideal regularization strategies and constants varies with the
problem definitions and introduces an additional expensive tuning process. For example, the models proposed in [25,31] have more
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unknown parameters; thereby, they are more expressive but also suffer from ill-conditioning and require regularization. The linear
operator data-driven model in [30] has fewer parameters and does not require regularization for flows considered in this article.
Numerical tests not shown in this article for brevity indicated that this linear operator model yielded similar results to the TV-C
model and better than models with quadratic operator model form [25,31]. The closure models discussed in this article consider
several physics-driven model forms discussed above and determine unknown parameters using least squares regression, which is
more commonly used for data-driven closure models.

4.3. Incremental pressure correction schemes for projection-based reduced order modeling

After including the closure model, the final ROM equations to be solved are

(wk,V-um)+_Zr‘,af(wk,V~¢,-)=0 61)

and

r r r r
a+ Y Lya;+ . Y Byaa;+ ) LEb +Cy + Dy (@) = 0, (62)
i=1 i=1 j=1 i=1
where DZ"’”"” ¢/ is determined using one of the proposed closure models. The solution of these equations also exhibits a saddle-point
form like those exhibited by incompressible Navier-Stokes equations [36]. No equation dictates the evolution of b;, and hence,
several alternate solution methods have been proposed to solve these problems [39,48] in the context of FOM. Most studies on
ROM:s for incompressible Navier-Stokes equations assume the discrete divergence-free nature of the velocity and thereby neglect
the pressure gradient term in the momentum equation [35]. Unfortunately, most of the practical data sources, both computational
and experimental, do not satisfy the discrete divergence-free condition of velocity. Furthermore, the pressure gradient term in the
momentum equation significantly influences flow behavior for several fluid flows, such as confined flows [34]. In such scenarios,
appropriate treatment of pressure-velocity coupling is essential.

Our solution method for these equations is inspired by the pressure-projection method used to solve incompressible Navier—Stokes
equations. These approaches are preferred for efficiently solving large-scale incompressible flow problems [39]. The most commonly
used solution method is the classical pressure correction scheme in [49,50], which uncouples pressure and velocity to avoid the
solution of the saddle point problem. However, this method is first order in time and our implementation required a small time step
for convergence of results. Therefore, we use incremental pressure correction that is second order in time [51]. For incompressible
Navier-Stokes equations, this method involves sub-steps

3t — 4t 4 !

+ah vart 4 vp -yt = o, (63)
2At
3u”+1 _ 3ﬁn+l
vyt ovp =0 64
241 4 P (64)
and
V.u"tl =0, (65)
A similar solution method can be used for Galerkin projection-based ROMs by substituting Eq. (3) in Eq. (63), Eq. (64) and Eq.
(65). The resulting momentum equation, Eq. (63), is projected onto the linear subspace spanned by the ¢, for i = 1,2,..., r. We
first take the divergence of Eq. (64) and then project the resulting equation along with the continuity equation Eq. (65) onto the
linear subspace spanned by the y; for i = 1,2, ..., r. The resulting equations are
3§n+l — 44" + an—l r ror r
k 2Atk k + Z d:’HLki + 2 Z ﬁ:’+ld;l+]Bkij + Z b;’L}:’. + Ck + D;Cn—model(ﬁn-H) =0, for k= 1.2.....r, (66)
i=1 i=1 j=1 i=1
: 24t ¢
Y@ =@, V- ) - 5 DB =BV, V) =0, for k=1,2,..r (67)
i=1 i=1
and
B
(v V) + X a7 V- 6 =0, 68)

i=1
where a; = a(t,) and by = b(t,). As discussed in Section 2, inf-sup condition restricts the choice of function spaces for pressure
and velocity. For example, mixed elements such as Taylor-Hood elements [52] are often used to overcome this restriction. On the
other hand, if equal order interpolation functions are chosen for velocity and pressure, additional stabilization techniques, such as
the pressure-stabilizing Petrov—-Galerkin (PSPG) method [48], may be needed. In the context of ROMs, the spatial basis for both
pressure and velocity is determined from data, and there is limited literature on identifying adequate function spaces for velocity
and pressure POD basis. The literature in this area highlights using stabilization techniques [8,35] and supremizers [36,53]. In
the context of FOMs, such as those using finite element methods, pressure-projection schemes have been shown to overcome the

