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ABSTRACT

Counterfactual explanations of Graph Neural Networks (GNNs)
offer a powerful way to understand data that can naturally be rep-
resented by a graph structure. Furthermore, in many domains, it is
highly desirable to derive data-driven global explanations or rules
that can better explain the high-level properties of the models and
data in question. However, evaluating global counterfactual explana-
tions is hard in real-world datasets due to a lack of human-annotated
ground truth, which limits their use in areas like molecular sciences.
Additionally, the increasing scale of these datasets provides a chal-
lenge for random search-based methods. In this paper, we develop
a novel global explanation model RLHEX for molecular property
prediction. It aligns the counterfactual explanations with human-
defined principles, making the explanations more interpretable and
easy for experts to evaluate. RLHEX includes a VAE-based graph gen-
erator to generate global explanations and an adapter to adjust the
latent representation space to human-defined principles. Optimized
by Proximal Policy Optimization (PPO), the global explanations
produced by RLHEX cover 4.12% more input graphs and reduce the
distance between the counterfactual explanation set and the input
set by 0.47% on average across three molecular datasets. RLHEX pro-
vides a flexible framework to incorporate different human-designed
principles into the counterfactual explanation generation process,
aligning these explanations with domain expertise. The code and
data are released at https://github.com/dqwang122/RLHEX.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have shown promise in fields
such as cheminformatics and molecular sciences [10, 45]. A crucial
application of GNNs in these fields is molecule property predic-
tion [26, 33, 34], where the task is to predict a molecule’s properties
based on its structural or functional groups. This is essential for
various scientific research aspects, including drug discovery [11],
environmental monitoring [27], and materials engineering [6].
However, the intricate complexity of Graph Neural Networks
(GNNis) poses challenges in fully leveraging the rich information
embedded within the structural properties and feature representa-
tions of nodes and edges [46, 53, 54]. Moreover, it is challenging to
interpret and understand the underlying rationale behind GNNs’
prediction due to non-transparency. This complexity underlines a
growing need to understand GNN predictions, particularly with
counterfactual (CF) explanations, which present the conditions that
need to change to alter the model’s decisions [1, 24]. They can
highlight the influential sub-graph affecting an individual graph’s
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prediction (local explanations) [24, 25, 41], or a collection of fac-
tors affecting the whole dataset that outlines the model’s learned
principles (global explanations) [19, 52].

Local explanations are known to be vulnerable to a small noise in
the input graph [4] and often fail to generalize to new graphs [25].
Moreover, without ground-truth labels for local explanations in
real-world datasets, it is challenging to evaluate the performance
on large datasets. For example, Szymanski et al. [40] predicts 2.2
million molecules as crystals, making it feasible to manually check
the explanation for each prediction without the ground-truth labels.
This underscores a significant need for more comprehensive and
global explanations.

Global explainers offer a small set of explanations for the whole
input set’s behavior. They are more resistant to changes and easier
for humans to assess. However, finding global explanations that
adequately explain the GNN decision is challenging. Kosan et al.
[19] shows it is an NP-hard problem to find the best CF explanation
set that can cover as many input graphs as possible regarding the
size limit of the set. Additionally, previous CF explainers often use
individual nodes, edges, or features as explanations, which are hard
for domain experts to verify. For example, Wu et al. [47] states
that previous explanations for predicting molecule properties do
not match chemists’ intuition as these features are not chemically
meaningful. Chemists rely on bioisosteres and functional groups
to identify the properties of a molecule. Resolving this issue could
significantly improve the work of chemists, allowing them to make
well-informed decisions based on interpreted results from molecule
property prediction.

In response to these challenges, we introduce a global CF ex-
planation model to aid domain experts in understanding the high-
level behavior of GNN predictors, which is called Reinforcement
Learning via Human-guided EXplanations (RLHEX). RLHEX first
identifies several principles for the ideal global CF explanation to
align with the preference of domain experts. For example, the global
CF explanations should be chemically valid and cover as many input
molecules as possible. RLHEX then employs a Variational Autoen-
coder (VAE)-based molecule generation model to generate global CF
explanations and introduces an adapter to align it with the human-
designed principles. Specifically, the adapter learns the policy for
aligning the initial molecule latent space with the desired CF expla-
nations’ space by leveraging Proximal Policy Optimization (PPO).
By sampling from the aligned latent space, the CF explanations
generated by RLHEX outperform other strong baselines on three
molecular datasets. In summary, our contributions are:

e We propose a novel counterfactual explanation model for
GNNss to generate global CF explanations that align with
human-designed principles. These concise explanations of-
fer domain experts a better insight into GNNs’ prediction
rationale.

