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Detection and attribution (DA) studies are cornerstones of climate science, providing crucial evidence
for policy decisions. Their goal is to link observed climate change patterns to anthropogenic and natural
drivers via the optimal fingerprinting method (OFM). We show that response theory for nonequilibrium
systems offers the physical and dynamical basis for OFM, including the concept of causality used for
attribution. Our framework clarifies the method’s assumptions, advantages, and potential weaknesses. We
use our theory to perform DA for prototypical climate change experiments performed on an energy balance
model and on a low-resolution coupled climate model. We also explain the underpinnings of degenerate
fingerprinting, which offers early warning indicators for tipping points. Finally, we extend the OFM to the
nonlinear response regime. Our analysis shows that OFM has broad applicability across diverse stochastic
systems influenced by time-dependent forcings, with potential relevance to ecosystems, quantitative social
sciences, and finance, among others.
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Detection and attribution of climate change—The cli-
mate is a complex system comprising five subsystems—the
atmosphere, hydrosphere, cryosphere, biosphere, and land
surface—with a myriad of physical, biological, and chemi-
cal processes interacting over a wide range of spatiotem-
poral scales [1,2]. The resulting dynamics is multiscale,
with different subsystems having a dominant role depend-
ing on the scales the climate is looked at [3–6], with subtle
interactions across scales that are yet to be understood [7].
The role of tipping points has emerged as a key climate
change feature [8–12], in particular, due to the interplay of
forcings, instabilities, and feedbacks [7,13,14].
The complexity of climate makes it difficult to dis-

entangle climate variability and the forced climate change
signal. Nonetheless, the successive reports of the Inter-
governmental Panel on Climate Change (IPCC) have
confirmed two key scientific advances obtained via detec-
tion and attribution (DA) studies: (1) statistical evidence of
the change of the current state of the climate system with
respect to the conditions prevailing in the 19th and early
20th century and (2) statistical evidence that such a change
can be attributed (for the most part) to anthropogenic causes

[15,16]. More recently, DA studies have also investigated
climate change at a local level [17] including the relation-
ship between climate change and extreme events [18]. The
current focus on extremes in a changing climate [19,20] and
on tipping points has recently led the scientific community
to use expressions like “climate crisis” or “climate emer-
gency” instead of climate change [21,22].

DA studies wish to link in a causal sense the observed
climate change with various acting forcings [23–25]. The
optimal fingerprinting method (OFM) [15,26–28] aims at
expressing a (vector-valued) observed climate change
signal Yk, k ¼ 1;…; S as a linear combination of response
patterns,

Yk¼
XM
p¼1

X̃p
kβpþRk; X̃p

k ¼Xp
k þQp

k ; k¼1;…;S; ð1Þ

where X̃p
k ’s are the M—typically ≤ Oð10Þ—fingerprints,

each associated with one forcing. One seeks the optimal
solution in the βp’s to the (strongly underdetermined,
S ≫ M in all cases of interest) multivariate regression
problem above, where the Qp

k ’s account for sampling or
model uncertainties, and the residual Rk is the natural
climate variability [23–28]. Usually Rk and Qp

k are
modeled as independent, normally distributed stochastic
vectors with zero mean and given covariance matrices. The
estimate Xp

k for the pth fingerprint is obtained by averaging
across an ensemble of forced model runs, each driven by
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the same protocol for the pth forcing, while the other
forcings are switched off [29,30].
An example follows. Let Yk be a gridded surface

temperature (TS) anomaly field measured at S locations.
Assuming that the pth forcing is the increase in the CO2

concentration ([CO2]), X̃
p
k features larger anomalies at high

latitudes as a result of polar amplification. If the qth forcing
is a localized increase in the (reflecting) aerosol concen-
tration, then X̃q

k is strongly spatially heterogeneous with
negative values where such concentration is higher.
DA relies on Pearl causality [31]. This angle allows for

estimating causal effects through an interventionist proto-
col [32,33]. Each fingerprint is computed using climate
models—which provide the counterfactual reality—where
the intervention is the selective application of one forcing.
Observations-only-based DA requires strong assumptions
on the link between climate change and climate variabil-
ity [30].
The attribution of the signal to the pth forcing depends

