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Although multigenic traits are often assumed to be under some form of stabilizing selection, numerous aspects of the population-genetic 
environment can cause mean phenotypes to deviate from presumed optima, often in ways that effectively transform the fitness land
scape to one of directional selection. Focusing on an asexual population, we consider the ways in which such deviations scale with 
the relative power of selection and genetic drift, the number of linked genomic sites, the magnitude of mutation bias, and the location 
of optima with respect to possible genotypic space. Even in the absence of mutation bias, mutation will influence evolved mean phe
notypes unless the optimum happens to coincide exactly with the mean expected under neutrality. In the case of directional mutation 
bias and large numbers of selected sites, effective population sizes (Ne) can be dramatically reduced by selective interference effects, 
leading to further mismatches between phenotypic means and optima. Situations in which the optimum is outside or near the limits of 
possible genotypic space (e.g. a half-Gaussian fitness function) can lead to particularly pronounced gradients of phenotypic means with 
respect to Ne, but such gradients can also occur when optima are well within the bounds of attainable phenotypes. These results help 
clarify the degree to which mean phenotypes can vary among populations experiencing identical mutation and selection pressures but 
differing in Ne, and yield insight into how the expected scaling relationships depend on the underlying features of the genetic system.
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Introduction
Even under persistent long-term forms of stabilizing or directional 
selection, the mean phenotypes of independent lineages are ex
pected to diverge to a degree that depends on the distribution of 
fitness effects of mutations, the genetic architecture of the trait, 
the level of mutation bias, and the genetic effective population 
size (Ne), which itself can depend on all of the above. Provided 
classes of mutations exist that are accessible to selection in 
some lineages but effectively invisible in others (owing purely to 
insufficient effective population size), gradients in phenotypic fea
tures are then expected among populations with respect to Ne, 
even in the case of invariant selection. These issues have been ta
ken up in detail for the special case of multiplicative fitness func
tions, wherein each mutation influences fitness independently of 
all others, i.e. there are no epistatic fitness effects (Lynch 2018; 
Devi et al. 2023), and to a lesser extent for traits under alternative 
forms of selection (Charlesworth 2013; Lynch 2020).

Nevertheless, it is commonly believed (although still debated; 
Schluter 1988; Kingsolver and Diamond 2011; Urban et al. 2013) 
that complex quantitative traits are typically under a form of sta
bilizing selection operating around an optimal intermediate 
phenotype. Most often, the fitness function is assumed to be 
Gaussian (bell-shaped) in form, if for no other reason than to sim
plify mathematical analysis (Walsh and Lynch 2018). Fitness 
functions with stabilizing features introduce several novel issues 

with respect to understanding the positions of drift barriers, i.e. 
the limits to which mean phenotypes are expected to disperse un
der the joint influences of selection, drift, and mutation.

Under Gaussian selection, the fitness gradient is a function of 
the location of the mean phenotype relative to the optimum. If 
the mean phenotype coincides with the optimum, then mutations 
with increasingly large phenotypic effects will have negative fit
ness effects that accelerate in a nonlinear fashion. However, 
from the standpoint of individual genotypes, the fitness effects 
of mutations are context-dependent, with mutations with suffi
ciently small effects oriented in the right direction improving fit
ness, but others having deleterious effects (Fisher 1930; Orr 
2006). In this sense, stabilizing fitness functions introduce epista
sis, in that the selective effects of mutations depend on the genetic 
backgrounds of their carriers (even if the underlying phenotypic 
effects of mutations are additive). These issues become increas
ingly important if the mean phenotype deviates from the opti
mum, as is expected whenever the latter does not coincide with 
the neutral expectation.