By optimizing the latent space via PPO, RLHEX can sample
diverse explanations satisfying desirable and diverse princi-
ples.

Experimental results show that RLHEX can achieve the best

performance on three real-world molecule datasets: AIDS [32],

Mutagenicity [15] and Dipole [30] in terms of several evalu-
ation metrics.
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2 RELATED WORK

Counterfactual Explanations of GNNs. Counterfactual reason-
ing presents a necessary condition that would, if not met, alter
the prediction [20, 31]. Studies aimed at providing counterfactual
explanations for GNNs can be divided into two categories: local
and global explainers. Local explainers select sub-structures from
a given graph that contribute to its GNN’s prediction [24, 28, 41],
whereas global explainers produce new graphs to illustrate the
model behavior across a set of graphs [19, 52]. There are two typi-
cal ways to generate counterfactual explanations. One is to perturb
nodes and edges of the input graph to get a different prediction. For
example, Lucic et al. [24] and Tan et al. [41] learn a mask matrix to
select the sub-graph or feature from the input graph, while Kosan
et al. [19] and [50] explore different graph edits. The other one is
to model it as a generative task. For example, Yuan et al. [52], Nu-
meroso and Bacciu [28] and Ma et al. [25] generates the key pattern
for counterfactual explanations directly. However, the explanations
created by previous methods are difficult to evaluate without the
ground-truth labels. In this paper, we align a graph generative
model with human-designed principles to make the explanations
more human-friendly.

Graph-based Molecule Generation. Graph neural networks are
widely used in 2D molecule tasks [10, 45]. A molecule can be graph-
ically represented with atoms as vertices and chemical bonds as
edges. The atom-based generation methods take the atom as the
basic generation units [22, 51], while the fragment-based meth-
ods build their vocabulary based on the chemical substructure [14,
18, 23]. The fragment-based generation is more likely to produce
meaningful molecules with chemically desirable properties, which
are reflected in their substructure [9, 47]. Additionally, it can make
the edit-based sampling more effective and efficient [48]. In this
paper, we use a fragment-based generative model to ensure that the
generated global explanations are valid molecules, making them
understandable for domain experts.

Align Explainability with Humans. Aligning models to make
them helpful and friendly to humans has gained increasing at-
tention recently, especially in large language models [2, 29]. The
alignment can be formulated in the reinforcement learning frame-
work to optimize the model policy towards the reward functions
based on human values [3] or principles [38, 39]. [21] explores the
selective explanations based on what aligns with the recipient’s
preferences. Xu et al. [49] investigates explainable metrics and
aligns the explanation of the mistakes with humans by the failure
mode summarized from human feedback. However, few studies
have investigated how to align the global interpretation of GNNs
with the preferences of domain experts.

3 PRELIMINARIES

3.1
A molecule can be intuitively represented as a graph G = (V, E),

Molecular Property Prediction

where V € RIVIX4 js a set of nodes corresponding to atoms and
E € RIVIXIVIXde jg 4 set of edges corresponding to chemical bonds.
|V| is the number of atoms. d, and d, are the feature dimensions of

the atom and the bonds respectively. The functional groups of the
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Figure 1: RLHEX has three main parts - the VAE-based generation model, the adapter, and the reward module. The reward module
contains several reward functions based on principles designed by humans, which make the generated explanations easier for
domain experts to interpret. The adapter modifies the latent representation z by adding the delta z’, which is optimized using
PPO to align with the principles designed by humans. The RLHEX model uses the molecule to be explained as the input and
creates the CF explanations from the modified latent representation z + z’.

molecule are often denoted by a subgraph S = (Vs, Es) of the graph
G, which satisfies Vs € V and E € E.

The molecular property prediction can be modeled as a binary
graph classification task. It aims to predict whether the input mol-
ecule has a certain chemical property, such as whether the mol-
ecule is active against AIDS. Given a set of n molecular graphs
G = {Gy, Ga, - - - , Gp} and the ground-truth labels {yo, y1, - - , yn}
where y; € {0,1}, the GNN classifier fy(-) is trained to predict the
estimated label §; = f4 (G;) for each input graph G;.

Typically, GNN learns the representation of each node h, € R4
by aggregating the information of its neighbors N (v) [10]. d is the
dimension of the hidden state. By identifying different aggrega-
tion functions M () and node update functions Ug(-), the update
mechanism in each layer / can be denoted as:

mh= > Mg(hh LR eou) (1)
weN (v)
hh = Uy (k1 mb). ®

Here ey is the feature vector of the edge between node v and w.
Finally, a pooling layer is added on top of the last hidden layer L to
get the representation of the whole graph:

h = Pooling({h5 |0 € V}), 3)

and a classification head is used to predict binary label 7 for the
given chemical property.

