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Although multigenic traits are often assumed to be under some form of stabilizing selection, numerous aspects of the population-genetic
environment can cause mean phenotypes to deviate from presumed optima, often in ways that effectively transform the fitness land-
scape to one of directional selection. Focusing on an asexual population, we consider the ways in which such deviations scale with
the relative power of selection and genetic drift, the number of linked genomic sites, the magnitude of mutation bias, and the location
of optima with respect to possible genotypic space. Even in the absence of mutation bias, mutation will influence evolved mean phe-
notypes unless the optimum happens to coincide exactly with the mean expected under neutrality. In the case of directional mutation
bias and large numbers of selected sites, effective population sizes (Ne) can be dramatically reduced by selective interference effects,
leading to further mismatches between phenotypic means and optima. Situations in which the optimum is outside or near the limits of
possible genotypic space (e.g. a half-Gaussian fitness function) can lead to particularly pronounced gradients of phenotypic means with
respect to Ne, but such gradients can also occur when optima are well within the bounds of attainable phenotypes. These results help
clarify the degree to which mean phenotypes can vary among populations experiencing identical mutation and selection pressures but
differing in Ne, and yield insight into how the expected scaling relationships depend on the underlying features of the genetic system.
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Introduction

Even under persistent long-term forms of stabilizing or directional
selection, the mean phenotypes of independent lineages are ex-
pected to diverge to a degree that depends on the distribution of
fitness effects of mutations, the genetic architecture of the trait,
the level of mutation bias, and the genetic effective population
size (Ne), which itself can depend on all of the above. Provided
classes of mutations exist that are accessible to selection in
some lineages but effectively invisible in others (owing purely to
insufficient effective population size), gradients in phenotypic fea-
tures are then expected among populations with respect to Ne,
even in the case of invariant selection. These issues have been ta-
ken up in detail for the special case of multiplicative fitness func-
tions, wherein each mutation influences fitness independently of
all others, i.e. there are no epistatic fitness effects (Lynch 2018;
Devi et al. 2023), and to a lesser extent for traits under alternative
forms of selection (Charlesworth 2013; Lynch 2020).
Nevertheless, it is commonly believed (although still debated,;
Schluter 1988; Kingsolver and Diamond 2011; Urban et al. 2013)
that complex quantitative traits are typically under a form of sta-
bilizing selection operating around an optimal intermediate
phenotype. Most often, the fitness function is assumed to be
Gaussian (bell-shaped) in form, if for no other reason than to sim-
plify mathematical analysis (Walsh and Lynch 2018). Fitness
functions with stabilizing features introduce several novel issues

with respect to understanding the positions of drift barriers, i.e.
the limits to which mean phenotypes are expected to disperse un-
der the joint influences of selection, drift, and mutation.

Under Gaussian selection, the fitness gradient is a function of
the location of the mean phenotype relative to the optimum. If
the mean phenotype coincides with the optimum, then mutations
with increasingly large phenotypic effects will have negative fit-
ness effects that accelerate in a nonlinear fashion. However,
from the standpoint of individual genotypes, the fitness effects
of mutations are context-dependent, with mutations with suffi-
ciently small effects oriented in the right direction improving fit-
ness, but others having deleterious effects (Fisher 1930; Orr
2006). In this sense, stabilizing fitness functions introduce epista-
sis, in that the selective effects of mutations depend on the genetic
backgrounds of their carriers (even if the underlying phenotypic
effects of mutations are additive). These issues become increas-
ingly important if the mean phenotype deviates from the opti-
mum, as is expected whenever the latter does not coincide with
the neutral expectation.

Here, we examine the responses of drift barriers to changes in
N for traits experiencing persistent selection under a Gaussian
fitness function. The goal is to evaluate whether perceptible dif-
ferences in mean phenotypes are expected to arise among species
solely as a consequence of changes in the power of random genet-
ic drift, in the absence of changes in underlying selection pres-
sures. In its most general form, this treatment yields insight into
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a number of different selection scenarios. If the optimum pheno-
type is intermediate to the range of phenotypes that can be
attained by mutation, and there is no mutation bias, mean pheno-
types drift around the optimum to a degree that depends on Ne,
with the grand mean coinciding with the optimum, i.e. selection
is ultimately stabilizing in nature. If, on the other hand, the opti-
mum coincides with the most extreme phenotype that can be pro-
duced by mutation, then selection is always directional in nature,
albeit with diminishing strength as the mean phenotype ap-
proaches the extreme. In this case, a N.-dependent gradient in
mean phenotypes is expected to arise, to a degree that depends
on the degree of linkage, the distribution of strength of selection
operating on individual genomic sites, and the magnitude of mu-
tation bias. More generally, even with an intermediate optimum
phenotype, mutation pressure will often result in a discordance
between the optimum and evolved mean phenotypes, and this
results in selection operating in a predominantly directional man-
ner, as the steady-state phenotype distribution is largely nonover-
lapping with the optimum.

Our work is related to prior efforts to derive expressions for the
load on mean population fitness resulting from the joint operation
of mutation, selection, and random genetic drift (e.g. Barton and
Coe 2009; Roze and Blanckaert 2014; Barton 2017; Vanhoenacker
etal. 2018). Although this approach has a long history in evolution-
ary genetics, the predicted load on fitness is typically so low that it
would be undetectable in empirical studies, which would also be
confronted with the problem of how to measure fitness. Our
goal is to determine when, on the phenotypic scale, there is a
sufficiently broad range of variation of mean phenotypes to be
detectable with comparative data and useful for downstream hy-
pothesis testing (for example, evaluating whether mean pheno-
types scale with respect to effective population sizes).

The model

Throughout, we deploy computer simulations and develop math-
ematical approximations to develop insight into the ways in
which the strength of selection, mutation rates and bias, size of
linkage groups, and effective population size influence the long-
term steady-state behavior of the distribution of mean pheno-
types under constant environmental conditions. The basic struc-
ture of the model is similar to that utilized in prior studies with an
exponential fitness function (Lynch 2020; Devi et al. 2023), except
that here we focus on a Gaussian fitness function, where the fit-
ness effects of mutations depend on the distance of the recipient
phenotype from the optimum. This contrasts with an exponential
fitness function, wherein the effects of mutations are independ-
ent of the genetic background.

As a surrogate for understanding some effects of recombination,
we consider single linkage blocks of L nonrecombining sites (or gen-
etic loci), each with biallelic states, + and —, contributing positively
and negatively to the traitin an additive fashion, although the mag-
nitude of +/- effects is allowed to vary among sites in some appli-
cations. Because the stretch of nucleotide sites under consideration
is assumed to be completely linked, the positions of the sites are
irrelevant, and there can be a multiplicity of functionally equiva-
lent haplotypes (i.e. with identical numbers of + alleles) in each ef-
fect class, which modifies their ease of mutational accessibility
(Lynch 2018, 2020). For example, there are just single haplotype
configurations with all + or all — alleles, but L haplotypes with a sin-
gle + or single — alleles, L(L — 1)/2 haplotypes with two + and (L — 2)
— alleles (and vice versa), etc. The site-specific per generation mu-
tation rates from the — to the + states, and vice versa, denoted as
Upr and uqo, respectively, are assumed to be identical at all sites.

We refer to genomic sites in a generic sense, and these may be
viewed as either individual nucleotide positions or genetic loci pro-
vided they are effectively biallelic at the phenotypic level (e.g. at the
DNA level, this could include situations in which three of the four
nucleotides have the same phenotypic effects, or two pairs are in-
ternally equivalent).

Given the assumptions of additive mutational effects and com-
plete linkage, the following analyses do not encompass the full
range of possible genetic architectures of traits. They should,
however, apply to a wide array of situations, including the
genome-wide distributions of sites underlying traits with a largely
additive genetic basis in asexual species or those that only rarely
engage in sexual reproduction. For situations in which recombin-
ation is more frequent, the results should still apply provided the
size of the linkage block is small enough to avoid recombination
over the duration of a typical genealogical coalescence (on the or-
der of N, generations; Good et al. 2014; Devi et al. 2023). In the fol-
lowing analyses, we draw comparisons from prior work that
assumes the opposite extreme of free recombination between
all sites. (We have not evaluated the consequences of multiple, in-
dependent linkage blocks within genomes.)

One concern is that mutations within genes are more likely to
have epistatic (nonadditive) effects with each other than between-
gene interactions, but incorporation of such effects into the ana-
lyses would introduce multiple layers of complexity, owing to
the alternative forms of epistasis. Such exploration is desirable,
but is beyond the scope of this study, and we refer to Barton
(2017) for some reasons why such effects are unlikely to alter
our qualitative conclusions, e.g. in the absence of recombination,
mean population fitness is independent of the level of epistasis
(Kimura and Maruyama 1966), which implies the evolution of a
constant distance of the mean phenotype from the optimum re-
gardless of the level of epistasis.

