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Abstract. The dry-snow zone is the largest region of the

Greenland Ice Sheet, yet temporally and spatially dense ob-

servations of surface accumulation and surface roughness in

this area are lacking. We use the global navigation satellite

system interferometric reflectometry (GNSS-IR) technique

with a novel, low-cost GNSS network of 12 stations in the

vicinity of the ice sheet summit to reveal temporal and spa-

tial patterns of accumulation of the upper snow layer. We

show that individual measurements are highly precise ( ±

2.8 cm), while the aggregate of hundreds of daily measure-

ments across a large spatial footprint can detect millimeter-

level surface changes and is biased by −2.7 ± 3.0 cm com-

pared to a unique validation data set that covers a similar

spatial extent to the instrument sensing footprint. Using the

validation data set, we find that the reflectometry technique is

most sensitive to the surrounding 4–20 m of the surface, with

the GNSS antenna at a height of 1–2 m above ground level.

Along with an exceptionally high accumulation rate at the

beginning of the study, we also detect an across-slope depen-

dence in accumulation rates at yearly timescales. For the first

time, we also validate GNSS-IR sensitivity to meter-scale

surface heterogeneities such as sastrugi, and we construct

a time series of surface roughness evolution that suggests

a seasonal pattern of heightened wintertime roughness fea-

tures in this region. These surface accumulation and rough-

ness measurements provide a novel data set for these critical

variables and show a statistically significant relationship with

occurrences of both high winds and precipitation events but

only moderate correlations, suggesting that other processes

may also contribute to accumulation and enhanced surface

roughness in the interior region of Greenland.

1 Introduction

The surface mass balance (SMB) of the Greenland Ice Sheet

is a key indicator of its response to a dynamic climate: with

an acceleration of summertime melt and overall surface mass

loss, sea levels are directly impacted (van den Broeke et al.,

2016; Smith et al., 2020). In central Greenland, the SMB

is still largely positive, but the patterns of accumulation in

this region play a critical role in the stability and the evo-

lution of the ice sheet (e.g., McConnell et al., 2000). Quan-

tifying accumulation and its meter-scale variability (closely

linked to surface roughness) is an important part of track-

ing SMB, and an understanding of these variables is also

important for assessing stratigraphic noise in ice core in-

terpretations (van der Veen and Bolzan, 1999), determin-

ing turbulent heat fluxes over the ice sheet (van Tiggelen

et al., 2021), modeling firn gas exchange (Albert and Haw-

ley, 2002), and validating space-borne radar (Scanlan et al.,

2023). Meanwhile, the drivers of accumulation and surface

roughness in the dry-snow zone, such as precipitation, sub-

limation, and wind erosion, are hard to measure given tem-

porally and spatially sparse ground-based observations, com-

plicating the formulation of a process-level understanding of

accumulation (Castellani et al., 2015).

The few long-term measurements of accumulation or sur-

face roughness in central Greenland commonly sacrifice

some aspect of spatial or temporal scale: for example, ice

cores provide a record of accumulation and climatic patterns

over long timescales but no present-day information. On their

own, cores are point measurements in space and therefore re-

veal little in terms of locally varying processes such as wind

erosion (Kuhns et al., 1997). As such, factors including spa-

tially and seasonally varying accumulation must be under-
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stood in order to quantify the stratigraphic noise in ice cores

(Fisher et al., 1985). To better interpret ice core records and

connect them with modern surface processes, near-real-time

studies have been established on the ice sheets: for exam-

ple, stake fields in the vicinity of coring sites can better cap-

ture the modern spatially varying accumulation signal, with

measurements often made on weekly or yearly scales (e.g.,

Dibb and Fahnestock, 2004). However, snow stakes are man-

ual measurements and therefore pose logistical constraints,

while approximations must be made to convert surface height

measurements to accumulated water equivalent volume (e.g.,

Takahashi and Kameda, 2007). A more recent method that

circumvents this gap uses a buried cosmic-ray counter to di-

rectly quantify the surface mass balance (Howat et al., 2018).

Although this method addresses the aforementioned short-

coming with the snow stake method in converting heights to

mass, this technique may still be limited in its spatial foot-

print. Lastly, remotely sensed surface height change, such

as with the ICESat-2 laser altimeter, can provide ice-sheet-

wide coverage, while temporal gaps and its spatial resolution

make studying small-scale surface processes difficult (van

Tiggelen et al., 2021). As such, there remains an opportunity

to provide measurements at higher temporal resolution and

duration, along with greater spatial representativeness for a

given area of study.

Here, we leverage a network of precise, easily deployable,

low-cost global navigation satellite system (GNSS) instru-

ments that were positioned for 2 years over tens of kilome-

ters to expand both spatial and temporal measurements of

surface accumulation and surface roughness. To retrieve sur-

face measurements, we employ GNSS interferometric reflec-

tometry (GNSS-IR), whereby the direct and reflected signals

from GNSS satellites incident upon the GNSS receiver an-

tenna create a characteristic signal-to-noise ratio (SNR) in-

terference pattern that directly corresponds to the antenna

height above the snow surface (Larson et al., 2009). Unlike

point measurements of the snow, GNSS-IR can sense a large

area (∼ hundreds to thousands of square meters) due to the

azimuthal distribution of reflected GNSS signals about the

instrument, and this method can produce a temporally dense

or even continuous series of surface measurements depend-

ing on the logging configuration of the receiver. This tech-

nique has been used in other studies to measure accumula-

tion throughout the cryosphere, such as in alpine environ-

ments (Larson, 2016; Wells et al., 2024), on the Greenland

Ice Sheet (Larson et al., 2020; Dahl-Jensen et al., 2022), and

in Antarctica (Siegfried et al., 2017; Shean et al., 2017; Pinat

et al., 2021).

With our GNSS network, we examine not only the time

series of the 24 h mean surface height at each station but also

the surface height variability at each individual station and

between each station. While these aforementioned GNSS-

IR studies produce singular height averages during a certain

time period, we extend the GNSS-IR technique by evalu-

ating the spatial heterogeneities (roughness) within the in-

strument sensing footprint. The time series of surface rough-

ness addresses a critical gap in cryosphere observations of

small-scale surface roughness evolution through time. To-

gether with accumulation measurements, we can take advan-

tage of the temporal and spatial resolution of these data to

link patterns of accumulation and roughness with precipita-

tion and winds.

This paper is organized as follows: firstly, we provide in-

formation on the GNSS network, instrumentation, and aux-

iliary data, along with background on the GNSS-IR tech-

nique and its spatial properties. Next, we statistically validate

the GNSS-IR technique by comparing surface height mea-

surements with a long-running snow stake field of similar

spatial extent, being the first study to our knowledge to as-

sess GNSS-IR-derived measurements with those made over

a comparable footprint in the cryosphere. We also extend this

analysis by determining the precision of individual GNSS-

IR measurements and evaluating any differences between L1

and L2 GNSS frequencies. Then, we assess the GNSS-IR

technique in quantifying surface roughness that arises from

heterogeneities in local accumulation. Finally, we analyze

the daily, seasonal, and spatial patterns of accumulation and

surface roughness derived from this technique and connect

these measurements to occurrences of high winds and pre-

cipitation.