3.2 GNN Counterfactual Explanation

The explanation of the GNN classifier is to analyze and interpret
how it makes predictions. A local counterfactual explanation (CF
explanation) of the GNN classifier f4(-) on the input molecular
graph G is defined as an instance C that f3(C) # f4(G). Here, C
can be the sub-graph of the original G or another graph similar to G.
The optimal CF explanation C* is one that minimizes the distance
between G and the CF explanation [24]. Ideally, the optimal CF
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explanation should be very close to the input graph and have a dif-
ferent prediction. It reveals the minimal perturbation the classifier
needs to change its decision.

For the global CF explanation, it aims to provide a set of K
instances C = {C1,Cy, - - - , C } that can explain the global behavior
of the classifier. Different from the local CF explanations which is
specifically designed for each input molecule, the limited size of
the global CF explanation set makes it easier for domain experts
to check the classifier behavior on large molecule datasets. For
example, given an undesirable molecule property y = 0 and a set of
molecules {G;|fy(G;) = 0,G; € G}, the global CF explanation set is
a set of K instances {Cy|f4(Cy) # 0,k € {0,1,---,K}}. Kosan et al.
[19] proposes that the global CF set should have a high coverage, a
low cost and a small size.

3.3 VAE-based Graph Generation

Given the input graph G = (V, E), the variational auto-encoders
first embed the graph into continuous latent representation z € R
by the encoder py, (2|G). d;, is the dimension of the latent represen-
tation. The graph decoder then outputs the graph from the sampled
point in the latent space qw(GA|z) [37]. The model is trained by
minimizing the training objective:

L= ~Ey, (:1) 108 9 (Gl2)] + KL(gy (2IG)lIp(2)).  (4)
Here, p(z) is the prior distribution N (0, 1). It maximizes the like-
lihood of the input graph G and regularizes the latent space with
the KL divergence.

Encoder The graph neural network is often used as the encoder
to map the input graph into the latent representation z. The hidden
representation of the graph hg is obtained by Eqn 3. It is then
mapped to the yg and log variance og of variational posterior
approximation qy (z|G) for the reparameterization [17]. The latent
representation is sampled from N (yg, 0G|G).
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Decoder Based on how the graph is generated, there are two typ-
ical types of graph decoder. One is to pre-define the number of nodes
|V| and then predict the node feature matrix V and edge matrix
E. The other is to autoregressively generate nodes P(v;|v<;, 2),i €
{1,---,|V|} and then predict the edge between the nodes P(ey |2).

4 METHODOLOGY

In this section, we propose a novel global explanation framework
RLHEX to align global CF explanations with human-designed prin-
ciples. We first discuss several desirable properties for the optimal
global CF explanation of molecules. Then we introduce the back-
bone framework to generate CF candidates and use Proximal Policy
Optimization (PPO) to align the candidates with these human prin-
ciples.

4.1 Principle of Global Molecule Explanation

Inspired by previous studies, we investigate three principles to guide
the generation to make the global explanation more understandable
and interpretable to domain experts such as chemists.

(1) The generated explanations should be counterfactual to the

input molecules [31].
(2) The generated explanations should be valid molecule. [47].
(3) The explanation set should be small enough for an expert to
manually evaluate while covering as many input molecules as
possible [19].

The first one is the basic principle for CF explanation, requiring
the counterfactual explanation C to have a different prediction with
the input molecule G: f4(C) # f4(G). The second one ensures that
the generated explanations are chemically meaningful structures to
chemists. This interpretability is more compatible with the domain
knowledge and easy for the chemists to understand. For example,
the generated graphs should not violate the implicit valence and
ring information. The last one is derived from the definition of the
optimal local CF explanation. The CF explanation set should be
similar to the input molecule so that it can reveal the necessary
features the GNN predictor relies on to change their prediction. The
size of the explanation should also be small to ensure it is durable
for domain experts to check. Here we follow Kosan et al. [19] to
introduce three metrics to formally define the requirement: cov,
cost, and size. The size is denoted as |C]|.

Coverage is a measure of the proportion of input graphs G €
G can be covered by explanations in C under a given distance

threshold 6:

I{G € G| mincec d(G,C) < 5}
|Gl

cov(C) = , (5)

where d(G, C) is the function to calculate the similarity between
two graphs, and |G| indicates the size of the set G. The cost is the
mean distance between the input graph set G and the explanation
set C:

|Gl

cost(C) = ﬁ > mind(G,C). ©)
i=1
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4.2 Adapter-enhanced Molecule Generator

To align these human-designed principles with CF generation,
we propose Reinforcement Learning via Human-guided EXplana-
tions RLHEX, a flexible CF generation framework for molecules. It
formulates the search for an optimal global counterfactual expla-
nation as a graph set generation task. Given the input graph set G
and the GNN classifier f;(-), RLHEX generates a set of graphs C as
its CF explanations.