Here, we examine the responses of drift barriers to changes in 
Ne for traits experiencing persistent selection under a Gaussian 
fitness function. The goal is to evaluate whether perceptible dif
ferences in mean phenotypes are expected to arise among species 
solely as a consequence of changes in the power of random genet
ic drift, in the absence of changes in underlying selection pres
sures. In its most general form, this treatment yields insight into 
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a number of different selection scenarios. If the optimum pheno
type is intermediate to the range of phenotypes that can be 
attained by mutation, and there is no mutation bias, mean pheno
types drift around the optimum to a degree that depends on Ne, 
with the grand mean coinciding with the optimum, i.e. selection 
is ultimately stabilizing in nature. If, on the other hand, the opti
mum coincides with the most extreme phenotype that can be pro
duced by mutation, then selection is always directional in nature, 
albeit with diminishing strength as the mean phenotype ap
proaches the extreme. In this case, a Ne-dependent gradient in 
mean phenotypes is expected to arise, to a degree that depends 
on the degree of linkage, the distribution of strength of selection 
operating on individual genomic sites, and the magnitude of mu
tation bias. More generally, even with an intermediate optimum 
phenotype, mutation pressure will often result in a discordance 
between the optimum and evolved mean phenotypes, and this 
results in selection operating in a predominantly directional man
ner, as the steady-state phenotype distribution is largely nonover
lapping with the optimum.

Our work is related to prior efforts to derive expressions for the 
load on mean population fitness resulting from the joint operation 
of mutation, selection, and random genetic drift (e.g. Barton and 
Coe 2009; Roze and Blanckaert 2014; Barton 2017; Vanhoenacker 
et al. 2018). Although this approach has a long history in evolution
ary genetics, the predicted load on fitness is typically so low that it 
would be undetectable in empirical studies, which would also be 
confronted with the problem of how to measure fitness. Our 
goal is to determine when, on the phenotypic scale, there is a 
sufficiently broad range of variation of mean phenotypes to be 
detectable with comparative data and useful for downstream hy
pothesis testing (for example, evaluating whether mean pheno
types scale with respect to effective population sizes).

The model
Throughout, we deploy computer simulations and develop math
ematical approximations to develop insight into the ways in 
which the strength of selection, mutation rates and bias, size of 
linkage groups, and effective population size influence the long- 
term steady-state behavior of the distribution of mean pheno
types under constant environmental conditions. The basic struc
ture of the model is similar to that utilized in prior studies with an 
exponential fitness function (Lynch 2020; Devi et al. 2023), except 
that here we focus on a Gaussian fitness function, where the fit
ness effects of mutations depend on the distance of the recipient 
phenotype from the optimum. This contrasts with an exponential 
fitness function, wherein the effects of mutations are independ
ent of the genetic background.

As a surrogate for understanding some effects of recombination, 
we consider single linkage blocks of L nonrecombining sites (or gen
etic loci), each with biallelic states, + and −, contributing positively 
and negatively to the trait in an additive fashion, although the mag
nitude of +/− effects is allowed to vary among sites in some appli
cations. Because the stretch of nucleotide sites under consideration 
is assumed to be completely linked, the positions of the sites are 
irrelevant, and there can be a multiplicity of functionally equiva
lent haplotypes (i.e. with identical numbers of + alleles) in each ef
fect class, which modifies their ease of mutational accessibility 
(Lynch 2018, 2020). For example, there are just single haplotype 
configurations with all + or all − alleles, but L haplotypes with a sin
gle + or single − alleles, L(L − 1)/2 haplotypes with two + and (L − 2) 
− alleles (and vice versa), etc. The site-specific per generation mu
tation rates from the − to the + states, and vice versa, denoted as 
u01 and u10, respectively, are assumed to be identical at all sites. 

We refer to genomic sites in a generic sense, and these may be 
viewed as either individual nucleotide positions or genetic loci pro
vided they are effectively biallelic at the phenotypic level (e.g. at the 
DNA level, this could include situations in which three of the four 
nucleotides have the same phenotypic effects, or two pairs are in
ternally equivalent).

Given the assumptions of additive mutational effects and com
plete linkage, the following analyses do not encompass the full 
range of possible genetic architectures of traits. They should, 
however, apply to a wide array of situations, including the 
genome-wide distributions of sites underlying traits with a largely 
additive genetic basis in asexual species or those that only rarely 
engage in sexual reproduction. For situations in which recombin
ation is more frequent, the results should still apply provided the 
size of the linkage block is small enough to avoid recombination 
over the duration of a typical genealogical coalescence (on the or
der of Ne generations; Good et al. 2014; Devi et al. 2023). In the fol
lowing analyses, we draw comparisons from prior work that 
assumes the opposite extreme of free recombination between 
all sites. (We have not evaluated the consequences of multiple, in
dependent linkage blocks within genomes.)