2 Instruments and methods

2.1 Open GNSS Research Equipment (OGRE)

network

The network of 12 GNSS stations spans a 35 km east–west

transect in the Summit Station vicinity of the Greenland

Ice Sheet, with the easternmost stations positioned near the

ice divide (Fig. 1). These stations were originally deployed

to record surface velocity, validate ICESat-2 laser altimetry

height estimates of the ice sheet, and demonstrate the util-

ity of low-cost, high-precision instruments in the cryosphere,

and here we use them to analyze accumulation patterns in

the network area using the GNSS-IR technique. Each sta-

tion is built from a low-cost, low-power instrument called

Open GNSS Research Equipment (OGRE), designed specif-

ically for rapid overwinter deployments (Pickell and Haw-

ley, 2024b). The OGRE is built on a u-blox ZED-F9P multi-

band, multi-GNSS chip. Station configuration includes a

lightweight u-blox ANN-MB patch antenna mounted on a

3 m pole, a 10 W solar panel with the instrument mounted on

the back side, and a 40 A h battery buried below the surface

to minimize drifting. Most stations recorded 1 Hz data for

24 h periods once, twice, or 4 times monthly, year round, to

coincide with ICESat-2 overpasses, and the Bamboo Forest

OGRE recorded 24 h data once weekly. Due to a chip short-

age during the fabrication of these instruments, three stations

(West, 07, 09) were built with a sister chip that tracks GNSS
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Figure 1. Open GNSS Research Equipment (OGRE) array in the Summit vicinity. The background shading highlights the elevation from

the ice divide to the west and is derived from the MEaSUREs Greenland Ice Mapping Project 2 (Howat et al., 2014). Inset: example OGRE

setup with the GNSS antenna, instrument, and solar panel mounted on a pole ∼ 2 m above ground and with the battery buried just below the

surface. This particular instrument was placed in the Summit Station Bamboo Forest, an 11-by-11-stake array covering a similar area to the

OGRE sensing footprint.

satellites at L1 and L5 frequencies instead of L1 and L2; we

do not analyze the L5 signals in this paper.

2.2 MERRA-2 atmospheric reanalysis product

We use NASA’s Modern-Era Retrospective analysis for Re-

search and Applications, Version 2 (MERRA-2), for the syn-

optic variables in this study (Global Modeling And Assim-

ilation Office and Pawson, 2015). Due to the intermittency

of meteorological data during the winter of 2022 at Summit

Station, we chose to use MERRA-2 for the timing and mag-

nitude of wind and precipitation events as part of our surface

process analysis. MERRA-2 and other reanalysis products

provide reliable near-surface climatic conditions (e.g., Wang

et al., 2019; Gossart et al., 2019), but, in ice sheet environ-

ments, biases may still exist: MERRA-2 is shown to under-

estimate precipitation and evaporative processes that lead to

surface accumulation (Siegfried et al., 2017; Howat, 2022).

MERRA-2 variables are linearly interpolated to each of the

OGRE station locations.

2.3 Snow stake array

The snow stake array, also referred to as the “Bamboo For-

est”, is arranged in an 11-by-11-stake grid with each stake

spaced approximately 8 m apart (80 m by 80 m). The ar-

ray is located east of Summit Station in a region of rel-

atively undisturbed snow, and the grid is rotated approxi-

mately 15° clockwise from true north to align with the pre-

vailing winds (Fig. 2a). Measurements are made on a weekly

basis when weather conditions allow, and data have been col-

lected since 2003. Heights from a fiducial mark on each stake

are made to the snow surface and are sensitive to the same

snow surface height change as measured by the OGRE sta-

tions with GNSS-IR. One of the OGREs is located within the

Bamboo Forest (“Bamboo Forest OGRE”) and programmed

to log once weekly on Wednesdays, the target day of the man-

ual Bamboo Forest survey.

As each stake height measurement is unreferenced to all

others, we surveyed the Bamboo Forest with an automatic

level on 14 June 2024 to reference all stakes and the Bam-

boo Forest OGRE to the same horizontal reference datum.

This allows the direct comparison of the biases between the

Bamboo Forest stakes and the Bamboo Forest OGRE. The

snow surface in the Bamboo Forest was also scanned with

a VZ-2000i terrestrial laser scanner (TLS) on 16 June 2024

for further intercomparison and spatial analysis of the OGRE

data at 10 cm horizontal spatial resolution (Fig. 2a).

2.4 Surface height change and GNSS-IR technique

Surface height is the distance from the antenna phase cen-

ter on the OGRE or the fiducial mark on the bamboo stakes

to the snow surface. In the GNSS-IR literature, this value is

commonly called the reflector height (Hr) to indicate that the

measurement is the vertical height from the reflecting sur-

face (snow–air interface) to the antenna phase center. We

adopt this nomenclature when referring to the OGRE antenna

heights above the surface. Changes in Hr are sensitive to sev-

eral processes in the dry-snow zone (Castellani et al., 2015):

1Hr = P + M + L + C + W, (1)
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Figure 2. (a) Plan view of Bamboo Forest OGRE, projected into WGS 84/UTM zone 24N. The reflection points corresponding to satellite

elevations of 5, 15, and 25° are drawn radially about the OGRE (calculated based on a 2 m antenna height) in blue, purple, and red, respec-

tively. This OGRE is located in the Bamboo Forest, a 121-accumulation-stake network which we used to validate GNSS-IR. The background

is the TLS-derived surface elevation from 16 June 2024. (b) Elevation view of OGRE antenna and GNSS-IR reflection geometry, showing

the antenna mounted on a partially buried 3.0 m pole (instrument not shown). As a GNSS satellite rises (or sets) through the elevation range

of 5 to 25°, the location of the surface reflection point changes from a maximum radial distance from the antenna at 5° to a minimum distance

at 25°. (c) Plan view of the locations of all observed satellite arcs from the perspective of the OGRE over a 24 h period on 18 August 2022.

(d) Detailed plan view of the L1 frequency Fresnel zone geometry of a single satellite arc from panel (c) relative to the OGRE, with the

reflecting signal ellipse center point labeled at satellite elevation angles corresponding to R = 5° and R = 25°.

where P is precipitation as snowfall, M is melt (generally

negligible at Summit), and L is surface change due to latent

heat flux and can be positive or negative if in a depositional

regime or a sublimation regime, respectively, depending on

atmospheric conditions. C is compaction between the sur-

face and the bottom of the pole, and we assume the pole to

be locked into the layer at its base per Takahashi and Kameda

(2007). Finally, W is wind redistribution, which can also be

positive (depositional) or negative (erosional). In this paper,

we also refer to 1Hr as “accumulation”, which can be posi-

tive or negative and represents the change in the snow layer

between the measured surface and the anchored bottom of

the pole.