To perform analyses with biologically realistic combinations of
parameter values, we largely adhere to the scaling relationship of
mutation rates and coalescent effective population sizes known to
exist across the Tree of Life. The latter generally fall in the range of
10* to 10%, and the mutation rate per nucleotide site scales nega-
tively with the ~0.76 power of N, where the latter denotes the co-
alescent effective population size determined from standing
levels of heterozygosity at silent sites in protein-coding genes
(Lynch et al. 2016, 2023). Thus, where computational work was in-
volved, the following analyses were performed under the assump-
tion of a per-site mutation rate from + to — alleles of 1077 at a
population size of N = 104, with ujo = 0.0011 N-97¢, With this scal-
ing, for the full range of population sizes employed here (N ~ 10*
to 2 x 108), the product Nuso then ranges from ~ 0.01 mutations/
population/site/generation at the lowest to ~ 0.10 at the highest
population sizes, consistent with the weak scaling of population-
level silent-site diversity for diverse organisms (Walsh and Lynch
2018). Nonetheless, using the analytical approximations that we
develop below, one can still directly explore the consequences of
arbitrary combinations of mutation rates and population sizes.

We evaluate the behavior of linkage block lengths ranging from
10 to 10* and mutational biases f = ug: /u1o = 0.10 to 1.00. This def-
inition of mutation bias is a natural one in that it is a function of
allelic states. At the level of haplotypes, there can still be a rea-
lized mutation bias even if = 1, but this is totally a function of dif-
ferences in numbers of + vs. — alleles in the prevailing haplotypes.
Naturally, the range of variation of realized mutational effects de-
pends on the haplotype distribution, as the directionality of over-
all effects depends on the extent to which the population is
saturated by + vs. — alleles.
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The trait under consideration is assumed to have an additive
genetic basis at the phenotypic level, so that in situations in which
all alleles are scaled to have effects of 0 and 1 (as done here), the
genotypic value of a haplotype with n, plus alleles is

z=ny=L-n_. 1)

Under the Gaussian selection model, the fitness of an individual
with genotypic value z is

W(z) = exp[ - s(z - 6,)°], 2

where 0s is the optimal genotypic value imposed by the selective
environment, and s is a measure of the strength of selection. (In
principle, the phenotypic value need not equal the genotypic
expectation, but this matter is accommodated by noting that en-
vironmental sources of noise are absorbed into the selection coef-
ficient s, which diminishes with decreasing correspondence
between genotype and phenotype.) Under this model, fitness
declines monotonically with increasing distance of the genotypic
value from the optimum. Although the selective differences
between adjacent genotypes are nonconstant, the reduction in fit-
ness between the optimal genotype and neighbors deviating by sin-
gle phenotypic units, i.e. |z—6s| =1, is s for s < 1 (Appendix A).
Note that our s is equivalent to 1/(2Vs) used in numerous other
quantitative-genetic expressions in the literature. Throughout,
we examine the consequences of a range of selection strengths
from s =107° to 1072.

We rely on a classical Wright-Fisher discrete-generation model
with sequential episodes of mutation, selection, and random gen-
etic drift, with a constant population size of N haploid individuals,
so that all new mutations have initial frequencies of 1/N.
Assuming additive effects on phenotypes, all results should ex-
tend to diploids by substituting 2N for N in the following expres-
sions. As will be discussed below, the actual genetic effective
size of the population (Ne) can be influenced further by the struc-
ture of the linkage group, the strength of selection, and N itself, as
these factors influence the degree of selective interference among
simultaneously segregating mutations (Devi et al. 2023).

Because mutations are reversible, this system always eventual-
ly evolves to a quasi-steady-state distribution of mean pheno-
types, provided the fitness function remains constant. Owing to
the stochastic nature of the underlying processes, to obtain stable
estimates of the steady-state distributions, computer simulations
must proceed for very large numbers of generations. Thus, to
achieve greater computational speed, for large population sizes,
we often scaled the input parameters so as to keep Nuig, Nuos,
and Ns constant, by reducing N and increasing the mutation and
selection parameters by the same factor, with constraints such
that N was always >10°, and s and Luj always <0.1. Burn-in per-
iods before compiling statistics were typically at least 10°N gen-
erations, with the haplotype constitutions of populations being
assayed every N/10 generations thereafter, typically for 10° to
108 intervals.

Simulations were carried out with a program written in C++, in
a form that allows parallel analysis of multiple population sizes,
using the same general procedures as in Deviet al. (2023), and free-
ly available at https:/github.com/LynchLab/Asexual-Gaussian-
Selection. Given the focus on linkage blocks, the frequencies of
the L + 1 haplotype classes were monitored through time in dis-
crete generations. Mutations to adjacent classes were assigned
based on the numbers of + and — alleles and the respective muta-
tion rates, and this was then followed by selection defined by the

Gaussian fitness function weighted by mean population fitness.
Random genetic drift was then imposed by multinomial sampling
across the surviving haplotype distribution, returning the popula-
tion to the next round of mutation, selection, and drift.

We note that beyond our own prior work, previous studies have
focused on a biallelic genetic system like that employed here (e.g.
Barton 1989; Walsh and Lynch 2018; and the many references
therein). For example, as reviewed and expanded upon by Roze
and Blanckaert (2014), Barton (2017), and Vanhoenacker et al.
(2018), considerable attention has been given to the reduction in
mean population fitness resulting under various scenarios involv-
ing stabilizing selection, often with an optimum intermediate to
the range of possible phenotypic variation, and under the as-
sumption of free recombination and no mutation bias. Although
related, the focus here is on the effects of linkage and mutation
bias on the scale of mean phenotypes. As described below, we
will make use of one particularly useful application of a
Gaussian fitness function with mutation bias by Charlesworth
(2013), who assumed free recombination.

Results

In the following sections, we progressively evaluate scenarios of in-
creasing (and biologically realistic) complexity, starting with the
situation in which all sites have equivalent effects and the opti-
mum phenotype is well embedded within the possible range of
variation, a common scenario invoked in previous work. We then
consider situations in which the optimum phenotype is moved clo-
ser to the edge of possible phenotypic variation. Finally, we illus-
trate the consequences of sites with variable effects on the trait.

Homogeneous sites, with an intermediate
optimal phenotype

The most commonly employed model in evolutionary quantita-
tive genetics relies upon a Gaussian fitness function with an opti-
mum assumed to fall well within the range of phenotypic
variation (Walsh and Lynch 2018). There can, however, be some
subtleties even with this simple scenario (Barton 1986, 1989). In
particular, for a model in which mutations have discrete effects,
the optimum may not coincide exactly with any possible summa-
tion of allelic effects, and there may be multiple equilibria. The
most extreme case arises when a single site determines the trait
value, with the optimum residing at the midpoint between the ef-
fects of the two alleles, which renders both alleles neutral with re-
spect to each other. Less extreme effects of this nature occur with
increasing numbers of underlying sites. In the following, we focus
on situations in which the optimum is attainable, with L being an
even number (initially with 6s =L/2) and the effects of — and + al-
leles being 0 and 1, respectively.

No mutation bias (8 =1). Under this model, if mutations have no
directional bias, i.e. ug1 = u10, the grand mean phenotype is ex-
pected to evolve to the optimum, as this is also the position of mu-
tation equilibrium. The focus is then on the mean absolute
deviation from the optimum, as the temporal means wander
above and below the optimum in equal frequencies. In the follow-
ing, the average absolute deviation of phenotypic means from the
optimum is denoted as [d], which is equivalent to ,/2/x times the
standard deviation of the distribution of phenotypic means if
the latter is Gaussian in form.

With unbiased mutation and population means evenly distrib-
uted around 6s, there is no expected gradient in the overall mean
phenotype with increasing Ns. Not surprisingly, however, the
mean absolute deviation declines rapidly with an increase in the
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Fig. 1. Average absolute deviation of phenotypic means from the optimum, [d], for the case in which the optimum is located in the middle of the range of
possible variation, s =L/2, and there is no mutational bias, = 1.0. Points were obtained by computer simulations. Lines are predictions from Equations
(6)—(8), and for the most part, they are hidden by the dots, as the fits are excellent. For Ns < /20, the mean deviation is simply a function of NLs, as given by
Equation (6), whereas for larger Ns, it converges on values that depend only on u+/L/s, as defined by Equation (7).

composite parameter Ns, which is equivalent to the ratio of the
strength of selection to the power of drift (assuming N, =N)
(Fig. 1). It also increases with the size of the linkage block, although
not greatly so, as explained below. There is an upper bound to the
mean deviation from the optimum at Ns <« 1, as populations then
converge on the neutral expectation for the dispersion of mean
phenotypes, defined by the balance between forward and reverse
mutations, although the effect is only noticeable at low L.