10
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restriction posed by inf-sup condition on selecting velocity and pressure spaces [54]. Therefore, these schemes are also expected to
work well for ROMs and this article demonstrates this through numerical simulations. Furthermore, decoupling velocity and pressure
states make the solution process efficient especially where a large number of reduced states are considered. As pressure correction
schemes [49,50] are shown to have a similar form as the PSPG scheme [48], pressure correction schemes could implicitly act as a
model for unresolved pressure states [55] and thereby improve pressure stability. Detailed numerical analysis of the stability and
convergence of this method in the context of ROMs will be considered a future study.

Despite good predictions of g; using the incremental pressure correction scheme for ROMs, the accurate temporal evolution of
b; was not observed for the flow under consideration in this article. This observation could be attributed to the role of pressure
to enforce the incompressibility condition which appears to be moderately satisfied for continuous ROMs for the flow under
consideration. As the temporal update of reduced pressure states depends on the divergence of velocity basis, as seen in Eq. (67), a
near divergence free velocity basis implies that pressure is not updated correctly. Therefore, the evolution of b; is instead obtained
in the post-processing stage by utilizing the g; and solving the pressure-Poisson equation as also done in [34,56]. These equations
are obtained by substituting Eq. (3) in the pressure-Poisson equation

V2p=-V-(u-Vu) (69)
and then projecting it on a linear subspace formed by y; for i =1,2,..., r, resulting in
(lI/laVsz) + Z bi(Wk, vzlI/,'> + Z Z a;a; (V’k’v (i V¢j)) + Z ai(‘l’k»V (¢ - V"m))
i=1 i=1 j=1 i=1
+Za,.(y/k,v (- V¢,.)) + (y/k,V (- Vum)) =0, for k=102...,r 70)
i=1

Note that the values of b; obtained through this post-processing step are solely used to compute the pressure distribution and not used
in the evolution of velocity states. The solution of the pressure-Poisson equation costs O(r>). Therefore, this step can be avoided if
only post-processing of velocity is needed. The use of pressure-Poisson for post-processing to obtain pressure is also common when
a discretely divergence free condition is used to simulate incompressible flows, as pressure is not computed during the solution
stage. On the other hand, other common solution methods for resolved pressure states [35] typically involve the solution of the
pressure-Poisson equation during the solution step.

5. Numerical experiments

This section aims to validate the performance of the ROMs with proposed closure models and compare the results to ROMs
without any closure model. First, we describe the details of the FOM simulation setup for the validation case: flow over a 2-D
cylinder [57]. This flow has been frequently considered for validating ROM solution methods and closure models [25,31]. Second,
we give details for the construction of the operators and time evolution of reduced states. Third, we compare the performance of
proposed closure models at three Reynolds numbers: Re =200, Re = 500 and Re = 1000.

5.1. Full order model details

FOM simulations use a finite element code developed using the DOLFINx library [58]. The finite element code closely follows
openly available tutorials in [59,60]. The commonly used Taylor-Hood elements (P2-Q1) are chosen as the spatial discretization
for the FOM simulation. The problem can be posed as:

Findue V' cV=(H'(Q))? and pe Q" c Q= {q € L*(Q) : [, qdx =0}, such that

(v, %) + (v,u . Vu) = —(v, Vp) + (v,szu), vV vedh (71)
and
(q,V-u)=0 V geg’ (72)

subject to boundary conditions
ulgo, =g and plyg, =h, (73)

where 04, is the Dirichlet boundary and 022, is the Neumann boundary. The Dirichlet boundary for the flow over a 2-D cylinder
that encompasses of wall boundary (£2,,), inlet boundary (£2;,), and outlet boundary (£2,,), that is 02, = 02,, @ 9%2;, P 0£2,,,. The
domain and locations of the boundaries are shown in Fig. 1. The wall boundary condition is

ulyg, =0, (74)

the inlet boundary condition is

y0.41—-y)

ulyg, = |4Uo 0412

, 0, where U,=15m/s, (75)
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Fig. 1. Domain for the flow over a 2-D cylinder.

and the outlet boundary condition is
Plag,, =0. (76)

