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Abstract—This article presents the design and evaluation of
an engagement-free and contactless vital signs and occupancy
monitoring system called BedDot. While many existing works
demonstrated contactless vital signs estimation, they do not
address the practical challenge of environment noises, online bed
occupancy detection, and data quality assessment in the real-
world environment. This work presents a robust signal quality
assessment algorithm consisting of three parts: 1) bed occupancy
detection; 2) movement detection; and 3) heartbeat detection, to
identify high-quality data. It also presents a series of innovative
vital signs estimation algorithms that leverage the advanced sig-
nal processing and Bayesian theorem for contactless heart rate
(HR), respiratory rate (RR), and interbeat interval (IBI) estima-
tion. The experimental results demonstrate that BedDot achieves
over 99% accuracy for bed occupancy detection, and MAE of
1.38 BPM, 1.54 BPM, and 24.84 ms for HR, RR, and IBI estima-
tion, respectively, compared with an FDA-approved device. The
BedDot system has been extensively tested with data collected
from 75 subjects for more than 80 h under different condi-
tions, demonstrating its generalizability across different people
and environments.

Index Terms—Bed occupancy, Contactless Monitoring, heart
rate (HR), interbeat interval (IBI), respiratory rate (RR), sleep,
vital Signs.

I. INTRODUCTION

THE CONTINUOUS monitoring of vital signs, such as
heart rate (HR), respiratory rate (RR), and interbeat

interval (IBI) during sleep, has numerous critical applica-
tions. For example, monitoring HR can aid in predicting—and
even preventing—heart failure while asleep. Sleep apnea can
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be detected by monitoring RR [1]. Additionally, IBI has
been used for heart rate variability (HRV) analysis. This
analysis contributes not only to the understanding of atrial
fibrillation [2] but also to stress analysis [3], [4].

In the literature, various approaches for sleep activity and
health monitoring have been explored. These can be catego-
rized into the following.

1) Wearables [1], [5], [6], [7], [8], [9] are perhaps the most
popular human activity monitoring device today because
they can accompany a person anywhere and anytime.
However, they may not be suitable for everyone. Their
need for skin contact can make some users uncom-
fortable during sleep. Additionally, elderly users often
forget to recharge their batteries, and maintaining patient
engagement poses a significant challenge. According to
the Center for Medicare and Medicaid Services (CMS),
the compliance rate for patients provided with wearable
devices to monitor their own vital signs is disappointingly
low (around 5%), which puts remote patient monitoring
programs at risk. Moreover, these devices typically lack
bed occupancy detection features, such as detecting when
a person gets on or off the bed.

2) Sleep pads (based on MEMS, FPG, and pressure sen-
sor based) [10], [11], [12], [13] are generally positioned
between the mattress and the box spring, or between
the bed-sheet and the mattress. These devices predom-
inantly rely on pressure sensors and require the user’s
heart to be positioned vertically above the pad to accu-
rately capture vital signs. However, disturbances, such as
movements of the bed sheet, wetness due to enuresis, or
changes in sleeping position can impair the functionality
of these pads.

3) Bedside monitors, which include radar [14], [15], [16]
and camera systems [17], [18], [19], [20], are either
installed above the bed or positioned on the bedside
table. Radars work by emitting probing waves toward
the heart and utilizing the reflected waves to calculate
vital signs and analyze sleep quality. Continuous oper-
ation implies continuous radiation exposure, a health
concern for some. Camera-based solutions, even those
using thermal cameras that produce obscured record-
ings [19], often raise privacy concerns, especially given
their installation in bedrooms. Setting up these technolo-
gies often demands meticulous adjustments to angles
and distances to effectively capture the subjects’ facial
areas. A more detailed survey of these approaches is
provided in Section II.
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Fig. 1. Installation of BedDot on the side of bed frame (right), BedDot
device (left).

In this article, we introduce BedDot, a novel sleep and vital
signs monitoring system based on passive seismic sensing.
This system addresses many of the previously mentioned lim-
itations. Notably, it alleviates privacy concerns by avoiding
the capture of images or voices, does not require direct con-
tact with the human body, and eliminates the need for active
patient engagement. We have successfully deployed BedDot
for real-time monitoring of sleep and vital signs in both home
and hospital settings. The design and components of BedDot
are illustrated in Fig. 1. The system consists of a Raspberry
Pi that acts as the onboard computer, an analog–digital con-
verter (ADC) board, and a vertical geophone that functions
as a vibration detector (seismometer). The geophone contains
a magnetic element encircled by wire coils. As the mag-
netic element moves within these coils, an electrical signal is
produced. This geophone sensor can capture micro-vibrations
produced by human cardiac activity in real time, showcas-
ing a sensitivity level that significantly surpasses most MEMS
accelerometers [21]. The ADC board digitizes the data at a
sampling rate of 100 Hz. This high sensitivity allows BedDot
to measure cardiac activity without physical contact. A com-
parison between BedDot and other existing sensors will be
explored in Section II. Through our research, we have found
that the BedDot system attains over 99% accuracy in bed occu-
pancy detection. It also has an mean absolute error (MAE)
of 1.38 BPM for HR, 1.54 BPM for RR, and 24.81 ms for
IBI estimation when compared with an FDA-approved device.
We extensively tested our system using data collected from
75 subjects over more than 80 h in varied conditions, fur-
ther demonstrate its versatility and adaptability across diverse
individuals and environments.

To achieve our results, several significant technical chal-
lenges were addressed, as detailed below.

1) Bed Occupancy Detection: Most existing work in bed
occupancy detection focuses on identifying the “moment
of bed entry” and the “moment of bed exit.” However,
simply detecting bed entry and exit can lead to sub-
stantial errors if false detection occurs even once. First,
the outputs of the geophone are not always zero due
to environmental noise, even when there is no person
in the bed. Therefore, merely checking signal ampli-
tude to detect bed occupancy will fail. Although the
signal energy of bed entries and exits is typically much
higher than other types of signals, significant movements
on the bed can lead to false detection and subsequent
cascade failures. Second, even when there is no per-
son on the bed, vibrations from events around the bed,
such as footsteps or other periodic vibrations, can mimic

the waveform properties of a heartbeat, leading to false
detection.

2) HR Estimation: The waveform of the collected heart-
beat signal in our system varies depending on factors,
such as sensor location, types of beds, environmental
noise, and individual differences among people. These
variations create difficulties in accurately estimating HR.
Moreover, some heartbeat signals show both systolic and
diastolic peaks within one cardiac cycle, leading to an
estimation that could be twice the actual rate if standard
peak detection algorithms are applied.