To explain these results in a more mechanistic way, note thata
diffusion approximation applied to a quantitative-genetic model
suggests that the distribution of mean phenotypes should be pro-
portional to the product of the expectation under neutrality and
the fitness of each genotypic class taken to the 2N power (Lande
1976; Lynch 2018; Appendix B). The distribution is expected to
be approximately Gaussian in form with expected means and var-
iances of phenotypic means equal to

_ KOs + On

u@) = : ©)

k+1

where Oy =Lg/(1+p) is the expected mean phenotype under
selective neutrality, and

2
=" (5)

is the ratio of the expected variance of the distribution of means
under mutation pressure alone vs. under conditions in which se-
lection is the prevailing force (both of which are further described
in terms of the underlying population-genetic parameters in
Appendix B). For in the case of no mutational bias, x ~ 2NLs, the
grand mean phenotype coincides with s, and the mean absolute
deviation simplifies to

— L
10k, = 7(2NLs + 1) (©)

(Appendix C). This suggests that the mean absolute deviation
from the optimum is a function of the ratio of the strengths of se-
lection and drift (Ns) and of the number of selected sites (L), inde-
pendent of the mutation rate. With sufficiently large numbers of
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sites (NLs » 1), Equation (6) further reduces to (2zNs)™>*, so that

the magnitude of drift from the optimum is expected to be in-
versely related to the square root of Ns, superficially appearing
to be independent of L.

A potential issue here is the need to distinguish between effect-
ive and absolute population sizes, Ne vs. N, as interference between
simultaneously segregating mutations is expected to reduce the ef-
ficiency of selection relative to the case of free recombination. For
the question at hand, N can be defined as the population size re-
quired for Equation (3) to yield an estimate of the mean phenotype
equivalent to that obtained by computer simulations. Letting
N =¢N, and substituting the latter for N in the expression for «,
one can then solve for the value of ¢ that yields a match between
the observed and predicted mean deviation. For the current case
of #=1, we find that over the full range of parameter space evalu-
atedin Fig. 1, Ne is never depressed more than 15% below N, and for
most cases is essentially equal to the latter, i.e. 0.85 < ¢ < 1.00. (By
embedding a neutral site within haplotypes during simulations, we
also found that the neutral heterozygosity was depressed by no
more than 15%). Thus, for the special case of no mutation bias
around an intermediate optimum phenotype, there is minimal se-
lective interference, and Equation (6) provides a very good fit to the
simulation data using N. =N, although only up to Ns ~ L/20.

For Ns larger than this critical value, the population behaves in
a near deterministic fashion with most sites in selection-muta-
tion balance, with those marginally above and below the optimum
wandering very slightly in time (Barton 1989). The absolute mean
deviation then becomes a matter of the average difference in the
number of sites segregating for deleterious mutations above and
below the optimum, which we find to be

2uvL

10y =
P S

)

for Ns>> 1. A general expression allowing a transition between
these two domains of behavior,

0] = 101, + (101, — [8l,)e~2N/E, (8)

provides an excellent fit to the simulated data over the full range
of Ns (Fig. 1). (Note that 5] declines with increasing Ns in Fig. 1 sim-
ply because the mutation rates deployed in the simulations are
scaled to decline with increasing N.)

Effects of mutation bias. Mutation bias introduces complications
in the preceding theory because the steady-state distribution of
mean phenotypes is no longer symmetrical around the optimum
and may even be essentially nonoverlapping. Provided the distri-
bution of means remains approximately Gaussian, Equations (3)
and (4) (further developed in Appendices B and D) can still be
used to estimate |J], although the need to account for the fact
that Ne < N becomes more significant.

Under the assumption that mutation bias is strong enough that
05 falls outside of essentially the entire range of variation of mean
phenotypes, Charlesworth (2013, his Equation 9) derived an ex-
pression for the expected deviation of the grand mean from the
optimum for the special case of free recombination and NLs > 1
(satisfied in almost all of our analyses),

1-In(p)
5:W. 9)

This provides a benchmark for considering the effects of linkage,
as implemented here.

Simulation results indicate that Ns is still a primary factor in
determining the absolute mean deviation from the optimum,
and that |J] is progressively increased with increasing degrees of
mutational bias, especially when linkage blocks are large
(L=10% and 10%; Fig. 2). However, there is an additional effect of
s beyond that coming through Ns. For small numbers of sites
(L =10), Equations (6)—(8) (which assume g = 1) continue to provide
adequate fits in all cases unless population sizes are extremely
small (Ns « 1) and mutation is extremely biased (in which case,
the distribution gravitates towards the neutral expectation).
Equations (6)—(8) also provide excellent fits to the data for all cases
when mutation bias is weak (8= 0.9), but can yield large underes-
timates of 9] as g declines further. Although Equation (9) implies
scaling behavior of 6] with Ns that is qualitatively consistent
with the simulation results when L < 10, it becomes increasingly
problematic with larger linkage blocks, where the decline in ac-
tual |9] with Ns becomes shallower and the observed deviations
become increasingly underestimated (by one to two orders of
magnitude).

A more revealing understanding of the behavior of || can be
achieved by considering the ways in which the effective popula-
tion size is influenced by the underlying processes. As can be
seen in Fig. 3, for L < 100, observed ¢ = N./N [obtained from the si-
mulated data, by optimizing the fit to Equation (3)] is nearly al-
ways larger than 0.5, but for larger linkage blocks, there is a
pronounced u-shaped response of ¢ to increasing Ns. ¢ converges
to 1.0 at very low Ns because selection is no longer effective, and
also converges to 1.0 at very high Ns because selection is so effect-
ive that there are few segregating polymorphisms to cause select-
ive interference. For 1 < Ns < 100, ¢ can decline below 0.1 and even
approach 1073,

Semi-analytical expressions for ¢ in terms of the model para-
meters, developed in Appendix E using approaches previously in-
troduced in Devi et al. (2023), take into consideration the numbers
of parallel, competing mutations arising during the expansion of a
potentially favorable mutation. These expressions generally lead
to estimates of ¢ that are within a factor of two of observed esti-
mates (Supplementary Fig. 1), provided Ns < L/20 (the determinis-
tic limit), and therefore yield insight into the general underlying
determinants of the selective interference reducing the effective-
ness of stabilizing selection. For very strong and effective selec-
tion, Ns>L/20, a generalization of Equation (7) with (1+§)
substituted for 2 provides a good estimate of the mean deviation.
Thus, Equations (3), (6), and (8) work well upon substitution of an
appropriately defined measure of Ne for N.

Although somewhat complicated algebraically, the formulae
for ¢ [Equations (E6a)—(E7b)] indicate that when the phenotypic
optimum is intermediate on the scale of L, ¢ declines in a non-
linear way with increasing values of the composite bias parameter
B(1=p)/(1+p)>. Thus, the effect of mutational bias is nonmono-
tonic in g, reaching a minimum when g =0.33, consistent with
the observations for ¢ in Fig. 3. For large linkage blocks and rela-
tively weak selection (Ns <« L/20), ¢ also decreases with increasing
strength of the population-level mutation rate (LNuyo) and with
the ratio of the strength of selection relative to drift (Ns). In this do-
main, a separate effect of L also enters through the steady-state
distance of the grand mean from the optimum, yielding an ap-
proximate overall scaling of ¢ with [(LN)?us0s] > [Equation (E7b)].

Finally, it is also notable that the behavior of ¢, which relates to
fixation probabilities, is not reflected in levels of depression of
standing variation at linked neutral sites (which we determined
by embedding a neutral marker into the haplotypes), consistent
with earlier findings with an exponential fitness function
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Fig. 2. Results analogous to the plots in Fig. 1, but for situations involving four levels of mutation bias (8 < 1.0). The dashed lines are the expectations from
Equation (9) (which assumes free recombination, and a strong deviation of the overall phenotypic mean from the optimum), given for low and high
mutation biases (8 =0.9, lower black dots, and 0.1, upper white triangles). The thick solid lines (where visible) are the analytical expectations, using

Equations (6)—(8), which assume no mutation bias (8= 1.0).

(Devi et al. 2023). That is, the Ne governing divergence is not the
same as the coalescent effective population size that is conven-
tionally inferred from measures of silent-site variation in natural
populations; for the latter, ¢ rarely drops below 0.25 in any of the
preceding analyses.

