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Abstract—In this paper, we present the design and imple-
mentation of a cyber-physical security testbed for networked
electric drive systems, aimed at conducting real-world security
demonstrations. To our knowledge, this is one of the first security
testbeds for networked electric drives, seamlessly integrating
the domains of power electronics and computer science, and
cybersecurity. By doing so, the testbed offers a comprehensive
platform to explore and understand the intricate and often
complex interactions between cyber and physical systems. The
core of our testbed consists of four electric machine drives,
meticulously configured to emulate small-scale but realistic
information technology (IT) and operational technology (OT)
networks. This setup both provides a controlled environment for
simulating a wide array of cyber attacks, and mirrors potential
real-world attack scenarios with a high degree of fidelity. The
testbed serves as an invaluable resource for the study of cyber-
physical security, offering a practical and dynamic platform for
testing and validating cybersecurity measures in the context of
networked electric drive systems. As a concrete example of the
testbed’s capabilities, we have developed and implemented a
Python-based script designed to execute step-stone attacks over
a wireless local area network (WLAN). This script leverages a
sequence of target IP addresses, simulating a real-world attack
vector that could be exploited by adversaries. To counteract such
threats, we demonstrate the efficacy of our developed cyber-
attack detection algorithms, which are integral to our testbed’s se-
curity framework. Furthermore, the testbed incorporates a real-
time visualization system using InfluxDB and Grafana, providing
a dynamic and interactive representation of networked electric
drives and their associated security monitoring mechanisms.
This visualization component not only enhances the testbed’s
usability but also offers insightful, real-time data for researchers
and practitioners, thereby facilitating a deeper understanding
of cyber-physical security dynamics in networked electric drive
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I. INTRODUCTION

The IEEE Power Electronics Society (PELS) has established
Technical Committee 10 on Design Methodologies, tasked
with the development of hardware and software tools for
power electronics design, with a particular focus on ensuring
the data communication and cyber-physical security of power
electronics systems. In recent years, there has been a grow-
ing focus on the safety of modern motor drives and power
electronic systems at various levels due to the increasing use
of digital controls[1], [2], [3], [4]. Moreover, the economic
implications of control systems under cyber attacks are inves-
tigated in some recent research [5] along with an increasing
number of studies focusing on fault diagnosis and cyber attack
detection from an algorithmic perspective[6], [7], [8].

In particular, the number of digitally controlled motor drives
is growing dramatically with the rapid development of electric
vehicles, wind power generation, and smart manufacturing
systems. The rapid development of the Internet of Things
(IoT) is also updating motor systems into motor-network
systems, which puts new demands on both the cyber and
physical security of the devices involved. Some studies on
cyber-physical security delve into potential network attacks
that connected vehicles and autonomous driving systems may
face [9], [10]. Notable examples include the Stuxnet attacks in
2010 [11], the Jeep Cherokee Hack in 2015 [12], the Ukrainian
power grid attack in 2015 [13], and the Tesla T BONE attacks
in 2020 [14].

Testing faults, attacks, and defenses on a live system pose
many issues such as the potential to damage systems, harm
to people, and loss of access to services they provide [15].
Simulated data and attacks often generate data that are very
clean and are not representative of real-world systems. On the
other hand, creating realistic faults and attacks in an isolated
system can be challenging and may not fully capture the
complexities of real-world scenarios. It is thus necessary to
develop cyber-physical testbeds that integrate both simulation
and real-world experiments, in which a variety of attacks
and faults could be created and generated, and detection and
defenses could be tested.

While there are cyber-physical systems (CPS) testbeds
in many different applications [16], [17], there remains a
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significant gap in the availability of cyber-physical testbeds
specifically designed for networked electric drive systems.
Networked electric drives rely on real-time feedback with
stringent timing constraints, making them highly vulnerable
to cyberattacks that disrupt control loops, leading to physical
damage or operational failure. Unlike generic CPS systems,
these drives exhibit strong cross-domain couplings between
electrical, mechanical, and communication systems, where
attacks on communication protocols can propagate and disrupt
physical performance. Additionally, their precision and sen-
sitivity in critical applications demand a level of simulation
detail beyond that of conventional CPS testbeds. Finally,
networked electric drives span diverse configurations, from
single-drive systems to complex multi-drive setups, requiring
scalable and adaptable solutions to address both individual and
systemic vulnerabilities. These factors underscore the need
for a dedicated testbed tailored to the unique challenges of
networked electric drives. Most existing testbeds either focus
on other domains or rely heavily on synthetic data, which
may neglect the high-fidelity models required for accurate
representation of power electronics. Additionally, with the
continuous development of computer science, it becomes in-
creasingly important to regularly update experimental designs
and test algorithms to align with the evolving and expanding
scale of cyber threats and security challenges faced by various
cyberphysical systems. This includes addressing the emerging
vulnerabilities introduced by the integration of Internet of
Things (IoT) devices and the shift towards more intercon-
nected and automated systems.

