ICC 2024 - IEEE International Conference on Communications | 978-1-7281-9054-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/1CC51166.2024.10622995

978-1-7281-9054-9/24/$31.00 ©2024 IEEE

2024 |IEEE International Conference on Communications (ICC): SAC E-Health Track
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Abstract—In this study, we introduce BedDot, the first contact-
free and bed-mounted continuous blood pressure monitoring
sensor. Equipped with a seismic sensor, BedDot eliminates the
need for external wearable devices and physical contact, while
avoiding privacy or radiation concerns associated with other
technologies such as cameras or radars. Using advanced pre-
processing techniques and innovative Al algorithms, we extract
time-series features from the collected bedseismogram signals
and accurately estimate blood pressure with remarkable stability
and robustness. Our user-friendly prototype has been tested with
over 75 participants, demonstrating exceptional performance that
meets all three major industry standards, which are the Associ-
ation for the Advancement of Medical Instrumentation (AAMI)
and Food and Drug Administration (FDA), and outperforms
current state-of-the-art deep learning models for time series
analysis. As a non-invasive solution for monitoring blood pressure
during sleep and assessing cardiovascular health, BedDot holds
immense potential for revolutionizing the field.

Index Terms—blood pressure, circadian rhythm, contact-free
sleep monitoring, deep neural network, seismic sensing, sleep

I. INTRODUCTION

Several studies [1], [2] highlight the strong links between
systolic blood pressure (SBP), diastolic blood pressure (DBP),
sleep, aging, and the prevalence of cardiovascular and vas-
cular diseases. As of 2016, there were approximately 47.8
million individuals 65 years and older in the United States,
with 26% living alone at home and 18% residing in senior
healthcare facilities according to the U.S. Census Bureau. The
growing aging population will only exacerbate the impact of
uncontrolled hypertension on the health and well-being of
society, as well as contribute to skyrocketing healthcare costs.
Real-time blood pressure monitoring during sleep is crucial,
even life-saving, for those suffering from hypertension-related
diseases such as heart attacks, strokes, heart failure, and kidney
disease. Polysomnography, a standard sleep clinic technology,
is able to continuously detect physiological abnormalities
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overnight, while it is both costly and inaccessible to families.
Most commercial alternatives, such as wearable sensors and
wrist devices, require bodily contact and can be intrusive.
Furthermore, the use of cameras or radars to monitor in-bed
body motion raises privacy concerns [3] or radiation concerns.
A contact-free and non-intrusive solution to monitor blood
pressure would have far-reaching benefits for individuals and
healthcare providers alike. By allowing individuals to self-
manage their health and share the results with their healthcare
providers, diseases can be managed more effectively. This
would be a revolutionary development, as millions of Amer-
icans suffer from complex diseases that remain uncontrolled,
leading to preventable complications and deaths each year.

Fig. 1. Installation of BedDot under the bed frame.

In this study, we use BedDot, a contact-free sleep monitor-
ing system that can continuously monitor sleep and vital signs
without the need for instrumentation on the body. BedDot
uses a seismic sensor mounted on the bed to collect real-
time bedseismogram (BSG) signals, which measure micro-
vibrations on the bed frame that are induced by heart move-
ment, respiration, and blood pressure changes. This technology
is not new, as seismic signals have been widely used in
geophysical and civil engineering fields for many years [4],
and more recently, in analyzing human health conditions [5].
For example, the seismocardiogram (SCG) signals created
by chest vibration have been used to extract heartbeat and
implement user authentication on mobile phones [6]. Based
on a bed-mounted geophone, researchers monitored heart rate
during sleep [7]. More recently, a vertical geophone with a 2.5
kHz sampling frequency was used to implement both heart
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rate and respiration rate monitoring [8]. However, there has
been limited research on real-time blood pressure monitoring
using vibration signals. Although it is not straightforward
that the vibration signals are directly connected to the blood
pressure predictions, [9] indicates that the blood pressure and
the blood volume flow predictions can be done by using the
ballistocardiograph (BCG) signals, which share the same idea
as our BSG signals. Therefore, we introduced two machine
learning models to reveal this non-obvious connection between
the BSG signals and the blood pressure.