on the βp confidence interval. If this includes 1 and
excludes 0, we can reject the null hypothesis of no
influence. The narrower this interval, the more robust
the DA outcome. One has a favorable signal-to-noise ratio
if either the signal is highly sensitive to the forcing or if the
natural variability is weak. Attribution is also impacted by
model uncertainties in estimating the fingerprints. Strong
interactions between forcings can significantly skew the β’s
estimate. Finally, overlooking key forcings can jeopardize
DA, leading to erroneous attribution.
This Letter—Traditionally, OFM relied on an empirical

justification based on Eq. (1). We demonstrate that Eq. (1)
can be rigorously derived from linear response theory
(LRT) applied to nonequilibrium systems, a well-estab-
lished framework in statistical mechanics for both deter-
ministic [34,35] and stochastic systems [36]. The Green’s
function formalism plays a key role here in linking cause
(forcing) and effect (observed signal).
This Letter offers a threefold contribution to climate

physics. First, we establish a robust physical and dynamical
foundation for OFM. This foundation allows for more
advanced fingerprinting analysis, facilitating a deeper
understanding of cause-and-effect relationships within
the climate system. Second, our derivation provides a
theoretical framework for the degenerate fingerprinting
method used for tipping point detection, a crucial compo-
nent of early warning systems [37–39]. Third, by leverag-
ing nonlinear response theory [40,41], we propose an
extension of OFM accounting for the nonlinear effects
tied to the interplay between multiple climate forcings.
To demonstrate the real-world applicability of our theo-

retical advancements, we conduct detailed analyses on two
climate models with varying complexity. This includes the
one-dimensional Ghil-Sellers (G-S) energy balance model
[42] and the open-source, low-resolution coupled climate
planet simulator (PLASIM) model [43–46].

Stochastic climate dynamics and response theory—
Following Hasselmann’s program [47,48]—see also the
recent review [49]—we consider climate models formu-
lated as stochastic differential equations (SDEs), where the
impact of unresolved scales on the scales of interest has
been stochastically parametrized [50–54]. We study climate
change by looking at how perturbations acting on the
dynamics affect the ensemble statistics. Hence, the unper-
turbed dynamics is described by the following d-dimen-
sional Itô SDE [55,56]:

dx ¼ FðxÞdtþ ΣðxÞdWt: ð2Þ

Here, F (drift term) is a smooth vector field on Rd, Wt
denotes a p-dimensional Wiener process (p ≥ 1), Σ is the
diffusion coefficient matrix (of size d × p), and x describes
the climate state. The choice of the climate subcomponents
included in our model and of the explicitly resolved spatial
scales impacts the drift and noise laws [47–50,57,58].
Correspondingly, d can range fromOð101Þ toOð108Þ [13];
yet our framework can be seamlessly applied.
We consider here time-dependent forcings impacting the

resolved scales; see Ref. [59] for a more general case. We
study

dx ¼
�
FðxÞ þ

XM
p¼1

ϵpgpðtÞGpðxÞ
�
dtþ ΣðxÞdWt; ð3Þ

where the “large-scale” perturbations are embodied by one
or more “pattern forcing” Gp of Rd, each modulated by a
scalar-valued bounded function gpðtÞ and by a parameter
ϵp ≪ 1.
The climatology of any smooth observableΨ is the expec-

ted value under the reference climate: hΨi0¼
R
dxρ0ðxÞΨðxÞ.

Here, ρ0ðxÞ represents the stationary probability density of
the unperturbed system [Eq. (2)], solving its associated
Fokker-Planck equation (FPE) [56,60]. Good choices for Ψ
include essential climate variables [61], which are key
physicochemical quantities observed at different spatial
scales, as well as metrics used to evaluate Earth system
models (ESMs) [62].
Response theory allows one to predict the system’s

response to perturbations from properties of the unper-
turbed system, as exemplified by the celebrated fluctuation-
dissipation theorem (FDT) [63,64]. In a seminal article,
Leith [65] suggested that if FDT can be applied in climate
science, then climate change projections can be performed
using the statistical properties of the natural climate
variability. LRT for nonequilibrium systems [34–36] indi-
cates that the first-order correction δð1Þ½Ψ�ðtÞ to the statistics
hΨi0 is given by a suitable lagged correlation between
functions of the unperturbed system [66]. The Green’s
function formalism enables useful insights as discussed
below. It states that
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δð1Þ½Ψ�ðtÞ ¼
XM
p¼1