To address the emerging need for a cyber-physical security
study of electric drive systems, we have built a testbed for
networked electric drive systems to address cyber-physical
security needs, merging power/control engineering with com-
puter science for the first time to explore cyber-physical
interactions. This initiative represents one of the first security
testbeds specifically designed for networked electric drives
that bridge the gap between these two critical fields. The
setup includes four electric machine drives, simulating IT and
OT networks for cyberattack analysis. This comprehensive
configuration is crucial for the generation and study of various
types of cyber attacks, providing a realistic and practical
platform for cybersecurity research.

As an illustration of real-world cyber security scenarios,
we developed a Python script for WLAN step-stone attacks
and implemented cyber attack detection algorithms. This script
allows for the execution of step-stone attacks by leveraging a
series of input IP addresses of the target, simulating a common
attack vector in wireless networks. To counter such attacks, we
have integrated our cyber-attack detection algorithms into the
testbed, enabling the evaluation of defense mechanisms in a
controlled environment.

Additionally, with InfluxDB, we offer real-time visual-
ization of electric drives and their security, making this a
holistic security research tool for electric drive systems. The
incorporation of real-time data visualization using InfluxDB
not only enhances the testbed’s usability but also provides a
dynamic and interactive representation of networked electric
drives and their associated security monitoring systems.

II. DESIGN OF REAL-WORLD SECURITY TESTBEDS

A. System Architecture Overview

Fig. 1 shows the real connection and structure of the
developed security testbed.

Fig. 1. Cyber-physical security testbed for networked electric drives.

This cyber-physical security testbed includes four electric
machine drives sharing the same DC power supply. Four
digital control units control the four electric machine drive
units, respectively. Furthermore, each control unit has a host
PC connected through lab networks, emulating the operating
networks in real-world applications. The NI cDAQ-9132,
with similar configurations to the Hardware-In-the-Loop (HIL)
simulation security testbed, also forms the isolated monitoring
system.

Figure. 2 shows the topology structure of this cyber-physical
security testbed. The top half of the structure includes the
physical layer and control layer, which represents the four
motors, inverter, controller, sensors and networked host PCs.
The bottom half represents cyber layer which contains WiFi
Router, InfluxDb server and cyber attack source.

With shown the real and topology structure, this security
testbed aims not only to emulate a real-world operating
environment and generate authentic data sets across various
scenarios but also to verify the results from the Hardware-In-
the-Loop (HIL) simulation security testbed. Additionally, it is
designed to test and demonstrate the developed cyber-attack
detection and diagnosis algorithms in a real-world setting,
providing a practical platform for evaluating the effectiveness
of these algorithms. Furthermore, the testbed showcases the
integrated visualization and monitoring systems, highlighting
their capabilities in real-time data representation and security
monitoring.

B. Software and Network Design

The testbed simulates small information technology (IT)
and operational technology (OT) networks using a combi-
nation of commercial, open-source, and custom software.
Key commercial components include Texas Instruments (TI)
Code Composer Studio (CSS) and Debug Server Scripting
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Fig. 2. Diagram of cyber-physical security testbed for networked electric
drives.

(DSS). Open-source components include CollectD, Eclipse
Paho MQTT, InfluxDb, TI’s TestServer, and Tshark.

The commercial software is primarily used for the devel-
opment, debugging, and deployment of custom software onto
motor control units. Modifications to TI’s TestServer, an open-
source software tool, provide a backdoor to gain enhanced
control over the system. Since TestServer is part of the Code
Composer Studio suite, its use within the OT network is less
conspicuous.

CollectD is used to gather system data from Pi4 devices that
emulate IT network stations, representing user workstations.
Eclipse Paho MQTT, which complies with the MQTT 3.1.1
ISO standard (ISO/IEC 20922), is used as a publish/subscribe
messaging service to transmit commands from compromised
IT workstations to the TestServer on the OT network. In-
fluxDb, an open-source time-series database and visualization
tool, records system data, facilitating fault and attack diagnos-
tics through custom dashboards.