The BedDot system, as illustrated at the top of Figure 1,
is easily set up by attaching it to a bed frame. The system
consists of a Raspberry Pi 3 and an ADC that connects
to the seismometer and saves raw data to a local database.
The hardware of BedDot is shown in Figure 1. In addition
to monitoring on/off bed detection, sleep posture, and heart
and respiration rates [8], BedDot is capable of monitoring
blood pressure during sleep, making it a unique and effective
solution. The monitoring dashboard is also shown at the
bottom of Figure 1. To the best of our knowledge, this is
the first work that proposes a contact-free system for blood
pressure monitoring during sleep using BSG signals.

The BedDot system utilizes Al to accurately estimate
real-time blood pressure, introducing two methods based on
BSG signal-derived time-series features: a hybrid convolution-
recurrent neural network combining CNN and bidirectional
LSTM for temporal data, and the Vital Temporal Convolu-
tional Networks (VTCN) with a modified causal convolution
architecture. Unlike existing vital sign estimation methods
[10], which require a single data analysis window of 30-120
seconds, the BedDot system continuously monitors changes in
SBP/DBP using a seismometer with a 100 Hz sampling fre-
quency and collects the BSG signal caused by bed vibrations,
allowing for data segments of 10 seconds. This makes the
system more suitable for real-time blood pressure monitoring
during sleep and even clinical studies.

The major contributions of this paper can be summarized as
follows. (1) The proposed algorithms are the first successful
attempt to estimate continuous blood pressure during sleep
without physical contact. BedDot, a bed-mounted seismic
sensor, 1s used to measure micro-vibrations on the bed frame
that are induced by heart movement, respiration, and blood
pressure changes. With a high sampling frequency, the sys-
tem can generate real-time time-series features and estimate
blood pressure in real time. This innovative approach offers
a contact-free method of monitoring blood pressure, which
could be beneficial for those with cardiovascular diseases,
cognitive disorders, or other medical conditions that require
continuous monitoring. (2) This paper proposes blood pressure
estimation methods based on advanced Al algorithms that
meet the criteria for evaluating commercial blood pressure
measuring devices. The performance of these algorithms is
then compared to state-of-the-art deep learning models for
time-series analysis. Numerical results show that the proposed
Al models are superior to the existing models. This demon-
strates the potential of Al algorithms to accurately measure

blood pressure with high levels of accuracy.

II. DATA COLLECTION AND DATA QUALITY CONTROL
A. Data collection

In this paper, BedDots were utilized to detect mini-
vibrations on the surface they were attached to. The sampling
rate is 100 Hz. The data were collected in a controlled
setting at the University of Georgia Clinical and Translational
Research Unit (CTRU) using a standard hospital bed and a
family bed. Two BedDots were installed on each bed. The
main difference between the two types of beds is the bed
frame and mattress, which could affect the propagation of
vibration waves. Each data sample consisted of a 10-second
recorded BSG signal. The true values of the blood pressure
were collected by using the FDA-approved wearable device
at the same time during the experiment and were used as the
ground truth blood pressure measurements, which represent
the real blood pressure of the participants. We then evaluated
our blood pressure predictions by comparing them with the
ground truth.

B. Data quality control

The BSG signal collected by BedDot is composed of
various vibration sources, such as background white noise,
home environment noises from appliances (e.g. air conditioner,
washer, dryer), body movements during sleep, and vibrations
caused by vital activities like heartbeat, respiration, and blood
pressure changes. To accurately estimate blood pressure, we
filter out vibrations that do not reflect vital activities. We use
an automatic signal processing algorithm to eliminate signals
with “bad quality”. For each 10-second segment, we measure
its spectral distance, energy standard deviation, and standard
deviation. If one of the following three thresholds is triggered,
the signal segment is labeled as “bad quality” and filtered
out: spectral distance is less than 7, energy standard deviation
is less than 18, and the standard deviation is greater than 5.
Small spectral distance or energy standard deviation indicates
behavior similar to white noise and usually lacks meaningful
information on vital activities. On the other hand, a signal
segment with a large standard deviation is usually dominated
by a body movement like changing sleep posture, which is
much stronger than common vital activities. These thresholds
are based on our experience with BSG signal processing [10],
[11]. To further filter out nuisance information, we check
the frequency domain. Figure 2 shows a 5-minute recorded
vibration data. The available frequency range is 0-50 Hz,
based on the seismometer’s 100 Hz sampling rate and the
Nyquist sampling theorem. The red dashed frame represents
the background noise with varying dominant frequencies,
while the blue dashed frame denotes machine vibrations from
a dryer with an 11 Hz dominant frequency and harmonics at
22 Hz and 33 Hz. To remove these machine noises, we first
apply a spectrum scanning method, then use notch filters to
suppress the noise components with iso-dominant frequencies.