In calculating Hr, GNSS-IR does not rely on any position-

related measurements made by the instrument; instead, the

only data of interest are the SNR levels measured by the in-

strument for each satellite signal. When tracking satellites

at low elevation angles, the gain characteristics of a zenith-

pointing GNSS antenna are such that they are susceptible

to not only the direct incoming satellite signal but also any

reflected signal, called multipath (Fig. 2b). At the antenna

phase center, these signals interfere, and whether they do so

constructively or destructively at a given satellite elevation

angle is a function of antenna height above the reflecting

surface. Specifically, the frequency of the interference pat-

tern as the satellite rises is directly related to the ratio of the

antenna height and the signal wavelength (Georgiadou and

Kleusberg, 1988). With multiple L1 and L2 constellations,

we can use this technique to derive hundreds of Hr estimates

each day, distributed radially about the instrument based on

the azimuth directions of the satellites observed at the lat-

itude of the instrument (Fig. 2c). In the ice sheet interior,

this technique is particularly effective given the unambigu-

ous, near-planar reflecting surface.

Following Roesler and Larson (2018), our processing

strategy involves masking satellite arcs from 5–25° (the el-

evation range for which we observe strong multipath in our

receivers), fitting a fourth-order polynomial to remove the di-

rect signal trend, correcting for refraction with a simple bend-

ing model, and estimating the interferometric frequency with

a Lomb–Scargle periodogram. Successful Lomb–Scargle Hr

estimates are filtered by a peak-to-noise ratio that ensures the

detected Hr estimate is the dominant signal by a factor of 4.0.

The software used to process these data is freely available at

https://doi.org/10.5281/zenodo.10644225 (Larson, 2024).

In contrast to sonic snow depth sensors or snow stakes, the

spatial footprint of GNSS-IR is complicated by the chang-

ing antenna height above the surface and the reflection pat-

terns of each satellite arc, but this also provides an oppor-

tunity to sense a much larger area than traditional methods

(e.g., Roesler and Larson, 2018). At our lower-elevation an-

gle bound of 5°, the reflection point is approximately 35 m

from the antenna at the beginning of our study, when the

antenna pole is approximately 2.0 m above the surface. By
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the end of the study, when the antenna is closer to the sur-

face by 1.0–1.5 m due to accumulation, the outer reflection

point has migrated inwards by about 10 m radially. Mean-

while, the inner reflection point when a given satellite has

risen to 25° starts at 4.8 m for an antenna pole height of 2.0 m

and migrates inwards around 2 m by the end of the study. The

sensing footprint of a single Hr measurement can be broadly

characterized as an evolving ellipse centered somewhere on

the reflection circle depending on the satellite azimuth. The

ellipse becomes smaller as it migrates towards the instru-

ment during the satellite’s ascent (Hristov, 2000; Larson and

Nievinski, 2013) (Fig. 2d). These individual footprints then

combine into a near-circular footprint over a 24 h period of

aggregated Hr estimates.

For this study, we model the footprints as ellipses that

change only along the instrument radials. However, as a

satellite rises or sets, its path across the sky is not necessar-

ily orthogonal to the line-of-sight vector from the instrument

to the satellite; therefore the azimuthal location may change

slightly as the satellite rises or sets (Appendix A). This effect

is small, so we chose to use the mean azimuth of each satel-

lite across its 5–25° arc, noting that this introduces an ad-

ditional error when we estimate the ground location of each

reflection.

3 Surface height measurement validation

3.1 Previous validation studies in the cryosphere

Several studies have evaluated the performance of GNSS-IR

in snowy environments. In a mountain saddle, Gutmann et al.

(2012) found a 10 cm bias between the receiver and a scan-

ning laser rangefinder, with this variability largely attributed

to the surface noise recorded by the laser scanner. Siegfried

et al. (2017) demonstrated that GNSS-IR reflections from an

Antarctic network of GPS stations overestimated Hr com-

pared to manual measurements by 2.0 ± 6.0 cm. In Green-

land, closer to the margin with sloping terrain, Dahl-Jensen

et al. (2022) derived an RMSD of 17 cm and correlation of

0.98 compared to a sonic ranger. Finally, Larson et al. (2020)

determined a 9.9 cm standard deviation (no bias provided)

of the differences between a GPS station and a nearby ultra-

sonic sensor in the interior of Greenland and point out that

these uncertainties are within the scale of snow roughness

features that could bias smaller representative measurements

such as those made by an ultrasonic sensor when a sastrugi

migrates within the field of view.

No study to our knowledge has attempted to reconcile

GNSS-IR-derived Hr estimates with their constitutive foot-

print within the cryosphere; one study in the continental USA

made measurements with consideration to the footprint of

the GNSS reflected signals, which found a −5.7 cm bias and

10.3 cm RMSE in snow depth estimates measured relative

to the ground datum using a snow probe (McCreight et al.,

2014).

3.2 Evaluation of bias and precision relative to

Bamboo Forest stake network

In this study, we compare stake height measurements with

an OGRE placed in the center of the Bamboo Forest stake

network. For the manual bamboo measurements, each stake

is referenced to the datum plane that was surveyed on

16 June 2024 with an automatic level. This survey allows us

to add or subtract a correction factor to each bamboo stake

at any point in time to reference it to this fixed horizontal

plane. We estimate these correction factors have a maximum

error of approximately 1.0 cm, based on the legibility of the

stadia rod from the furthest measuring location of the auto-

matic level. Throughout the year, stake heights are measured

to the nearest 0.5 cm, so we estimate an additional measure-

ment error of 0.25 cm for each stake. Furthermore, we as-

sume that the bamboo stakes are all locked into the firn at

their base at the same level, which needs to be true to con-

tinue to reference the stakes to the horizontal plane back-

wards in time. We believe this to be a reasonable assump-

tion, as the stakes are pushed into the snow until a firm layer

is reached during installation. Finally, as this study spans

from August 2022 to June 2024, it encompasses an annual

stake raise in June 2023, whereby the stakes were measured,

raised in the firn, and measured again. This may induce an-

other small error based on the calculated distance between

the pre-raised and post-raised stakes, which would be the er-

ror estimate for a given height measurement added with it-

self in quadrature or 0.33 cm. Thus, there is a possibility for

compounding errors up to 1 to 2 cm, plus any unquantified or

correlated errors, retrospectively from the original automatic

level measurements. In other words, the Bamboo Forest data

recorded closer to the beginning of the study and corrected

to the automatic level datum are more uncertain.

The Bamboo Forest OGRE records data for 24 h each

Wednesday, but, due to safety and weather conditions, the

snow stakes were not always measured on this day. Thus,

when comparing the two data sets, we define a ±48 h win-

dow relative to the OGRE logging day to search for a compa-

rable stake survey. A prior study found the mean accumula-

tion in the Bamboo Forest to be 71 cm yr−1 (Castellani et al.,

2015), which corresponds to a mean daily signal of 1.9 mm.