The network setup features a small IT network connected
to an OT network. The IT network consists of Pi4 devices
acting as user workstations connected via WiFi. A router
is used to segment the IT network from the OT network.
The OT network includes four Windows workstations, each
connected to motors through DSP controllers. Sensors attached
to the motors monitor three-phase current, while a PCC sensor
oversees all four motors. Data from the sensors is streamed
directly to InfluxDb for further analysis.

C. Hardware and Controller Design
While Hardware-in-the-Loop (HIL) simulation security

testbeds offer a low-cost, risk-free, and effective tool for

analyzing system behavior, real-world hardware experiment
security testbeds are still desirable for the following reasons:

1) They can verify the authenticity of simulated environ-
mental factors in HIL simulations.

2) They can assess the impact of additional factors not
considered in HIL simulations.

However, despite their advantages, HIL testbeds have sev-
eral limitations when it comes to cybersecurity testing, par-
ticularly for networked electric drive systems. HIL platforms
are primarily designed for real-time hardware testing and focus
on ensuring communication accuracy and system performance
rather than addressing sophisticated cybersecurity threats.[18]
They often rely on synthetic data and predefined configura-
tions, which limit their ability to simulate complex, multi-
layer network attacks or analyze the nuanced behavior of
real-world systems under such threats.[19], [20] Furthermore,
their flexibility and customization capabilities are constrained,
making it challenging to adapt them for evolving security
challenges.

This section introduces a developed real-world hardware
security testbed designed for intelligent electric drive systems.
The following table compares the key differences between HIL
testbeds, the previous testbed proposed by our laboratory[21],
and the newly proposed testbed, highlighting the unique ad-
vantages of our approach:

TABLE I
TESTBED COMPARISON

Aspect HIL Testbeds Previous
Testbed[21]

Proposed
Testbed

Focus
Real-time

cyber-security
testing

Lab-scale
cyber-security

testing

Real-world
cyber-security

testing

Network Simulated
Scenarios

Lab-scale
Scenarios Real Scenarios

Flexibility Limited Basic High
Attack

Simulation
Basic

capabilities
Network and
control layer

Complex,multi-
layer scenarios

Customize Predefined
configurations

Basic
customizable

Highly
customizable

Model
Fidelity Low Medium High

Data
Fidelity Emulated data Lab-scale

experimental data Real-world data

The hardware testbed includes two induction machines
(IMs) and two permanent magnet synchronous machines
(PMSMs), with all electric drive units using a Texas Instru-
ments (TI) C2000 TMS320F28335 microcontroller as the dig-
ital control unit. The TMS320F28335 is a high-performance
microcontroller based on the C28x core, optimized for high-
speed real-time control tasks, such as motor control, power
electronics, and digital power conversion. It operates at up
to 150 MHz and includes a range of peripheral interfaces,
such as multiple serial communication ports, analog-to-digital
converters, and pulse-width modulation (PWM) outputs.

Key features of the TMS320F28335 include advanced con-
trol algorithms like proportional-integral-derivative (PID) con-
trollers and vector control algorithms, which are ideal for high-
speed control applications. Additionally, it offers hardware
acceleration for fast Fourier transforms (FFTs) and other
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signal processing algorithms, enhancing the implementation
of advanced control techniques. Designed to operate in harsh
industrial environments, it is resistant to electromagnetic inter-
ference (EMI) and electrostatic discharge (ESD), and includes
features such as a memory protection unit and a watchdog
timer for system reliability and safety. Furthermore, it supports
efficient software development through TI’s Code Composer
Studio IDE and the TMS320x2833x reference manual.

All four electric drives in this testbed utilize a field-oriented
control (FOC) strategy for precise speed and torque control.
FOC is a widely used method for controlling both IMs
and PMSMs, where the currents in the stator windings are
manipulated to create a rotating magnetic field that aligns with
the rotor field, providing high levels of control over machine
performance. In the case of induction machines, FOC requires
transforming stator currents from a stationary reference frame
(ABC) to a rotor reference frame (d-q) based on the rotor flux
angle. For permanent magnet synchronous machines, FOC is
simplified due to the presence of permanent magnets, which
provide a known rotor field.

In both machine types, the control system uses proportional-
integral (PI) controllers to adjust stator current phase and
magnitude, ensuring optimal rotor flux alignment and machine
efficiency. The PI controllers generate current and voltage
commands, which are processed by PWM converters to
achieve the desired stator current. FOC offers precise control
over machine torque and speed, even under varying loads and
conditions, and is essential in applications such as electric
vehicles and industrial automation.