In addition, we follow the recommendation in [12] to
remove data with irregular pulse pressure (the difference
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Fig. 2. Background noise and machine vibration in BSG signals.

between SBP and DBP). A high pulse pressure, e.g. greater
than 60 mmHg (millimeters of mercury), is usually considered
an indicator of an immediate heart problem [13]. On the other
hand, a low pulse pressure, say beneath 20 mmHg, may be a
sign of poor heart function [14]. In our case, we only consider
taking quality control of the higher bound. So, the upper bound
of 60 mmHg is the conservative limit to filter out outliers
that may inaccurately represent blood pressure anomalies. We
summarize the flow chart of the proposed data collection,
preprocessing, and estimation procedure in Figure 3.
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Fig. 3. SBP/DBP estimation workflow.
III. BLOOD PRESSURE ESTIMATION METHODS

In this section, we introduce two novel deep-learning meth-
ods for estimating blood pressures (SBP and DBP) from the
collected 100 Hz BSG signals. Section III-A introduces a novel
hybrid model that combines a CNN and an LSTM network.
Section III-B presents a VICN model. In Section III-C, we
provide implementation details and discuss hyperparameter
selection for both methods.
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Fig. 4. Architecture of the proposed CNN-LSTM hybrid model.

A. CNN-LSTM hybrid model

In this subsection, we present a CNN-LSTM hybrid model,
as illustrated in Figure 4. The CNN component is a feed-
forward neural network that leverages local receptive fields,
shared weights, and pooling to significantly reduce the number
of parameters in fully connected neural networks, enabling di-
mensionality reduction and feature extraction. 1D-CNNs have
been widely used in electrocardiogram anomaly detection [12]
and are well-suited for real-time, low-cost applications due to
their low computational requirements.Our model has 3 tem-
poral convolutional layers of 128 feature maps, each followed
by a max pooling layer, with a receptive field size of 3 and
rectified Linear Unit (ReLU) activation.

To be specific, the convolution process can be expressed as
ah = bk + M conv1D(w!i b, 5L 1), where 2 represents
the input, bﬁc is a scalar bias of the k-th neuron at layer [, and
sifl is the output of the i-th neuron at layer [ — 1. Moreover,
w! ! is the kernel from the i-th neuron at layer [—1 to the k-th
neuron at layer /. Therefore, ?Jé’ the output of the neuron, can
be expressed by the activation function of 2, i.e. y} = f(al),
where f is the ReLU activation function.

Each pooling layer utilizes a 1-D max-pooling with a
window size of 8 and a stride length of 2. The max pooling
operation can be described as sfc = yfc 1 ss, where sfc is the
output of the maximum pooling layer and | ss represents the
downsampling operation conducted by a maximum pooling
layer.

Our model also incorporates three bidirectional LSTM
layers after the convolutional section. Bidirectional LSTMs
access the data in both forward and backward directions by
combining a forward-fed layer and a reverse-fed layer. This
allows the LSTMs to learn from values both in the past and
future within the sequence. Both directions are performed
similarly to a standard LSTM, and their outputs are then
concatenated to provide the overall result. In our experiments,
we use the Adam optimization algorithm [15] with a learning
rate of 0.001. The final layer is a fully connected dense
layer, which provides the final output of the network. During
training, 90% of the training set was used for model training
and 10% was set aside as the validation set.

