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In the extreme quantum limit, when the Landau level filling factor ν < 1, the dominant electron-electron
interaction in low-disorder two-dimensional electron systems leads to exotic many-body phases. The
ground states at even-denominator ν ¼ 1=2 and 1=4 are typically Fermi seas of composite fermions
carrying two and four flux quanta, surrounded by the Jain fractional quantum Hall states (FQHSs) at
odd-denominator fillings ν ¼ p=ð2p� 1Þ and ν ¼ p=ð4p� 1Þ, where p is an integer. For ν < 1=5,
an insulating behavior, which is generally believed to signal the formation of a pinned Wigner crystal,
is seen. Our experiments on ultra-high-quality, dilute, GaAs two-dimensional electron systems
reveal developing FQHSs at ν ¼ p=ð6p� 1Þ and ν ¼ p=ð8p� 1Þ, manifested by magnetoresistance
minima superimposed on the insulating background. In stark contrast to ν ¼ 1=2 and 1=4, however, we
observe a pronounced, sharp minimum in magnetoresistance at ν ¼ 1=6 and a somewhat weaker minimum
at ν ¼ 1=8, suggesting developing FQHSs, likely stabilized by the pairing of composite fermions that
carry six and eight flux quanta. Our results signal the unexpected entry, in ultra-high-quality samples,
of FQHSs at even-denominator fillings 1=6 and 1=8, which are likely to harbor non-Abelian anyon
excitations.
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When a two-dimensional electron system (2DES) at low
temperatures is subjected to a large, perpendicular magnetic
field (B), the electrons’ kinetic energy is quenched as they
occupy quantized, dispersionless Landau levels (LLs).
The dominant electron-electron Coulomb energy leads to
a variety of exotic, strongly correlated, many-body ground
states, depending on the LL filling factor ν ¼ nh=eB,
where n is the 2DES density. When ν is a rational fraction,
fractional quantum Hall states (FQHSs), incompressible
liquid states that host quasiparticles with fractional charge
and anyonic statistics, manifest as the ground states [1–5].
Of particular interest are FQHSs observed at even-
denominator fillings of excited-state (N ¼ 1) LLs, e.g.,
at ν ¼ 5=2 [6], because they are likely to harbor non-
Abelian anyon excitations [7,8], which can be useful for
topological quantum computation [9]. However, the vast
majority of FQHSs are observed in the extreme quantum
limit (ν < 1) at odd-denominator fillings, and are success-
fully explained by Laughlin’s wave function [10] and Jain’s
composite fermion (CF) theory [2,11].
Another longstanding, fundamental, and important ques-

tion relates to the fate of a clean 2DES at extremely small ν.
It is generally believed that, for sufficiently small ν,
electrons should form an ordered array, known as the
Wigner crystal (WC) [12,13]. Theorists predict a termi-
nation of the FQHSs and transition into a quantum WC at a
critical ν ranging from 1=6 to 1=11 [10,14–17]. On the
experimental front, strong evidence for pinned WC states
was reported at ν≲ 1=5 in GaAs 2DESs [18–22]. The WC
exhibits an insulating behavior because of the pinning by

the ubiquitous disorder in a realistic (nonideal) 2DES. In
the highest quality samples, signatures of FQHSs were also
reported in the very small filling regime, e.g., at ν ¼ 1=7,
in the form of resistance minima superimposed on the
strongly insulating background [23–25]. These observa-
tions highlight the very close competition between the WC
and FQHS phases.
In this Letter, we examine the regime of ν ≪ 1 in ultra-

high-quality GaAs 2DESs. We observe an unexpected
emergence of new correlated states deep in the WC regime,
namely even-denominator FQHSs at ν ¼ 1=6 and 1=8.
These states are likely non-Abelian FQHSs stabilized by
the pairing of six-flux and eight-flux CFs (6CFs and 8CFs).
The presence of these large-flux CFs is also evinced by the
observation of numerous odd-denominator FQHSs on the
flanks of ν ¼ 1=6 and 1=8, following the Jain sequence of
6CFs and 8CFs.
We studied high-quality 2DESs confined to GaAs