3) RR Estimation: Geophone-based RR estimation poses
challenges because the frequency of respiration sig-
nals is low and easily influenced by environmental
noise. Previous geophone-based work for RR estima-
tion has relied on a square-law amplitude demodulation
algorithm [21], which assumes that respiration causes
amplitude fluctuations in the geophone signal. However,
this approach does not adequately reveal the respiration
pattern from the geophone signal. Although high-quality
data can clarify heartbeat patterns, detecting respiration
patterns is problematic with geophones. They are often
insensitive to low-frequency vibrations, which makes
estimating the RR difficult. The slow vibration speed
caused by respiration is frequently obscured by noise
and heartbeat patterns.

4) IBI Estimation: Often, the heartbeat peak within each
cardiac cycle is obscured by noise, making it more chal-
lenging to accurately locate the heartbeat peak position
for IBI estimation. As a result, conducting heartbeat
peak detection on raw or even denoised data leads to
suboptimal performance.

The major contributions of this article are summarized as
follows.

1) We design an automatic signal quality assessment algo-
rithm to detect bed occupancy, select high-quality data,
and prevent undesirable outcomes in subsequent HR,
RR, and IBI estimation. The system autonomously
identifies when a person is on the bed and initiates cal-
culations for HR, RR, and IBI once the signal quality
meets the required threshold.

2) We develop novel signal processing algorithms to
denoise signals and extract salient features for HR, RR,
and IBI estimation. These algorithms reconstruct the
waveform of heartbeat and respiration signal envelopes.
By applying the Bayesian theory, we fuse features to
enhance the accuracy of HR and RR estimation. A series
of mathematical formulations underpin the approach,
which has demonstrated strong performance in real-
world deployments. We rigorously test the algorithm
on 75 subjects across varied conditions, highlighting the
broad applicability, and robustness of our methods.

3) We showcase the efficacy of the BedDot system in
monitoring both beds and seats, achieving excellent
performance in HR, RR, and IBI estimation. The
accuracy levels for HR and RR conform to FDA stan-
dards. To the best of our knowledge, ours is one of the
first to employ a geophone-based system that accurately
estimates HR, RR, and IBI across both seats and beds.
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The remainder of this article is organized as follows. Section II
delves into related works, covering both bed occupancy detec-
tion and contactless vital sign monitoring. In Section III, we
elucidate the methodology of our system, encompassing bed
occupancy detection, movement detection, and the estimation
of HR, RR, and IBI. Section IV outlines the experimental
setup and system visualization, followed by a presentation of
the evaluation results. We draw our conclusions in Section V.

II. RELATED WORKS

A. Bed Occupancy Detection

Pouliot et al. [22], Taylor et al. [23], and Braun et al. [24]
established a baseline threshold when no one is on the
bed, utilizing it as prior knowledge. This threshold is subse-
quently used to compare with incoming signals to ascertain
the bed occupancy status. Such methods are straightfor-
ward and intuitive. However, these references lack statistical
results for this approach, complicating performance evaluation.
Moreover, it necessitates reinitialization for different environ-
ments. Clemente et al. [25] introduced a feature fusion method
that combines Spectral Entropy, Kurtosis, and the Teager
Energy Operator to identify bed entries and exits. While they
achieved high accuracy with their data set, their approach is
limited to detecting moments of “bed entry” and “bed exit”
rather than continuously discerning “on bed” or “off bed” sta-
tus. Such an approach might introduce persistent errors if a
single bed entry or bed exit event is inaccurately detected.
Li et al. [26] employed an autocorrelation function (ACF) to
determine the periodicity of signals, distinguishing between on
bed and off bed signals. This technique can achieve impres-
sive accuracy. However, its efficiency diminishes when signals
other than heartbeats—yet still periodic—interfere, potentially
resulting in false detections.

B. Contactless Vital Sign Estimation

Technologies that rely on cameras [17], [18], [19] often
raise privacy concerns, particularly when the subject is in
bed. Even thermal cameras, which generate blurred video
recordings [19], can be intrusive. Additionally, the setup
for camera-based technologies can be complex, necessitating
precise adjustments of angles and distances to effectively cap-
ture the subject’s facial area. A failure to capture complete
facial features can significantly reduce the accuracy of vital
signs estimation. The installation of fiber bragg grating sensors
(FBGs) [27], [28] presents its own set of challenges. These
sensors can be complex and cumbersome to install, espe-
cially considering variations in bed size and human anatomy.
Moreover, the need to position FBGs between the human body
and the mattress may lead to discomfort during sleep. Similar
issues extend to sleep pads [29], [30], which are typically
placed between the mattress and the box spring, or between
the bed sheet and the mattress. These pads often use pressure
sensors, such as air, PVDF, fiber, and MEMS pressure sen-
sors. However, to capture vital signs accurately, the heart must
be vertically aligned above the pad or belt. Factors, such as
the movement of bed sheets, wet sheets due to enuresis, or
changes in sleep positions frequently cause these sleep pads
to malfunction.

Contactless sleep monitoring of vital signs has become
a popular research topic in recent years. For example,
Yang et al. [20] used two radio devices to receive the sig-
nal reflected from the human body and apply a fast Fourier
transform (FFT) to transform the signal from the time domain
to the frequency domain. They then perform FFT denoising to
simulate a bandpass filter in the frequency domain. After that,
they apply an inverse FFT to the filtered frequency domain to
recover a smoothed signal in the time domain. Finally, they
estimate HR and RR by counting peaks in the filtered data.
In a similar vein, Rahman et al. [14] used Doppler Radar and
microwave signals to detect air vibrations caused by heartbeat
and respiration. They apply bandpass filter signals with dif-
ferent frequency range cutoffs and then perform FFT on the
filtered signals to estimate HR and RR. While their methods
are simple to implement, they may not be applicable to signals
with more complex waveforms.

Vogels et al. [31] introduced a sleep monitoring system
based on a near-infrared (NIR) camera. They extract pulse
signals from continuous NIR frames using the PBV algo-
rithm [32] and then apply FFT to the extracted signal to
determine pulse rates. However, their system cannot esti-
mate RR. Moreover, the use of a camera-based system raises
potential privacy concerns that need to be considered.

The methodologies presented in [10], [11], [12], and [13]
utilize specialized mattresses with integrated sensors to cap-
ture ballistocardiography (BCG) and estimate HR and RR.
Likewise, [33] employs load cells, while both [34] and [35]
utilize Electromechanical film sensors for HR and RR mon-
itoring. While these approaches produce satisfactory estima-
tion results, it is noteworthy that their setup procedures are
relatively intricate.