ϵp

Z
t

−∞
dsGp

Ψðt − sÞgpðsÞ; ð4Þ

where the Gp
Ψ are the (causal) Green’s functions given in

Appendix A. The quality of approximation of the actual
change in statistics by δð1Þ½Ψ�ðtÞ depends on many factors.
It deteriorates with strong perturbations and/or if the un-
perturbed system has slow decay of correlations
[40,41,59,67,68], such as encountered when approaching
tipping points [59].
Connecting OFM to LRT via Green’s functions—We

now show how the structural equation of OFM—Eq. (1)—
can be derived from LRT. Let Ψk be a climatic observable
with reference climatology hΨki0. We want to assess the
contribution of the large-scale forcing, gpðtÞGpðxÞ, to the
anomaly signal YkðtÞ ¼ ΨkðtÞ − hΨki0. Trivially,

YkðtÞ ¼ ΨkðtÞ − hΨkiρtε þ hΨkiρtε − hΨki0; ð5Þ

where hΨkiρtε is the ensemble average with respect to ρtϵ,
which evolves according to the FPE associated with
Eq. (3). The difference term between the ensemble averages
in Eq. (5) is the focus of response theory. By approximating
it by Eq. (4), we obtain

YkðtÞ ¼
XM
p¼1

X̃p
k ðtÞ þRkðtÞ; k ¼ 1;…; N;

with X̃p
k ðtÞ ¼ ϵp

Z
t

−∞
dsGp

Ψk
ðt − sÞgpðsÞ: ð6Þ

The terms X̃p
k ðtÞ account for the forced variability, while

RkðtÞ ¼ ΨkðtÞ − hΨiρtε is a stochastic vector whose corre-
lations are described by the statistical state ρtε. When Σ ¼ 0,

this statistical state is carried by the system’s pullback
attractor at time t [69–71], also known as the snapshot
attractor [72].
Let us compare Eqs. (6) and (1). The fingerprints X̃p

k ðtÞ
are constructed as convolution products of Green’s function
relative to the considered forcing with the corresponding
time modulation. Hence, it makes perfect sense to approxi-
mate them—as customarily done in most DA analyses—as
ensemble average of the response signals obtained by
applying selectively the corresponding forcing. This mir-
rors an efficient method used for estimating Green’s
functions [73–75].
In Eq. (6) there is a conspicuous absence of the βp’s. This

is actually a key element of our derivation: LRT predicts
that all the βp’s should be unitary, apart from (marginal)
uncertainty, when DA is performed with a single
“perfect” model.
Detection and attribution of climate change: Examples—

Energy balance model The G-S model [42] can be seen as
the “hydrogen atom model” of the climate system and is a
one-dimensional space-time reaction-diffusion model. It
describes the evolution of surface temperature TS across
different latitudes. To incorporate natural variability, we
force the model with white noise. Details on the model and
the DA experiments are provided in Appendix B.
The model is discretized in space, evaluating TS at d ¼

37 latitudes. It is also subjected toM ¼ 2 forcings. The first
forcing mimics a [CO2] increase, ramping from a reference
value to a final value over 100 years. The second forcing
represents a localized increase in atmospheric aerosols,
peaking around 50 years in the low-to-mid latitudes of the
Northern Hemisphere and inducing a net cooling effect.
The climate change signal is the decadal S ¼ d ¼ 37-

dimensional vector of TS anomalies (across latitudes) for
10 decades following the start of the forcing. Along the
lines discussed in Appendix D, we compute Green’s

FIG. 1. OFM and link with response theory for the G-S model. The climate change signal [from one ensemble member, in (a)] is
decomposed according to Eq. (1): fingerprints associated with the CO2 and aerosol forcings [shown in (c) and (d)] plus natural
variability shown in (b). The fingerprints shown in (c) and (d) are computed via response theory using Green’s functions (e) and (f) in
Eq. (6), respectively. The corresponding β coefficients in Eq. (1) and 95% confidence regions are computed per decade, for each
ensemble member, in the cases of a weaker (g) and stronger (h) imposed natural variability. See text and Appendix B for details.
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function for TS at each latitude for both forcings; see
Figs. 1(e) and 1(f). We use Green’s functions to compute the
fingerprints via Eq. (6); see Figs. 1(c) and 1(d). Following
Eq. (1) we then apply the OFM for each individual forced
run; see Fig. 1(a). We derive for each decade estimates of the
coefficients βCO2