Nonintermediate optimum

Although it is common practice among theoreticians to model
Gaussian selection as though the optimum (and the range around
it) resides well within the range of possible phenotypic variation,
there is no reason to think that cases of asymmetry (with or with-
out the optimum within the bounds of the possible genotypic
range) are uncommon. Such conditions can greatly alter the de-
gree to which mean phenotypes can drift from the optimum.
Consider, for example, the case of a half-Gaussian fitness func-
tion, such that the optimum genotypic state contains a + allele
at each site, i.e. s =L. In this situation, selection operates in a
purely directional manner, with all — alleles being unconditionally
deleterious. The mean phenotype will then always be < 6s, so that
the mean deviation below the optimum is also the average abso-
lute deviation. Thinking more generally, so that 6s =xL, as x de-
clines from 1 to 1/2 (the case of an intermediate optimum), the
mean phenotype will be increasingly prone to drifting both above
and below the optimum, to a degree dictated by the strength and
direction of mutation bias.

Three striking patterns are revealed in Fig. 4 for the case of
the half-Gaussian fitness function. First, relative to the situ-
ation in which s =L/2, the deviation of the mean from the opti-
mum can be increased by one to two orders of magnitude. The
effectis most pronounced when selection is not overwhelming-
ly strong and the number of sites is large (Ns <L/10). In effect,
the hard reflecting boundary of the half-Gaussian reduces the
width of phenotypic space within which a particular deviant
can wander and remain in an elevated fitness state. Second,
the effect of mutation bias on the mean deviation is very small
unless Ns <« 1, in which case the population means start to
evolve in a nearly neutral fashion and hence are largely dic-
tated by g. Third, the main determinants of the mean deviation
are the selection-drift ratio Ns and the number of sites L, with
an additional effect of s alone restricted to the deterministic do-
main, similar to what was found for the case of §s=L1L/2 and
p=1.

A rough analytical approximation to the mean deviation can
be obtained by using the same approach that led to Equation
(3), i.e. by weighting the distribution expected under neutrality,
®,(2), by W(z)™, and then normalizing to obtain the distribution
expected under the joint influence of drift, mutation, and
selection,

Dy(z) = C - Dy(2) - W)™, (10a)
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Fig. 3. Estimates of ¢ = N./N obtained from the application of computer-simulation data to Equation (3), as a function of Ns, L, 8, and s for the case in which

the optimum 6s =L/2 is intermediate on the scale of L.

where Cis a constant equal to the reciprocal of the sum of ®,(z) -

W(z)® over z=0 to L, which ensures that the probability density
sums to 1.0, and

vt () e

is the distribution of means under neutrality. Equation (10a) can
be viewed as a multistate generalization of the Li-Bulmer model
for the steady-state distribution of two-allele systems (Li 1987;
Bulmer 1991), and similar expressions have been previously in-
troduced in the context of quantitative genetics (Lande 1976;
Barton 1989, 2017; Sella and Hirsh 2005; Barton and Coe 2009;
and references therein). The expected mean phenotype resulting
from fixations is then

Wz)=3 0y(2)- 2. (11)

A more mechanistic explanation for the mean deviation in this
case can be achieved by setting 65 = Lin Equation (3) and applying
the expressions in Appendix B,

() PO K

~ ~ 2
4NeSLB+ (1+p)°  4Nesp’ 12

which unlike Equations (10)-(11), assumes a normal distribution of
mean phenotypes. The approximation applies when NesLf> 1,
and reduces further to 1/(2N,s) in the absence of mutation bias,
and to 1/(4Nesp) when g < 1. Equation (12) generally yields results
that are similar to those obtained with Equation (11), although the
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Fig. 4. Average absolute deviation of phenotypic means from the optimum, |d|, for the case in which the optimum is located at the extreme value of the
genotype distribution (the half-Gaussian fitness function), §s = L. Results from computer simulations are given for the case of no mutational bias (=1,
open points) and = 0.33 (closed points); except for Ns < 1, these two sets of results are nearly indistinguishable. Solid lower lines, given for reference, are
the theoretical results for an intermediate optimum with no mutational bias (from Fig. 1). Dashed lines are the analytical approximations given by
Equation (13) shown for #=0.33 (and in most cases obscured by the closely fit data points).

formulaic predictions of [d]; using N, = N can often be substantially
below the mean deviations observed in computer simulations.

To gain some insight into the degree to which Ne is suppressed
relative to N, one can equate Equation (12) to the observed mean
deviation and solve for ¢. Such analyses show that for the
half-Gaussian fitness function, ¢ decreases monotonically with in-
creasing Ns, increasing L, and decreasing f, diminishing to 102 in
extreme cases (Supplemental Fig. 2). The estimates of ¢ can be
predicted to a good degree of accuracy using the same formulae
in Appendix E used for the case of an intermediate optimum,
with one modification—letting the fraction of newly arising muta-
tions having interference effects equal to (1/2)*/. This then yields
estimates of ¢ in terms of the underlying model parameters (u1o, 3,
L, and Ns) that are generally within a factor of three relative to the
observations and often only differing by a few percent.

There will again be an additional slight downward bias in the
mean associated with segregating deleterious variants main-
tained by selection-mutation balance, noticeable only at very
high Ns, and we find that this can be closely approximated by
the use of a transitional expression as in Equations (7) and (8),
in this case leading to an overall mean deviation from the
optimum of

6] = (Lu1o/s) + [L — u(z) — (Luzo/s)]e™, (13)

where Lujo/s is the approximate number segregating deleterious
mutations per genome in large populations, and u(z) is estimated
using Equation (12) with Ne=¢N. The predicted results from
Equation (13) are for the most part extremely close to the data ob-
tained by computer simulations (dashed lines in Fig. 4), the only
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Fig. 5. Average deviation of phenotypic means from the optimum for the
case in which there are three types of sites, numbering L3 = 3333, L, = 333,
and L, = 33, with selection coefficients denoted in the legend. Results
obtained by computer simulations are given for two levels of mutation
bias for cases in which the optimum is intermediate (§s =L/2) or at the
extreme of the range of phenotypic variation (fs = L). Performance is
defined as ny + ny(S2/s1) + n3(ss/s1), where ny denotes the number of +
alleles at the designated site type, which yields a maximum value of 100
when all sites are occupied by + alleles. The upper solid and dashed lines
denote the expectations based on the theory outlined in the text. The two
lower lines denote the theoretical expectations for the case of a single site
type with no mutation bias.

moderate exceptions involving large linkage blocks (L > 10%) and
intermediate strengths of selection (0.1 < Ns < 100), where the
mean deviation is overestimated.

Complications arise when the optimum is not as extreme as
0s =L, as the possibility then exists that the mean phenotype
can wander above and below the optimum. If there is significant
overlap between the distribution of means and 6, it becomes es-
sential to separately evaluate the mean deviations conditional on
residing above and below 6s, as the absolute deviation is no longer
equal to the mean deviation. An understanding of when this par-
titioning needs to be implemented can be achieved by considering
the overall mean and standard deviation of the mean deviations
from the optimum using Equations (3) and (4). Letting 6s =XL,
Equation (12) generalizes to

[‘98 —/1(2)] — L(l +ﬂ)[X(1 +ﬁ) _ﬂ] ~ (1 +ﬂ){X(1 +ﬁ) _ﬁ] ) (148)

4NesLA+ (1 +p)° 4N.sp

where the second approximation applies when NesLg > 1. This
can provide an adequate entry for the first term of Equation (13)
provided the distribution of mean phenotypes resides sufficiently
far from 6s, say >2 standard deviations away. The standard devi-
ation of the distribution of means is

sp@)=(—F Ly 14b
@)= <4NesLﬂ+ 1 +ﬁ)2> N (m) ' (14b)

Under a wide range of conditions, [6s — u(z)]/SD(Z) will be substan-
tially smaller than two, in which case these expressions should be
applied to Equation (D2) in the Appendix to obtain estimates of [3].
As a first-order approximation, provided g < 1, the additional load
associated with segregating polymorphisms maintained by selec-
tion-mutation balance in large populations (Ns > 1), is

(15)

As an example of the effects of less extreme 6s than under the
half-Gaussian, results are provided in Supplemental Fig. 3 for
the case in which s = 3L/4. These again show that the mean devi-
ation from the optimum can be one to two orders of magnitude
greater than that for the case of §s =L/2 and =1, that the effect
of mutation bias is of second order relative to that of Ns, and that
the theoretical predictions obtained with appropriate modifica-
tions of the methods noted above yield results that are satisfyingly
close to those obtained by computer simulations.