Thus, we estimate an additional error of several millimeters

in our comparisons due to the temporal offset between data

sets, which may be exaggerated during periods of high ac-

cumulation. To select the bamboo stakes that best represent

the same sensing footprint of the OGRE, we iteratively av-

erage “concentric” stakes radially about the OGRE, starting

with the closest four stakes (2-by-2-stake square) and up to

five stakes away (10-by-10-stake square), while filtering any

stake measurements > 3σ from the mean of the entire net-

work. We find that the variance between the two data sets

https://doi.org/10.5194/tc-19-1013-2025 The Cryosphere, 19, 1013–1029, 2025
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Figure 3. The comparison between the mean 24 h height estimates

of the OGRE and the mean height estimates from a selection of

the nearby 36 stakes within Bamboo Forest. Note that the Hr esti-

mates for both the OGRE and the stakes have been flipped to show

the increasing surface height, as opposed to the decreasing height

between the fiducial and the surface. The shaded uncertainties are

taken to be the 1σ values of the OGRE height estimates for a 24 h

period and the 1σ values of the heights of the stakes, corrected to

the same horizontal reference.

begins to increase after including the third ring of stakes (6-

by-6-stake square); thus we will only consider the 36 stakes

that form a box around the OGRE.

Overall, we observe a mean bias of −2.7±3.0 cm (n = 76)

between the averaged daily OGRE Hr and the 6-by-6-stake

array, with a correlation coefficient of 0.998 (r2 = 0.996)

(Fig. 3). Compared to the 6.0 cm variance found by Siegfried

et al. (2017), an F test for equality of variances indicates

that there is a significant large difference between the pre-

cisions (p = 1.4 × 10−9). We attribute the higher precision

in this study to the centered spatial representativeness of the

validation data set and perhaps a smoother reflecting sur-

face. However, the OGRE-estimated surface is higher than

the stake surface, especially in wintertime months, and this

may be due to radio shadowing from surface features, a

more difficult measurement environment due to snow build-

up, or scouring at the base of the stakes affecting the man-

ual stake measurements. Throughout the study, the heights

of the OGREs were occasionally manually measured from

the antenna ground plane to the snow surface; the mean bias

was 2.5±3.1 cm (n = 31), which is the same sign as the bias

found by Siegfried et al. (2017). This indicates the OGREs

overestimate Hr relative to the manual point measurements.

We also observe that the residuals are not uniform through-

out the study, appearing higher in late fall and wintertime

months. This seasonal effect appears to correspond to pe-

riods of higher uncertainty, indicative of a rougher surface,

or perhaps the variability is partly due to scouring and pit-

ting around the bamboo stakes. During the first year of the

study, the temporal offsets between manual stake measure-

ments and OGRE measurements were also the largest, po-

tentially skewing the biases. These variations warrant a more

robust investigation into the extent to which changing cli-

matic and surface conditions influence reflectometry results.

Nonetheless, we observe a better overall precision than pre-

viously published results from the cryosphere and a compa-

rable bias relative to other studies.

3.3 Intercomparison of L1 and L2 frequencies in

surface determination

An additional strength of the OGRE is its multi-constellation

and multi-frequency tracking ability, which results in hun-

dreds of successfully calculated Hr measurements for a 24 h

period. It is important to analyze whether there is a statis-

tically significant difference between L1 and L2 frequen-

cies that arises due to different penetration depths or antenna

phase center locations, which will influence how we consider

these two signals when we aggregate our data.

We identify any individual satellite arcs across all constel-

lations where both L1 and L2 frequencies from the given

satellite produce Hr estimates in our processing routine. We

then compute the mean of the biases between all these pair-

wise points by constellation (Table 1). Across all aggregated

data, we find no statistically significant evidence (p < 0.01)

that the biases differ from zero for any constellation. This

suggests that the differences in frequency or antenna phase

center location are not enough for a detectable difference in

Hr measurements over sources of noise or processing errors.

These biases are smaller than those reported in Larson and

Small (2016) for GPS signals, perhaps due to improvements

in L1 tracking or a smaller L1/L2 phase center difference

in the antennas used in this study. These results allow us to

further assess the precision of an individual Hr estimate by

considering L1 and L2 Hr estimates together.

3.4 Individual Hr measurement precision

Section 3.3 demonstrated that we can consider Hr estimates

from L1 and L2 together. As this study seeks to evaluate sur-

face heterogeneities from Hr estimates, we first need to un-

derstand the precision of individual Hr estimates. In general,

if we wished to assess the noise and precision of single Hr es-

timates corresponding to particular satellite arcs, we would

conduct a repeatability test from one day to the next with

an unchanging surface. However, while we consider a 24 h

period of surface heights to be static, we cannot necessar-

ily make the same assumption from one measurement period

to the next. Given the large amount of data and the general

agreement between L1 and L2 height estimates, we instead

assess the variability in the mean surface for any period.

In Fig. 4a, we see an example aggregate of Hr estimates

for a 24 h period, plotted based on azimuthal location about

the OGRE. These Hr estimates show a low-frequency sig-
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Table 1. Pairwise biases between L1 and L2 frequencies, showing very low biases for intra-constellation differences in L1 and L2 frequency

Hr estimates.

Constellation L1 center frequency (MHz) L2 center frequency (MHz) Mean bias (m) 1 SD (m) n (pairs)

GPS 1575.42 (C/A) 1227.6 (L2C) −0.0007 0.046 6647

GLONASS ∼ 1602 (L1OF) ∼ 1246 (L2OF) 0.0005 0.046 6643

GALILEO 1575.42 (E1-B/C) 1207.14 (E5B) −0.0015 0.046 4559

Figure 4. (a) Example 24 h period of Hr measurements from an OGRE with the mean surface determined by passing the data through a

kernel filter tuned to encompass 10° azimuthal windows. (b, c) All detrended surface height Hr data points for the Bamboo Forest OGRE

across all measurement periods are aggregated together and show an approximately normal distribution. The 1σ value (2.8 cm) is taken to be

the precision value for any single Hr estimate.

nal when plotted azimuthally. As Hr estimates are semi-

randomly sampled temporally, changes in atmospheric or

surficial conditions throughout the 24 h window cannot con-

tribute to this low-frequency signal, indicating the signal is

more likely caused by surface topography variations. In the

next section, we more definitively link this signal to sur-

face features, but, in order to assess precision, here we re-

move this azimuthal trend in the data by applying a fixed-

bandwidth Gaussian kernel smoother to find and subtract the

azimuthally varying mean surface. Firstly, any Hr outliers

(> 3σ ) are removed for a given 24 h data period. We then

remove any days where there is a statistical temporal trend

in the data (p < 0.01), indicating that detectable accumula-

tion occurred during the 24 h period. This occurred during 8 d

throughout the study. The removal of outliers and temporal-

trending days reduces the total number of Hr points from

39 480 to 35 340. Finally, we define a bandwidth window that

encompasses 10° azimuthal chunks of the data in order to ap-

ply the filter to remove the low-frequency signal.