and βA (for aerosols). We repeat the
protocol forN ¼ 100 forced runs, thus obtaining confidence
intervals for the β’s, see Figs. 1(g) and 1(h).
As the CO2 and aerosol forcings strengthen over the first

half of the century, the β’s 95% confidence region shrinks.
We obtain attribution to both forcings between years 30 and
50. However, as the aerosol signal weakens in the latter half
of the century, attribution for the CO2 forcing becomes
clearer, while the aerosol signal becomes indistinguishable
from natural variability. This distinction arises because,
despite their partially offsetting global effects, the CO2

and aerosol forcings have different spatial patterns.
Additionally, weaker natural variability simplifies the
attribution process by reducing the noise level, as shown
in Fig. 1(g). It is noteworthy that the confidence intervals
for β consistently center around 1.
PLASIM We perform DA using the climate model

PLASIM, which features d ¼ Oð105Þ degrees of freedom
[43,46]. We study the effect of M ¼ 1 forcing, namely, the
increase in [CO2]. Along the lines of [73,74], our protocol
entails an annual 1% increase of [CO2] from 360 ppm up to
doubling, while afterward [CO2] is kept constant. We run
an ensemble of N ¼ 40 forced simulations.
The climate change signals of interest are the decadal

averages of the TS evaluated at the S ¼ 64 × 32 ¼ 2048
grid points. We use LRT to compute the fingerprints. We
then derive an estimate of βCO2

for each of the forced runs,
thus deriving the βCO2

95% confidence interval; see
Appendixes C and D. Figure 2(a) shows that, as the global
warming progresses, the β confidence interval shrinks,
while being always centered around 1. The attribution of
the anomaly signal to the CO2 forcing is statistically robust
already after the second decade. LRT-based DA is effective
because LRT-based climate change projections are accu-
rate: Fig. 2(b) shows the decadal TS anomaly one century

after the start of the forcing computed via LRT, while
Fig. 2(c) shows the (modest) bias with respect to the
corresponding ensemble average of the forced runs.
Nonlinear fingerprints—The standard OFM relies on the

hypothesis of linearity of the response. Response theory
can be extended to higher-order terms [40,41]. The second-
order correction to the expected value of a general
observable Ψ can be written as [76,77]

δð2Þ½Ψ�ðtÞ ¼
XM
p;q¼1

ϵpϵq

Z
t

∞

Z
t

∞
dτ1 dτ2G

p;q
Ψ ðt − τ1; t − τ2Þ

× gpðτ1Þgqðτ2Þ; ð7Þ
where Gp;q

Ψ ðt1; t2Þ is the second-order Green’s function
(causal in both time arguments) describing the joint effect
of the pth and the qth forcing. One then has
δ½Ψ�ðtÞ ¼ δð1Þ½Ψ�ðtÞ þ δð2Þ½Ψ�ðtÞ þ h:o:t:, where h:o:t:
accounts for oðϵ2Þ terms. By accounting for δð2Þ½Ψ�ðtÞ in
the ensemble fluctuations hΨiρtε − hΨki0 in Eq. (5), we
generalize Eq. (6) as follows:

YkðtÞ¼
XM
p¼1

X̃p
k ðtÞþ

XM2

l¼1

Z̃l
kðtÞþRkðtÞ; k¼1;…;N; ð8Þ

where Z̃l
kðtÞ¼ϵpϵq

R
dτ1dτ2G

p;q
Ψ ðt−τ1;t−τ2Þgpðτ1Þgqðτ2Þ

with l ¼ pþMðq − 1Þ. Higher-order contributions can
be constructed in a similar fashion. Indeed, Eq. (7) and its
generalizations can be viewed as Volterra integrals, where
Green’s functions are interpreted as Volterra kernels
[78,79].
We then propose a generalization of the OFM able to

deal with interacting responses by seeking a linear regres-
sion for

Yk ¼
XM
p¼1

X̃p
kβp þ

XM2

l¼1

Z̃l
kγl þRk; k ¼ 1;…; N;