quantum wells (QWs) grown on GaAs (001) substrates
by molecular beam epitaxy. They were grown following the
optimization of the growth chamber vacuum integrity and
the purity of the source materials [26]. We used 4 × 4 mm2

van der Pauw geometry samples with alloyed In:Sn
contacts at the four corners and side midpoints. The
samples were cooled in a dilution refrigerator. We mea-
sured the longitudinal resistances (Rxx) using the conven-
tional lock-in amplifier technique.
As highlighted in Fig. 1(a), on the flanks of ν ¼ 1=6, we

observe a sequence of minima at ν ¼ 1=5, 2=11, 3=17, and
1=7, 2=13, 3=19, superimposed on an extremely large and
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insulating Rxx [27]. These are the Jain-sequence FQHSs of
6CFs [ν ¼ p=ð6p� 1Þ], emanating from ν ¼ 1=6, analo-
gous to the standard Jain-sequence FQHSs of 2CFs and
4CFs observed on the flanks of CF Fermi seas at ν ¼ 1=2
and 1=4; see Fig. S4 in Supplemental Material (SM) [28]
for data near ν ¼ 1=2 and 1=4. Our observation is con-
sistent with recent calculations that indicate that, in the
low-disorder limit, Jain-sequence FQHSs of 6CFs should
prevail at ν ¼ 1=7 and 2=13 [17]. The appearances of the
very-high-order FQHSs near ν ¼ 1=2 and 1=4, and the
rarely observed FQHSs near ν ¼ 1=6 [23–25], collectively
demonstrate the exceptionally high quality of our 2DES,
specially at such a low density (n ¼ 4.4, in units of
1010 cm−2, which we use throughout the Letter).
Our main finding is the pronounced, sharp minimum in

Rxx at the even-denominator filling ν ¼ 1=6. Aswe illustrate
below, the characteristics of thisminimumarevery similar to
those of the nearby, emerging, odd-denominator FQHSs.
Our data signal a developing even-denominator FQHS at
ν ¼ 1=6, likely stabilized by the pairing of 6CFs.
Figure 1(a) also shows high-field Rxx vs B traces at

different temperatures. As T increases from 80 to 121 mK,
Rxx at ν < 1=5 decreases by more than an order of
magnitude. Meanwhile, Rxx minima at ν ¼ 1=6 and ν ¼
p=ð6p� 1Þ gradually weaken and eventually turn into
inflection points [28,39]. To highlight FQHS features, in
Fig. 1(b), we present ΔRxx vs B traces, with ΔRxx
representing resistance after subtracting the smooth back-
ground; see Sec. I of SM for details [28]. We observe
sharp ΔRxx minima at ν ¼ p=ð6p� 1Þ for p ¼ 1, 2, 3, 4,
and at ν ¼ 1=6. The ν ¼ p=ð6p� 1Þ minima are weaker

for larger p and weaken with increasing T, consistent with
standard Jain-sequence FQHSs. The ν ¼ 1=6 minimum
is sharp and exhibits similar temperature dependence to
those at Jain-sequence fillings, signaling a developing
FQHS at ν ¼ 1=6.

We note that with decreasing temperature, instead of
approaching zero, Rxx at ν¼ 1=6 and p=ð6p�1Þ increases.
This is because an insulating behavior, which is a mani-
festation of a pinned WC [18–22], is dominant in the whole
range of ν < 1=5. Our observation signals a close com-
petition between the FQHSs and WC states. More specifi-
cally, the energies of WC and FQHSs are so close that
FQHSs only win in a very narrow range of ν [17].
Therefore, in a realistic 2DES, a small local variation of
filling factor caused by a minuscule density inhomogeneity
or disorder can lead to the formation of WC domains
and prevent the percolation of the fractional quantum
Hall (FQH) liquid [40]. Our data are reminiscent of what
was historically observed at ν ¼ 1=5 in GaAs 2DESs
[19,20,37,38,41,42]. Initially, in modest-quality samples,
only an Rxx minimum that rose with decreasing temper-
ature was seen because of the significant amount of
disorder [41,42]. With improved sample quality, perco-
lation of the FQH liquid was eventually achieved, exhib-
iting a vanishing Rxx accompanied by a quantized Hall
plateau, firmly establishing that the ground state at
ν ¼ 1=5 is a FQHS [19,37,38].
We measured a second sample from the same wafer [43].