Tables II list the key parameters for the PMSMs and IMs
used in this testbed, while Fig. 3 illustrates the FOC control
diagram. The control system allows smooth operation and
can optimize energy consumption by maximizing machine
efficiency.

Fig. 3. Controller diagram for field-oriented control (FOC) for PMSM and
IM.

In summary, although HIL simulations offer valuable in-
sights in a safe and cost-effective manner, real-world hardware
testbeds, like the one described here, are crucial for verifying
the accuracy of simulations and assessing additional factors
that may influence system behavior. The hardware testbed

provides a robust platform for studying the security and
performance of intelligent electric drive systems under real-
world conditions.

TABLE II
SPECIFICATIONS OF THE PMSMS AND IMS IN THE DEVELOPED

HARDWARE EXPERIMENT SECURITY TESTBED.

PMSM
Rated Power 1.5 kW Stator Resistance 0.4050 ⌦

Rated Current 8.2 A Stator Inductance 0.0024 H
DC Bus Voltage 200 V Magnet Flux Linkage 0.0599 Wb
Rated Frequency 250 Hz Number of Pole Pairs 5

Control Frequency 10 kHz Motor Inertia 3.10e-4 kgm2

IM
Rated Power 1.5 kW Stator Resistance 1.85 ⌦

Rated Current 3.4 A Stator Inductance 0.1084 mH
DC Bus Voltage 200 V Rotor Resistance 1.98 ⌦
Rated Frequency 150 Hz Rotor Inductance 0.1116 H

Control Frequency 10 kHz Number of Pole Pairs 3

D. Monitoring System Design
The isolated monitoring system is similar to the one in

the HIL simulation security testbed, which is discussed in
previous sections. The difference in the hardware experiment
security testbed is that it has an extra sensor integration board,
as shown in Fig. 1. This sensor integration board integrates
the signals from remote current sensors at each motor, DC
bus, and PCC. This integration board then uses a DB37
connection to route these signals to the NI cDAQ-9132 chassis.
This setup allows the cDAQ to select desired signals with
high flexibility. The visualization dashboard of the monitoring
system, shown in Fig 4, created with InfluxDB cloud service,
displays the system’s status, showing if it’s operating normally
or experiencing a real-time attack. Data is first gathered by the
cDAQ-9132, processed using algorithms to determine features
and detection outcomes, and then sent to the InfluxDB cloud,
where the dashboard periodically visualizes the results.

Fig. 4. Screenshot of the real-time visualization dashboard when ACIM-1 is
under attack 8 in III.

In conclusion, our testbed design is inherently extensible
and versatile, offering broad applicability across a wide range
of communication protocols, infrastructural variations, and
device types. Using TCP / IP stacks as the foundation, the
platform seamlessly incorporates higher level standards, such
as IEC 61850, IEC 61400-25, ISO / IEC 15118 and OCPP,
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through targeted adaptations of the network layer. These
adaptations, in turn, directly influence the motor control layer
and ultimately shape the behavior of the physical system.

Central to the testbed is the high-performance TI C2000
TI28335 MCU/DSP, which provides ample flexibility and con-
nectivity options to interface with induction motors, permanent
magnet synchronous motors, and other load devices. This
versatility extends to power input configurations, enabling op-
erations under both industrial and residential power supplies,
as well as single-phase and three-phase power conditions.
At the converter stage, the testbed accommodates variable
frequency drives, inverters, and rectifiers capable of transform-
ing diverse input energy specifications into the appropriate
levels required by the load. Consequently, a wide array of
DC and AC devices can be tested—including automotive
motors, household appliances, charging stations, and energy
storage batteries—under conditions that closely mimic real-
world operation.

Moreover, the platform not only matches but surpasses the
capabilities of traditional hardware-in-the-loop (HIL) simula-
tions by generating stable inputs that accurately reproduce
real-world scenarios. It can also introduce adjustable noise
and attack vectors to explore conditions often too complex
or risky to replicate in purely simulated environments. This
unique combination of realism and controllability supports
comprehensive experimentation across multiple research and
practical domains. Although MQTT is currently used due to its
suitability in low-resource and unstable network environments,
it can be readily substituted with more specialized protocols
when communication or reliability demands shift.