As shown in Figure 1, RLHEX includes three modules: a VAE-
based generation model, an adapter, and a reward module.

e VAE-based Generation Model. It aims to sample diverse
valid molecules as CF candidates.

e Adapter module. It is a parameterized policy 7y to steer
the generator into producing explanations that meet the
human-designed principle.

e Reward Module. It provides the reward signal based on the
human-designed principles to guide the generation. Both
heuristic-based and parameterized criteria can be flexibly in-
tegrated to meet specific experimental needs or to customize
explanations as required.

4.2.1 VAE-based Generation Model. We backbone our model with
a fragment-based molecule generation model Principal Subgraph
VAE (PSVAE) [18] My,. It first mines principal subgraphs from the
molecule datasets and then generates new molecules based on the
subgraphs. Essentially, principal subgraphs are frequent and large
fragments. The sub-graph-based generation is more interpretable
and chemically meaningful, resulting in valid molecules.

PSVAE decomposes one molecule into a set of unordered non-
overlapped principal sub-graphs [Fy, - - - , Fy]. n is the number of
subgraphs. To generate a new molecule, PSVAE autoregressively

predicts chemical sub-graphs P(F;|F<;, z). It then non-autoregressively

predicts the inter-subgraph edges ey, via GNN, where v and w are
nodes from different sub-graphs. Therefore, the likelihood of the
generated molecule can be formulated as:

n
> log P(FilF<;, 2) +
i=0

2

Z)EF,’,WEFj,i#j

log P(eywl2). (7)

By replacing the first term of Eqn 4 with Eqn 7, we obtain the
training objective of PSVAE. We use the pre-trained checkpoint of
PSVAE and freeze the parameters in the encoder and decoder.

4.2.2  Latent Distribution Adaptor. To steer the molecule genera-
tion model to create desired CF explanations, we add a lightweight
adaptor as our parameterized policy 7y to adjust the latent distri-
bution. The adaptor can either be initialized as a copy of the initial
PSVAE, denoted as M¢’ or as a randomly initialized model, in our
case a lightweight transformer encoder [42]. It takes the graph
hidden state hg as the input and maps it to a shift on the mean of
the latent distribution ,u'G = g (hg). The new latent representation
z’ is sample from the distribution N'(yg + ;. 0G). The decoder
takes 2z as the input to generate g, (G|z”). The complete generative
process, starting from the input molecule G; and ending at the
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explanation molecule C; can be formalized as follows:

K6, 06, = M7 (Gr) ®
g = ng + mg(hg,) 9

Z' ~ N(ug, + g, 9G,) (10)

C = M;/D) (), (11)

where and M'E) , MIZD) stand for the respective encoder and decoder
of the PSVAE. This framework allows for the sequential genera-
tion of molecules, with each step informed by the previous state,
thus enabling a guided exploration of the molecular space that is
coherent with the desired properties encoded by the policy 7y.

4.2.3  Principle Modeling. We design our reward module based
on the principles in Section 4.1. For (1), we take the prediction
probability of the opposite class as the reward. For example, if the

input molecules are predicted as negative p ( f$(G) = O), we take

the probability of p ( fp(C) = l) as the reward. We use py(C) for

short. For validity in (2), we use the Rdkit library ! to build an
indicator function I(-) as the reward signal 2. If the molecule is
valid, I(C) = 1, otherwise, I(C) = 0.

The objective of (3) can be written as:

s.t.|C| = k. (12)

C
m(é\x cov(C)

Here, the size of C is limited by k, and the cost is constrained
based on the threshold & in coverage. In practice, we first maximize
the local reward for each input molecule G and get a set of CF
explanation C. Then we greedily select top-k explanations from the
candidate set as Cy. The local reward s(C) for each candidate C is
defined as:

score(C) =1(C) * [apy(C) + feov(C)] (13)

Here a, 8 are the coefficients of the prediction probability and the
local coverage. If we use R(C) to indicate the sum of local reward
on the set C, the optimal global score of the CF explanation set with
size k can be written as:

R*(Cy) = max E score(C), s.t.|Cp|=k.
Crk
CeCy

(14)

4.3 Tailor Latent Distribution via PPO

We formulate the alignment to the human-designed principles as
a Markov decision process (MDP) M = (S, A, R, p), with state
space S, action space A, reward function R, and transition prob-
ability matrix p. The state s € § is the CF candidates, which are
all molecules. The action is the modification of the latent distri-
bution p;, € A C R%. d, is the dimension of the latent space.
p(ls,a) : S X A — 8 indicates the probability of CF candidates
based on the new latent distribution. The reward r € R is the local
reward function defined in Eqn 13.