Figure 2(a) shows the Rxx vs 1=ν traces measured at
T ≃ 80 mK with n ranging from 2.77 to 5.10, while
maintaining symmetric charge distribution. We observe a

FIG. 1. (a) Longitudinal resistance (Rxx) vs perpendicular magnetic field (B) traces for our ultra-high-mobility 2DES in the extremely
small filling regime (1=5 > ν > 1=7), measured at different temperatures [27]. The 2DES is confined to a 70-nm-wide QW, and has a
density of 4.4 × 1010 cm−2 and a record mobility of 22 × 106 cm2=Vs at this density. The magnetic field positions of several LL fillings
are marked. Our data exhibit numerous local minima in Rxx at odd-denominator fillings 1=5, 2=11, 3=17, 1=7, 2=13, and 3=19. These
fillings correspond to the Jain-sequence states of six-flux CFs (6CF). Remarkably, we also observe a local minimum in Rxx at the even-
denominator filling ν ¼ 1=6, suggesting a developing FQHS. (b) ΔRxx vs B traces for the same set of data, where ΔRxx is the resistance
after subtracting the increasing, smooth background [28]. (c) Self-consistent charge distribution (red) and potential (black) for the 2DES.
(d) A possible origin of the 1=6 FQHS: each electron captures six flux quanta to turn into a 6CF. Then 6CFs undergo a pairing instability
and condense into a FQHS.
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clear inflection point at ν ¼ 1=6. It becomes weaker at
lower densities [44]. In addition, well-defined Rxx minima
are observed at ν ¼ 2=11 in the whole range of n, and at
ν ¼ 1=7 in the lower density traces where we could reach
ν ¼ 1=7with our magnet. Figure 2(b) displays a color-scale
plot of ΔRxx as a function of 1=ν and n. Distinct ΔRxx
minima are observed at ν ¼ 2=11, 3=17, 3=19, 1=6, 2=13,
and 1=7, with their 1=ν positions remaining consistent
across different n, indicating that the signatures of the even-
denominator FQHS at ν ¼ 1=6, as well as the high-order
Jain-sequence FQHSs at ν ¼ p=ð6p� 1Þ, are intrinsic to
our ultra-high-quality 2DES.
Figure 2(c) data show the fate of the FQHSs at

yet smaller ν. Here, we observe Rxx minima at odd-
denominator ν ¼ 1=9, 2=17, and 2=15. Hints of developing
FQHSs were previously reported at ν ¼ 1=9 by optical and
transport measurements [24,45]. Recent calculations also
suggest that the ground state at ν ¼ 1=9 is likely a FQHS
[17]. Our data revealing Rxx minima at fixed fillings over a
range of densities provide strong evidence for the existence
of FQHSs at ν ¼ p=ð8p� 1Þ, namely at ν ¼ 1=9, 2=17,
and 2=15 [46]. Furthermore, the traces also exhibit an Rxx
minimum (or an inflection point) at the even-denominator
filling ν ¼ 1=8. The qualitative resemblance of the data
near ν ¼ 1=8 in Fig. 2(c) to Fig. 2(a) data suggests that the
physics for 6CFs for 1=7 < ν < 1=5 can be extended to
8CFs for 1=9 < ν < 1=7.
The signatures of the ν ¼ 1=6 FQHS are not specific to

one wafer. In Fig. 3 we present data for another ultra-high-
quality GaAs 2DES from a different wafer with a higher
density of 7.1 and a narrower QW width of 58.5 nm. We
find a clear, sharp Rxx minimum at ν ¼ 1=6 at 108 mK [47],
and an inflection point at a slightly higher temperature
of 116 mK.
One potential competitive ground state at ν ¼ 1=6 is a

metallic Fermi sea of 6CFs at zero effective magnetic field.