III. EXPERIMENTAL RESULTS OF REAL-WORLD SECURITY
DEMONSTRATIONS

Fig. 5 shows the detailed flowchart for the monitoring
algorithms implemented in the demo prototype. The entire
testbed’s systems are integrated through the operational in-
formation flow shown in this diagram, operating and testing
according to predefined cyber-attack scenarios.

A. Cyber-attack Design

Realizing cyber-attacks in real-world hardware security
testbeds is always challenging due to the trade-off between
the fidelity and controllability of the attack scenarios. An
ideal attack scenario should be one of the real-world attacks
from historical studies. However, cyber-attacks are highly
unpredictable, and the impacts on the physical systems are
even more challenging to manage. Therefore, the developed
hardware experiment security testbed adopts fully controllable
false data injection attack (FDI) scenarios. The emulated
attacks are pre-defined and embedded in the TMS320F28335
MCUs with some triggers. These triggers are backdoors for
various FDI attacks. Therefore, the attack policies could be
fully controllable, and the impacts on physical systems could
be manageable. The hacker then could trigger one of the pre-
defined backdoors, and the impacts could be analyzed through
the acquired data sets from the cDAQ systems.

Fig. 5. Flowchart of the demo prototype condition monitoring system
software.

For our proposed step-stone attack, we developed a Python
script that launches a chain attack in the WLAN based on
the input series of IP addresses of the target. The complete
workflow is as follows:

1) The attacker gained access to the IT network via an
unsecured wireless access point shown in Fig. 1

2) The attacker launches a port scan to locate other work-
stations on the network

3) brute force password cracking attack based on the target
victim IP address, which is arbitrarily selected from the
scan

4) once the password is cracked, the attacker logs in and
loads and runs a script that sends JSON-RPC commands
to the NXP Lite server to execute motor commands. This
allows the attacker to speed up, slow down, stop, restart,
and disconnect the motor

5) The compromised Pi then launches this attack on another
Pi

6) Repeat the above procedures

B. Attacks Case Studies and Descriptions

This section presents experimental results from two major
categories: one involving various false data injection attacks
(FDIAs) targeting the Permanent Magnet Synchronous Motor
(PMSM) electric drive units, and the other focusing on Alter-
nating Current Induction Motors (ACIM). These two motors
were chosen because of their widespread use and representa-
tiveness as controlled and attacked objects of physical systems.
These distinct test cases are detailed in Table III.

False data injection attacks targeting closed-loop control
systems are a type of cyber-attack that aims to manipulate the
output of a control system by injecting malicious data into its
input. This type of attack is particularly dangerous because it
can cause the system to behave in unexpected and potentially
damaging ways. In a closed-loop control system, the output of
the system is fed back into the input, where it is used to adjust
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the control action. An attacker can exploit this feedback loop
to inject false data that modifies the output of the system in a
way that is detrimental to the control objectives.

TABLE III
DETAILS OF CYBER-ATTACK SCENARIOS FOR DEMO PROTOTYPE.

Case No. Target System Target Variables
0 Motor Side Normal Running Condition
1 PMSM ADC offset-phase A current feedback
2 PMSM ADC offset-phase B current feedback
3 PMSM ADC offset-phase C current feedback
4 PMSM ADC offset-phase A&B current feedback
5 PMSM ADC offset-phase A&C current feedback
6 PMSM ADC offset-phase B&C current feedback
7 PMSM Speed reference
8 IM ADC offset-phase A current feedback
9 IM ADC offset-phase B current feedback
10 IM ADC offset-phase C current feedback
11 IM ADC offset-phase A&B current feedback
12 IM ADC offset-phase A&C current feedback
13 IM ADC offset-phase B&C current feedback
14 IM Speed reference

One common approach for FDIAs in closed-loop control
systems is to manipulate the sensor measurements that are used
as feedback signals. For example, an attacker can inject false
measurements that cause the control system to make incorrect
decisions, such as increasing the output of a system beyond
its safe limits. In some cases, the attacker may also modify
the control commands that are sent to the actuators, which can
cause the system to behave in unexpected ways. These attacks
can be challenging to detect because the injected data may
appear to be valid sensor readings, making it difficult for the
control system to distinguish between normal and malicious
inputs.