One concern is that mutations within genes are more likely to 
have epistatic (nonadditive) effects with each other than between- 
gene interactions, but incorporation of such effects into the ana
lyses would introduce multiple layers of complexity, owing to 
the alternative forms of epistasis. Such exploration is desirable, 
but is beyond the scope of this study, and we refer to Barton 
(2017) for some reasons why such effects are unlikely to alter 
our qualitative conclusions, e.g. in the absence of recombination, 
mean population fitness is independent of the level of epistasis 
(Kimura and Maruyama 1966), which implies the evolution of a 
constant distance of the mean phenotype from the optimum re
gardless of the level of epistasis.

To perform analyses with biologically realistic combinations of 
parameter values, we largely adhere to the scaling relationship of 
mutation rates and coalescent effective population sizes known to 
exist across the Tree of Life. The latter generally fall in the range of 
104 to 109, and the mutation rate per nucleotide site scales nega
tively with the ∼0.76 power of N, where the latter denotes the co
alescent effective population size determined from standing 
levels of heterozygosity at silent sites in protein-coding genes 
(Lynch et al. 2016, 2023). Thus, where computational work was in
volved, the following analyses were performed under the assump
tion of a per-site mutation rate from + to − alleles of 10−7 at a 
population size of N = 104, with u10 = 0.0011 N−0.76. With this scal
ing, for the full range of population sizes employed here (N ≃ 104 

to 2 × 108), the product Nu10 then ranges from ∼ 0.01 mutations/ 
population/site/generation at the lowest to ∼ 0.10 at the highest 
population sizes, consistent with the weak scaling of population- 
level silent-site diversity for diverse organisms (Walsh and Lynch 
2018). Nonetheless, using the analytical approximations that we 
develop below, one can still directly explore the consequences of 
arbitrary combinations of mutation rates and population sizes.

We evaluate the behavior of linkage block lengths ranging from 
10 to 104 and mutational biases β = u01/u10 = 0.10 to 1.00. This def
inition of mutation bias is a natural one in that it is a function of 
allelic states. At the level of haplotypes, there can still be a rea
lized mutation bias even if β = 1, but this is totally a function of dif
ferences in numbers of + vs. − alleles in the prevailing haplotypes. 
Naturally, the range of variation of realized mutational effects de
pends on the haplotype distribution, as the directionality of over
all effects depends on the extent to which the population is 
saturated by + vs. − alleles.
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The trait under consideration is assumed to have an additive 
genetic basis at the phenotypic level, so that in situations in which 
all alleles are scaled to have effects of 0 and 1 (as done here), the 
genotypic value of a haplotype with n+ plus alleles is

z = n+ = L − n−. (1) 

Under the Gaussian selection model, the fitness of an individual 
with genotypic value z is

W(z) = exp [ − s(z − θs)2], (2) 

where θs is the optimal genotypic value imposed by the selective 
environment, and s is a measure of the strength of selection. (In 
principle, the phenotypic value need not equal the genotypic 
expectation, but this matter is accommodated by noting that en
vironmental sources of noise are absorbed into the selection coef
ficient s, which diminishes with decreasing correspondence 
between genotype and phenotype.) Under this model, fitness 
declines monotonically with increasing distance of the genotypic 
value from the optimum. Although the selective differences 
between adjacent genotypes are nonconstant, the reduction in fit
ness between the optimal genotype and neighbors deviating by sin
gle phenotypic units, i.e. |z − θs| = 1, is ≃s for s ≪ 1 (Appendix A). 
Note that our s is equivalent to 1/(2Vs) used in numerous other 
quantitative-genetic expressions in the literature. Throughout, 
we examine the consequences of a range of selection strengths 

from s = 10−6 to 10−2.
We rely on a classical Wright–Fisher discrete-generation model 

with sequential episodes of mutation, selection, and random gen
etic drift, with a constant population size of N haploid individuals, 
so that all new mutations have initial frequencies of 1/N. 
Assuming additive effects on phenotypes, all results should ex
tend to diploids by substituting 2N for N in the following expres
sions. As will be discussed below, the actual genetic effective 
size of the population (Ne) can be influenced further by the struc
ture of the linkage group, the strength of selection, and N itself, as 
these factors influence the degree of selective interference among 
simultaneously segregating mutations (Devi et al. 2023).