B. VICN model

The temporal Convolution Model (TCN) [16] is a member
of the Convolutional Neural Network (CNN) family. Un-
like traditional CNNs, TCNs employ a causal convolution,
meaning that the convolution process at time ¢ only depends
on observations prior to time ¢, thus avoiding the issue of
“information leakage.” Furthermore, TCNs use dilated con-
volutions, which enables the model to capture information
over a longer history with an exponentially larger receptive
field compared to non-dilated causal convolutions. In essence,
TCNs can be considered as the combination of 1D fully-
convolutional networks and causal convolutions [16]. To be
more specific, for a 1D sequence input X € R™ and a filter f:
{0,1,...,k — 1} — R, the dilated convolution operation F' on
elements s of the sequence is defined as F'(s) = (X x4 f)(s) =
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Zf;ol f(@) - Xs_g4.4, where d is the dilation factor, k is the
filter size, and s — d - ¢ represents the direction of the past.
Our VTCN model consists of a series of blocks, with each
block containing a sequence of convolutional layers. We use
j to denote the number of blocks and [ for the number of
layers within a block. The dilation rate d increases by a factor
of 2! for consecutive layers. The activations in the [-th layer
and j-th block are represented as S/ € RF*T where F is
the number of filters and 7" is the number of corresponding
time steps. The input for each block S7+ is the output from
the previous block SU~1V, with the exception of the first
block, which receives the input data. We propose a modified
TCN model, referred to as the Vital TCN or VTCN, which
includes an additional batch normalization layer and ReLU
activation function in each block of the classical TCN model.
Additionally, we have added a linear layer at the end of the
layers to make the model suitable for regression.
C. Implementation and hyperparameter selection

In our experiments, BSG signal observations are treated as
a time series, indexed by collection time. We allocate 70% of
these observations to the training set and 30% to the test set.
A validation set, representing 10% of the training sample, is
derived after sorting daily samples by timestamps. So, there
is neither overlapping nor information leakage. For the CNN-
LSTM hybrid model, both the train set and the test set are nor-
malized using the training set’s mean and standard deviation,
ensuring no data leakage. The VTCN model doesn’t require
normalization. Both models undergo training and validation
over 150 epochs using mean absolute error (MAE) as the loss
function. Post-training, weights yielding the lowest MAE are
used for testing.

IV. EXPERIMENTS AND EVALUATIONS

We evaluate the performance of the BedDot system in real-
time, contact-free blood pressure estimation. The quality con-
trol measures described in Section II were followed to produce
a preprocessed dataset of 33,982 observations collected from
more than 75 participants over 43 days. True systolic blood
pressure (SBP) and diastolic blood pressure (DBP) measure-
ments were obtained using a United States Food and Drug
Administration (FDA) approved clinical blood pressure moni-
tor, following established clinical techniques. The histograms
of SBP and DBP are shown in Figure 5, with sample means
of 120 mmHg and 70 mmHg, respectively. The dataset was
divided into two parts: first 70% of the daily data was used for
training, and the remaining 30% was used for testing. So there
is no overlapping and data leakage issues between training and
testing sets. A 10-fold cross-validation was used in modeling
tuning and the validation sets were split from the training set.
Both the CNN-LSTM hybrid model and the VITCN model
were trained on the training set, following the model training
and hyperparameter selection methods outlined in Section
II-C. The trained models were then used to predict SBP and
DBP on the testing set. The prediction error was evaluated
using mean absolute error (MAE), standard deviation (SD),
and mean absolute percentage difference (MAPD). In addition,

we compare the performance of the two proposed Al models
with several state-of-the-art deep learning methods for time
series data. The accuracy of the blood pressure estimation was
evaluated using two widely accepted criteria: the Association
for the Advancement of Medical Instrumentation (AAMI)
standard [17] and ISO 81060-2-2018 from the U.S. FDA.