The simulation setup is similar to the well-known benchmark [57]. Unlike the benchmark, which uses a sinusoidally varying
velocity, the flow considered in this article has a constant inflow velocity. These equations are solved using the Crank-Nicholson and
semi-implicit Adams-Bashforth time integration scheme with the above boundary conditions. The mesh for Re = 200 was composed
of quadrilateral elements formed using approximately 14,000 nodes. Meanwhile, the Re = 500 and 1000 meshes comprised around
22,000 nodes. This mesh resolution possibly underresolves the flow at the given Reynolds numbers. However, this mesh works well
to demonstrate the applicability of the closure model and ROM solution method for incompressible fluid flows. The FOM simulation
is started from a zero velocity and pressure initial condition. The simulation is integrated in time until 7, = 10s with a timestep of
1/1600. For Re = 500 and 1000, a lower timestep was also tested to ensure that the lower Courant-Friedrichs-Lewy (CFL) number
remains similar between simulations of different Reynolds numbers. However, the behavior of FOM simulations and ROMs remained
insensitive to this selection.

5.2. Reduced order modeling details

The offline step of ROMs involves the computation of operators as these are expensive to compute, for example, the non-linear
term of Navier-Stokes equations in our case. ROMs can be categorized as discrete ROMs or continuous ROMs following the approach
taken to construct operators in Eq. (66), Eq. (67) and Eq. (68). The key differences between these ROMs are discussed in [13,61].
In this article, we work with continuous ROMs as it is mathematically more consistent with FOM than discrete ROMs [13,62].
Continuous ROMs leverage interpolation and numerical integration routines used in the corresponding FOM solver, favoring the
consistency between ROMs and FOMs. The first step for assembling these ROMs involves interpolating the POD basis, ¢ and vy,
to a mesh with a suitable polynomial degree. The polynomial degree for the spatial discretization can be arbitrarily chosen but
could introduce consistency issues if not matched with the spatial discretization in the FOM [62]. In this article, a more consistent
approach is undertaken by selecting function spaces for ¢ and y to be the same as those for u and p, that is, V" and Q" respectively.
Additionally, we use the same quadrature rule as FOMs for operator integrals.

The online step of ROMs involves the time integration of the dynamical equations of reduced states. This article uses a second-
order implicit time stepping scheme as discussed in Section 4.3. As this scheme is not the same as the time discretization used for
the FOM, some inconsistency in time discretization may be introduced. This decision was still made to demonstrate the applicability
of pressure correction schemes for the temporal evolution of reduced states in ROMs. The equations Eq. (66), Eq. (67) and Eq. (68)
are solved using SNES non-linear solver from PETSc [63]. The time step for ROMs was chosen to be the same as the one for FOMs
after a systematic timestep convergence study, which is not included in this article for brevity. The initial transient of the FOM
simulation, that is, 7 € [0, 5] s, is ignored. The data generated by FOM is uniformly sampled in a time interval of 7,,,, =t € [5, 10] s
and used for testing the ROMs. The POD basis, equation operators and closure models are obtained using uniformly sampled data
int €[5, 6] s. Data at every 20th timestep is selected in this time interval, resulting in 80 data points. Other time intervals and data
selection frequencies were also considered and yielded similar conclusions. The goal of these computational tests is to demonstrate
the ability of ROM for forecasting problems. For all Reynolds numbers, we are interested in answering the question: Do ROMs
obtained using data from 7 € [5, 6] s give good predictions at a future time: ¢ € [5, 10] s (renamed as 7 € [0, 5] s)?

5.3. Cylinder flow at Re = 200

We compare the energy (E), drag coefficient (Cp), and lift coefficient (C;) for different ROMs with corresponding values of
FOM. These are defined as

Eu,1) = (u(x, 1), u(x, z)), 77

Cpu,p,t) = vn - Vu,s(t)ny — p(t)n,ds (78)

LU? Jogs
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Fig. 2. Cylinder flow at Re = 200: Relative errors in (a) energy, (b) C, and (c) C,, for Galerkin ROM without a closure model. The shaded area is the time
interval from which data is extracted to determine the POD basis, equation operators and closure models.