At each time step t, RLHEX employs the VAE encoder to get the
embedding of the input molecule G, which is the state s;. It then

!https://www.rdkit.org/

2rdkit.Chem.detectChemistryProblems is used to check molecule validity. It inspects
molecular properties such as atom valence. Experts can easily add more constraints
such as QED [5] by replacing this function.
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Algorithm 1 RLHEX Inference

M;f) and the decoder ME,/D),

1: The input molecule set G, the encoder
the policy 7g, the CF set C

: C 0

: for G € Gdo

fort €1:Tdo
Map G to the latent distribution by M"(f) and 7 via Eqn 8 and 9
Sample z" «— N(uc + g, 0G) via Eqn 10
Get one candidate C by MIEID) via Eqn 11
G« C

9: C«C+{C}

10: fori e 1:kdo

11:  C « argmax¢cAr(C;Cr_q)

122 Cp « Cr+{C}

- B A S o

uses 7y (sz, ar) to sample the mean shift of the latent distribution
1/ (G). The reward r(s;, ar) is based on the scores from the human-
designed principle (Eqn 13). Our goal is to learn a policy a ~ 7y (s)
that can find the optimal latent distribution for the CF explanations.

We leverage Proximal Policy Optimization (PPO) [36] to generate
molecules that satisfy different principles. It has been extensively
used to steer models into producing human-desired outputs in lan-
guage models, using RLHF (Reinforcement Learning from Human
Feedback) [7, 29, 55], and we take inspiration from these methods to
build a more flexible system within which many different forms of
human-guided principles can be used to optimize our explanation
model.

PPO operates by optimizing an objective that balances explo-
ration and exploitation of the current policy 7,4, to gain more re-
ward and explore new policies y. This balance is achieved through
clipped probability ratios, ensuring that updates do not deviate
too far from the current policy. The standard PPO objective is the

following:
[ min (

clip (

where € is a hyperparameter that defines the clipping range, and
Es, a, represents the expectation for an on-policy batch sample. We
train an additional critic model V (s) to estimate the actual reward
of the current state and action Q(s;, a;) during the training. Here
Q(s¢, ar) is the expected local rewards of the CF candidates sampled
from the new latent distribution: Q(ss, ar) = Ec~p(.|s,.a,) [score(C)].

7 (arlst)

A(St, az),
7old(arlse)

L() = E (15)

se~p(-lse-1,a-1)
ar~mo1a (+|se-1)
7g(atlst)

7o (atlst)

1—-¢1+ e) A(ss, a;))},

score(C) is from Eqn 13. A(ss, ar) denotes the advantage function,
which is defined as A(s, a) = Q(s,a) — V (s).

In our case, the property of a constrained policy update is es-
sential to our goal of keeping newly generated molecules close in
distribution to the original molecule distribution to ensure their
validity.
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4.4 Greedy Selection

For each molecule G in G, we apply RLHEX to optimize the local
reward score(C) in Eqn 13 and get the CF candidate set C. To get
an optimal CF candidate set Cy with size k, we greedily choose the
top-k candidates from C. Start from an empty set Cp, we add the
candidate with the maximum gain, which is defined as:

Gain(C;C) = R(C +C) — R(C). (16)

The detailed phase is described in Alg. 1.

5 EXPERIMENT
5.1 Datasets

We focus on molecule property prediction and conduct our experi-
ments on three real-world molecule datasets: AIDS [32], Mutagenic-
ity [15] and Dipole [30]. AIDS and Mutagenicity have been used in
previous works [19, 43], however, qualitative evaluation of the coun-
terfactuals generated for these tasks is challenging without domain
expertise. For that reason, we seek to formulate a task in which the
chemical characteristics can be quickly evaluated by observing the
structure of the generated graphs. AIDS is a binary dataset where
the label=0 indicates the molecule is active against AIDS. The ac-
tivity is the desirable attribution for molecules, so we flip the label
to make the negative class correspond to the undesirable property.
The mutagenicity dataset classifies molecules by whether they are
mutagenetic and labels the mutagenetic with label 0. Dipole is a
binary classification dataset we curated from a subset of molecules
reported by Pereira and Aires-de Sousa [30], in which the dipole
moment of each molecule is recorded. In particular, we extract a
subset of the most polar molecules to form the positive class and
a subset of the least polar molecules to form the negative class.
Polarity is a comparably simpler chemical property to assess from
only the molecular structure. Following previous work, we keep
atom types that appear at least 50 times in the dataset, resulting in
9 common atoms in AIDS and Dipole and 10 in Mutagenicity. 3 For
the graph dataset AIDS and Mutagenicity, we convert the graph
representation to SMILES and remove the duplicated instances.