X̃p
k ¼ Xp

k þQp
k ; Z̃l

k ¼ Zp
k þ Pl

k : ð9Þ

FIG. 2. DA of climate change for PLASIM forced experiments. (a) 95% confidence interval for the β factor (blue) of the CO2 forcing
fingerprint computed using Green’s functions. The uncertainty decreases as the signal-to-noise ratio increases, as shown by the globally
averaged TS change ΔTAV (red), ensemble average (thick magenta line; the black line shows the prediction), and ensemble members
(thin red lines). (b) Decadal average of the δð1Þ½TS� (in kelvin) field projection [Eq. (4)] during year 96 to 105 following the start of the
forcing. (c) Difference (in kelvin) between the hTSi anomaly of the forced runs and (b) for the year 96–105 average. The coastline is only
indicative as it is at higher resolution than the land-sea mask used by the model. See text and Appendix C for details.
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The factors β’s and γ’s are unitary in the perfect model
scenario, see Eq. (7). The extra M2 fingerprints compared
to Eq. (1) can be constructed from selected climate model
runs by suitable variations of the ϵp’s [41,80]. A data-driven
route leads to constructing the nonlinear response operator
as feed forward neural networks [81]. After training, the
kernels can be computed from the weights and biases of the
network [82].
Fingerprinting near tipping points—Using the formal-

ism of the Kolmogorov modes [83], which are the stochas-
tic counterparts of the Koopman modes [84–86], we write
Gp
Ψ as a sum of terms, each linked with a specific mode of

natural climate variability. This expansion clarifies the link
between free and forced climate variability [65,87],

Gp
ΨðtÞ ≈

XV
j¼1

Xmj−1

l¼0

αl;pj ðΨÞ 1
l!

eλjttl; t ≥ 0; ð10Þ

with Gp
ΨðtÞ ¼ 0 when t ≤ 0. This formula follows from

the expansion of (temporal) correlations in terms of
Kolmogorov modes and relies on neglecting the continuous
spectrum [49,59,83]. Here V is, in general, infinite and mj

is the multiplicity of the jth eigenmode φj. These are the
eigenfunctions of the Kolmogorov operator KΣ associated
with Eq. (2) [see Eq. (A4) in Appendix A]. The λj are the
corresponding eigenvalues, also known as Ruelle-Pollicott
resonances [88]. Often a finite number of these modes are
approximated from time series in a reduced state space
using Markov approximations [89,90] or delayed-embed-
ding techniques [86].
They encapsulate the decay rate and frequency of

oscillation of the natural modes of variability (Sec. 2.3
in [83]), while the factors αl;pj depend on the applied
forcing and choice of observable [49]. The spectral gap
γ ¼ Reðλ1Þ associated with the slowest decaying mode φ1

indicates the proximity to tipping. Rough dependence of
statistics on parameters is found as γ → 0 [89]. At a tipping
point, γ → 0, and Eq. (10) indicates that any Green’s
function decays subexponentially, irrespective of the
observable and forcing, unless the corresponding α coef-
ficient vanishes. At criticality, the response may diverge
[59,89,91,92]. Hence, if either the climate system or the
model used for fingerprinting is close to a tipping point, DA
via OFM might experience major uncertainties and biases.
If each isolated eigenvalue has unitary multipli-

city, the time-lagged correlation for Ψ is CorrΨðtÞ ¼P
N
j¼1 ajðΨÞeλjjtj with ajðΨÞ given in Corollary 1 of

[83]. If γ → 0, CorrΨðtÞ decays subexponentially when
Ψ has a nonvanishing projection onto φ1. This is the so-
called critical slowing down associated with tipping behav-
ior [10,93], which was originally discovered for continuous
phase transitions [94]. IfΨ ∝ φ1, CorrΨðtÞ ∝ eλ1jtj and φ1 is
the degenerate fingerprinting’s critical mode [37], encoding
the “natural” tipping observable.

Discussion and perspectives—OFM has been instrumen-
tal in shaping modern climate change science and has had
significant societal impact [15,16]. However, recent criti-
cisms highlight potential underestimates of uncertainties
and even question the statistical basis of OFM [95–97].
This Letter addresses this issue by deriving OFM equations
for DA from LRT for nonequilibrium systems, thus
providing a solid physical and dynamical foundation for
OFM. In particular, the causality principle embodied in
Green’s functions aligns closely with Pearl’s interventionist
angle [31], which is key for DA studies. Our deriva-
tion extends OFM applicability to virtually any complex
system—ecosystems, quantitative social sciences,
finance—where attributing observed changes to multiple
forcings is desired.
This Letter offers several key insights for fingerprint