The study in [27] introduced an innovative design for an
FBG mattress, incorporating 13 FBG sensors. This method
identifies the most informative sensor by selecting the one
with the highest peak in the power spectrum for subsequent
HR estimation. However, the efficacy of this approach could
be significantly compromised if the dominant frequency of the
selected sensor lies outside the typical HR range.

Vehkaoja et al. [36] proposed an IBI algorithm based on
segment correlation of the signal, which necessitates post-
correction. Similarly, [37] introduces a robust IBI estimation
algorithm that has been widely referenced in literature and
is often set as a baseline method. However, their approach
requires segmenting the signal into multiple portions and
applying a convolution operation to each segment. This sig-
nificantly increases the computational cost and may not be
suitable for real-time systems.

A previous geophone-based system [38] utilized a geophone
to capture vibration signals resulting from heart movements. For
HR estimation, they initially applied a low-pass filter to differ-
entiate between noise and heartbeat data. Following this, they
employed a peak-finding algorithm [39] on the ACF of the raw
signal for HR estimation. In their subsequent research [21], they
introduced an RR estimation algorithm rooted in square-law
amplitude demodulation. Instead of performing peak detection
on denoised data, they focused on the ACF of the denoised
data. Utilizing ACF on the raw signal can yield more pro-
nounced heartbeat peaks when compared to both raw and
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Fig. 2. Work flow of vital signs monitoring by BedDot.

denoised data. However, applying ACF directly to denoised
data can produce numerous small peaks, the majority of which
are not indicative of heartbeats. This can undermine the effec-
tiveness of the peak detection algorithm, leading to inconsistent
results. Furthermore, the peak detection algorithm necessitates
a threshold, the optimal selection of which can be challeng-
ing due to diverse waveform variations. While they pursued
RR analysis through square-law amplitude demodulation, the
fundamental approach was to combine a low-pass filter with
FFT. This method, albeit straightforward, is not very stable,
and its performance leaves room for improvement.

Another geophone-based system, as presented in [25], ini-
tially applies a band-pass filter. They subsequently extract
the envelope by detecting peaks and connecting them. After
extracting the envelope, they identify its local maxima and set
a threshold to discard outliers. The final step involves calculat-
ing the HR by averaging the intervals between detected peaks.
For RR estimation, they create an RR envelope by interpolat-
ing the peaks on the HR envelope. Their approach, rooted in
the use of the envelope for HR and respiration rate estimation,
is both intuitive and straightforward. However, their method of
envelope extraction exhibits noticeable boundary issues at both
the beginning and end of the signal. Moreover, peak detection
on the envelope can be unstable, especially if the envelope is
riddled with noise or consists of numerous small spikes that
are challenging to remove.

The previously discussed works did not address a system’s
capacity to automatically procure high-quality data via bed or
seat occupancy detection. This aspect is pivotal in circumventing
undesired outcomes and ensuring precise vital signs estimation.

III. METHODOLOGY

The workflow of the BedDot system is illustrated in Fig. 2.
The geophone within BedDot collects raw data, typically posi-
tioned beneath the bed frame for monitoring human vital signs.
In this section, we discuss the signal quality assessment meth-
ods, encompassing bed occupancy detection, movement detec-
tion, heartbeat detection, and HR estimation. Subsequently, we
delve into the algorithms used for RR and IBI estimation.

A. Signal Quality Assessment and Heart Rate Estimation

For accurate estimation of HR, RR, and IBI using the seis-
mic signal gathered by BedDot, it is crucial to filter out the

Fig. 3. Signal quality assessment algorithm.

noise and other vibrations unrelated to vital activities. The sig-
nal is a combination of diverse vibration sources: background
white noise, household appliance disturbances (e.g., air condi-
tioners, washers, and dryers), bodily movements during sleep,
and vital activity vibrations, such as heartbeats, respirations,
and blood pressure fluctuations. Our algorithm starts by deter-
mining the presence of a person on the bed. If confirmed, the
algorithm assesses the signal for any movement that distorted
waveform of signals. Only signals showcasing clear and iden-
tifiable heartbeats proceed to the vital sign estimation stage.
The comprehensive workflow of the signal quality assessment
algorithm can be viewed in Fig. 3.

1) Data Preprocessing: The z-score transformation stan-
dardizes the signa x as x̃ = [x − mean(x)]/std(x) where
mean(x) and std(x) represent the mean and standard deviation
of x, respectively. The signal collected by BedDot originates
from body mass movements influenced by cardiac activity. To
filter out noise from this signal, we employ discrete wavelet
decomposition. We prefer wavelet denoising over bandpass fil-
tering for two main reasons: 1) Wavelet denoising exhibits
fewer boundary issues in comparison to a zero-phase-shift
bandpass filter and 2) while a bandpass filter blocks all out-
of-band noise, it does not specifically denoise within the
passband. In contrast, wavelet denoising breaks down a noisy
signal into various scales, effectively eliminating noise, and
preserving the core signal, irrespective of its frequency range.

For wavelet denoising, the daubechies 12 (db12) is chosen
as the mother wavelet due to its resemblance to the car-
diac cycle observed in our collected signal. Discrete wavelet
decomposition aims to separate the signal into different
frequency ranges. During this decomposition, signals undergo
both a low-pass filter ylow [n] = ∑∞

k=−∞ x[k]l[2n − k] and a
high-pass filter yhigh [n] = ∑∞

k=−∞ x[k]h[2n − k].
Here, l[·] represents for low pass filter with ylow as

the decomposed low-frequency signal. Meanwhile, h[ · ] is
the high-pass filter, with yhigh being the decomposed high-
frequency signal. The variable x denotes the previously decom-
posed low-frequency signal. With each decomposition, the
signal’s frequencies are halved. For instance, if the frequency
range of x is denoted as [0, f ]. These frequencies are divided
into a low-frequency range [0, f /2] and a high-frequency range
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Fig. 4. Top row of the figure shows raw data while the bottom row of the
figure shows the wavelet decomposition and reconstructed signal.

[f /2, f ]. The output from the low-pass filter is then subjected
to another round of decomposition using a new set of low-pass
and high-pass filters.

Given that the sampling rate of our signal is 100 Hz and
according to the Nyquist–Shannon sampling theorem that the
valid frequency range extends up to 50 Hz. After decompos-
ing the signal six times, we obtain seven distinct components.
The frequency ranges for these components, starting from
D1 up to D6 and followed by A1, are [25, 50], [12.5, 25],
[6.25, 12.5], [3.125, 6.25], [1.5625, 3.125], [0.78125, 1.5625],
and [0, 0.78125] Hz, respectively. For this analysis, we opt
for the decomposed components with frequency ranges span-
ning 0.8 to 12 Hz, encompassing D3 to D6, to reconstruct
the denoised signal. An illustration of the wavelet denoising
process can be found in Fig. 4.