and

Cr(u,p,t)y=— vn - Vu,: (On, + p(HHn,ds,

LU? Joa 79
0 S

where 0Qy is the surface of the cylinder and u, (= u - (n,, —n,)) is the tangential component of the velocity with n, and n, as the
components of the normal to the cylinder surface. In particular, we compare relative errors in energy (ej), relative errors in Cj,
(eCL) and relative errors in C;, (eCL) which are defined as

EfoM 1 — EwROM 1)

ep() = EFOM 1) ) (80)
oo ()= C, WFOM pFOM 1y _ C, (uROM pROM ;) @1
L mtaX(CL(uFOM’pFOM’ ) — mtin(CL(uFOM’pFOM’ )
and
CpFOM pFOM 1y _ . (uROM ,ROM 1)
ec, () =

. 82
max(CpuFOM, proM, 1) — min(Cp oM, proM, ) )

Note that relative errors in C; and Cj, have a mean bias introduced due to the difference in pressure computation between ROMs
and FOM simulations. ROM determines pressure by solving pressure-Poisson equation Eq. (70) without closure models, whereas no
such equations are solved in FOM simulations.

We first demonstrate the performance of the ROM without using a closure model. The evolution of relative errors in energy,
C; and Cp, for ROMs without a closure model for different numbers of modes is shown in Fig. 2. For all selection of modes, we
observe an increase in the error with an increase in time. Using eight modes for the ROM gives better energy prediction than using
16 modes. This result implies that increasing the number of modes for representing the solution does not improve the errors in
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Fig. 3. Cylinder flow at Re = 200: Streamwise velocity component (u,) field at t = 5s for (a) FOM, (b) Galerkin ROM with no closure model, (¢) Galerkin ROM
with the TV-ME closure model and (d) Galerkin ROM with the TV-C closure model when r =4 modes are used.
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Fig. 4. Cylinder flow at Re = 200: Pressure field at t = 5s for (a) FOM, (b) Galerkin ROM with no closure model, (c) Galerkin ROM with the TV-ME closure
model and (d) Galerkin ROM with the TV-C closure model when r =4 modes are used.

energy approximation in time. On the other hand, results for C;, and C; give a more consistent picture as the error for eight modes
is much higher than the error for 16 modes. The error in these aerodynamic coefficients reduces significantly with an increase in
the number of modes.

The numerical results indicate that the incremental pressure correction scheme gives adequately accurate velocity and pressure
predictions for the incompressible fluid flow under consideration in this article. These results also indicate that ROMs would require
many modes to achieve accurate predictions without using any closure model. As the online cost of ROMs scales as °, where r is the
number of modes, using many modes to achieve more accurate results becomes computationally expensive and is not ideal. These
observations and drawbacks of Galerkin ROMs are well-known in the literature. This discussion motivates the need for closure
models that ensure higher accuracy without increasing the online cost of ROMs.

The streamwise velocity component and pressure fields at + = 5 s are shown in Fig. 3 and Fig. 4 respectively. The pressure
distribution for several ROMs tested in this study is similar to those for FOM. These observations highlight the robustness of pressure
prediction even without closure models. As discussed in Section 4.3, the numerical solution scheme may implicitly act as a model for
unresolved pressure states, thereby providing good pressure predictions. ROMs without a closure model lead to a slightly different
prediction of the streamwise velocity in the wake region closer to the cylinder. ROMs with TV-ME and TV-C closure models in this
region yield a closer wake structure to FOM. In the far-wake region, the flow structures predicted by FOMs and ROM:s slightly differ
with TV-ME and TV-C closure models; however, these are still in better agreement compared to ROMs without a closure model
used. These results demonstrate the applicability of the incremental pressure correction scheme-based ROMs to predict similar flow
structures as FOMs.