We randomly split the dataset by 0.8:0.1:0.1 for training, vali-
dation and testing. We follow Kosan et al. [19] to train separate
GNN-based predictors fg (-) on these datasets. We use 3 convolution
layers as the aggregation function and add the message to the previ-
ous node representation for update. One max pooling layer is used
to get the graph representation hg from the node representation
and a full-connected layer is added on top of it for classification.
The model is trained with the Adam optimizer [16] and a learning
rate of 0.001 for 1000 epochs. Detailed information is listed in Table
1.

5.2 Baselines

Since most CF explanation methods for GNNs focus on local expla-
nations, which are not directly comparable, we present the state-of-
the-art global explanation method GCFExplainer [19] and elab-
orate two sampling-based generative baselines. GCFExplainer
functions employ vertex-reinforced random walks on an edit map

3We further remove molecules with atom Na because it is not a common atom in
ZINC250K pre-trained dataset [13].
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Table 1: Dataset Statistic. Here # indicates the number size. We
train the GNN classifiers to predict the molecule property. We
ignore atoms that appear less than 50 times in the dataset and
filter the duplicated molecules by SMILES representation.

AIDS  Mutagenicity Dipole
#Graphs 1562 3461 3539
#Nodes per graph  15.73 30.34 9.16
#Edges per graph  16.32 30.80 18.53
#Atom Type 9 10 9
#GNN Accuracy 97.81% 80.00% 89.37%

of graphs and a greedy summary to deliver high-coverage, low-
cost candidate sets for input graphs. The maximum steps of the
random walk is set to 6000. Two non-RL generative baselines are
tested: PSVAE and PSVAE-SA. PSVAE iteratively encodes the in-
put molecule to the latent space and samples from the latent space
to generate candidates. We terminate the sampling process when
its generation has a different prediction from the input molecule,
or when it arrives at the maximum iteration. PSVAE-SA applies
simulated annealing to optimize the sampling process toward the
reward function. For each iteration, it samples from the latent rep-
resentation of the input molecule and accepts the new generation
based on the Metropolis criterion:

. scores —scores_
Ay =min(l,e T R

(17)

Here, score; represents the local reward at step ¢ defined in Eqn
13, while T is temperature, initially set at 0.1 and halved every 10
steps. We follow the standard settings of other hyperparameters in
original papers. We check the validity of the generated candidate ex-
planations and only keep valid molecules with opposite predictions
for the final candidate set.

5.3 Implementation and Evaluation

We initialize the encoder and decoder of RLHEX based on PSVAE [18].
We use the released checkpoint trained on ZINC250K [13] and
freeze the parameters. Note that our method does not limit us
to a specific architecture, allowing for the use of other models
for molecule generation purposes. We set the dimension of the
latent representation space as 56 and the hidden size of the adaptor
to 400 for both the policy model and the critic model. We use
the Adam optimizer for training and set the learning rate to le-5.
We use linear warmup and decay the learning rate to 1/10 of the
maximum. To facilitate good explorations vs. exploitation strategy,
we employ Upper Confidence Bound sampling Wang et al. [44],
which preferably samples input molecules according to the mean
and variance of the scores they yield over episodes.

We follow previous studies to use Tanimoto similarity to cal-
culate the distance between molecules [28, 46]. It is a commonly
used similarity function to compare chemical structures based on
fingerprints. We set the distance threshold § as 0.87 based on the
dataset distribution.

We evaluate the model performance based on the coverage and
cost described in Section 4.2.3. We set the coefficient in Eqn 13 to
a =1, f = 10 to balance the scale of the prediction probability and
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Figure 2: Coverage and Cost with different size k of explanation set. RLHEX generally outperforms the baselines on coverage and

cost. We use iteration i = 20 for generation.

Table 2: Coverage measures the percentage of the input
molecules covered by the top-10 counterfactual explanations.
RLHEX achieves the highest coverage on three datasets.