However, several observations suggest that the Rxx mini-
mum we observe at ν ¼ 1=6 is not indicative of a 6CF
Fermi sea: (i) At ν ¼ 1=2, where a Fermi sea of 2CFs is well
established, typically a smooth and broad minimum in Rxx
is observed; see, e.g., Figs. S4 and S5 in SM [28]. In
contrast, the Rxx minimum at ν ¼ 1=6 is sharp; see Figs. 1
and 3, and also the sharp peak in d2Rxx=dB2 [Fig. S2(b)].
The sharp Rxx minimum observed in the WC regime at
ν ¼ 1=6 indicates that the ν ¼ 1=6 state is flanked by WC
states. This strongly favors the interpretation of FQHS over

∆Rxx (MΩ)

-1.0

1.0
(b)(a) (c)

T    80 mK

FIG. 2. Density dependence. (a) Rxx vs 1=ν traces measured at T ≃ 80 mK for different densities n. Each trace is vertically shifted by
3 MΩ for clarity. n is tuned by symmetrically gating the 2DES from both the top and bottom. (b) Color-scale plot of ΔRxx as a function
of 1=ν and n. Several fillings are marked by white dotted lines. (c) Rxx vs 1=ν traces measured at T ≃ 100 mK and at very small ν. Rxx
minima are observed at ν ¼ 1=9, 2=17, 1=8, and 2=15.

FIG. 3. Data for a different sample. Rxx vs B traces for a sample
with a density of 7.1 × 1010 cm−2. Left inset: schematic diagram
showing the energies of WC and FQHSs vs 1=ν, indicating the
possibility of a downward cusp in energy at 1=ν ¼ 6, similar to
cusps at 1=ν ¼ 5 and 7. Right inset: self-consistent charge
distribution (red) and potential (black) for the 2DES confined
to a 58.5-nm-wide QW; w̃ denotes the electron layer thickness
(see text).
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6CF Fermi sea: the energies of FQHSs show downward
cusps as a function of ν, and can dip below the WC energy
(see Fig. 3 left inset, and also see Fig. 9 in Ref. [48]) so that
the WC could be reentrant on the flanks of a FQHS
[17,19,33]. On the other hand, the energies of both CF
Fermi sea and WC states are smooth functions of ν, and
thus one would expect only a single transition between
these two states. (ii) The Rxx minimum at ν ¼ 1=6 and its
temperature dependence closely resemble those at Jain-
sequence, odd-denominator fillings, such as ν ¼ 1=7 (see
Fig. 1 and also Fig. S6 in SM [28,39]), challenging the
metallic 6CF Fermi sea interpretation. (iii) A broad Rxx
minimum is not a universal feature for a CF Fermi sea,
and is indeed generally absent at ν ¼ 1=4 when there is a
competing insulating phase or rising background resistance
[49]; also see SM [28]. It is also worth noting that the
observation of Jain-sequence FQHSs does not necessarily
indicate the presence of a CF Fermi sea. Indeed, a FQHS at
ν ¼ 1=2 flanked by numerous Jain-sequence FQHSs is
well established in 2DESs confined to wide GaAs QWs
[50–56]. We emphasize that, while we believe our data
favor the presence of a developing FQHS at ν ¼ 1=6,
taking the Rxx minimum as evidence for a 6CF Fermi sea at
1=6 is also novel as there has been no experimental or
theoretical evidence for such a phase deep in the low-
filling, insulating WC regime.
The emergence of even-denominator FQHSs at ν ¼ 1=6

and 1=8 is unexpected. These states have not been reported
in any 2D carrier system, or predicted by existing theories.
One might wonder if these new enigmatic states share a
common origin with two other even-denominator FQHSs,
namely those at ν ¼ 1=2 and 1=4, observed in the lowest
LL in wide QWs under special circumstances [50–57]. The
origin of these states has been a subject of debate [58];
however, recent experiments [54–56] and theories [59–61]
indicate they are likely single-component, non-Abelian
states arising from a pairing instability of CFs. To examine
this possibility and investigate the role of QW width on
the 1=6 FQHS, we studied several samples with similar
densities n ¼ 4.4, 4.3, 4.5, and 4.3, but different QW
widths of 70, 50, 40, and 30 nm, respectively. Below we
summarize our findings; for details, see Sec. IV in SM [28].
Table I contains the relevant parameters for our samples.