2) Bed Occupancy Detection: After conducting wavelet
decomposition and reconstruction on the raw data, we derived
a denoised signal. One primary functionality of BedDot is to
determine whether the bed is occupied, essentially function-
ing as an on/off-bed detection algorithm. As highlighted in
Section I, bed occupancy detection faces two primary chal-
lenges. First, the inherent system errors of the geophone
complicate direct person detection on the bed-based solely
on amplitude. Relying solely on signal energy to detect bed
entry and exit can lead to cascading errors. Second, during the
periods designated as on bed and off bed, other vibrations or
interference may occur, potentially undermining the accuracy
of bed occupancy detection.

To Address the First Challenge, we distinguish the on bed
signal from the off bed signal by capitalizing on the waveform
distinctions between the two signal types. Drawing inspira-
tion from the speech detection in audio signal processing,
we compute the zero crossing rate (ZCR) of the denoised
signal. This aids in distinguishing the on bed signal from
the off bed signal. The ZCR quantifies the frequency with
which a signal shifts from positive to negative and vice versa:
zcr = (1/N − 1)

∑N−1
i=1 1R<0(xi · xi − 1), where zcr represents

the ZCR, x denotes a signal of length N, and 1R<0 is an indica-
tor function. The ZCR is often employed in audio processing
to ascertain the presence of speech within a signal. This is
because the amplitude of a signal containing speech typically
rises abruptly and oscillates less than the background noise. As
a result, the ZCR for speech segments is considerably lower
than for audio segments devoid of speech.

Fig. 5. Figure at the top shows the signal that contains clear heartbeats. The
figure at the bottom displays the signal with no person lying on the bed. It
can be easily observed that the signal on the bottom fluctuates more.

Fig. 6. “Signal with no person lying on bed” (red lines) shows a higher
ZCR than “signal with people lying on bed” (green lines).

ZCR serves as an insightful metric for the waveform’s
shape, providing a measure of the signal’s frequency in the
time domain. Drawing a parallel with audio signals, the heart-
beat when a person is on bed can be likened to “speech,”
whereas environmental vibrations can be equated to “back-
ground noise.” It is evident that a signal incorporating the
heartbeat exhibits significantly fewer oscillations compared to
the signal when no individual is on the bed, as depicted in
Fig. 5. Our empirical analysis is consistent with this hypoth-
esis. We observed that the ZCR during an on-bed phase was
markedly lower than during an off-bed phase. This observa-
tion is vividly illustrated in Fig. 6, which presents the ZCR
over a week of sleep monitoring for an individual. The red
rectangle in Fig. 6 is the off-bed period, while the green rect-
angle indicates the on-bed span. Notably, the off-bed period
consistently show a higher ZCR.

To Address the Second Challenge, which involves distin-
guishing vibrations caused by footsteps or other environmental
factors from signals containing the heartbeat, we employ the
kinetic energy change between two consecutive time steps.
This approach is grounded in the understanding that events
leading to vibrations, such as footsteps, would abruptly alter
the signal’s waveform, thereby producing numerous high
spikes and resulting in a substantial shift in the signal energy
compare to regular background noise signal. In our algorithm,
we first calculate the energy of the signal in each time step
using the e(T) = (1/2) · m ·∑T

t=T−N v(t)2, where e(T) is the
kinetic energy for a signal segment of length N, v(t) is the
measured velocity in time t, and m is the mass of the object.
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Fig. 7. Distributions for 10-s signals with heartbeats and 10-s signals with
movements.

Subsequently, we calculate the difference between the energy
of two consecutive time steps as follows:

!EP(T2) = |e(T2) − e(T1)|
e(T1)

=
|∑T2

t=T2−N v(t)2 −∑T1
t=T1−N v(t)2|

∑T1
t=T1−N v(t)2

. (1)

We establish a threshold value on the energy changes for
differentiating a person’s heartbeat from those caused by foot-
steps or other environmental vibrations. If !EP(T2) exceeds
the threshold, we categorize it as an external event. Based on
extensive empirical testing with large data sets, we have set
the threshold at 20%. In essence, our bed occupancy detec-
tion algorithm integrates both the ZCR and energy change
metrics to effectively differentiate between signals contain-
ing heartbeat patterns and those instigated by external events.
Subsequently, the bed occupancy status for “external events”
signals will be determined as “uncertain” which is neither on
bed or off bed. The final status of external events signals will
be decided by bed occupancy status prior to and followed after
external events. External events signal status will be the same
as both status if the status prior to and followed after external
events are the same. Otherwise, the status of external events
signal will be the same as bed occupancy status followed after
external events.

3) Movement Detection: Once we have successfully deter-
mined that the bed is occupied, it is essential to further assess
the status of the person on the bed. This is because their
movements can introduce distortions on vibration signals col-
lected by BedDot. As depicted at the bottom of Fig. 8, certain
portions of the signal are influenced by movements on the bed.
Typically, in-bed movements produce pronounced vibrations,
resulting in a higher number of outliers in the gathered data.
This leads to a significant disparity in the distribution of sig-
nals when compared to those unaffected by motion artifacts.
This contrast is illustrated by comparing the distributions of
movement-affected signals with those of pure heartbeat signals
in Fig. 7.

Leveraging our observations, we propose using Kurtosis as a
method to detect whether a segment of the signal is affected by
movements. Kurtosis quantifies the centered fourth moments

Fig. 8. Signal contains movement(foot step) caused by events around bed
(top). Signal with people lying on bed but containing movement (middle).
On-bed signal with no clear heartbeat (bottom).

of a distribution, and it is frequently employed to detect
the presence of outliers or to ascertain if errors have heavy
tails. For a random sample {xi}n

i=1, the empirical Kurtosis
is computed by κx = ([

∑n
i=1(xi − x̄)4]/ns4), where x̄ and s

are sample mean and standard deviation of {xi}n
i=1, respec-

tively. If κx > 3, the empirical distribution of {xi}n
i=1 exhibits

tails that are heavier than those of a Gaussian distribution.
Consequently, we interpret a large κx value as compelling evi-
dence of movements within the signals. In our experiments,
we set an empirical threshold of 5 to detect movement-affected
signals when an individual is asleep.

4) Heartbeat Detection and HR Estimation: Certain signals
captured from the bed, while free from movement, may still
lack a discernible heartbeat, as depicted in the bottom row of
Fig. 8. It is crucial to exclude these types of signals to prevent
errors in the estimation of vital signs. Following the quality
assessment steps mentioned earlier, if a signal is deemed high
quality, it then serves as the basis for calculating HR, RR,
and IBI.