The temporal evolution of relative errors in energy for four and six mode ROMs with different closure models is shown in Fig. 5.
A significant error growth is observed when no closure model is used for four mode ROMs. ROMs with GV-GE and GV-C closure
models provide even higher errors than those without a closure model. Similarly, ROMs with MV-ME and MV-C closure models
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Fig. 5. Cylinder flow at Re = 200: Relative errors in energy (a) four modes and (b) six modes. The shaded area is the time interval from which data is extracted
to determine the POD basis, equation operators and closure models.
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Fig. 6. Cylinder flow at Re = 200: Relative errors in C, (a) four modes and (b) six modes. The shaded area is the time interval from which data is extracted
to determine the POD basis, equation operators and closure models.

give errors similar to ROMs without a closure model. ROMs with TV-ME and TV-C closure models provide significantly lower errors
compared to ROMs with other and without closure models. ROMs with any of the proposed closure models give better energy
prediction and lower error than ROMs without a closure model for six mode ROMs. ROMs with GV-GE and GV-C closure models
exhibit higher errors than ROMs with other closure models. ROMs with MV-ME, MV-C, TV-ME and TV-C closure models show very
low and almost overlapping errors, thereby demonstrating the promise of these closure models over ROMs without closure models.

The temporal evolution of relative errors in C; and Cj for ROMs with different closure models is shown in Fig. 6 and Fig. 7
respectively. The errors in C; and Cp, exhibit a similar trend to the error in energy. For four mode ROMs, closure models TV-ME
and TV-C provide low errors in C; and C; compared to other closure models and ROMs without closure models. For six mode
ROMs, MV-ME and MV-C closure models exhibit better performance with the lowest error in time, which is even smaller than the
error for ROMs with TV-ME and TV-C closure models. The error in these aerodynamic coefficients remains high when GV-GE and
GV-C closure models are used despite the slightly lower error in energy approximation. These results indicate that ROM without a
closure model is insufficient for dynamics prediction as the error rapidly increases outside the interval for which the data is used
to obtain the energetic spatial basis. However, this drawback of Galerkin ROMs can be rectified by selecting an appropriate closure
model. As the error does not grow significantly in time when MV-ME, MV-C, TV-ME and TV-C closure models are used, Galerkin
ROM with these closure models appear to be well suited for time dynamics prediction for this Reynolds number.

A more complete comparison of the model requires a comparison of these errors for other selections of the number of modes.
Some efficient metrics for comparing the model performance of the different number of modes are the relative L,-integrated error
in energy (1), relative L,-integrated error in C; (n¢,) and relative L,-integrated error in Cj, (1¢,,) which are defined as follows:

e = [|E@ROM .y — E@FOM ||, 83)
£ [|E@FOM )|, ’

_ ICL@ROM, pROM ) — €y @FOM, pFOM | )
(ICL@FOM, pFOM ],

fe,
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Fig. 7. Cylinder flow at Re = 200: Relative error in C;, (a) four modes and (b) six modes. The shaded area is the time interval from which data is extracted
to determine the POD basis, equation operators and closure models.
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The variation of the L,-integrated error in energy, C; and C;, with the number of modes for several closure models is shown
in Fig. 8. A non-monotonic change in the error is observed with increased modes for ROMs with and without closure models. The
results indicate a higher error for ROMs with the GV-C closure model for several modes than when ROMs without a closure model
are used, indicating that this closure model does not perform well. For a lower number of modes, ROMs with GV-GE, MV-ME and
MV-C closure models appear to have a higher error in energy but lower errors in C; and C, compared to ROMs without a closure
model. These results indicate that these models perform similarly to the ROMs without closure model for fewer modes. This behavior
is drastically different when a higher number of modes are used. The results indicate that ROMs with GV-GE, MV-ME, and MV-C
closure models give lower errors in energy, C;, and Cj, for a higher number of modes. The error for ROMs with the GV-GE closure
model is slightly lower than those without a closure model. In contrast, ROMs with MV-ME and MV-C closure models give similar
results with significantly low errors in C; and C;, compared to ROMs without closure models. At a higher number of modes, ROMs
with MV-ME and MV-C closure models give similar predictions to those from ROMs with TV-ME and TV-C closure models. The
results also indicate that ROMs with MV-ME and MV-C closure models do not yield the best results at fewer modes. ROMs with
TV-ME and TV-C closure models give similar results and the lowest errors for all modes. The predictions using these models exhibit
a much lower error in energy, C; and C, compared to ROMs without closure models. These results indicate that ROMs with TV-ME
and TV-C closure models consistently yield the best results for this Reynolds number.