Distribution of site types

Finally, we consider the complications that arise when genomic
sites differ in the magnitude of the selective effects associated
with mutations. Such conditions are virtually certain to occur
for most complex traits, as for example: (1) underlying amino-acid
replacement sites will differ with respect to their contributions to
core functions, protein folding, etc.; (2) silent sites will have vary-
ing influences on functions such as splicing of precursor mRNAs,
folding of mature transcripts, and attractiveness to tRNAs; and (3)
sites in noncoding regions will have variable effects on gene
expression.
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Multiple site types are expected to influence the evolutionary
divergence patterns outlined above in three ways (Devi et al.
2023). First, a distribution of site types will extend the response
of mean phenotypes to a wider range of population sizes, as sites
with large effects will become fixed for favorable alleles at small
N, whereas those with smaller effects will be rendered effectively
neutral until population sizes have increased to the point where
the strength of selection exceeds that of drift. Second, because se-
lective interference is maximized among sites with mutations
with identical fitness effects, distributing such effects across sites
will alter the degree to which ¢ is reduced below 1.0, although each
site type will have its own unique value of ¢ depending on its own
abundance and that of adjacent types. An approximate rule of
thumb is that if the ratio of selection coefficients between two
site types (large and small) is s;/ss, from the perspective of
large-effect sites, (s;/ss)* small-effect sites impose approximately
the same amount of selective interference as one additional
large-effect site (Devi et al. 2023). Finally, at any particular N, the
overall level of selective interference will largely depend on the
pool of sites with s in the vicinity of 1/N as sites with much larger
effects will be essentially fixed for favorable alleles, whereas those
with much smaller effects will be uninfluenced by selection.

Here, for illustrative purposes, we simply examine the case of
an approximately negative exponential distribution of sites with
three effects, arranged such that the pool of each of three effects
contributes equally to overall performance, e.g. L; = 33 sites with
s=0.001, L, =333 sites with s =0.0001, and L; = 3333 sites with
s =0.00001. Not surprisingly, the response of the mean deviation
to the population size N is greatly diminished but also extended,
relative to the case of single site types, owing to the progressive
exit of site types from the realm of effective neutrality as N in-
creases (Fig. 5). Roughly speaking, with the distribution of site
types employed, each order of magnitude of increase in N opens
up to selection a window of sites with an order of magnitude re-
duction in s. With the choice of site types used here, involving
order-of-magnitude differences in s, there is little interference
among sites, and some progress can be made in demonstrating
how these more complicated scenarios might be dealt with.

For the case of a Gaussian fitness function with an intermediate
optimum, the general approaches used above for single site types
can be readily extended to obtain the mutual effects of all site
types in an additive fashion. For example, for the situation in
which there is no mutation bias (=1) and the optimum for
each site type x is Ly/2, Equations (6) to (8) can be used to estimate
the total deviation associated with each site type, and the total
mean absolute deviation from the optimum on the phenotypic
scale is obtained as [J] major (0l edium/10) + (61 iner/100)-
Here, the weightings are based on the 10-fold differences in the
contributions of the different site types to the final phenotype,
with the scale being set by the selection coefficient of the major
site type (with the largest selection coefficient). When there is sig-
nificant mutation bias, it again becomes necessary to calculate ¢,
the measure of the reduction in N relative to N, and this needs to
be done separately for each site type using Equations (E6a,b).
Equations (3), (4), and (D2) are then used to obtain the mean devi-
ation from the optimum for each site type associated with fixa-
tions, setting the additional small deviation associated with
standing variation to (1 + A)ui0v/Ix/sx as in the single site-type
case, and blending the two together using e=?N/L«_The total influ-
ence of all three site types is then obtained using the weighted
sum noted above.

As can be seen in the upper panel of Fig. 5, these approaches
yield good first-order approximations to the results obtained by

simulation. The same approach should work for a distribution of
effects with more finely spaced categories, but if adjacent
categories have similar enough selection coefficients so as to
cause mutual interference, these additional effects would need
to be incorporated by increasing the counts of effectively interfer-
ing sites using the squared weighting scheme noted above.
Supposing there are n, sites with selection coefficient sy, if for
the next closest site type (y), ny (sx/sy)2 < Ny, then mutual interfer-
ence can safely be ignored.

Things are less straightforward when the optimum is located at
the end of the range of possible phenotypic variation. As antici-
pated in the prior section, the magnitude of deviation from the op-
timum is inflated in this case, as the scaling of phenotypic changes
with biologically discernible differences (greater than a few per-
cent of the phenotypic range) extends over several orders of mag-
nitude of N. Again in this particular example, as the three effects
employed are far enough apart that they cause minimal interfer-
ence with each other, it is possible to sum the results noted above
for the half-Gaussian fitness function. This first requires esti-
mates of ¢ for each effect (each with its values of L and s), obtained
by the approaches outlined in the previous section, and then the
category-specific deviations are obtained with Equation (12).
Using Equation (13), the deviation associated with standing vari-
ation is further incorporated, and then

3] ~ s - s1(L1 = 19l1) — Sz(L2SI 1912) = 83(Ls — 10l3) (16)

where [0], now refers to the total deviation associated with site-
type x. There is one final nuance for this analysis—as each cat-
egory of site contributes only partially to total trait performance,
the upper limit to performance shifts as the population size in-
creases and opportunities for selective advance of mutations
with smaller effects (which were previously kept at mutation bal-
ance) are opened up. This causes a reduction in the effective
strength of selection typically operating on sites, and we have
found that using s/10, rather than s, as a measure of selection in-
tensity yields respectable fits to the data (again for the particular
cases outlined in Fig. 5), whereas the use of s does not.

Again, although some aspects of these analyses are not formal-
ly rigorous, the fits to the simulated data are seen to be reasonably
good in the lower panel of Fig. 5. This suggests that the general ap-
proaches being used capture the essence of the overall process,
and may be useful starting points for future attempts to explore
the influences of alternative distributions of site types. The
more significant issue is the difficulty of achieving empirical in-
sightinto the latter. For complex traits, there are reasons to expect
such distributions to be strongly skewed to sites with smaller ef-
fects, as employed above (Walsh and Lynch 2018; Lynch 2024), al-
though this is ultimately an empirical issue. (In the illustrated
examples in Fig. 5, L1 =33, L, =333, and L3 = 3333, with two sets
of sy used such that Lys, remains constant across categories, i.e.
each category of sites contributes equally to a trait with maximum
value 100).

Discussion

Owing to random genetic drift and recurrent mutation, no charac-
ter can evolve to an absolute state of perfection, although very
large populations may come close barring the additional matters
of biophysical constraints and the baseline load of recurrent dele-
terious mutations. Drift barriers, which are universal properties of
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all finite populations (i.e. all of biology), denote the limits to which
mean phenotypes are expected to wander over evolutionary time,
with their exact positions depending on the strength of selection
relative to drift and on the degree of mutation bias. However, popu-
lation mean phenotypes do not simply evolve to drift barriers.
Rather, they wander within a particular range set by the latter. For
example, with purely directional selection for larger phenotypes,
the upper bound to which the mean phenotype evolves represents
the position above which further refinements cannot be advanced
by selection, whereas the lower bound represents the position below
which further descent is readily opposed by selection. In the case of
a fitness function with an optimum intermediate to the range of at-
tainable genotypic values, two drift barriers straddle the optimum,
but in this case the optimum is at least transiently accessible.

An understanding of the limited reach of selection can aid in the
interpretation of comparative phenotypic data among species, in
particular the degree to which these may be compatible with altera-
tions associated with shifts in baseline population-genetic para-
meters (e.g. power of drift, recombination, and mutation bias)
rather than consequences of adaptive divergence. As population
mean phenotypes are free to wander within the confining drift-
barrier limits, over time a steady-state distribution of mean pheno-
types can be expected to arise, provided the population-genetic
parameters and underlying genetic architecture of the trait remain
unchanged. Under this view, with all features remaining constant
except the effective population size, gradients of mean phenotypes
with respect to changes in N can be expected under a regime of per-
sistent directional selection (Lynch 2018, 2020; Devi et al. 2023).
However, as shown here, this is also true in the case of stabilizing
selection, provided the equilibrium mean phenotype under muta-
tion alone differs from the optimum, which is likely nearly always
the case. That is, mutation bias at the molecular level is not essen-
tial to the generation of gradients of mean phenotypes, although
such bias can sometimes magnify the degree of such variation.

Here, we have examined some of the nuances that arise with a
Gaussian (bell-shaped) fitness function, which naturally stabilizes
phenotype distributions as the strength of selection progressively
increases with greater deviations from the optimum. This work
complements prior work on a form of pure directional selection,
the exponential fitness function (Devi et al. 2023). Through the
combined use of computer simulations and development of ana-
lytical approximations for the population-genetic outcomes, sev-
eral significant features have been revealed with respect to the
deviation of mean phenotypes from their optimum values.