Aggregating all detrended measurement data yields a 1σ

of 2.8 cm (n = 35340) (Fig. 4). This value represents the

precision of any single Hr measurement and may still en-

compass errors from variable surface conditions throughout

the study and processing errors. However, this value agrees

with estimates made in past studies showing that individual

satellite signals produce height estimates varying on the or-

der of 2–3 cm (Larson and Small, 2016). Furthermore, Gut-

mann et al. (2012) estimates the formal error of the GNSS-IR

method to be 2 cm, while Larson and Nievinski (2013) esti-

mate this error to be 2.5 cm, which indicates these formal

and processing errors largely constitute the estimate of this

precision.
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Figure 5. Bamboo Forest surface roughness (derived from 6-by-

6 inner stakes) compared to OGRE surface roughness. Note that,

between February 2023 and March 2023, the OGRE did not record

any data, as it was temporarily removed from the field for a firmware

upgrade.

4 Surface roughness measurement validation

4.1 A new technique for measuring surface roughness

We now evaluate the sensitivity of OGRE reflectometry-

derived Hr estimates to surficial features such as sastrugi and

dunes. For a given 24 h period, we first remove outliers as in

Sect. 3.4. We then apply the same 10° fixed-bandwidth kernel

filter to derive the underlying low-frequency signal, resam-

pling the signal to 1° bins to ensure a uniform spatial sam-

pling. Finally, we fit a sinusoid with a period of 1 per 360° to

the data to remove the underlying surface slope, and we take

the standard deviation of the detrended data. This value is

taken as the OGRE-derived surface roughness. Similarly, for

the Bamboo Forest data, we remove the plane of best fit from

the subset of 36 stakes closest to the OGRE and take the stan-

dard deviation to represent the surface roughness, covering a

spatial extent of 40 m by 40 m. Over the study period, we find

that the OGRE-derived surface roughness correlates with the

Bamboo Forest stakes (r = 0.74, p = 1.5 × 10−14, n = 76),

again using a ±48 h search for comparisons (Fig. 5). During

the final year of the study, a heightened surface roughness

state is detected by both methods and the correlation is 0.89.

We also conducted this comparison for increasingly larger

and smaller subsets of bamboo stakes, with monotonically

decreasing correlation coefficients from 0.74 for the 36

stakes to 0.56 for the entire 121-stake network and a correla-

tion of 0.51 for the inner 4 stakes. Across the range of OGRE

antenna heights in this study, this comparison indicates that

the technique is most sensitive to the surface 4–20 m radially

from the OGRE location, aligning with our findings from the

accumulation comparison. To test for the choice in the band-

width window, we varied the window size from 5 to 40° and

found that the two data sets still have moderate to high cor-

relations, perhaps due to a multi-scale correlation in surface

roughness, but with diminishing agreement as the filter over-

or underfits the reflectometry data.

The 36 stakes, which are spaced at 8 m in a grid, act like

a low-pass filter and are sensitive to surface features that

have wavelengths close to or exceeding this spacing. Mean-

while, large-scale features with a wavelength greater than

the distance of the total spatial extent (40 m in either direc-

tion) are removed when the plane of best fit is removed. For

the OGREs, each Hr estimate is effectively a spatially av-

eraged surface based on the Fresnel geometry; thus features

with wavelengths smaller than these ellipse widths (2–4 m)

will minimally bias the height estimates, although this sen-

sitivity may vary based on the anisotropy of the roughness.

The maximum wavelength sensitivity for this technique ap-

proximately corresponds to the diameter of the total circu-

lar footprint, or 50–70 m. As for sensitivity to the amplitude

of these features, both techniques are precise at centimeter

level; thus they are sensitive to centimeter- to meter-scale

feature heights. At Summit, Albert and Hawley (2002) have

shown that the characteristic wavelengths and amplitudes of

prominent roughness features fall within the detectable range

of both the OGREs and the Bamboo Forest, with 5–20 m

wavelengths and 3–20 cm amplitudes. With OGRE-derived

roughness, however, it is difficult to connect these undula-

tions to physical locations given the spatial footprint charac-

teristics, but we can nonetheless detect when features at these

wavelengths and amplitudes change in spacing or scale.

Perhaps the largest source of error between the two rough-

ness estimates is the spatial extent: while surface roughness

can be correlated across spatial scales due to its fractal na-

ture (e.g., Zuhr et al., 2021), the differences in footprint size

between the OGRE and Bamboo Forest will lead to different

measurements. We also made the assumption that no accu-

mulation takes place during the 24 h measurement periods;

however, this is not always the case, as eight periods had

a statistically significant slope in Hr versus time (p < 0.01)

that indicated a sub-daily surface change rate of several cen-

timeters per day, with the same sign as the week-over-week

change surrounding that day. Furthermore, the standard de-

viation calculation is sensitive to outliers, and, while we re-

move measurement outliers greater than 3σ for any given

survey for the stakes, error propagation and systematic er-

rors could compound, especially on dates far from the au-

tomatic level survey conducted during June 2024. As previ-

ously discussed, the OGRE footprint shrinks throughout the

2-year study as the surface accumulates relative to the an-

tenna, which leads to further mismatch between the two foot-

prints. However, the results presented thus far provide a com-

pelling demonstration that most of the azimuthal variability

in Hr measurements is due to real, time-varying structural

features in the sensing domain.

We further validate the extent and properties of the sens-

ing area by examining the 10 cm resolution TLS surface scan

(Fig. 2a) in the Bamboo Forest from 16 June 2024, where
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we found only a moderate relationship (r = 0.36) between

OGRE Hr estimates mapped to the TLS surface, with the

slopes removed. By imposing Fresnel zones calculated from

0.1° elevation angle spacing from 5 to 25° on the TLS sur-

face, we can reconstruct the GNSS-IR footprint to extract

mean surface values. A discussion on the potential sources

of error that led to the lower agreement between the data sets

is provided in Appendix B.

5 Results and discussion

5.1 Network-wide spatial and temporal patterns in

accumulation

Incorporating data from all 12 stations, we show accumu-

lation and surface roughness based on 24 h intervals of

recorded data at each station throughout the study period

(Fig. 6). From August until November 2022, accumu-

lation rates were nearly 10 standard deviations higher

than the overall mean rates for most stations. Notably,

the annual accumulation rate from September 2022 to

September 2023 is nearly 95 cm yr−1 at the Bamboo Forest

OGRE, which is much higher than rates previously found

by Dibb and Fahnestock (2004) (64–65 cm yr−1) and in

the upper 95th percentile of the 71 ± 11 cm yr−1 mean rate

found over 10 years of Bamboo Forest data (Castellani

et al., 2015). While much of Greenland experienced melt

due to several atmospheric river events during Septem-

ber 2022 (https://nsidc.org/ice-sheets-today/analyses/

record-september-greenland-ice-sheet-melt, last access:

20 August 2024), this precipitation fell as snow at Summit

Station and contributed to the anomalously high rates of

accumulation over the period.