5.4. Cylinder flow at Re = 500

The temporal evolution of relative errors in energy for four and six mode ROMs with different closure models is shown in Fig. 9.
As the error in energy for the four mode ROM without a closure model is surprisingly low, ROMs with GV-GE, MV-ME, GV-C and
MV-C closure models give comparatively worse errors. This lower energy error for the four mode ROM without a closure model is
an anomaly, as we will observe by assessing other mode ROMs and looking at different quantities of interest. For the four mode
scenario, the ROM with the TV-ME closure model gives results similar to the ROM without a closure model. In contrast, the ROM
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Fig. 9. Cylinder flow at Re = 500: Relative errors in energy for (a) four modes and (b) six modes. The shaded area is the time interval from which data is
extracted to determine the POD basis, equation operators and closure models.
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Fig. 10. Cylinder flow at Re = 500: Relative errors in C; for (a) four modes and (b) six modes. The shaded area is the time interval from which data is

extracted to determine the POD basis, equation operators and closure models.

with the TV-C closure model gives lower errors in energy than ROMs with other models and without a closure model. For the case
of six mode ROMs, the ROM without a closure model exhibits a high error that rapidly rises outside the data generation window.
ROMs with GV-GE and GV-C closure models display lower errors than those without a closure model. However, this error increases
rapidly outside the data generation window. ROMs with MV-ME and MV-C closure models exhibit very low and similar errors.
Lastly, ROMs with TV-ME and TV-C closure models exhibit even lower errors, with the former ROM displaying the lowest error
among all ROMs.

The temporal evolution of relative errors in C; and Cj, for 4 and 6 mode ROMs with different closure models is shown in Fig. 10
and Fig. 11 respectively. When GV-GE, GV-C, MV-ME and MV-C closure models are used with ROMs consisting of 4 modes, errors
in C; and Cj are very similar to ROMs without closure models, especially outside the initial data generation window. On the other
hand, ROMs with TV-ME and TV-C closure models exhibit a much lower error for these aerodynamic coefficients, with the latter
model providing the lowest errors. The results for six mode ROMs indicate that ROMs with MV-ME and MV-C closure models give
the lowest error in C; and Cj, for t > 2s. ROMs with GV-GE, TV-ME, and TV-C closure models give much lower errors than those
without closure models, but this error is slightly higher than those for ROMs with MV-ME and MV-C closure models.

The L,-integrated error in energy, C; and C, with different closure models is shown in Fig. 12. The error in energy for ROMs
with the GV-C closure model is mostly higher than the ROMs without closure models, indicating this closure model downgrades
the performance of ROM compared to the baseline ROMs without any closure model. ROMs with the GV-C closure model exhibit
a slightly lower error in C; and C, than ROMs without a closure model. ROMs with the GV-GE closure model give lower errors
in C;, Cp and energy than ROMs without the closure model for all modes except when six mode ROMs are used. As highlighted
earlier, the lower error for four mode ROM without a closure model is not expected and is peculiar for this test case. ROMs with
MV-ME and MV-C closure models yield high errors for four mode ROMs. However, these errors decrease significantly for six to 10

mode ROMs. ROMs with TV-ME and TV-C closure models consistently give the lowest errors for all mode ROMs considered in this
study.

17



A. Prakash and Y.J. Zhang Computer Methods in Applied Mechanics and Engineering 425 (2024) 116930

1.0 0.4
--- NoClosure =--- MV-ME GV-C TV-C --- No Closure
0871 ___ Gv-GE -—= TV-ME  --- MV-C 03] --- GVv-GE
0.6 1 i
} 0.2
0.4 :
0.2 | ‘
s | A g 01 b
U] y ; (U] “, t
0.0 {74ske bR
i 0.0«"W’ T
~021 e
o 1L
b
~0.41 ~0.14 i l?
—0.61 o2 ""!I
0 1 2 3 4 5 0 1 2 3 4 5
t(s) t(s)

Fig. 11. Cylinder flow at Re = 500: Relative errors in C;, for (a) four modes and (b) six modes. The shaded area is the time interval from which data is
extracted to determine the POD basis, equation operators and closure models.
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Fig. 12. Cylinder flow at Re = 500: Relative L,-integrated errors in (a) energy, (b) C, and (c) Cp.
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Fig. 13. Cylinder flow at Re = 1000: Relative errors in energy for (a) four modes and (b) six modes. The shaded area is the time interval from which data is
extracted to determine the POD basis, equation operators and closure models.