First, for the special case of an optimum exactly intermediate in
the range of possible genotypic values (L/2) and no mutation bias
(8= 1), the steady-state distribution of mean phenotypes is symmet-
rical about the optimum, which also coincides with the neutral ex-
pectation. In this case, although the grand mean phenotype
coincides with the optimum regardless of the population size (N),
the width of the distribution increases with decreasing N, reducing
the average performance of the trait. Under this ideal setting, com-
monly employed in quantitative-genetic theory, the absolute devi-
ation of the mean phenotype from the optimum decreases with
Nes, a measure of the strength of selection relative to that of drift,
and increases with the number of genomic sites within linkage blocks
(L) (Fig. 1), which defines the level of selective interference among
simultaneously segregating mutations, as shown in Equation (6).

Second, when the optimum deviates from L/2, even with no
mutation bias, there is a directional pull on the mean phenotype
because the optimum does not coincide with the expectation
resulting from mutation alone. The distribution of mean pheno-
types is then no longer symmetrical about the optimum, and

the mean deviation is increased relative to the expectation under
the ideal symmetrical model. For the case in which the optimum
is located at one end of the realizable range, so that selection is
purely directional, the mean deviation from the optimum can be
up to two orders of magnitude greater than when the optimum
is intermediate. For even more extreme situations in which the
optimum resides well outside of the range (0, L), we expect the re-
sults to converge on those already found for an exponential fitness
function (Deviet al. 2023), as the tail of the Gaussian functionis ap-
proximately exponential in form.

As there is noreason to think that the distribution of genotypes
governed by mutation alone will have a mean that exactly
coincides with the optimum phenotype, these kinds of effects
are likely to be biologically general. Similar points have been
made before with different models for quantitative traits under
Gaussian selection (Waxman and Peck 2003; Zhang and Hill
2008; Charlesworth 2013), where it has been noted that the incorp-
oration of mutation bias can lead to quite different predictions
than in prior models that assume mutational effects to be uncon-
ditionally and symmetrically distributed around the current
mean phenotype (e.g. Blirger and Lande 1994). Unlike the current
study, all of these models assume free recombination, no linkage
disequilibrium, and an optimum well-embedded in the range of
phenotypic variation. The model of Charlesworth (2013) is closest
to ours, as it employs biallelic loci and finite population sizes,
whereas the others utilize a continuum-of-allele framework,
which can yield some unusual results. For example, Waxman
and Peck (2003) assume an infinite population size, which leads
to a peculiar situation in which high mutation bias brings the
mean phenotype closer to the optimum because most mutations
are so extreme as to be effectively lethal.

Third, there are three general domains in the response of the
deviation of mean phenotypes from the optimum, |d], to shifts in
population size. For Ns progressively declining below 1.0, the
mean phenotype converges on the expectation under effective
neutrality, and [d] approaches a constant maximum value. For
0.1 <Ns<L/20, the absolute mean deviation typically declines
as an approximate power-law relationship with Ns, as the mean
phenotype asymptotically approaches the optimum. Finally, as
Ns exceeds L/20, the system behaves in an essentially determinis-
tic fashion, with drift no longer playing a role, and the small devi-
ation from the optimum being solely dictated by the recurrent
introduction of deleterious mutations.

Fourth, although analytical expectations can be developed for
the behavior of the mean phenotype in terms of the absolute popu-
lation size N, for most situations these expressions have to be modi-
fied to incorporate an effective population size Ne, which can be
well below N/100 depending on the size of the linkage block, mag-
nitude of mutation bias, and strength of selection. Unfortunately,
the Ne associated with the drift of mean phenotypes need not be
closely related to the N dictating the maintenance of variation
within populations, which is generally fairly close to the N used
in the preceding formulations. This raises challenges in the appli-
cation of theory to data, as extrapolation from silent-site variation
is the primary method for obtaining empirical estimates of effective
sizes of natural populations (Walsh and Lynch 2018). Heuristic
first-order approximations have been obtained for the N. asso-
ciated with the drift of mean phenotypes (Appendix E), although
more rigorous derivations are needed.

Moreover, as illustrated in Fig. 3, the same reduction in N rela-
tive to N can be obtained with many different combinations of s, Ns,
B, and L. Notably, the influence of mutation bias on the drift Ne is
nonmonotonic, with the maximum reduction occurring when
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B =0.33. The key point here is that although Ns < 11is often taken to
be the approximate benchmark below which drift starts to have a
substantial impact on evolution and standing variation, this ap-
proximation becomes increasingly unreliable when sites are
linked, mutation is directionally biased, and multiple site types
are simultaneously segregating. As similar points have been
made previously by Good et al. (2014) using a very different model
involving unconditionally deleterious and unbiased mutation,
these concerns seem to be quite general. This raises significant con-
cerns for studies that attempt to infer historical patterns of selec-
tion and drift from measures of standing variation.

Finally, we note that aside from allowing the fitness function to
be truncated on one side, we have only considered the situation in
which the decline in fitness around the optimum is symmetrical.
Some attempts have been made to evaluate how asymmetrical
(skewed) fitness functions can lead to the evolution of mean pheno-
types deviating from the optimum and more towards the shoulder
of the fitness function (Vercken et al. 2012; Urban et al. 2013).
Although an absence of mutation bias was apparently assumed in
both studies, as noted above, there will be some effect owing to
the displacement of the mean from the optimum. Thus, an exten-
sion of this work to include varying levels of mutation bias could
provide interesting insight into how this might interact with asym-
metrical selection to produce more- vs. less-pronounced deviations
of mean phenotypes from their optima, and help identify ways to de-
termine the extent to which apparently maladapted phenotypes are
a consequence drift, mutation bias, and/or asymmetrical fitness
functions.

The essential concluding point from the preceding results and
from prior analyses (e.g. Lynch 2018, 2020; Devi et al. 2023) is that
differences in N. alone can cause observable gradients in the
mean phenotypes of populations experiencing identical selection
and mutation pressures. The degree to which such scaling rela-
tionships can be detected and interpreted in broad phylogenetic
comparisons depends on numerous factors, including the form
of the fitness function, the distribution of genomic site types,
the degree of mutational bias, and the strength of recombination.
Nonetheless, the fact that power-law relationships relating mean
phenotypes to N are predicted under plausible distributions of
mutational effects and constant forms of selection raises issues
with respect to the interpretations of studies in evolutionary al-
lometry commonly focused on such bivariate regressions. This
is a concern because the explanatory variable (on the x axis) in
such studies is almost always a measure of body size, which in a
broad phylogenetic context scales negatively with N. Yet, almost
all studies in evolutionary allometry focus entirely on explana-
tions based on adaptive tradeoffs or physical constraints, and
leave no room for involvement of population-genetic processes.

Of course, the strength and pattern of selection operating on
many traits, particularly those relating to external ecological fac-
tors, can vary widely among species for multiple reasons, thereby
obscuring any anticipated effects of drift, which may be second-
ary. However, this may be less of a problem for intracellular fea-
tures with conserved functions across the Tree of Life, and the
drift-barrier hypothesis has been invoked to explain a diversity
of evolutionary patterns involving such traits, including mutation
rates, ages at senescence, strengths of transcription-factor bind-
ing sites and interfaces within multimeric proteins, and distribu-
tions of phosphorylation sites (reviewed in Lynch 2024).

One of the most compelling examples of the limitations of trait
evolution by a drift barrier is revealed by ~ 100 genome-wide esti-
mates of mutation rates, which scale strongly negatively with
measures of the coalescent Ne, the interpretation being that

persistent downward directional selection on error rates is pro-
gressively thwarted by drift in populations with diminished Ne
(Lynchetal. 2023). However, drawing from observations on labora-
tory constructs of yeast, Liu and Zhang (2021) argued for a rejec-
tion of this hypothesis in favor of one invoking stabilizing
selection alone. Here, we take the opportunity to outline some
of the practical difficulties in using comparative data to infer the
operation of specific forms of selection, e.g. directional vs. stabil-
izing, and the interactive role played by random genetic drift.
First, as demonstrated above, the operation of stabilizing selec-
tion is not incompatible with the functional role of a drift barrier,
as such constraints exist under virtually any fitness function.
Moreover, when the expectations of mean phenotypes under mu-
tation alone are not aligned with the optimum under stabilizing
selection, populations may effectively behave as though they
are evolving directionally even though the fitness function is sta-
bilizing. Second, as noted above, the mean phenotypes of popula-
tions are not expected to reside specifically at a drift barrier, even
under purely directional selection. Rather, the latter is best
viewed as a reflecting boundary, above which there is a range
within which the mean phenotype is able to wander in an effect-
ively neutral manner, which in some cases can be considerable
(Lynch 2011, 2018). For this reason, although theory may allow
qualitative statements on the scaling of mean phenotypes with re-
spect to Ne, quantitative statements about the precise locations of
drift barriers require information on the distribution of fitness ef-
fects of new mutations, degree of linkage, and mutation bias, none
of which is easily acquired. Third, an ability to produce favorable
mutant phenotypes beyond a supposed drift barrier does not neg-
ate thelatter’s existence, as the key issueis whether natural selec-
tion’s ability to promote such mutations is compromised. Finally,
one might think that a comparison of standing levels of variation
of a trait with the neutral expectation would be revealing as to the
form of selection and the degree to which a trait mean is close to a
drift barrier. However, the level of genetic variance maintained in
a population under the joint influence of drift and selection is not
equivalent to that expected under a neutral model (Walsh and
Lynch 2018; Devi et al. 2023), and depression of the genetic vari-
ance relative to neutrality is incapable of distinguishing between
models of directional vs. stabilizing selection (Barton 1989).
These caveats raise significant challenges in connecting obser-
vational data with drift-barrier theory. Drift barriers must be uni-
versal to the evolution of all traits across the Tree of Life, just as
gravity is a universal physical force. However, the degree to which
differences in the magnitude of random genetic drift translate
into substantial lineage-specific phenotypic differences, including
the scaling relationships of phenotypes with N, (should the appro-
priate measure of the latter even be obtainable), is a matter of the
genetic architecture of the trait under consideration as well as the
ability of the investigator to make precise measures in reasonably
controlled environmental settings. There remains a need for fur-
ther theoretical work in this area, but this should ultimately be
guided by the acquisition of key information on the links between
genotypes, phenotypes, and fitness of diverse organisms experi-
encing substantially different population-genetic environments.