One parameter is the effective electron layer thickness (w̃),

normalized to the magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

; w̃ is
typically defined as twice the standard deviation of the
calculated charge distribution from its center; see Fig. 3
inset for an example. Another parameter is the symmetric-
to-antisymmetric subband separation (ΔSAS) normalized
to the Coulomb energy, ECoul ¼ e2=ð4πϵlBÞ. For 2DESs
confined to QWs, in the extreme quantum limit (ν < 1),
although only one LL that originates from the symmetric
subband is partially occupied, the proximity of the anti-
symmetric subband can potentially modify the electron-
electron interaction in the lowest LL whenΔSAS=ECoul ≪ 1:
As seen in Table I, we observe the strongest ν ¼ 1=6
FQHS in samples A and B where w̃=lB is large (≳4) and
ΔSAS=ECoul is small (≲0.2), suggesting that the ν ¼ 1=6
FQHS is stabilized by the large layer thickness and
proximity of the antisymmetric subband.
While the 1=2 and 1=4 FQHSs are also seen at large w̃=lB

and reasonably small ΔSAS=ECoul, the 1=6 data pose several
notable quantitative and qualitative differences. First, the
parameters for the samples where we observe the strong
ν ¼ 1=6 minima are different compared to those where the
1=2 and 1=4 FQHSs are seen. This is visually exhibited in
“phase diagrams” for the stability of the ν ¼ 1=2 FQHS in
wide GaAs QWs shown in Fig. S9 in SM [28]. Second, the
1=2 and 1=4 FQHSs are observed only in samples with
bilayer charge distributions [50–57], but in our samples the
charge distribution is single-layer, albeit thick [see Figs. 1(c)
and 3 inset]. Third, the 1=2 and 1=4 FQHSs in wide QWs
become weaker and disappear when the charge distribution
is made asymmetric [51,52,62]. In contrast, the developing
1=6 FQHS in our sample is robust against asymmetry
(see Figs. S10 and S11 [28]). Fourth, at a fixed QW width,
by increasing n, or equivalently w̃=lB, the ground state at
ν ¼ 1=2 in wide QWs starts as a compressible Fermi sea,
transitions to an incompressible FQHS, and eventually turns
into an insulating phase [51,53,62]. At ν ¼ 1=6, however,
the 2DES is deep in the insulating regime, and a developing
FQHS emerges when w̃=lB becomes large.
It is worth reiterating that, while the origin of the 1=2

FQHS in wide QWs is not entirely clear, recent experiments
[54–56] and theories [59,61] point to a single-component,
non-Abelian, Pfaffian-like state stabilized by a p-wave
pairing of 2CFs. Similarly, the 1=4 FQHS has been inter-
preted as a single-component, non-Abelian FQHS stabilized

TABLE I. Sample parameters.

Sample
Density

(1010 cm−2)
Mobility

(106 cm2=Vs)
QW width

(nm)
w̃=lB (at
ν ¼ 1=6)

ΔSAS=ECoul
(at ν ¼ 1=6)

Strength of ν ¼ 1=6
FQHS feature

A 4.4 22 70 4.3 0.13 Strong
B 7.1 25 58.5 4.6 0.15 Strong
C 4.3 16 50 2.7 0.33 Weak
D 4.5 17 40 2.2 0.52 Weak
E 4.3 10 30 1.7 0.93 Absent
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by f-wave pairing of 4CFs [60,61]. Despite the differences
enumerated in the previous paragraph between the param-
eters of our samples and those that show the 1=2 and 1=4
FQHSs,we suggest that the developing 1=6FQHSwe report
here is also single-component and non-Abelian, and is
stabilized by a pairing of 6CFs [see Fig. 1(d)]. An alternative,
two-component ground state, such as the Halperin-Laughlin
Ψ993 state [63], is extremely unlikely to be the ground state,
given the single-layer-like charge distribution in our samples
and the persistence of the 1=6Rxx minimum as we make
the charge distribution significantly asymmetric. Consistent
with our conjecture that the 1=6 FQHSwe are observing has
a one-component origin, preliminary theoretical calcula-
tions indeed suggest that this state likely emerges from an
f-wave pairing of 6CFs and hosts non-Abelian quasipar-
ticles [64].We hope, of course, that our results will stimulate
future theoretical calculations to shed more light on the
origin of the FQHSs at ν ¼ 1=6 (and 1=8).
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