11111

120 140 70 & %0
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Fig. 5. Histograms for SBP (top panel) and DBP (bottom panel)

A. Analysis of experiment results

In Table I, we report MAE, SD, 95% confidence interval
of MAE, and the correlation coefficient between the predicted
values and the truth. The results in Table I show both the CNN-
LSTM hybrid model and the VTCN model achieve small MAE
and SD in terms of SBP and DBP estimations. In addition,
the predictions made by both models have high correlation
coefficients with the truth. The CNN-LSTM hybrid model
slightly outperforms the VTCN model as it has lower MAE
and SD for both SBP and DBP. In general, the estimation
errors for DBP are lower than SBP as DBP has a smaller
scaling than SBP. Figure 6 presents error histograms that
visualize the empirical distributions of prediction errors. The
error histograms reveal that both models’ prediction errors
are symmetrically clustered around 0 with rapidly decaying
tails, indicating strong prediction accuracy. Again, we find
the peak in the error histogram of the CNN-LSTM hybrid
model is higher than the VTCN model. This is in line with
our observation in Table I that the CNN-LSTM hybrid model
slightly outperforms the VTCN.

In Table I, we present the results of MAE, SD, 95% confi-
dence interval of MAE, MAPD, and the correlation coefficient
p between the predicted and true values. Our results indicate
that both the CNN-LSTM hybrid model and the VTCN model
exhibit low MAE and SD for both systolic and diastolic blood
pressure estimations. Additionally, the predictions made by
both models have high correlations with the truth. The CNN-
LSTM hybrid model slightly outperforms the VTCN model as
it has lower MAE and SD for both systolic and diastolic blood
pressure. On average, the estimation errors for diastolic blood
pressure are lower than those for systolic blood pressure as
diastolic blood pressure has a smaller scale. Figure 6 displays
error histograms that visualize the distribution of prediction
errors. The histograms indicate that the prediction errors for
both models are symmetric and tightly concentrated around
0. Moreover, the tails of the error distributions decay rapidly
to zero, indicating good prediction performance. In line with
our findings in Table I, the peak of the error histogram for the
CNN-LSTM hybrid model is higher than that for the VTCN
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model, suggesting that the CNN-LSTM hybrid model slightly
outperforms the VTCN model.

TABLE I
SUMMARY OF BLOOD PRESSURE ESTIMATION PERFORMANCE
MAE | SD 95% Cl MAPD P
VTCN SBP | 480 | 539 | (4.69, 4.91) 3.97 0.91
DBP | 2.57 | 3.06 | (2.51,2.63) 3.70 0.95
CNN-LSTM | SBP | 4.66 | 5.76 | (4.54, 4.78) 3.87 0.90
DBP | 2.67 | 3.89 | (2.59, 2.75) 3.83 0.92
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Fig. 6. Error histograms for SBP (top panel) and DBP (bottom panel).

In the Bland-Altman plot (also known as the Tukey mean-
difference plot), we evaluate the agreement between two arrays
of data, such as the predicted values and the ground truth.
Figure 7 presents the Bland-Altman plots for SBP and DBP
predictions. The dense cluster of points near the “difference
= (” line indicates a strong agreement between the predicted
values and the truth. The blue and orange dotted lines represent
the limits of agreement for the CNN-LSTM hybrid model
and VTCN model, respectively. For the CNN-LSTM hybrid
model, 94.76% and 95.19% of points fall within the limits
of agreement for SBP and DBP, respectively. For the VTCN
model, 94.46% and 95.18% of points fall within the limits
of agreement for SBP and DBP, respectively. These results
suggest a high level of agreement between the true blood
pressures and the predictions made by the models.
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Fig. 7. Bland Altman plots for SBP (top left) and DBP (top right).Regression
plots for SBP (bottom left) and DBP (bottom right).

In Figure 7, scatter plots are used to demonstrate the
agreement level between the sorted true blood pressures and

their corresponding predictions made by the proposed mod-
els. The solid black line indicates the theoretical “perfect”
correlation, while the orange and blue dashed lines depict
the actual correlation coefficients (as listed in Table I) of the
CNN-LSTM hybrid model and the VTCN model, respectively.
The scatter plots reveal a strong positive correlation between
the true blood pressure and the predictions generated by
the models. The calculated correlation lines are close to the
“perfect” correlation line in the area where the majority of data
points are concentrated. Based on the analysis, there is strong
evidence to support the accuracy of the CNN-LSTM hybrid
model and VTCN model in estimating SBP and DBP using
the BSG signals collected by the BedDot system. The strong
correlation between the predictions and the truth demonstrates
the effectiveness of our system.