False data injection attacks (FDIAs) targeting closed-loop
control systems are becoming an increasing concern in many
critical infrastructure systems, including power grids, water
distribution systems, and transportation networks. These sys-
tems heavily rely on closed-loop control to maintain their
safe and reliable operation, making them prime targets for
attackers aiming to disrupt their function. Given the harmful
and representative nature of FDIAs, this testbed has chosen
FDIAs as the testing method for subsequent experiments.
Through related testing, it is hoped that advanced machine
learning algorithms can be utilized to better identify and
block malicious attacks in real-time, mitigating potential issues
before any damage occurs to the system. In this testbed,
a False Data Injection Attack (FDIA) is strategically intro-
duced at the network layer, compromising the integrity of
the control layer by introducing biases into sensor readings
and controller decisions. This cascading compromise manifests
as physical-level disturbances in the motor system, including
unbalanced three-phase currents, distorted magnetic fields,
and irregular torque outputs. Unlike methods that rely solely
on algorithmic simulations, this testbed integrates physical
domain knowledge with cyber-physical interactions, enabling
the collection of high-fidelity data that reflects real-world
scenarios. By correlating these anomalies with network in-
teractions, the testbed provides a robust foundation for de-
tecting and mitigating cyberattacks through advanced control

mechanisms and machine learning approaches. In contrast, our
testbed leverages high-accuracy simulations and hardware-in-
the-loop (HIL) platforms to produce data that is both precise
and interpretable, aligning closely with real-world operational
conditions. This enables a comprehensive analysis of system
vulnerabilities, especially under multi-layered attack scenarios
that span network, control, and physical layers. These scenar-
ios, captured by devices such as the NI cDAQ-9132, facilitate
the direct observation of physical responses to injected attacks,
enhancing the understanding and mitigation of potential risks.

As illustrated in the flowchart presented in Figure 5, five
distinct classification models (Random Forests (RF), Multi-
variate Logistic Regression (LG), Support Vector Machines
(SVM), K Nearest Neighbor (KNN), Convolutional Neural
Networks (CNN)) have been evaluated. A sampling frequency
of 2 kHz is utilized, with each monitoring window gathering
500 data points. The primary features extracted for detection
and diagnostic purposes consist of the signal magnitude within
the frequency domain. The testing process, as outlined by the
scenarios in Table III, comprises two levels for all monitors:
individual monitoring of permanent magnet synchronous ma-
chine (PMSM) three-phase line currents, individual monitoring
of induction machine (ACIM) three-phase line currents, and
system monitoring of DC bus line current. For individual
monitors, the first level aims to differentiate between normal
conditions, ADC offset attacks (cases 1-6 and 8-13), and
speed reference attacks (cases 7 and 14). The second level
seeks to distinguish each attack scenario for both PMSM
(cases 1-7) and ACIM (cases 8-14) monitors. Subsequently,
in the case of the DC bus system monitor, the first level
involves identifying normal conditions, PMSM attacks (cases
1-7), and ACIM attacks (cases 8-14). The second level focuses
on differentiating ADC offset attacks in PMSM (cases 1-6),
speed reference attacks in PMSM (case 7), ADC offset attacks
in ACIM (cases 8-13), and speed reference attacks in ACIM
(case 14).

Furthermore, an additional third level of complexity is
introduced for the system monitor. This level distinguishes all
14 cases and normal conditions solely based on the current
DC bus line. The following pages show the detailed results
and some sample raw waveforms from different scenarios.

IV. TESTBED RESULTS AND DATA ANALYSIS

A. Test Results

Fig. 6 illustrates the variation of DC bus current over
time during motor operation under no load, normal load,
and various FDIA scenarios. We observe that under both no-
load and normal-load conditions, the harmonic patterns on the
DC bus are similar. Meanwhile, when FDIA attacks the A-
phase of PMSM and ACIM motors, the erroneous harmonic
components exhibit similar patterns. Similarly, when FDIA
targets the speed reference of both motors, the erroneous
harmonics remain consistent, indicating a regular pattern in
FDIA-induced errors.

Additionally, both low and high-frequency harmonics on the
DC bus reveal imbalances in the three-phase motor currents
and torque, demonstrating FDIA’s capability to physically
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disrupt motor control systems, posing significant threats to
operational and personal safety.

Fig. 7 shows the target PMSM three-phase line currents and
DC bus line current of a sample FDIA targeting the phase A
ADC offset variable. The bias injected is 0.1, which represents
around 1A bias in the machine feedback. These scenarios
include four target onboard control-related resources. Three
are the ADC offset variables for three-phase current feedbacks,
respectively. The rest is the rotating speed reference variables.
For ADC offsets, the attack falsely injects 0.05 bias into
their original values. For speed references, the attack falsely
injects a periodic disturbance to the original values. Such a
disturbance has a magnitude of ± 0.01 p.u. and a period of
0.1s.