In 2023, several stations again experienced local accu-

mulation rates much higher than their averages in June

and July and from mid-October to December, while 2024

featured no such enhanced accumulation prior to the end

of the study. Meanwhile, near-zero or negative accumula-

tion rates were observed for a number of stations between

mid-December 2022 and March 2023 and from mid-April

to June 2024. Temporal patterns of accumulation suggest

that the observations made by Dibb and Fahnestock (2004),

Howat (2022), and Castellani et al. (2015) still hold true:

there is a marked increase in stake height change for all sta-

tions during the late summer and early fall when precipita-

tion is generally high but firn compaction rates decrease from

summertime highs and a lower period of accumulation (or

negative accumulation) in the late winter and spring, which

is perhaps driven by enhanced negative processes described

in Eq. (1). However, the Bamboo Forest OGRE exhibited a

mean annual rate of 77.8 ± 10 cm yr−1, which trends higher

than previously reported annual rates for this location. The

Bamboo Forest OGRE recorded an especially high rate of ac-

cumulation in the winter of 2023 relative to the other stations,

and we posit that a combination of winds and its proximity

to drift-inducing structures may have led to the emphasized

surface height increase.

From Station 11 (closest to the divide) across-slope to Sta-

tion West, the slope is −0.067° and spans 34.7 km with a

vertical drop of 43.7 m, and these stations exhibit an across-

slope difference in accumulation over the 2-year period,

which is visible in the inset in Fig. 6. We find the mean rate

of accumulation over the study period by averaging a sliding

window of 365 d; Station 11 has a mean accumulation rate of

70.9 ± 4.2 cm yr−1, and Station West exhibited a mean rate

of 77.4±4.7 cm yr−1. Because the uncertainties for each sta-

tion are correlated, we use a t-test of the slopes of a linear

regression fit over the entire period of data to confirm sta-

tistical significance in the accumulation rates between these

two stations (p = 0.04). Furthermore, we find that MERRA-

2 precipitation rates vary between these two locations by a

similar amount, 79.4 ± 4.9 and 85.9 ± 5.1 cm yr−1, using an

assumed density of 300 kg m−3, a common value for surface

snow at Summit, to convert liquid volume to estimated snow

thickness (Montgomery et al., 2018). Here, the difference is

6.5 cm yr−1, which mirrors the 6.5 cm yr−1 difference in the

OGREs. This indicates that both MERRA-2 and the OGREs

are sensitive to the dominant variations in moisture that orig-

inate from the west and southwest in this region (Bolzan and

Strobel, 1994).

The across-network spatial variability in accumulation

takes two factors into account: semi-random localized ac-

cumulation within the spatial footprint of each OGRE and

a small along-slope increase in precipitation from the di-

vide to the west. Since each station often logs on indepen-

dent days of the month compared to the others, we interpo-

lated Hr measurements to daily measurements, removed the

station-specific accumulation trend, and calculated the stan-

dard deviation for each day between stations to find the inter-

station variability in accumulation driven by localized differ-

ences in Eq. (1). The mean standard deviation between the

detrended data is 2.6 cm, suggesting that, on monthly scales

and at 10 km spacing within our study area, spatial variabil-

ity in accumulation is small between stations. However, we

note that, from November 2023 to January 2024, the mean

standard deviation of the detrended network peaks at 4.0 cm,

which is the same period of heightened local variability for

many stations (Fig. 6).

5.2 Network-wide temporal patterns in surface

roughness

There are three periods when several stations or a majority of

stations show heightened roughness above the 2.8 cm indi-

vidual precision threshold: in September and October 2022,

February and March 2023, and December 2023 through

February 2024. These periods indicate a seasonal pattern of

heightened roughness that corresponds to either higher snow-

fall, which can be heterogeneously distributed or eroded, or
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Figure 6. (a) Accumulation through time of all 12 OGRE stations, with periods of elevated accumulation or low/negative accumulation

highlighted in light red and blue, respectively. The OGRE station time series are colored from blue to red to indicate location from west to

east. (b) 1σ (roughness) values through time of all stations, with the mean network-wide value indicated by the thicker black curve.

periods where winds play a dominant part in snow removal

with negative or little accumulation. Interestingly, no height-

ened roughness is detected in the summertime months de-

spite instances of high accumulation or negative accumula-

tion that mirror similar events in winter months. The drivers

of accumulation in Eq. (1), including wind, latent heat flux,

and compaction, all vary seasonally (Castellani et al., 2015),

and, while they only account for a small percentage of the to-

tal accumulation in the Summit region (e.g., Lenaerts et al.,

2012), these factors may play a larger role in driving the sea-

sonality in roughness observed here.

The agreement between most stations indicates that the

conditions of surface roughness across the network are

largely the same; small variations in roughness amplitudes

could cause some of the observed differences, although we

would expect amplitude to be largely correlated across this

region. Albert and Hawley (2002) noted that the wavelength

between snow features showed little seasonal pattern, and

perhaps spatial differences in wavelength may also partially

explain the variation in roughness measurements between

stations.

5.3 Local spatial and temporal patterns in surface

roughness

Figure 7 shows several OGRE-derived Hr profile estimates,

plotted based on azimuthal direction. For ease of viewing, we

run a local polynomial filter over each data series to provide

a continuous line for easy viewing while masking individual

Hr estimates. We also colored each time series based on its

correlation to the first (3 October 2022) measurement, with

red indicating a correlation coefficient of 1 and blue indicat-

ing the lowest correlation coefficient value. Here, the surface

starts with a heightened roughness state, with a large peak

spanning the western quadrant of the instrument. Through

time, the surface evolves due to positive or negative accu-

mulation processes (Eq. 1). We prescribe a physical explana-

tion of the surface evolution: the surface generally increases

but not uniformly. As the troughs around the initial 30 cm

October feature fill in, the peak remains at the same eleva-

tion or even erodes until it is completely buried. This pattern

matches that described by Filhol and Sturm (2015), whereby

wind-affected snow will show preferential erosion or depo-

sition based on exposure: wind-sheltered regions fill in first,

while wind-exposed features remain exposed to erosion.

Furthermore, we note that the correlation between each

subsequent time series and the first measurement is not

monotonically decreasing. This may suggest that well-

sintered features may be preserved in the snowpack after an

accumulation event and become re-excavated or play some

part in the overlying snow topography (Zuhr et al., 2021). Ul-

timately, care must be taken in interpreting these daily time

series given the geometric constraints discussed in Sect. 2.4.

For example, the 30 cm “peak” on 3 October is a shallow

mound that spans over a 100° field of view from the per-

spective of the instrument. As each reflector height estimate

is composed of inputs from a variety of satellite elevation

angles and therefore varying Fresnel zone size and location,
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Figure 7. Several GNSS-IR-derived surfaces from the Bamboo Forest OGRE plotted azimuthally, showing patterns of accumulation between

October and December 2022. Color is based on the correlation of each data period to the first profile on 3 October 2022, with red indicating

the most correlation and blue indicating the least correlation.

these apparent features may dampen or spatially average any

true physical feature or preferentially emphasize raised sur-

faces due to radio shadowing (Bourlier et al., 2006).

5.4 Surface roughness and accumulation connection to

meteorology

For a process-level understanding of the drivers of accu-

mulation and surface roughness expressions observed by

GNSS-IR and illustrated in the previous section, we compare

OGRE data to MERRA-2 precipitation and winds (Fig. 8).