Coverage T AIDS Mutagenicity Dipole

GCFExplainer  0.647+0.016 ~ 0.806+0.043  0.762+0.020
PSVAE 0.682+0.030  0.850+0.023  0.836+0.018
PSVAE-SA 0.761+£0.024  0.894+0.011  0.872+0.010
RLHEX 0.822+0.021  0.909+0.024 0.896+0.017

Table 3: Cost indicates the minimum distance between the
input set and the top-10 explanation set. RLHEX creates coun-
terfactual explanations that are more similar to the input
graphs but have different GNN predictions.

Cost | AIDS Mutagenicity Dipole

GCFExplainer  0.853+0.008  0.917+0.046  0.964+0.068
PSVAE 0.854+0.003  0.836+0.004  0.839+0.005
PSVAE-SA 0.847+0.003  0.816+0.008  0.832+0.002
RLHEX 0.837+0.001 0.813+0.006  0.833+0.004

the individual coverage. PSVAE-based baselines maintain a beam
size of 10 and a temperature of 1 for decoding. After getting the
counterfactual candidate set, we use the greedy algorithm to select
top-k counterfactual explanations as described in Alg. 1. The main
results come from sampling T = 20 iterations per input molecule.
We use k = 10 for the main experiment.

5.4 Main Results

Table 2 and 3 show the coverage and cost on the test set of three
datasets with k = 10 after 20 iterations. We ran the experiments
5 times with different random seeds and calculated the average
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and standard deviations. Our method, RLHEX, performs better than
the best baseline model, PSVAE-SA, with a gain of 8% increase in
coverage and a cost reduction of 1.23% on AIDS. It also performs
best on Mutagenicity in terms of coverage and cost. Dipole has the
highest coverage with a similar cost. It means that the explanations
from RLHEX are similar to the input molecules with different GNN
predictions. This helps people understand the GNN predictor’s
behaviors on the whole input dataset with limited molecules.

Figure 2 shows how the candidate set size k impacts performance.
RLHEX has the highest coverage with different k. When k increases,
the performance gap grows. All methods reach their maximum
coverage on the input graph set after k = 25. The candidate set
covers almost the entire input graph set. Two generative baselines,
PSVAE and PSVAE-SA, do better than GCFExplainer when k is small.
But GCFExplainer reduces the performance gap as the number of
candidates grows.

In general, RLHEX outperforms other baselines in cost. On AIDS
and Dipole, GCFExplainer can match the input set at a lower cost
than PSVAE and PSVAE-SA with k = 50. This is similar to RLHEX.
However, on Mutagenicity, our method RLHEX has a clear edge over
the other baselines for all k. PSVAE-SA has a small cost at k = 1 on
three datasets while it lags when k grows larger. This means that
the simulated annealing starting from individual input is good at
finding the local optima explanation but not at the global optima.
However, RLHEX can find a better global explanation set closer to
the input set for different k.

5.5 Analysis

Ablation Studies In Table 4, we further investigate the perfor-
mance of our model with several ablation studies. These studies
delve deeper into the fundamental components of the RLHEX model
and their contributions to the model’s overall effectiveness. To
better understand the role of the PSVAE in RLHEX, we consider a
variant of RLHEX, namely RLHEX w/o PSVAE. This variant starts
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Table 4: Ablation Study on RLHEX. Cov. inidated Coverage. All
experiments are based on i = 20, k = 10 and beam size 10.

AIDS Mutagenicity Dipole
Cov.T Cost] Cov.T Cost] Cov.T Cost|
RLHEX 0.811 0.836 0.914 0.813 0.887 0.831
w/o PSVAE  0.168 0.923 0.900 0.799 0.713 0.846
w/o Adapter 0.615 0.857 0.887 0.791 0.817 0.833