Our HR estimation is closely tied to the heartbeat detection
method. A significant challenge in our HR estimation algo-
rithm is the intricate waveform shape of each heartbeat cycle.
This waveform harbors a degree of randomness which could
introduce inaccuracies in HR determination. To address this,
we extract the envelope of the heartbeat cycle, a smoother ver-
sion of the waveform, to calculate HR. This envelope, with its
reduced noise, presents a periodicity that is more readily iden-
tifiable. Guided by this understanding, we outline a four-step
signal processing approach for HR estimation. The efficacy of
this method is further showcased in Fig. 9.

Step 1: To retrieve the envelope of the signal, we employ the
Hilbert transform as described in [40]. The transform operates
under the assumption that a signal’s amplitude is modulated by
its instantaneous amplitude (envelope) as given by the equation
x(t) = a(t) · cos(ωt), where x(t) is the raw signal and a(t) is
the envelope that we aim to extract from x(t). The Hilbert
transform calculates the imaginary part xi(t) of a real signal
x(t) using the relation xi(t) = HT[x(t)], where HT[·] represents
the Hilbert transform operator. An analytic signal z(t) can be
formed using the real signal x(t) and its Hilbert-transformed
counterpart xi(t) z(t) = x(t) + i · xi(t). The envelope a(t) is

then derived as a(t) =
√

x2(t) + x2
i (t).
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Fig. 9. Procedure for detecting heartbeat of the signal by obtaining ACF from a smoothed envelope of signal (Left). Signal that contains two peaks within
one heartbeat cycle (Right).

Step 2: To enhance the envelope of the signal, we incorpo-
rate a Savitzky–Golay filter [41]. The Savitzky–Golay filter,
based on least squares, is essentially a polynomial smoothing
filter. It derives filter coefficients by minimizing the dis-
crepancy between the raw and the filtered data. The crucial
parameters that need adjustment are the window size (W) and
the polynomial order (N). The filter’s coefficients are derived
by aiming to minimize the equation

EN =
M∑

n=−M

(
N∑

k=0

aknk − x[n]

)2

where 2 · M + 1 = W, and the expression
∑N

k=0 aknk offers
a polynomial approximation corresponding to x[n]. For each
window, filter coefficients are determined for the central point.
Subsequently, the window is shifted to the right by a single
point, and the same procedure is reiterated to pinpoint the next
central point within this window. This iterative process yields a
more refined version of the data, preserving its essential char-
acteristics and diminishing noise. The spikes in the extracted
envelope represent swift alterations in signal amplitude, often
stemming from noise or other signal artifacts. The Savitzky–
Golay filter, by smoothing these spikes, fortifies the precision
of the ensuing processing steps.

Step 3: To discern the periodicity of the smoothed
envelope, we employ its ACF, a widely utilized function
in time series analysis. the ACF calculates the correla-
tion between the envelope at time t and that at time
t + k; thereby elucidating the signal’s periodicity. The
lag-k autocorrelation for {xi}n

i=1 is defined as ACF(k) =
([
∑n−k

i=1 (xi − x̄)(xi+k − x̄)]/[
∑n

i=1(xi − x̄)2]). In a signal that
remains stationary and periodic, both its mean and variance
tend to be consistent. To ascertain whether a signal is periodic,
we segment it into uniform-length portions and set a threshold
0.1 on the variance of these segments’ mean. If the variance
of the mean is beneath the prescribed threshold, it suggests
that the signal fulfills one of the prerequisites for periodicity.

Step 4: We transition to the frequency domain of the
ACF by determining its power spectral density (PSD) through
Welch’s method [42]. Welch’s approach involves estimating
a windowed PSD from overlapping segments of the signal.
By averaging these windowed PSDs, the final PSD becomes
smoother and more robust. Specifically, the windowed PSD
can be conceptualized as the fast FFT of a signal segment,

further multiplied by a window function, such as the Hamming
function. It is imperative to note that the dominant frequency
component of the ACF should lie between 0.6 and 3 Hz,
a range that encapsulates the typical heartbeat frequency
for humans. Additionally, the magnitude of this maximum
frequency peak ought to surpass a predetermined autocor-
relation lower bound, like 0.1, ensuring differentiation from
random noises. A segment is deemed to harbor a rich peri-
odic signal apt for vital sign estimation if it fulfills both these
frequency and magnitude criteria.

Traditionally, HR is estimated by counting the number of
heartbeats in a signal. However, this method can be unstable
in real-time monitoring contexts. Consider a scenario where
the actual HR of a participant is 60 beats per minute (bpm).
In a 10-s signal, missing or adding just one heartbeat can lead
to an estimation error exceeding 10% for HR. To address this,
one might employ the median of heartbeat intervals, providing
a more robust alternative for HR estimation. However, errors
can arise when the incoming signal displays two distinct peaks
within a single heartbeat cycle, as illustrated on the right side
of Fig. 9. The first of these peaks is termed the systolic peak,
while the second is the diastolic peak. The presence of both
these peaks in the ACF might result in double-counting errors,
causing the estimated HR to be nearly twice the actual HR.
To address this, it is crucial to disregard the ACF peaks repre-
senting the autocorrelation between the systolic and diastolic
peaks within each heartbeat cycle.

Building on the insights from [37], we integrate the
frequency domain features of the smoothed envelope, derived
from step 2, with the ACF, viewing the ACF as a time domain
attribute. We narrow our focus to the pertinent region of the
ACF. The frequency domain features are ascertained using
Welch’s method. To morph the aforementioned features into
probability density functions (PDFs), we deploy a softmax
transformation: σ (xi) = (exi/

∑N
j=1 exj), where xi represents

the ith data point in a segment signal x, σ (·) denotes the soft-
max operation, and N is the aggregate count of data points
in segment x. To fuse these two features, we leverage prob-
abilistic Bayesian reasoning. First, the spectrum generated
through Welch’s method can be construed as “the likelihood
of frequency (f ) being the genuine fundamental frequency,
given the spectrum”: P(f |spectrum). Concurrently, the ACF
can be interpreted as “the probability of a specific quantity of
data points (n) representing the genuine periodicity, given the
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ACF”: P(n|ACF). Each feature assigns a “probability” denot-
ing the likelihood of each potential input (f or n) being the
“true” value. Now, with two independent PDFs at hand, our
objective is to pinpoint the most probable outcomes under the
amalgamation of these PDFs. We can substitute f with n in
P(f |spectrum), as n = (Fs/f ), to establish a joint distribution:
P(n|spectrum, ACF).