We specifically examine the data from the Bamboo Forest

OGRE, given the weekly sampling rate. For each period be-

tween samples, we derive interval precipitation by calculat-

ing the cumulative precipitation scaled to a snow thickness

using an assumed density of 300 kg m−3, and we derive inter-

val winds by calculating the mean wind speeds during each

period. We then compare these MERRA-2-derived variables

to accumulation (1Hr) from the OGRE, along with surface

roughness change, 1σ . This comparison is similar to those

made by Picard et al. (2019) in Antarctica and Zuhr et al.

(2021) in Greenland.

MERRA-2 precipitation and MERRA-2 winds have a

low to moderate correlation and high statistical significance,

which may be explained by observations by Pettersen et al.

(2018) that the ice and mixed-phase clouds that bring mois-

ture to the Summit originate from strong southerly storms

that exceed average yearly wind speeds. Meanwhile, OGRE

accumulation and MERRA-2 winds show a lower correla-

tion and marginal statistical significance; this may be due

in part to negative OGRE accumulations that are a result

of more erodible soft-snow conditions in winds (Filhol and

Sturm, 2015). When we compare net OGRE accumulation

with winds or remove the negative accumulation values, we

increase statistical significance and the correlation value to

0.27, but we lack the necessary data to investigate the envi-

ronmental factors that lead to positive or negative accumula-

tion during high winds.

Unlike in Picard et al. (2019) or Zuhr et al. (2021), we

correlate the surface roughness change from one period to

the next as opposed to the measured surface roughness be-

cause of the interval of our measurements. For example, a

surface may maintain a rough state for several days if no new

snow or winds occur, whereas the change in surface rough-

ness state may be more readily explained physically by the

presence or lack of precipitation and winds. The low cor-

relation but statistical significance between surface rough-

ness change and winds suggests that wind speed can play

a role in surface roughness, but other factors such as the

hardness of the existing snow must be considered simultane-

ously, alongside cumulative precipitation and surface accu-

mulation. These variables have low to moderate correlations

when compared to surface roughness change, with positive

precipitation or accumulation perhaps providing the neces-

sary material to modify the roughness state either by surface

smoothing or by irregular deposition. Overall, the interpre-

tation that higher winds correlate with increases in surface

roughness is supported by the observed behavior of wind-

driven surface roughness observed at the South Pole (Mc-

Connell et al., 1997), but our study only indicates whether

winds directly lead to magnitude change in surface rough-

ness and not whether the surface became more or less rough

compared to its prior state.

Finally, OGRE accumulation and cumulative precipita-

tion show a moderate correlation with high statistical sig-

nificance. The relationship between precipitation and OGRE

accumulation is skewed downwards from a 1 : 1 relation-

ship, suggesting that other factors, such as sublimation, com-

paction, and variability in surface density may need to be

included in a more comprehensive analysis, especially as
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Figure 8. Intercomparison between weekly Bamboo Forest OGRE accumulation and roughness change data with MERRA-2 winds and

precipitation.

MERRA-2 precipitation alone cannot explain negative ac-

cumulation values and the smaller OGRE spatial represen-

tativeness cannot exactly capture the MERRA-2 interpolated

estimates.

6 Conclusions

We have expanded the scope of the GNSS-IR technique

in the cryosphere by validating GNSS-IR-derived measure-

ments, examining the spatial extent and temporal reliability

of this technique, and assessing its sensitivity to local sur-

face heterogeneities. Here, averaged 24 h periods of GNSS-

IR estimates are biased by −2.7 cm in low-angle dry snow

and are precise to 3.0 cm relative to manual measurements.

This precision is better than any previously reported in the

literature for snowy environments, and this is partly due to a

comparison to a more spatially representative validation data

set. However, the biases between the GNSS-IR heights and

the validation data set warrant further investigation as to the

slight differences in wintertime and summertime. It is now

common for receivers to track both the L1 and L2 signals of

multiple constellations, and we also show that there are no bi-

ases between the two signal types, allowing us to effectively

double the size of our data set.

We also assessed the spatial extent of this surface-sensing

technique. While we model the moving ground reflection lo-

cations of each satellite signal arc and find them to span

from 4–35 m radially for a 2 m antenna, we found that the

derived surface height estimates across the 1–2 m antenna

height range are most sensitive to the inner 4–20 m about

the instrument, based on the best correlation with a subset of

snow stakes. The characteristics of this sensitivity have sev-

eral implications for the sensing footprint. Firstly, this tech-

nique can average over a larger area than point measurements

and remove high-frequency surface noise, providing a more

spatially representative measurement for daily or sub-daily

surface accumulation. Secondly, this technique provides ad-

ditional context for understanding the circumferential spatial

heterogeneity that we estimate, limiting our window of sen-

sitivity to centimeter- to meter-sized features that populate

this footprint. We find that these surface roughness values of

the OGRE share the same magnitude and pattern of rough-

ness variations with a 36-stake network grid spaced at 8 m

(r = 0.74). Temporal sampling offsets, differing spatial foot-

prints, and measurement error from the validation data set

likely account for disagreements in roughness magnitude and

timing between the two data sets, but they both show fidelity

in detecting increased wintertime roughness states.

We then assessed accumulation and surface roughness val-

ues derived from a network of 12 low-cost GNSS stations

in the interior dry-snow zone of Greenland for spatial and

temporal patterns compared to historical data. Accumulation

patterns are largely consistent with historically observed in-

creases in late summer and early fall enhanced height, along

with decreased rates in the springtime. This network also de-

tected a centimeter-level variation in accumulation at yearly

scales between the easternmost and westernmost stations,
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which we interpret as a cross-slope variation in accumula-

tion consistent with expected higher downslope accumula-

tion rates. Meanwhile, surface roughness trends exhibited

several wintertime periods of increased roughness, and it

was during these periods that the greatest spatial variability

(±4.0 cm) was observed in accumulation between stations.

Furthermore, these results suggested that both erosional fea-

ture formation and depositional heterogeneities can drive an

increased roughness at centimeter to meter scales in the Sum-

mit vicinity.

For process studies, we demonstrated the utility of GNSS-

IR measurements for better understanding snowpack stratig-

raphy and the preservation or erosion of snow layers through

time. We connected height and roughness measurements

with wind and precipitation from MERRA-2 to show that

these synoptic variables contribute to the accumulation and

structure of snow in the Summit vicinity, but we also high-

light that there must be other processes or variables, such

as sintering time, that may have a more dominant role in the

preservation or erosion of snowpack. This exercise highlights

the GNSS-IR technique as an easily executable, adaptable

method that can shed light on processes that have previously

been difficult to measure in the field, such as wind scour and

firn compaction. The ease with which these GNSS instru-

ments can be configured to take daily measurements further

accentuates the ability of this technique to illuminate short-

timescale processes and trends.