with randomly initialized parameters and is trained from scratch.
Noticeably, the absence of the pre-trained PSVAE results in a sig-
nificant reduction in coverage on the AIDS and Dipole datasets.
Nonetheless, it is still able to generate valid explanations because of
the subgraph-based generation method. We also study the influence
of the trained adapter by examining a version of RLHEX (referred to
as RLHEX w/o trained Adaptor) that includes a randomly initialized
adapter without any further training. The adapter in this context
is directly used for inference with a random shift on the latent
space. The results highlight that the removal of the adapter leads to
decreases in coverage and an increase in cost. This is primarily due
to the alignment mismatch with the human-designed principles.
RLHEX achieves the highest coverage after one iteration Fig-
ure 3 illustrates how the performance is impacted by the number
of iterations during the inference process. For the PSVAE-based
model, an iteration is defined as one pass over the set of input
graphs, G. For GCFExplainer, the maximum step of the random
walk is defined as i * |G|, where i denotes the iteration number. As
shown in Figure 3, RLHEX reaches optimal performance after one
iteration and maintains a stable performance after 20 iterations.
However, GCFExplainer shows the best performance at the first
iteration. As the iteration number increases, other models start
to outperform GCFExplainer. This performance decrease can be
attributed to GCFExplainer’s process of exploring every possible
perturbation on nodes and edges for the current molecule at each
step, which includes investigating up to 100,000 neighbors. In com-
parison, PSVAE-based methods explore 10 candidates (beam size
= 10) for each input graph. Consequently, GCFExplainer’s large
search space at each step makes it more effective when the iteration
number is small. However, as the number of iterations increases, its
performance deteriorates due to its inefficient exploration strategy.
Generated CF explanations are more interpretable Figure
4 displays two cases produced by RLHEX, specifically focusing on
the AIDS and Dipole datasets. In the AIDS dataset, the GNN pre-
dictor classifies the input graphs as negative, or label=0, indicating
that these molecules are inactive against AIDS. Conversely, in the
Dipole dataset, the input molecules are deemed non-polar, while
the CF explanation shows them as polar. As seen in Figure 4, the CF
explanation closely resembles these input molecules, as they share
several common chemical sub-graphs. This similarity allows RLHEX
to encapsulate the behavior of the GNN predictor across various
input molecules by grouping multiple negative molecules together.
It further uncovers the necessary conditions that would prompt
the GNN predictor to alter its prediction. Another highlight of our
work is that by comparing the varying sub-graphs between the CF
explanation and the covered input molecules, domain experts can
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Figure 3: Coverage on AIDS dataset with different iterations
i. We limit the explanation set with k = 10 to calculate the
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more easily identify which functional group the GNN predictor
uses to make its decisions. This feature makes RLHEX a valuable
tool for enhancing understanding and facilitating decision-making
in chemists’ work.

5.6 Expert Assessment on CF Explanation

We also engaged molecular chemists to evaluate our CF explana-
tions. Although the evaluations lacked empirical laboratory testing,
the expert feedback was in general alignment with the explanations
about specific classes of molecules. Through this procedure, the
chemists could assess the efficacy of the GNN classifier through
its alignment with known chemical knowledge. Based on the case
shown in Figure 4, chemists made the following observations:

AIDS The CF candidate is predicted to be active against AIDS.
Although the input negative molecules also have the fused aro-
matic rings and hydroxyl (-OH) groups that could potentially form
important interactions with viral targets, the fused 3-ring system
of the CF candidate increases its possibility of being against AIDS.
The fused 3-ring system resembles known HIV integrase inhibitor
pharmacophores [8].

Dipole The CF candidate and the covered input molecules have
O-H and N-H bonds, which are polar due to the electronegativity
difference between oxygen and hydrogen[35]. However, the CF
candidate has a bent geometry, which allows the bond dipoles to
add up and create a net molecular dipole [12].

6 CONCLUSION AND DISCUSSION

In this paper, we introduced RLHEX, a global counterfactual explana-
tion method that strives to aid domain experts to better understand
GNN predictions. Our proposed model aligns with the domain
experts’ criteria and uses Proximal Policy Optimization (PPO) to
generate chemically valid explanations that can cover the highest
number of input molecules. Importantly, our method takes into
account the interpretability requirement of domain experts, an as-
pect often overlooked in CF explanations, making it suitable for
understanding molecular property predictions. Experimental re-
sults show that RLHEX outperforms other strong baselines on three
real-world molecular datasets.
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Figure 4: The counterfactual (CF) explanation generated for the closest input molecules from the AIDS and Dipole datasets.
For each CF explanation, we compute the distance between it and the input molecules, selecting the top 5 input molecules
for display. The generated CF explanation for AIDS exhibits a coverage of 0.231 over the input molecule set, while the CF
explanation for the Dipole dataset shows a coverage of 0.209.

Further work can focus on the scalability of our method. We plan
to investigate RLHEX’s performance on larger datasets and more
complex molecular structures. Although the primary application of
our method is in cheminformatics, we anticipate that the underlying
principle of RLHEX could be broadly applied across various fields
requiring interpretability in the use of GNNs. Furthermore, more
human-designed principles can be flexibly integrated into RLHEX to
align different preferences of domain experts.

To conclude, RLHEX represents a significant step towards creating
more interpretable and understandable GNN models. By generating
global counterfactual explanations through human-aligned princi-
ples, RLHEX offers a promising avenue for domain experts to better
utilize and comprehend the findings of GNN predictions, partic-
ularly in the evolving generative landscape. Through our work,
we aspire to bridge the gap between the scale and complexity of
sequence-based prediction models and the intuitiveness required
by experts to make new scientific discoveries.
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