5.5. Cylinder flow at Re = 1000

The temporal evolution of relative errors in energy for four and six mode ROMs with different closure models is shown in Fig. 13.
For four mode ROMs, the error in energy for ROMs with GV-C, MV-ME and MV-C closure models is higher than the ROM without
any closure model. On the other hand, ROMs with GV-GE, TV-ME and TV-C closure models yield much lower errors in energy. For
six mode ROMs, ROMs with any closure model deliver lower errors compared to the ROM without a closure model. ROMs with
MV-ME, MV-C and TV-ME yield the lowest errors in energy that do not rise considerably even outside the initial time used for
computing ROM operators. The errors for the ROM with the TV-C closure model increase after ¢+ > 1s. However, these errors are
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Fig. 14. Cylinder flow at Re = 1000: Relative errors in C, for (a) four modes and (b) six modes. The shaded area is the time interval from which data is
extracted to determine the POD basis, equation operators and closure models.
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Fig. 15. Cylinder flow at Re = 1000: Relative errors in C, for (a) four modes and (b) six modes. The shaded area is the time interval from which data is
extracted to determine the POD basis, equation operators and closure models.

still very low, even for the prediction time window. On the other hand, the errors for ROMs with GV-GE and GV-C closure models
rise considerably, with the latter giving much higher errors.

The temporal evolution of relative errors in C; and Cj, for four and six mode ROMs with different closure models is shown
in Fig. 14 and Fig. 15 respectively. For four mode ROMs, the error in C; and C is much lower when TV-ME and TV-C closure
models are used than ROMs with other closure models and without a closure model. Similarly, for six mode ROMs, ROMs with
MV-ME, MV-C and TV-C closure models yield the lowest errors, whereas ROMs with GV-GE and TV-ME closure models exhibit
slightly higher errors. The errors for ROMs with these closure models are still much lower than those without a closure model,
indicating the feasibility of most closure models, except for the ROM with the GV-C closure model.

The L,-integrated error in energy, C; and C, with different closure models is shown in Fig. 16. Similar to the results for the
other two Reynolds numbers, the ROMs with the GV-C closure model exhibit higher errors than ROMs without closure models for
all mode ROMs considered in this article. ROMs with the GV-GE closure model show a significantly lower energy error than ROMs
without a closure model. However, the differences in errors in aerodynamic coefficients between ROMs with these two closure
models are minor. ROMs with TV-ME and TV-C closure models yield the lowest errors in all quantities for all modes, where the
latter gives slightly better C; and Cj, for four modes and the former yields more accurate energy for six and eight mode ROMs.
ROMs with MV-ME and MV-C closure models also yield similar low error at a higher number of modes, that is, for six to 10 mode
ROMs. However, this error rises sharply for four mode ROMs. These results indicate that ROMs with TV-ME and TV-C closure models
yield consistently low errors for all modes; therefore, these are the preferred closure models.

5.6. Discussion
The following conclusions can be drawn from the results obtained from the flow over a 2-D cylinder at three Reynolds numbers:
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Fig. 16. Cylinder flow at Re = 1000: Relative L,-integrated errors in (a) energy, (b) C, and (c) Cp.

» The incremental pressure correction scheme provides accurate estimates of the several quantities of interest for different mode
selections and gives significantly lower errors when coupled with an appropriate closure model.

+ A constant artificial viscosity model form may not be expressive enough to resolve the closure problem and provide significantly
lower errors than Galerkin ROMs without a closure model.

» The parameters of modal and tensor artificial viscosity closure models obtained using the two calibration techniques, based
on energy and closure term approximation, do not lead to an appreciable difference in the closure model performance.

+ Both modal and tensor artificial viscosity model forms are sufficient for a higher number of modes to account for the interaction
of unresolved states on resolved states. However, at a lower number of modes, ROMs with tensor artificial viscosity models
consistently yield better results than ROMs with modal artificial viscosity closure models.