Fig. 6. DC Bus line currents of a sample FDIA targeting the single motor
phase A ADC offset variable. The bias injected is 0.1, which represents around
1A bias in the machine feedback.(1) Normal Condition without load, (2) Case
0, (3) Case 1, (4) Case 7, (5) Case 8, (6) Case 14.

Figure 7 provides a comprehensive visualization, showcas-
ing a detailed comparison of current values within the DC
bus when subjected to both the presence and absence of
FDI attacks. When not under attack, the DC bus current is
naturally fluctuating with the motor load. Meanwhile, when
an attack occurs, an intuitive and noticeable change in the
type of harmonics in the DC bus is found in the figure.

Notably, the depicted data reveals a discernible pattern in the
current output, akin to the patterns observed in injected attacks.
This observed regularity in the current output not only serves
as an interesting insight but also establishes a foundation for
contrasting and pinpointing potential attacks specifically at the
network layer. This expanded description offers a more in-
depth analysis of the findings presented in Figure 7, shedding

Fig. 7. DC Bus line currents of a sample FDIA targeting two PMSMs’ phase
A ADCoffset variable. The bias injected is 0.1, which represents around 1A
bias in the machine feedback.(a) Case 0, (b) Case 1.

light on the nuanced observations related to FDI attacks and
their impact on the DC bus current values.

Fig. 8. Three Phase currents of a sample FDIA targeting the single motor
phase C ADC offset variable. The bias injected is 0.1, which represents around
1A bias in the machine feedback. (a) Case 0, (b) Case 3

Figure 8 illustrates various raw waveforms obtained from
experiments conducted on the PMSM. The results indicate
that when one of the ABC three phases is subjected to
an FDI attack, the currents in the other two phases exhibit
noticeable fluctuations and deviations. Similarly, when two
out of the three phases experience FDI attacks, the third-
phase current still demonstrates significant fluctuations and
deviations. Moreover, when all three phases (ABC) are sub-
jected to FDI attacks simultaneously, a considerable decrease
in the amplitude of the three-phase currents is observed.
The distinctive waveforms associated with different attack
scenarios not only allow for differentiation from the normal
operating state of the motor system but also exhibit unique
error features under various attack conditions.

In other words, the experimental setup successfully detects
network attacks on the motor and can distinguish between
different fault types without further data processing, such as
confusion matrices.

B. Data Analysis and Comparison
In Figure 9, we compare the fault diagnosis accuracy

of five algorithms—Randow Forest(RF), K-Nearest Neigh-
bors(KNN), Convolutional Neural Network(CNN), Logistic
Regression(LG), and Support Vector Machine(SVM)—using
two different datasets. All algorithms use data collected from
the DC bus, with case 0 serving as the baseline for normal
operation, while the other cases are labeled with different fault
scenarios.

The first dataset in Figure 9 (a) includes all defined cases,
while the second dataset represents a scenario of insufficient
training data, containing only case 0 as normal samples. The
other dataset in Figure 9 (b) includes case 0,1,7,8 and 14.
Cases 1 and 7 representing different types of FDIA attacks on
the PMSM. These attacks disrupt the three-phase current bal-
ance by injecting currents into each phase and alter the motor’s
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normal operation by injecting speed reference errors, affecting
overall current, operating temperature, and key indicators like
equipment aging. The same applies to cases 8 and 14.

As shown in the first row of Figure 9, RF, KNN, and
CNN exhibit a reasonable decline in prediction accuracy as the
complexity of the cases increases. In contrast, the increased
nonlinearity due to more cases makes it impossible for LG and
SVM to train and analyze the data effectively. Both datasets
demonstrate that KNN achieves the highest accuracy. The
second row of Figure 9 shows that the false alarm rate for
all algorithms is close to 0%, indicating that all methods
reliably avoid such errors. However, relying solely on KNN for
analyzing this type of experimental data may lead to significant
economic losses in practical applications. As illustrated in
the third row of Figure 9, when the number of cases is low,
the false diagnosis rates for nonlinear algorithms remain low.
However, the high false diagnosis rates of LG and SVM
suggest that they struggle to handle nonlinearity even in low-
complexity scenarios. KNN also slightly outperforms RF and
CNN in high-complexity cases.