B. Evaluation metrics

We describe two well-established criteria used to evaluate
and grade blood pressure monitoring devices based on their
estimation accuracy. The American Association for the Ad-
vancement of Medical Instrumentation (AAMI) published a
monograph in 1987, which became a national standard for the
evaluation of sphygmomanometers. This monograph included
a standard for evaluating the accuracy of blood pressure mon-
itoring devices, which are generated through a consensus pro-
cess by committees of experts in research, development, and
design from user, industry, and government communities [17].
According to the AAMI standard, a blood pressure monitoring
device is considered to “pass” if its blood pressure estimation
satisfies MAE < 5 mmHg and SD < 8 mmHg [18]. The
U.S. Food and Drug Administration (FDA) evaluation criteria
ISO 81060-2:2018(E) suggest that the mean of the errors of
the paired determinations of the sphygmomanometer-under-
test for all subjects should be within or equal to +5.0 mmHg,
with an experimental standard deviation no greater than 8.0
mmHg [19]. We also report the mean absolute percentage
difference (MAPD) as a reference in accordance with the IEEE
standard for device accuracy. This provides a measure of the
stability of our predictions.

C. Comparison with existing methods

Our CNN-LSTM and VTCN models were compared with
leading deep learning methods for time series analysis, namely
Multilevel Wavelet Decomposition Network (mWDN) [20],
1D-ResCNN (ResCNN) [21], Recurrent Neural Network and
Fully Convolutional Network (RNN-FCN) [22], Explainable
Convolutional Neural Network (XCM) [23], and Time-series
Transformer (TST) [24]. All models underwent identical train-
ing, validation, and testing protocols. Table II shows the eval-
uation results of our models and the five competing methods
using the AAMI standard and the FDA standard. The results
demonstrate that none of the five competing methods met
the AAMI criteria for SBP estimation, with only RNN-FCN
achieving the AAMI standard for DBP estimation. Conversely,
both our CNN-LSTM and VTCN models surpassed the AAMI
benchmark for SBP and DBP estimations and displayed the
smallest mean absolute errors. In summary, CNN-LSTM and
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VTCN excel in meeting both AAMI and FDA standards,
outclassing all other methods in accuracy and consistency.

TABLE I

COMPARISON OF SBP AND DBP ESTIMATIONS BASED ON THE

AAMI STANDARD AND FDA STANDARD

Absolute difference (mmHg)
MAE SD MAPD

AAMI | FDA

TST SBP

DBP

12.50 | 11.39 10.45
9.82 7.72 14.0

fail
fail

fail
fail

mWDN SBP

DBP

12.15 | 10.55 10.04
8.88 7.01 12.84

fail
fail

fail
fail

ResCNN SBP

DBP

9.88 8.74 8.19
6.30 5.95 8.85

fail
fail

fail
fail

XCM SBP

DBP

10.15 | 8.83 8.40
7.09 6.19 10.13

fail
fail

fail
fail

RNN-FCN

SBP
DBP

6.46 6.21 5.33
4.19 3.99 6.03

fail
pass

fail
pass

VTCN SBP

DBP

4.80 5.39 3.97
2.57 3.06 3.70

pass
pass

pass
pass

CNN-LSTM

SBP
DBP

4.66 5.76 3.87
2.67 3.89 3.83

pass
pass

pass
pass

V. CONCLUSION

In this study, we introduced a pioneering approach to
continuous, contactless blood pressure monitoring using a bed-
mounted seismic sensor (BedDot) and two AI models. Our
experiments, conducted in both controlled hospital settings
and real-world conditions, demonstrated the efficacy of our
algorithm in real-time systolic and diastolic blood pressure
estimation. Our models surpassed five leading deep learning-
based time series models in accuracy and consistency. How-
ever, the VTCN and CNN-LSTM methods still require further
evaluation for Out-Of-Distribution (OOD) generalization. Fur-
ther investigations are underway to validate these findings.
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