Data availability

The authors affirm that all data necessary for confirming the con-
clusions presented in the article are represented fully within the art-
icle and figures. The C++ code for the simulation data can be found
at https:/github.com/LynchLab/Asexual-Gaussian-Selection).
Supplemental material available at GENETICS online.
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Appendix A: Local strength of selection with
the Gaussian fitness function

With a fitness function defined by Equation (2), although thereis a
single parameter describing the overall strength of selection (s),
only when the deviation from the optimum 6=Z—-6s=1 is the
strength of selection on a haplotype essentially equal to s, as
this leads to a reduction in fitness from the optimum of
1-e ~s, assuming s <« 1. However, as the curvature of the
Gaussian selection function is a function of |§], to understand
the strength of selection separating adjacent haplotypes, we re-
quire their relative fitness difference,

g* = W(&) ;)\/\?;)(6 + 1) =1—- e—s(26+1). (Al)

This shows that as a parent allele deviates further and further
from the optimum, the relative reduction in fitness of the next
worst allele increases. This measure is of significance, as we ex-
pect the power of drift to compete with the strength of selection
only up to the point at which 1/N > s*. For a population stalled
atmean phenotype Z, for sé < 1, the effective strength of selection
for a beneficial mutation (moving the mean closer to 6;) is
S* = 25(Z — 6s).

Appendix B: Diffusion approximation with
an intermediate optimum

Using a quantitative genetics approach for the case of Gaussian
selection combined with reversible mutation of L equivalent bial-
lelic sites and with random genetic drift, Lynch (2018) found that
the steady-state distribution of mean phenotypes under
drift-mutation-selection balance, (z), is Gaussian with mean and
variance, respectively,

_ KOs + On

ue) =", (®1)
0_2
2@ =2, (®2

where s and 0y are the expected means of the distributions in the
presence of strong selection and complete neutrality, the first
being the optimum phenotype (on the scale of L, under the as-
sumption of additive genetic effects), and

Luoy
N=—) (B3)
Uo1 + U10
where Lis the number of sites, and ug; and uyo are the rates of for-
ward (- to +) and reverse (+ to —) mutation. In addition,

2

2 oM
=___M B4a
N ZN(M01 + Mlo) ( )

is the variance among means under neutrality, with N being the
population size, and o3, being the within-population genetic vari-
ance (sum of expected heterozygosities over all sites) under the
assumption of mutation-drift equilibrium,

2 4NLBu10 4NLBu10
Oy = ~
M1+ B+ Nup(1.0+68+4%) 1+8

, (B4b)

with mutational bias 8 = ug1/u10, and the approximation applying
for Nuqg < 1, which is the case for all conditions in evaluated in
this paper. Finally, letting

(1/2s) + o2

2N, ’ (B5)

2 _
05 =

where N, is the effective population size, be the variance of means
when selection is the prevailing force, with ¢% being the equilib-
rium within-population genetic variance,

K= i. (B6)
g5

Lande (1976) obtained a less general result than that above; by as-
suming an absence of mutational bias (with mean mutational ef-
fect equal to zero) and negligible mutational variance relative to
standing variation, he derived an asymptotic Gaussian distribu-
tion of mean phenotypes with an overall mean of 65 and variance
given by Equation (B5).

Two key issues in the above derivations are the definitions of
the genetic variance and the effective population size used in
Equation (B5). For situations in which the mean is close to the op-
timum, an approximation for ¢2 can be obtained by assuming
that most of the sites are fixed for the appropriate numbers of
+ and — alleles, and that genetic variation is maintained by the
balance between recurrent mutation and selection. For example,
if the optimum 1is in the center of the range of possible haplo-
types, 6s =L/2, then the numbers of the two types of alleles will
be in equal abundances within most haplotypes, with half mu-
tating at rate ujo and the other half mutating at rate fus, which
with a fractional removal equal to s in both cases per generation,
yields

L/ +Buro L1+ Puro (87)
T s+ (1 +pu0 2s ’

where the second approximation applies when mutation is weak
relative to selection. Both approximations work well when the
mean deviates less than 1% from the optimum, but otherwise
can overestimate the observed genetic variance by several fold.
In any event, in comparing Equation (B7) with the first term in
Equation (BS), it is clear that the total haplotype mutation rate
must be >0.1 or so for the genetic variance term to make a mean-
ingful contribution to the numerator, suggesting that as a first-
order approximation, o2  1/(4Nes).

Appendix C: Analytical approximation of the
absolute mean deviation from an
intermediate optimum, assuming unbiased
mutation

The preceding results can be distilled down to a relatively simple
expression for the behavior of [§] when the mutation rates between
the two alleles are directionally unbiased, i.e. u1o =up1 =u, #= 1.0,
and 6y = L/2. From Equation (B4b), the equilibrium genetic variance
under neutrality reduces to

,  2NLu
Oy =
M™1 4+ 4Nu

~ 2NLu, (Cla)
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the approximation applying when Nu < 1, and from Equation
(B4a),

2
o_om L L
NN T 2(1+4Nu) T 2 (C1p)
Further using the approximation, o2 = 1/(4N.s), from Equation (B6),

0.2
=" & ONLLs. (C2)
g5

Because it is assumed here that there is no mutational bias, the
grand mean phenotype coincides with the optimum, 6s, and from
Equation (B2), the variance of means is

L

2 N~ —
O = NI 1)

(C3)

the approximation again assuming weak mutation. The mean ab-
solute deviation from the optimum is then simply the scaled stand-
ard deviation,

[6] = \/262(2Z) /7. (C4)

Appendix D: Mean absolute deviation of
means from the optimum

Given that our focus is on the efficiency of selection, when a fit-
ness function has a stabilizing component, there is a need for a
measure of the absolute deviation from the optimum, as the
steady-state distribution of means may straddle the optimum.
With a Gaussian fitness function, the solution is straightfor-
ward under two conditions. First, if the steady-state distribu-
tion is much more than two standard deviations from the
optimum, the mean deviation is closely approximated by the
difference between the overall mean and the optimum.
Second, if the overall mean coincides with the optimum, and
the distribution is Gaussian, the mean absolute deviation is
o/2/x. More generally, we need to determine the fractions of
the distribution above and below the optimum, and the means
of these two portions of the distribution relative to the trunca-
tion point.

Following the results from the preceding section, we assume
that the distribution of means, ¢(Z), is Gaussian with mean x and
variance ¢°, e.g. as given by Equations (B1) and (B2). Denoting
the optimum phenotype as 6s, the desired measure is

w=[ z-oiota)z (P1a)
which expands to
e Z-p)"\ .
= Z —6s)exp| — dz
a v 2mo? |:/HS( 5) p( 252
(D1b)

_/05 (Z - 65) exp(— (22_(;;)2>dzi|.

This can be shown to be

Bl= a\/% exp (— (652;2” ) ) +(0s —p) erf (92 _2#>, (D2)

where erf denotes the error function. Consistent with the verbal
argument given above, when 6s = u, Equation (D2) simplifies to

— 2
ST= \/7 D3
Pl=0y~ (D3a)
and when |6s — y| is large relative to o, it converges to
16] = 165 — ul. (D3b)

Appendix E: Reduction in effective

opulation size resulting from selective
interference between competing favorable
mutations

If a population finds itself slightly off a selective optimum, then
mutations moving haplotypes back towards the optimum will be
selectively favored. However, in sufficiently large populations, mul-
tiple secondary mutations will arise prior to the fixation of the first
such mutation otherwise destined to fixation. This then diminishes
the efficiency of selection, as only one mutation can fix at a time,
thereby reducing the fixation effective population size.