Consequently, our mission centers on discerning the most
probable value for n when considering both the spectrum and
ACF combined, i.e.,

n = arg max
n

P(n|spectrum, ACF). (2)

In light of Bayes’ theorem and assuming the two features are
independent conditioning on n, we have

P(n|spectrum, ACF)

∝ P(n) · P(ACF|n) · P(spectrum|n)

= P(n|ACF) · P(ACF) · P(n|spectrum) · P(spectrum)

P(n)

∝ P(n|spectrum) · P(n|ACF)

P(n)
.

Assuming P(n) adheres to a uniform distribution is reasonable,
as we do not privilege any particular value of n. This allows
us to further simplify the objective function by dropping P(n).
Ultimately, we have

P(n|spectrum, ACF) ∝ P(n|spectrum) · P(n|ACF). (3)

Subsequently, the “optimal” choice of n—representing the
most probable periodicity of the incoming signal—can be
discerned by identifying the peak output from the joint
distribution of spectrum and ACF, P(n|spectrum, ACF), in
accordance with (3). Let Fs symbolize the signal’s sampling
rate and let n denote the true periodicity with the highest prob-
ability. We suggest a robust HR estimation as HR = (60/n)·Fs,
with n = argmaxn(P(n|spectrum) × P(n|ACF)).

B. IBI Estimation

While IBI estimation is closely tied to HR estimation,
directly perform detection of heartbeat peaks can result in
numerous false identifications. This is because the pivotal step
in IBI estimation revolves around pinpointing every heart-
beat peak position. Directly identifying heartbeat peaks on
raw data or data post-wavelet denoising can introduce signif-
icant errors. Furthermore, our primary aim is to compute the
intervals between consecutive heartbeats. Therefore, the differ-
ence between two consecutive peaks hold more relevance than
the precise peak positions. With this perspective, we suggest
pinpointing the peak positions on the ACF and subsequently
estimating IBI as delineated below.

Step 1: First, we estimate the signal’s average IBI. We then
determine the position of the first heartbeat peak (P1) by iden-
tifying the location of the peak with the highest amplitude in
the ACF of the signal, confined within the range [0, N]. Here,
N = IBI · Fs represents the data point count for the average
IBI.

Step 2: Upon determining the first heartbeat peak, we recali-
brate the starting and concluding indices of the sliding window.

Fig. 10. From top to down. (1) Raw data. (2) Respiration pattern revealed
signal from (1). (3) Detrended data from (2). (4) Wavelet denoised data of
(3). (5) Moving average of (4).

The revised start index is set to P1 + 0.75 · N, whereas the
updated end index becomes P1 + N + c. Here, c is a minimal
positive constant, ensuring the presence of a heartbeat peak in
the search window, especially considering the rare scenarios
where certain peak intervals might exceed the average IBI for
a specific signal segment.

Step 3: Step 2 is reiterated until the end index sur-
passes the signal’s length, all the while making sure the
start index remains within the confines of the signal’s length.
Subsequently, we examine the signal for any lingering peaks.
If identified, we determine the peak position with the utmost
amplitude. If no peaks are discernible, we deduce that all
heartbeat peaks have been successfully detected.

Step 4: Once all heartbeat peaks, represented as P =
[p1, . . . , pN], are detected, we proceed to calculate IBIs for
this signal segment as IBIs = [(p2 − p1), . . . , (pN − pN−1)].

C. RR Estimation

Separating breathing cycles from heartbeats in raw signals
is particularly challenging because the velocity of vibrations
induced by respiration is substantially slower than that insti-
gated by heartbeats. Consequently, a single breathing cycle
can encompass several heartbeats, complicating its detection
within brief signal durations. As illustrated in Fig. 10, the top
row displays a 30-s signal where the heartbeats are clear but
breathing cycles are hard to be visually identified. To address
this challenge, we obtain displacement data by integrating the
raw velocity data. This methodology aids in unveiling the res-
piration pattern embedded within the raw data. Nevertheless,
the output from the geophone is nearly proportional to veloc-
ity, rather than representing a true velocity. The geophone can
produce outputs even in the absence of vibrations, attributed
to intrinsic errors within its system.

For a time-step i, let xi be the output of the geophone, vi
be the true velocity, and ei be a Gaussian error with mean µ

and variance σ 2. We model the output of geophone as xi =
C · vi + ei. By subtracting the expectations from both sides,
we have x̂i = C · v̂i + êi with

x̂i = xi − E[xi], v̂i = vi − E[vi], and êi ∼ N
(

0, σ 2
)
.

In the context of RR estimation, the amplitude of the signal
is not our primary concern. Instead, we focus on the waveform
of the signal. As a result, C can be treated as 1 in this scenario.
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Fig. 11. Caretaker4 Device.

This leads us to the relationship x̂i = ·v̂i + êi. Subsequently,
we propose to unveil the respiration pattern by

DT =
∫ T

t=1
x̂tdt =

∫ T

t=1
v̂tdt +

∫ T

t=1
êtdt

or DT =
T∑

i=1

x̂i =
T∑

i=1

v̂i +
T∑

i=1

êi (4)

where DT is the displacement at the time step T . Then, we
substitute

∑T
i=1 v̂i and

∑T
i=1 êi with yT and bT

DT = yT + bT with bT ∼ N
(

0, T · σ 2
)

(5)

where yT is defined as the sum of heartbeat displacement
hdT and respiration displacement rdT at time T . The latter
rdT represents the target signal we aim to recover: DT =
hdT + rdT + bT . From (5), it is evident that the variance of
the internal error grows over time. Despite this, after executing
the aforementioned operations, the respiration pattern becomes
discernible, as illustrated in Fig. 10. The breathing pattern is
clearly visible in the second row of Fig. 10. However, there
is baseline wandering due to the system error, indicating the
need for detrending.

Moreover, we utilize wavelet denoising to eliminate the
interference from hdT , leaving only the signals associated with
rdT and bT . To further extract rdT , we implement a moving
average filter with substantially large window size. This deci-
sion is grounded in the understanding that E[rdT + bT ] =
E[rdT ] + E[bT ] = E[rdT ]. Under the premise that the res-
piration signal is deterministic, it is reasonable to infer that
E[rdT ] = rdT . The comprehensive process of extracting rdT
is depicted in Fig. 10, where the bottom panel presents the
final rdT .