analysis in climate science as listed below.
Systematic attribution In the perfect model scenario

where all forcings are included, this Letter explains why
LRT provides accurate attribution in linear regimes. It also
clarifies why the weighting factors (β’s) are equal to 1 in
such a scenario. However, a crucial limitation is identified:
mismatches between the model’s and the climate system’s
natural variability patterns (Kolmogorov modes) can distort
Green’s functions, affecting fingerprint accuracy across
different timescales. This is especially concerning near
tipping points. Future research will focus on linking natural
and forced variability through Kolmogorov mode analysis.
Combining models Combining fingerprint estimates

from different models can be problematic due to differences
in their Kolmogorov modes, potentially leading to errors,
especially near tipping points. Instead, using an ensemble
approach with a single model aligns with the mathematical
framework.
Critical modes and early warning signals Since

Kolmogorov modes reflect proximity to critical transitions,
they offer a reliable basis for degenerate fingerprinting,
which is key for defining early warning indicators for
tipping points [37] and for defining the critical mode of
variability.
Nonlinear extension to the OFM Nonlinear response

theory allows for a more powerful OFM framework. Even
with significant nonlinearities due to strong forcing inter-
actions, the method remarkably leads to a linear regression
problem. These nonlinearities manifest as additional finger-
prints, providing practical benefits for climate research and
other complex systems. Future work will explore these
applications in detail.
To demonstrate the theory’s potential, we applied its key

findings to perform DA of simulated climate change on two
models: the simple yet historically relevant and physically
informative one-dimensional G-S energy balance model
and the more realistic three-dimensional coupled climate
model PLASIM. The results showcase how LRT and OFM
work hand in hand. Green’s functions enable computation
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of accurate fingerprint across timescales, while the signal-
to-noise ratio heavily influences attribution robustness. Our
approach paves the way for applying LRT to compute
fingerprints in state-of-the-art ESMs [62]. The effectiveness
of LRT for climate change projections in ESMs has already
been established [75]. Successfully implementing LRT in
this way could significantly improve our understanding of
the current climate crisis.
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End Matter

Appendix A: Green’s function and response—Near
equilibrium, the standard form of the fluctuation-
dissipation theorem [56,63,99] allows for predicting
forced fluctuations in terms of readily accessible and
intuitive correlations of observables in the unperturbed
system. This form of the FDT has been applied to predict
climate models’ response to changes in the solar
irradiance [100] and greenhouse gas concentration
[101,102] and to study the impact of localized heating

anomalies [103]. Yet, this approach can lead to potentially
large errors [80]. One can compute the climate response
via LRT, bypassing the FDT, for models of extremely
diverse complexity [73–75,104–106]. We frame climate
change by expanding the statistical state ρtϵ and solving
the time-dependent FPE associated with the SDE (3) as

ρtϵðxÞ ¼ ρ0ðxÞ þ
XM
p¼1

ϵpρ
t
pðxÞ þ h:o:t:; ðA1Þ
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where ρ0ðxÞ is the reference unperturbed climate
described by the stationary probability density associated
with Eq. (2). Such an expansion is the starting point of
virtually any linear response formula; see Refs. [67,68]
for a discussion on the radius of convergence. The
expected value of Ψ at time t is given by

hΨiρtϵ ¼
Z

dxρtϵðxÞΨðxÞ

≈
Z

dxρ0ðxÞΨðxÞ þ
XM
p¼1

ϵp

Z
dxρtpðxÞΨðxÞ: ðA2Þ

Under natural assumptions valid for a wide class of
stochastic systems [36], the “linear response” approximates
the ensemble anomaly, i.e., hΨiρtε − hΨi0 ¼ δ½Ψ�ðtÞ by
δð1Þ½Ψ�ðtÞ given by Eq. (4). Green’s functions Gp

Ψ are [59]

Gp
ΨðtÞ ¼ ΘðtÞ

Z
dxρ0ðxÞ

�
etKΣΨðxÞ½Lp logðρ0Þ�ðxÞ

�
; ðA3Þ

where ΘðtÞ is the Heaviside distribution ensuring causality
[35,74,107]. The operators KΣ and Lp are [59]

KΣΨ ¼ F ·∇Ψþ 1

2
ΣΣT∶ ∇2Ψ;