Fig. 9. FDIAs Classification Detection Accuracy comparison in five algo-
rithms. All data training and comparisons are based on the benchmark data
collected from the DC bus. (a)Case 0-14. (b)Case 0,1,7,8,14

As shown in Figure 10, since there is no training data
for the 15-case scenario for LG and SVM, we examine their
performance in simpler cases.

It is evident that both algorithms fail to identify the same
two cases, specifically the speed reference FDIA. This demon-
strates their poor handling of nonlinearity, as well as the
significant nonlinearity, or harmonic distortion, introduced
by the FDIA attacks on the DC bus. This greatly impacts
the power quality of the motor control system. Based on
the performance of confusion matrix, linear regression and
machine learning algorithms based on similar principles are
not well-suited for fault diagnosis data analysis.

As shown in Figure 11, RF, CNN, and KNN are well-suited
for handling highly nonlinear data. In Figure 11 (b), with

Fig. 10. LG and SVM Confusion Matrix of 5 Case datasets. (Case 0,1,7,8,14)

only five cases, the distinction between normal samples and
various FDIA cases is clear, allowing these three algorithms to
nearly fully identify each fault. In the confusion matrix for the
15-case dataset, RF achieves high accuracy when processing
FDIA for PMSM, but its accuracy for ACIM data is less ideal.
In comparison, CNN struggles with distinguishing between
attacks on different phases of both motors, particularly con-
fusing single-phase and two-phase attacks. KNN, on the other
hand, shows stable performance, making almost no errors in
identifying PMSM data, though its accuracy slightly declines
with ACIM data.

From these comparisons, the confusion matrix suggests that
faults in ACIM are generally more difficult to distinguish than
in PMSM. Single-phase and two-phase errors in three-phase
motors are particularly challenging to differentiate, while
speed reference faults are reliably recognized overall. KNN
remains stable in identifying phase-related FDIA in ACIM,
making it the most reliable algorithm in this testbed. Our
cyber-physical security testbed demonstrates effectiveness in
creating, detecting, and addressing such issues, providing prac-
tical significance and value for the growing security demands
in modern motor control systems and IoT systems.

Overall, the testbed effectively discerned network attacks
within the relevant cases. In conclusion, the benefits of the
motor network security testbed developed in this paper can be
outlined as follows. Initially, it establishes a crucial connection
between real-world network vulnerabilities and power elec-
tronic control models. This connection enables the physical
measurement and exploration of vulnerabilities on the network
side, facilitating the identification and development of methods
to counteract these network attacks. Secondly, it precisely
discerns the impact of various types of attack signals on
motor drives. Lastly, to a significant degree, this apparatus
contributes to the enhancement and assurance of the security of
motor network systems—an emerging and inventive category
of power electronic systems, showcasing substantial practical
value.

V. CONCLUSION

This paper establishes a crucial linkage between cybersecu-
rity research in the cyber-physical informed system and con-
ventional motor grid-connected systems. An innovative testbed
is presented herein, specifically designed for cybersecurity
and control of motor drives. The testbed seamlessly integrates
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Fig. 11. Two datasets’ RF,CNN and KNN Confusion Matrix. All data training
and comparisons are based on the benchmark data collected from the DC bus.
(a)Case 0-14. (b)Case 0,1,7,8,14

fault detection, problem analysis, and treatment methods for
both cyber-attacks and motor control. The proposed approach
pioneers the combination of machine learning with traditional
motor control techniques. By amalgamating machine learning
from computer science with control methods from power
electronics, the experimental system detailed in this paper
proficiently identifies anomalies in the grid-connected motor
system and provides corresponding control solutions. Diverse
problem scenarios are examined to affirm that the developed
test bench significantly enhances the physical security and
network security of the emerging motor system. This contri-
bution establishes a more dependable and user-friendly testing
environment and hardware program. These empirical findings
confirm a more dependable and user-friendly testing envi-
ronment, underscoring the tangible, hands-on advancements
brought forth by our framework.

We introduce a novel cyber-physical attack analysis frame-
work that bridges the gap between theoretical attack models
and their real-time physical manifestations. By integrating
cyber-physical system interactions into our detection methods,
we highlight how subtle and long-term threats—such as torque
imbalances and mechanical wear—can be detected where tra-

ditional cybersecurity frameworks may fail. Our testbed serves
as a theoretical model for adaptive, scalable, and comparative
testing across diverse motor types, system topologies, and
attack vectors. Ultimately, this work lays the foundation for
future theoretical advancements in CPS security, guiding the
development of more sophisticated algorithms and broader
research on CPS integrity and resilience.
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