We extract the breathing signal rdT and compute its ACF.
To enhance the robustness of the RR estimation, we employ
a feature fusion strategy akin to that used in HR estima-
tion. We determine the ACF on the wavelet-denoised signal
(rrwav = rdT + bT) and on the detrended signal (rrsg) post-
application of the Savitzky–Golay filter (as seen in the third
row of Fig. 10). These three features are then merged to
produce a final PDF for the fused ACF. This PDF can be
expressed as P(n|ACFrdT , ACFrrwav , ACFrrsg) ∝ P(n|ACFrdT ) ·
P(n|ACFrrwav) · P(n|ACFrrsg). We then estimate RR by pin-
pointing the most prominent peak within a range of 2 to 10 s
on the PDF of the fused ACF. Such a methodology proves
especially valuable in counteracting the over-filtering of the
breathing signal, given instances where rrsg and rrwavelet retain
a more accurate shape compared to rdT .

Fig. 12. Sleep monitoring GUI, that is able to visualize vital signs, such as
HR and RR.

IV. EXPERIMENT SETUP AND EVALUATION

BedDot can be installed using its mounted magnetic, allow-
ing for easy deployment on standard beds or seats without
necessitating any special modifications. In our experiments,
we tested the device on a hospital bed and a seat within a
hospital setting, as well as on a regular bed in a residential
setting, to simulate real-life conditions. Each bed was equipped
with a BedDot positioned beneath the chest region. For the HR
and RR benchmarks, we relied on the commercially available,
FDA-approved Caretaker4 device as our point of reference.
Caretaker 4, as depicted in Fig. 11, is designed to provide
continuous estimations of vital signs, such as HR and RR by
analyzing the pulse pressure waveform obtained from a wire-
less finger sensor. The device employs controlled air pressure
to the attached finger to capture this pulse pressure waveform.
We gathered data from 75 participants who were instructed
to lie in various postures, including on their back, stomach,
and both sides. Subsequently, participants were prompted to
take short nap to simulate genuine sleep scenarios. Throughout
the experiment, various motions resulting from unintentional
body shifts, deliberate position changes, or other external dis-
turbances often obscured the heartbeat within the noise. After
implementing a signal quality assessment algorithm capable
of vital sign estimation, our final data set comprised 28 494
distinct observations collected from the 75 participants over
a span of 80 h. Participants’ ages varied around a mean of
50±19 years, consisting of 32 males and 43 females. On aver-
age, their heights measured 167 ± 9 cm, with average weights
of 81 ± 19 kg.1

To illustrate sleep status, we designed a graphical user
interface (GUI) leveraging the Grafana tool [43], as depicted in
Fig. 12. The upper panel showcases real-time HR and RR val-
ues, while a blue box in the top-left corner signifies the bed’s
active or inactive status. The lower panel presents the raw data
gathered from participants in real time. Additionally, this GUI
offers insights into historical HR/RR data, body movement
patterns, posture transitions, and bed statuses, making it suit-
able for both live monitoring and retrospective analysis of
historical records.

For the evaluation, we initially compare the proposed vital
sign estimation techniques with a baseline method. This base-
line focuses on the HR, RR [21], [38], and IBI estimations [37]
as delineated in Section II-B. When assessing HR and IBI, we
employed 10-s data segments for comparative analysis. For

1The clinical experiments were approved by IRB PROJECT00001838.
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Fig. 13. Bland Altman Analysis for HR (left), RR (right), and IBI (middle) estimation by the proposed algorithm (top) and baseline method (bottom). For
all figures, x axis is the average between ground-truth and predictions. Y axis is the difference between ground-truth and predictions.

TABLE I
COMPARISON BETWEEN PROPOSED ALGORITHMS AND BASELINE

METHODS ON HR, IBI, AND RR ESTIMATION

RR, we utilized 30-s segments for evaluation and comparison.
Subsequent to this, we assessed bed occupancy results. We fur-
ther examined HR, RR, IBI, and bed occupancy under various
conditions and settings, encompassing hospital beds, residen-
tial beds in assorted postures, and seats. This assessment
included presenting the MAE for each individual pertaining
to HR, RR, and IBI estimations. Concluding our evaluation,
we gauged the effectiveness of our signal quality assessment
algorithm by contrasting HR and RR outcomes across data
sets—both prior to and following the application of the sig-
nal quality assessment algorithm. We disclosed the MAE, the
standard deviation of the absolute error (STD), and the mean
absolute error percentage (MAPE) for HR, RR, and IBI esti-
mations. The mean absolute percentage error is articulated as
MAPE = (1/n)

∑n
i=1 |(labeli − predictioni/labeli)|.

A. Comparison of HR, IBI, and RR Estimation Between the
Proposed Algorithm and Baseline Method

The outcomes for HR estimation are showcased in Fig. 13.
It becomes clear that our proposed algorithm aligns more
closely with the true labels and exhibits significantly reduced
error variance in comparison to the baseline approach. The
majority of predictions from our model align closely with the
true labels, underlining the reliability of our HR estimation
method. Detailed statistical results from the proposed HR esti-
mation method are provided in Table I. These results align
with the AAMI standard, which necessitates an MAE within
5 BPM and an MAPE under 10% for cardiac monitors and HR
meters [44]. Notably, our proposed HR estimation techniques
surpass the baseline in measures of MAE, STD, and MAPE.

Next, we assessed the IBI outcomes against the benchmark
labels procured from an FDA-approved device, contrasting

them with the baseline method presented in [37]. This was
essential, as prior geophone-based systems lacked the capa-
bility to estimate IBI [21], [38]. The findings, presented in
Fig. 13, underscore the enhanced stability of our proposed
algorithm in relation to the baseline method. This is evident
from the predictions that closely mirror the true labels. We also
detail the statistical results for the IBI estimation in Table I.
Evidently, our IBI estimation method surpasses the baseline
technique, setting a new benchmark in metrics like MAE,
MAPE, and the standard deviation of error. It is worth not-
ing that the baseline method from [37] requires considerably
more time to process each data sample in comparison to our
proposed method.

The outcomes for RR estimation using 30-s data seg-
ments are depicted in Fig. 13. These results illustrate that the
proposed methodology offers both a lower MAE and reduced
variance in errors when juxtaposed with the baseline approach.
As corroborated by the results in Table I, our advanced RR
estimation algorithm exhibits superior performance to the
baseline RR estimation strategy, especially in metrics, such
as MAE, STD, and MAPE, when applied to 30-s data.

B. Comparison of HR, IBI, and RR Estimation Between the
Proposed Algorithm and Algorithms Based on Other Types
of Bed Sensors

We opted to evaluate the HR estimation algorithm and
the respiration rate estimation algorithm from [10] and [33]
alongside the IBI estimation algorithm from [37], which was
assessed earlier in Section IV-A. Noted that the sensor used
in [33] incorporates a cost effective, commercial load cell,
which operates as a force sensor. The sensor in [10] is predi-
cated upon a microbend fiber optic structure. Moreover, [37]
employs a singular electromechanical-film (EMFi) sensor.
Notably, the HR estimation techniques described in both [10]
and [33] were found to be ineffective when tested on our data
set. For an in-depth comparison of these results, readers are
directed to Table II.