Lpρ ¼ −∇ · ðGpρÞ; p ¼ 1;…;M: ðA4Þ

In Eq. (A4), KΣ denotes the Kolmogorov operator asso-
ciated with Eq. (2), “:” denotes the Hadamard product,
and etKΣ in Eq. (A3) is the corresponding Markov semi-
group [83]. Instead, Lp indicates the correction to the
Kolmogorov operator due to the perturbation included in
Eq. (3). These formulas provide a general version of the
FDT, as Green’s functions are lagged correlations of the
observables Φ ¼ Lp logðρ0Þ and Ψ.
As made very clear in Ruelle’s derivation of response

formulas for nonequilibrium systems [34], Eq. (4) com-
bined with the causality of Gp

Ψ implies that the effect of the
perturbation comes strictly after the forcing is applied, thus
defining a time-ordered causal link and flow of informa-
tion. This is excellently aligned with the concept of
interventions and counterfactual reality needed to define
causality in Pearl’s sense [31].

Appendix B: The Ghil-Sellers model—The G-S energy
balance model [42] captures the essence of Earth’s
system radiative budget. It accounts for the absorption
and reflection of solar radiation, emission of infrared
radiation back to space, and large-scale heat transport
from tropical regions toward the poles [1]. The G-S
model has been instrumental for understanding why
Earth’s climate is metastable [13,108] and describes the
evolution of the zonally averaged surface temperature
TSðx; tÞ, where x ¼ 2ϕ=π—the normalized latitude

ϕ—lies in ½−1; 1�, and t is time,

cðxÞ∂tTS¼
�
2

π

�
2 1

cosðπx
2
Þ∂x

�
cos

�
πx
2

�
κðx;TSÞ∂xTS

�

þμQðxÞð1−αðx;TSÞÞ−σT4
Sð1−m tanhðc3T6

SÞÞ;
ðB1Þ

with von Neumann boundary conditions ∂xTSð−1; tÞ ¼
∂xTSð1; tÞ ¼ 0. Here cðxÞ is the effective heat capacity
of the atmosphere, land, and ocean per unit surface area
at x. The first term on the right-hand side (rhs)
represents the meridional heat transport as a diffusive
law, where κðx; TSÞ incorporates the effects of sensible
and latent heat transport. The solar forcing (second term
on the rhs) is modulated by the solar constant μ, the
irradiance Q, and the albedo α. The long wave emission
(third term on the rhs) follows the Stefan-Boltzmann
law, modified by the greenhouse effect, whose intensity
is modulated by the constant m (Earth’s grayness).
Further details on the G-S model are reported in [108],
which is our reference for all constants and tabulated
functions.
Numerics We implement the G-S model by discretiz-

ing the latitude in d ¼ 37 increments of 5° and by using a
time step of one day. We discretize the spatial derivative
operators via standard centered differences. To mimic the
effects of the unresolved degrees of freedom and account
for natural variability, we add a white noise forcing to
Eq. (B1), with spatial correlation matrix given by η0Id with
η0 ≥ 0. We use the Euler-Maruyama scheme for time
integration. We choose as reference state the warm climate
established with the present-day solar constant μ ¼ 1 and
η0 ¼ 0 [see Fig. 1(a) in [108] ]. Our ensemble runs are
performed using η0 ¼ 0.2 (reference, strong noise case) and
η0 ¼ 0.1 (weak noise case).
Climate change experiments We simultaneously per-

form (a) an increase in m, which mimics the increase in
[CO2], and (b) a reduction of the incoming radiation in the
region ½25 °N; 45 °N�, mimicking the effect of aerosol
injection in the atmosphere in the low-to-mid latitudes of
the Northern Hemisphere. The forcing (a) is realized by
increasing linearly over 100 years m in Eq. (B1) from m ¼
m0 ¼ 0.5 tom ¼ m0 þ δm, where δm ¼ 0.01, and keeping
the reached value of m constant afterward. This protocol
corresponds roughly to a classical IPCC [CO2] stabilization
scenario. The forcing (b) is realized by multiplying in the
region ½25 °N; 45 °N�μ times a factor ν that decreases
linearly in 50 years from ν0 ¼ 1 to ν ¼ 1 − δν,
δν ¼ 0.012, and then letting the perturbation fade away
with an exponential law with decay time of 20 years.
This corresponds to a typical IPCC technology transition
scenario, where aerosol emissions first peak and then
decay [15].
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Appendix C: The climate model PLASIM-LSG—
PLASIM is an open-source low-resolution climate model
with a graphical user interface and comprehensive
diagnostics suites [43,109]. PLASIM has been widely
used to simulate past climate conditions [44,110], test
specific atmospheric processes [111], look into the
climate via nonequilibrium thermodynamics [45,112],
and study circulation regimes of interest for exoplanetary
research [113,114]. PLASIM has also been used as a test
bed to investigate the climate with statistical mechanical
tools. It has been shown that one can compute climate
change projections via response theory [73,74], study
tipping points through a functional analytical angle [115],
investigate weather extremes using rare event algorithms
[116,117], and analyze the climate metastability using
field-theoretical approaches [118].
The atmospheric dynamics is modeled using the multi-