There are two ways by which secondary mutations can influ-
ence the sojourns of beneficial mutations. Lineage interference
occurs when another competing beneficial arises in a lineage out-
side of that containing the target mutation, inhibiting the latter
from going to fixation, given that the competing lineages are
equivalentin fitness. Lineage contamination occurs when second-
ary deleterious mutations arise in the target lineage, impeding
progress towards fixation. In the following, we focus only on lin-
eage interference, as secondary deleterious mutations will occur
in both the target and off-target lineages.

To obtain an approximation for the interference effect, we fol-
low the logic outlined in Devi et al. (2023), denoting the effective
population size as Ne = ¢N, with

1
¢=1—+I’ (E1a)

being the reduction in the effective population size resulting from I
effectively competing parallel mutations arising while the target
beneficial mutation is otherwise en route to fixation. Given the
complexity of the issues, the approach we take is heuristic, not a
derivation from first principles, But as will be shown, the resultant
expressions provide good approximations to the behavior of ¢ in re-
lation to the underlying genetic parameters, and therefore seem to
capture the essence of interference processes.

First, we require information on the mean time to fixation of a
beneficial mutation (conditional upon fixation), 7, as this determines
the length of time during which the target mutation is vulnerable to
interference. As pointed out by Charlesworth (2020), numerous ex-
pressions have been suggested for ¢ as a function of Ne, some of
which give nonsensical values in certain domains of Nes. An expres-
sion from Charlesworth (2022) is useful in the weak selection regime,

= 2¢N<1 - (¢NS>2>, (E2a)

18

and we rely on this until it breaks down when ¢Ns > 1. A derivation of
Gale (1990), modified for haploids,

3.927 + 21n (¢Ns/2) 2
T_f_zqﬁ_@’ (E2b)
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is reasonably suitable for Nes > 1. The transition between the two is
relatively seamless from the standpoint of the current analyses.

Second, we must account for the number of potentially com-
peting mutations, denoted here as I,. One way to approach the
problem is to assume that selection is strong enough that the
population typically finds itself nearly fixed for a mean phenotype
just one unit above or below the optimum. Supposing the popula-
tion finds itself one position below the optimum, s (which is on
the scale of L), then Buio(0s — 1) = Buqobs is the rate of origin of
new competing (upward) mutations per individual in nontarget
lineages, with Buig being the rate of origin of new competing (up-
ward) mutations per individual site in the nontarget lineage, and
the approximation assuming large L (justified by the fact that
interference will be minimal with small L). Given that the target
lineage has an average population size of ~ N/2 during its sojourn
from a frequency of 1/N to 1.0 (assuming it is destined to fixation),
this implies a total of pu10N6s/2 potentially competing beneficial
mutations. Alternatively, should the population find itself one
position above the optimum, there would be u19N(L — 6s)/2 poten-
tially competing (downward) beneficial mutations. As these two
starting points have approximate probabilities of 1/(1+f) and
B/(1+ pB), respectively, the predicted total number of interfering
mutations per target event is

I _ BuioNL
PTo2(1+p)

(E3a)

An alternative approach to the problem is to assume that mutation
biasis strong enough that the full distribution of genotypes is to one
side of the optimum, so that all of the mutations in the appropriate
direction (here assumed to upward, given the downward mutation
pressure), regardless of genetic background, are beneficial. If it is
further assumed that selection is strong enough to keep the popu-
lation mean sufficiently close to the optimum that (L — 6s)/L is the
average fraction of sites occupied by — alleles, then

~ ﬂuioN(L - 95)

> . (E3b)

I
For anintermediate optimum, s = L/2 and no mutation bias (8 = 1),
the two approaches give identical results. If s =L/2 (intermediate
optimum), the first approach predicts more interference if < 1. If
B < 1and the optimum is intermediate or larger, the first approach
always gives more interference.
Third, only a fraction of competing mutations is destined to fix-
ation, which we define as the standard fixation probability of a
new mutation with fitness benefit s,

_ —ONus*/N
1-e (E4a)

b= oNs
(Kimura 1983). The relevant selection coefficient here depends on
the distance of the genotypic mean from the optimum, with dif-
ferentiation of the fitness function showing that

s* = 25(6s — 2), (E4D)

assuming s > z. This expression also needs to be substituted for s
in the expressions for r. However, a circularity arises here in that
Z depends on ¢ and cannot be predicted in advance. To circumvent
this issue, we assume that the mean phenotype is positioned at the
neutral expectation, such thatz = 6y = Lg/(1 + B), which necessarily
means that we are overestimating the prevailing strength of selec-
tion. We will make further use of the approximation

2 *
ps= %, (E4c)
given that the numerator term is generally <« 1.

Fourth, we suggest that the strength of selection operatingon a
mutation must be on the order of the magnitude of genetic drift or
greater if it is to compete for fixation, and to allow for this, we use
the weighting term Nes*/(1+ Nes*), which asymptotically ap-
proaches zero as Nes* — 0 and 1.0 as Nes* — oo.

Fifth, owing to the presence of segregating mutations in the
population, there is an additional factor k to account for the fact
that not all mutations in the nontarget lineage are positioned in
the full haplotype distribution such that they equal or surpass
the target mutation in terms of fitness. The idea here is that sec-
ondary mutations arising on haplotypes with phenotypes further
from the optimum than the mean phenotype will typically be des-
tined to loss and hence irrelevant to the fixation process, whereas
those arising on haplotypes closer to the optimum will compete
with the target mutation for fixation. (When examining selection
under an exponential fitness function, Devi et al. (2023) found that
k ~ 1/4 serves as a decent first-order approximation. Here, we find
by inspection that k =~ 1/32 provides an optimal fit of predicted to
observed ¢ from computer simulations involving an intermediate
optimum). This simple treatment assumes that k is independent
of all other genetic parameters. In the future, it will be desirable
to have theory that predicts k from first principles, and this pre-
sumably will be a function of the average form of the haplotype
distribution.

Taking all of these terms together,

Nes*
Izr-Ip-pf-m-k. (ES)

Substituting and rearranging from Equation (E1), and further ex-
panding terms, leads to the transcendental equation,

245* Ns*
1=¢{1+(T.1p.%.%.k>}. (E6a)

Equation (E6a) can be used to solve for ¢ by standard optimization
procedures, noting that r, as defined in Equations (E2a,b), is also a
function of ¢.

Owing to its multiple terms, Equation (E6a) is not very revealing
with respect to the relative contributions and scaling relationships
of the underlying factors influencing ¢. However, if 2¢Ns* < 1, the
first term in the denominator can be approximated as 2¢Ns*, and
Equation (E6a) can be written as a polynomial equation,

I,k(Ns*)?

1 = ¢(1 - Ns*) + ¢*(Ns*) + ¢°(2[,kNs*) — ¢° ( 5 ) (E6D)

where Equation (E2a) has been used for .

This approximation can be further simplified in special cases. In
particular, because ¢ < 1, if Ns* < 1, the final term is small relative
to the third term on the right (this is also equivalent to assuming
that 7 ~ 2¢N). In addition, because I, is a linear function of L, in
the limit of large L the first two terms on the right become of negli-
gible importance. Recalling the definition of s* from Equation (E4b),
then yields the approximation (for large L and weak selection),

1 1/3
b= (zlpst(es - z)) : (E73)
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Note that because I, scales linearly with NL and (s — z) is expected
to scale with L, this expression suggests that ¢ should scale with
[(LN)QS]_US. There remains the problem of the term (fs —Z) in s*,
as this is expected to be a function of other model parameters,
including N and ¢. If, however, we take (65 —Z) ~ (s — 6n) =L(1 -
B)/12(1 + B)] as arough approximation (but overestimate), some fur-
ther progress can be made, especially keeping in mind that use of
an appropriate value for the scaling parameter k might accommo-
date this overestimation. Further using Equation (E3a) to define I,
Equation (E7a) becomes

(145 1\
o= (ﬂ(l - uwk(LN)zs) ' (€70)

To evaluate the relative utility of these estimators of ¢, we
compared their predictions with estimates of ¢ obtained by
computer simulations and using Equation (B1) to obtain the va-
lue of N, relative to N that best fits the observed genotypic
mean. Despite the numerous assumptions in the preceding de-
rivations, for large L=10* and #=0.10 to 0.60, Equation (E6a)
yields estimates of ¢ that are generally within a factor of two
of estimates derived by computer simulations if k is set to
1/32, and the simplified solution given by (E7b) is nearly as
good (Supplemental Fig. 1).

Editor: N. Barton
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