C. Bed Occupancy Evaluation

Bed occupancy is assessed using metrics, such as accuracy,
recall, specificity, and precision. The associated confusion
matrix is presented in Fig. 14. Within this context, a positive
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Fig. 14. Confusion matrix of overall bed occupancy (left), on home (middle), and hospital (right).

TABLE II
HR AND RR ESTIMATION COMPARISON AGAINST OTHER

ALGORITHMS ON OTHER TYPES OF SENSORS

TABLE III
BED OCCUPANCY RESULT OVERALL AND ON DIFFERENT ENVIRONMENTS

result signifies on-bed, while a negative indicates off-bed. The
comprehensive results, covering accuracy, sensitivity, speci-
ficity, precision, and recall, are displayed in the bottom row
of Table III, with each metric nearly reaching the 100% mark.
The system provides bed occupancy detection results in real
time, every second, based on a 10-s segment with a 30-s
moving average window. The evaluations draw upon data gath-
ered from 75 individuals. Moreover, we further assessed ten
consecutive days and nights in real-world scenarios involv-
ing ten participants. Data from each day encompasses daily
activities—excluding sleep data but inclusive of daily events
around the bed and ambient noise—alongside sleep data.

D. Evaluation on Different Environments

The preceding sections have showcased the adaptability of
our algorithms across diverse individuals. In this section, we
further assess the robustness and versatility of our vital sign
estimation and bed occupancy algorithms across varied envi-
ronments. We specifically evaluate the performance of the HR,
RR, and IBI estimation, as well as the bed occupancy algo-
rithms, in both home and hospital settings. Additionally, by
testing and evaluating the HR, RR, and IBI estimation algo-
rithms on a seat, we highlight their potential for integration
into smart office environments.

TABLE IV
HR, RR, AND IBI ESTIMATION ON DIFFERENT CONDITIONS

1) HR, RR, and IBI Estimation on Different Environments
and Seat: In this section, we assess the performance of our
vital sign estimation algorithms across various platforms: a
hospital bed, a family bed, and a chair or seat, to validate
the adaptability of our methodologies. The outcomes are doc-
umented in Table IV. For IBI estimation, the results from the
hospital bed slightly outperform those from the family bed.
However, for HR and RR estimations, the algorithms exhibit
superior performance on the family bed as compared to the
hospital bed and seat. Overall, the estimation of vital signs
remains commendable across all settings, underscoring the
broad applicability of our algorithm.

2) Bed Occupancy in Home Environment and Hospital
Environment: In this section, we analyze the efficacy of our
bed occupancy algorithm across two distinct settings: 1) home
and 2) hospital. These evaluations span a period of five days
for each environment. The associated confusion matrices are
depicted in Fig. 14.

The first two rows of Table III present the outcomes of
the bed occupancy estimation across varied environments.
Notably, false positives, indicating on bed, were observed
solely in the home environment. Upon closer examination,
we discerned that the segments with these false positives
bore resemblances to the heartbeat signal, complicating their
differentiation even upon visual inspection.

E. Evaluation of HR, RR, and IBI Estimation on
Different Postures

In this section, we assess the estimations of HR, RR, and
IBI across various postures: lying on the back, left side, right
side, and stomach. The evaluation outcomes, as depicted in
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Fig. 15. Histograms of MAE for HR, RR, and IBI estimation errors over all subjects.

TABLE V
HR, RR, AND IBI ESTIMATION ON DIFFERENT POSTURES

TABLE VI
PERFORMANCE OF SIGNAL QUALITY ASSESSMENT

Table V, affirm that our vital signs algorithm is versatile and
accommodates all these postures effectively.

F. Evaluation of HR, RR, and IBI Estimation Across
Different Patients

Histograms presented in Fig. 15 depict the empirical dis-
tribution of individuals across varying error ranges for HR,
RR, and IBI estimations. These histograms indicate that there
are minimal substantial errors associated with any subject for
HR, RR, and IBI estimations. While a few outliers exhibit
higher estimation errors, the errors for the vast majority of
subjects are closely clustered, underscoring the robustness of
both the BedDot system and the proposed vital sign estimation
methods.

G. Performance for Signal Quality Assessment Algorithm on
Signal Quality Detection

We provided manual signal quality labels from 50 patients.
Those lacking distinct heartbeats were marked as “low-quality
data,” while the rest were deemed “high-quality data.” The
effectiveness of our signal quality assessment algorithm is
demonstrated through the results in Table VI.

H. Evaluation for Effect of Signal Quality Assessment

To evaluate our signal quality assessment algorithm, we
compared HR and RR performance using two data sets: one

TABLE VII
EFFECT OF SIGNAL QUALITY ASSESSMENT ALGORITHM

prior to implementing the algorithm and another after. Initial
results, presented in Table VII, showed suboptimal HR and
RR estimation, as evident in Table I. Upon applying our algo-
rithm, we observed substantial enhancements in accuracy and
stability, as demonstrated by reduced MAE, MAPE, and STD
values. These improvements underscore our algorithm’s role
in elevating signal quality for more precise HR and RR esti-
mates. Our vital sign estimation algorithm, without signal
quality assessment, computes vital signs for all available data
during bed occupancy. Conversely, the incorporation of the
signal quality assessment algorithm effectively identifies and
filters out segments with substantial movements that distort
signal waveforms. Additionally, segments lacking clear heart-
beat patterns are systematically excluded. Consequently, 75%
of the collected data, with a detection rate (DR) of 75%, now
yield accurate vital sign estimations. Detailed outcomes are
documented in Table VII.

V. CONCLUSION

In this article, we introduce BedDot, a contactless bed-
side system for real-time monitoring of HR, RR, and IBI,
alongside accurate bed occupancy detection during sleep. Our
experiments demonstrate its efficacy across various conditions.
BedDot is cost effective, easily installable, and offers real-
time vital sign and occupancy status visualization through our
user-friendly GUI. Our signal quality assessment algorithm
enhances vital sign estimation by identifying bed occupancy
and filtering distorted signals. Our vital sign estimation algo-
rithms perform well, evidenced by their MAE, STD, and
MAPE values, and exhibit versatility across diverse conditions.
The system holds potential for clinical or home use. Our cur-
rent exploration of vital signs estimation has been focused
on a single individual. Future work will extend to multiper-
son scenarios and includes AF detection and stress analysis.
Furthermore, we plan to expand monitoring beyond in-bed
sleep to include seat monitoring during daily activities.
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