layer primitive equations, while moisture is included by
transport of water vapor. We use a T21 spectral resolution,
corresponding to ≈5.6° resolution in latitude and longi-
tude), and ten vertical levels. The land surface scheme uses
five diffusive layers for the temperature and a bucket model
for the soil hydrology. Here, following [46], we consider as
fully coupled ocean component the large-scale geostrophic
(LSG) circulation model, which is based on the primitive
equations and on the thermodynamics of saline water. The
version used here has an effective ≈3.5° resolution in
latitude and longitude and 22 vertical layers. The model is
supplemented by well-tested parametrizations for unre-
solved processes, undergoes periodic forcing due to the
orbital annual cycle, and has homogeneous atmospheric
[CO2], which can be changed following a chosen temporal
protocol, as done here.
Climate change experiments We consider a 1%

increase of [CO2] starting from a reference value of
360 ppm, with the system at steady state, up to doubling
(which occurs after ≈70 yr). [CO2] is then kept constant at
720 ppm until the system reaches a newly established
steady state. The initial conditions for the N ¼ 40 climate
change runs are chosen from a 4000-yr-long control run
with reference [CO2], with the jth ensemble member being
initialized on the first day of year 1þ 100ðj − 1Þ of the
control run. While [CO2] grows exponentially up to
doubling, the actual radiative forcing acting on the system
grows linearly with time, see Refs. [73,74].

Despite its relative simplicity, PLASIM has a fairly
realistic response to CO2 forcing, featuring a climate
sensitivity [119] of ≈3 K and an amplified warming over
land in the Northern Hemisphere and in the high-latitude
belt (polar amplification). A strong reduction of the
warming occurs in the North Atlantic, see Fig. 2(b). The
so-called “warming hole” or “cold blob” [75,120,121]
is due to the weakening of the Atlantic meridional

overturning circulation (AMOC); see Fig. 3. The AMOC
is responsible for the ocean meridional heat transport [122]
and is a tipping element [8] that is approaching critical-
ity [12,123].

Appendix D: Computing Green’s functions—Both for
the G-S and the PLASIM-LSG models, we follow the
strategy proposed in [73,74] for estimating Green’s
functions Gp

Ψ. We first select M statistically independent
initial conditions drawn from the steady-state unperturbed
system. In each run, we choose as time modulation of
pth forcing in Eq. (3), gpðtÞ ¼ ΘðtÞ, which amounts to
an instantaneous switch of this forcing only. By taking
the average over the M runs, we estimate δð1Þ½Ψ�ðtÞ, and
[see Eq. (4)] we derive Gp

ΨðtÞ ≈ 1=ϵpdðδð1Þ½Ψ�ðtÞÞ=dt.
For the G-S model, Green’s functions describing the TS

response at the 37 latitudes due to changingm are computed
by instantaneously increasing m ¼ m0 → m0 þ δm. To
obtain Green’s functions for the second forcing, we instan-
taneously apply ν ¼ ν0 ¼ 1 → 1 − δν. For PLASIM-LSG,
we compute Green’s functions for the TS anomalies at the
2048 grid points due to [CO2] forcing by instantaneously
doubling [CO2] from 360 to 720 ppm; see also [73–75].

FIG. 3. PLASIM AMOC stream function showing northward
transport at surface and return flow in depth (in
Sv ¼ 106 m3 s−1). (a) Climatology for reference [CO2]. (b) En-
semble mean of the decadal anomaly 30 years after the end of the
1% yearly [CO2] increase ramp.
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