These observations inform decision-making for selecting the appropriate solution method and closure models for ROMs for
incompressible flows. The inapplicability of global artificial viscosity closure models is demonstrated through results indicating
that GV-GE and GV-C closure models do not consistently yield lower errors than ROMs without a closure model. This conclusion
resonates with the observation in [18], where a modal artificial viscosity was used to overcome this drawback. A comparison of
the two calibration techniques indicated that energy transfer between unresolved and resolved states is sufficient to account for the
non-linear dynamics, even for the highest Reynolds numbers under consideration. This result echoes the observation in [16] where
the mean modal artificial viscosities computed using two calibration techniques are similar. Lastly, the modal artificial viscosity
closure form is insufficient to capture the dynamics between the more energetic resolved and unresolved states, which appear to
be better handled by a tensor artificial viscosity closure form. These conclusions guide the selection of appropriate model forms for
even higher Reynolds number flows where the closure problem becomes even more prominent and ROMs with more modes become
less favorable due to higher evaluation costs during the online stage.

6. Conclusions

ROMs are essential for multi-query applications, real-time control and dynamics forecasting. These models must achieve high
accuracy while exhibiting a lower online computation cost. The cost of the online stage scales as > where r is the number of resolved
states for incompressible fluid flows. Therefore, it is desirable to use a lower number of resolved states. However, with a decrease
in the number of resolved states, the need for accounting for the interaction between unresolved and resolved states becomes more
important. The first contribution of this article is to propose closure models for the interaction between the unresolved and resolved
states. We consider six different closure models determined using three model forms, based on global, modal and tensor artificial
viscosity, where the unknown coefficients are determined by two calibration techniques: least squares minimization of error in
energy approximation and closure term approximation. These closure models can be considered hybrid data-physics models as
physical arguments inspire the model form, but the model parameters are directly learned through raw data. The proposed models
did not require regularization for the cases considered in this study, unlike other common data-driven closure models [25,31]. The
flow over a 2-D cylinder is considered at three Reynolds numbers and errors in energy, C; and C;, are compared to validate these
closure models. The results indicate that modal and tensor artificial viscosity model forms yield more accurate ROMs than those
without any closure model. ROMs with tensor artificial viscosity model form deliver even more consistent results as the results
did not deteriorate even for four mode ROMs, indicating that this model form is the most consistent amongst those considered
in this article. Lastly, the two calibration techniques used for determining the unknown parameters in the closure model forms,
least squares minimization for energy error or closure term error, provide closure models with slight differences in results. This
observation indicates that both calibration techniques are equally well suited for determining modal and tensor artificial viscosity
closure model parameters.

ROMs for incompressible fluid flows exhibit coupling between the reduced pressure states and reduced velocity states, where the
primary role of the reduced pressure states is to enforce the incompressibility constraint. The unique structure of these equations
results in a saddle-point problem that requires special solution techniques to obtain the dynamic evolution of velocity and pressure
states. The second contribution of this article is to demonstrate the applicability of a solution technique: incremental pressure
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correction for projection-based ROMs. This method is adapted from the incremental pressure correction scheme readily used in
full order modeling of incompressible fluid flows [51]. The ROMs obtained through this solution method give low errors for
incompressible flows under consideration, thereby demonstrating the applicability of this method for ROM of incompressible fluid
flows.

The solution method and the closure models proposed in this article require further validation on complex three-dimensional
turbulent flows to ensure the accuracy and efficiency remains. The advancements proposed in this article are directly applicable
to such flows but will require additional efforts to ensure a scalable and efficient offline stage for ROMs of such large-scale flows.
Furthermore, a detailed numerical analysis of the stability and convergence of the incremental pressure correction scheme in the
context of ROMs will be performed. Alternative solution methods for saddle-point problems, such as velocity correction schemes,
exist in the full order modeling literature. The applicability of schemes for ROMs must be validated. The closure models considered
in this article are linear as they depend linearly on reduced states. These models could not adequately account for the interaction
between resolved and unresolved states when less than four modes were used for ROMs. Non-linear model forms have the potential
to be more accurate for such a lower number of modes and will be explored in future work. Despite the potential to be more
accurate than linear models, these models would involve a higher online stage cost. Therefore, a comprehensive study is required
to investigate the trade-off between cost and accuracy. As part of future work, we also plan to explore novel applications of ROMs
in material transport regulation of neurite networks [64-67] and heat exchanger design for additive manufacturing [68,69] where
complex and challenging fluid flows need to be addressed.
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