Ultimately, these results are local to a relatively flat, accu-

mulating 30 km region in the vicinity of the Greenland Ice

Sheet summit, but the methods presented here show promise

throughout the cryosphere. Low-cost GNSS devices, such as

those presented in this paper, are more easily deployable in

large quantities due to their smaller size and weight, cost,

and energy efficiency, all while providing high-quality results

and requiring no special configuration other than an elevated

antenna. The reliability and resolution of the GNSS-IR tech-

nique is demonstrated to be sensitive to low accumulation

signals, while we also show for the first time that the variabil-

ity in individual Hr estimates is due in large part to surface

roughness. These measurements can be combined to better

assess ice core stratigraphy, measure turbulent heat flux in

real time, and detect daily changes driven by precipitation,

compaction, wind, and sublimation or serve as ground vali-

dation measurements for a variety of remotely sensed vari-

ables.

Appendix A: Further discussion on ground footprint of

GNSS-IR

Nievinski and Larson (2014) show that, for a 2 m antenna

height, there is an uneven weighting for the sensing foot-

print of reflectometry: the peak region of importance lies

somewhere between 13 and 15 m from the instrument (corre-

sponding to about a 10° satellite elevation angle), with re-

Figure A1. Example SNR data from a single rising satellite arc

from an OGRE on 18 August 2023, showing the characteristic

integer-binning and degraded interferometric quality at higher el-

evation angles.

gions closer to the antenna rapidly losing importance and

regions farther than the peak gradually decreasing in im-

portance. This spatial pattern arises for several reasons. At

low satellite elevation angles, corresponding to a reflection

farther from the instrument, the interferometric SNR pat-

tern is often less noisy than the nearby portion of the sig-

nal (Fig. A1). This is further complicated by the ability of

the Lomb–Scargle to determine the peak frequency and per-

haps by the integer-binning of SNR readings by the receiver,

which is a characteristic of the low-cost chip in the OGRE

instruments.

Nonetheless, this footprint interpretation is somewhat sub-

stantiated by the main text, as the 13–15 m dominant region

falls within the 4–20 m zone identified as the most important

region. However, our comparisons with both the TLS surface

data and correlations to individual bamboo stakes show that

nearby surfaces to the instrument are in fact more represented

by the GNSS-IR solutions.

A second point of note is that each Hr footprint corre-

sponding to each arc is not necessarily perfectly radial to

the instrument, as illustrated in Fig. 2. Each satellite arc con-

tains an azimuthal component throughout the sky: for each

24 h period at an OGRE station at Summit, we measured

the azimuthal angular distances, projected to the horizontal

horizon plane, that the observed satellites travel as they rise

or set through the critical elevation angle range of 5 to 25°.

The mean azimuthal travel from all data is 8°, and the max-

imum azimuthal travel is 40° (Fig. A2). Consequently, there

will be some azimuthal error in positioning singular reflector

heights, which in turn will induce an error on estimating av-

erages in particular quadrants or applying a fixed-bandwidth

Gaussian kernel filtering technique. Furthermore, there is an
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Figure A2. (a) Sample 24 h period of satellite azimuth projections, with each satellite represented by a different line, showing that every

satellite has some azimuthal variation as it rises or sets, relative to the OGRE. (b) The mean arc is 7.88°, and the maximum is 29.95°. Across

the entire study period, the mean arc is 8° and the maximum arc is 40°. In this study, we take the mean azimuthal value for each arc to

represent the azimuthal location of that satellite arc.

azimuthal dependence for the length of the azimuthal arc;

satellites to the north tend to move a greater horizontal dis-

tance across the sky than those to the south. This complicates

any attempt to specifically pinpoint the location of an Hr esti-

mate, and care must be exercised when attempting to directly

compare an Hr estimate to a specifically located measure-

ment such as at an individual snow stake.

Appendix B: TLS comparison and discussion

On 16 June 2024, we used a TLS to create a 10 cm resolu-

tion DEM of the Bamboo Forest surface. The OGRE con-

currently recorded 24 h of data during this period. For each

Hr estimate, defined by its azimuthal location, we sample the

TLS surface based on the centroid of the evolving ellipse de-

fined by the first Fresnel zone (FFZ) as it migrates closer to

the OGRE and shrinks in size. Figure 2 demonstrates this

geometry, which is driven by the satellite elevation angle.

The azimuthal TLS height estimates are aggregated to cre-

ate the TLS surface topography estimate for comparison to

the OGRE surface (Fig. B1). A sample of TLS-derived sur-

faces for the annular distances defined by the 5–25° range is

shown from light to dark gray. These FFZ annuli are aver-

aged together to create the overall TLS-derived surface esti-

mate, which we believe to be a good sampling approximation

of the FFZ geometry.

The two surfaces are adjusted so that their mean value is

centered at zero, yet the variance in the residuals between the

OGRE and the TLS surfaces is higher than if we simply com-

pared the OGRE surface to a planar surface. This low agree-

ment could be attributed to a number of factors, including er-

rors from the footprint positioning assumptions discussed in

the previous section, errors from a slightly tilted antenna, and

a slight evolution of the snow surface during the 24 h OGRE

Figure B1. From the 16 June 2024 TLS survey of the Bamboo For-

est, we compare the OGRE height estimates to the TLS surface. The

TLS surface is the composite of the sampled surfaces correspond-

ing to the reflection points of simulated GNSS-IR reflected signals

from R = 5° (light gray) to R = 25° (black).

data period. Furthermore, this comparison averages across

the full radial distance defined by the 5–25° elevation angles

(per the FFZ pattern), but the GNSS-IR surface may be more

sensitive to certain regions, leading to uneven weighting. For

instance, the example SNR OGRE data show a cleaner si-

nusoid at low satellite elevation angles and therefore may

be more heavily weighted towards these angles in the fre-

quency estimation; thus the corresponding surface further

from the antenna is more important. Conversely, the main

text argues that the GNSS-IR-derived measurements corre-
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late better with point measurements near the OGRE, which

would favor the data from the 15–25° elevation bands.

To investigate these differences, we remove the area-wide

surface slope from both the OGRE and TLS data and com-

pare the resultant surface estimates from both techniques

(shown in the second plot in Fig. B1). Here, the surfaces

are not more correlated than previously (r = 0.36); however,

they visually share peaks and troughs, albeit somewhat off-

set, especially outside the 150–200° range. The non-linear

phase shift may be indicative of the effect demonstrated in

Fig. A2, where more northerly Hr estimates are in fact bi-

ased in their locations based on the arcing path of each satel-

lite. The similarity in magnitude of the peaks could explain

how the OGRE, while showing low agreement with TLS sur-

face measurements, is still sensitive to the detrended surface

roughness measurements described in this text.

Code and data availability. RINEX files and meta-

data from the OGRENet array are provided at

https://doi.org/10.18739/A2736M41C (Pickell and Hawley,

2024a). Design files and firmware for the open-source OGRE in-

struments are available at https://github.com/glaciology/OGRE (last

access: 20 August 2024; https://doi.org/10.5281/zenodo.14893707,

Pickell, 2025). Bamboo Forest data can be downloaded at

https://conus.summitcamp.org/mirror/summit/ftp/science/bamboo_

forest/ (Hawley et al., 2024). GNSS-IR data were processed at

https://doi.org/10.5281/zenodo.10796409 (Larson, 2024).
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