Because mutations are reversible, this system always eventual
ly evolves to a quasi-steady-state distribution of mean pheno
types, provided the fitness function remains constant. Owing to 
the stochastic nature of the underlying processes, to obtain stable 
estimates of the steady-state distributions, computer simulations 
must proceed for very large numbers of generations. Thus, to 
achieve greater computational speed, for large population sizes, 
we often scaled the input parameters so as to keep Nu10, Nu01, 
and Ns constant, by reducing N and increasing the mutation and 
selection parameters by the same factor, with constraints such 
that N was always ≥103, and s and Lu10 always ≤0.1. Burn-in per
iods before compiling statistics were typically at least 103N gen
erations, with the haplotype constitutions of populations being 
assayed every N/10 generations thereafter, typically for 106 to 
108 intervals.

Simulations were carried out with a program written in C++, in 
a form that allows parallel analysis of multiple population sizes, 
using the same general procedures as in Devi et al. (2023), and free
ly available at https://github.com/LynchLab/Asexual-Gaussian- 
Selection. Given the focus on linkage blocks, the frequencies of 
the L + 1 haplotype classes were monitored through time in dis
crete generations. Mutations to adjacent classes were assigned 
based on the numbers of + and − alleles and the respective muta
tion rates, and this was then followed by selection defined by the 

Gaussian fitness function weighted by mean population fitness. 
Random genetic drift was then imposed by multinomial sampling 
across the surviving haplotype distribution, returning the popula
tion to the next round of mutation, selection, and drift.

We note that beyond our own prior work, previous studies have 
focused on a biallelic genetic system like that employed here (e.g. 
Barton 1989; Walsh and Lynch 2018; and the many references 
therein). For example, as reviewed and expanded upon by Roze 
and Blanckaert (2014), Barton (2017), and Vanhoenacker et al. 
(2018), considerable attention has been given to the reduction in 
mean population fitness resulting under various scenarios involv
ing stabilizing selection, often with an optimum intermediate to 
the range of possible phenotypic variation, and under the as
sumption of free recombination and no mutation bias. Although 
related, the focus here is on the effects of linkage and mutation 
bias on the scale of mean phenotypes. As described below, we 
will make use of one particularly useful application of a 
Gaussian fitness function with mutation bias by Charlesworth 
(2013), who assumed free recombination.

Results
In the following sections, we progressively evaluate scenarios of in
creasing (and biologically realistic) complexity, starting with the 
situation in which all sites have equivalent effects and the opti
mum phenotype is well embedded within the possible range of 
variation, a common scenario invoked in previous work. We then 
consider situations in which the optimum phenotype is moved clo
ser to the edge of possible phenotypic variation. Finally, we illus
trate the consequences of sites with variable effects on the trait.

Homogeneous sites, with an intermediate  
optimal phenotype
The most commonly employed model in evolutionary quantita
tive genetics relies upon a Gaussian fitness function with an opti
mum assumed to fall well within the range of phenotypic 
variation (Walsh and Lynch 2018). There can, however, be some 
subtleties even with this simple scenario (Barton 1986, 1989). In 
particular, for a model in which mutations have discrete effects, 
the optimum may not coincide exactly with any possible summa
tion of allelic effects, and there may be multiple equilibria. The 
most extreme case arises when a single site determines the trait 
value, with the optimum residing at the midpoint between the ef
fects of the two alleles, which renders both alleles neutral with re
spect to each other. Less extreme effects of this nature occur with 
increasing numbers of underlying sites. In the following, we focus 
on situations in which the optimum is attainable, with L being an 
even number (initially with θS = L/2) and the effects of − and + al
leles being 0 and 1, respectively.

No mutation bias (β = 1). Under this model, if mutations have no 
directional bias, i.e. u01 = u10, the grand mean phenotype is ex
pected to evolve to the optimum, as this is also the position of mu
tation equilibrium. The focus is then on the mean absolute 
deviation from the optimum, as the temporal means wander 
above and below the optimum in equal frequencies. In the follow
ing, the average absolute deviation of phenotypic means from the 
optimum is denoted as |δ|, which is equivalent to 

�����
2/π

􏽰
times the 

standard deviation of the distribution of phenotypic means if 
the latter is Gaussian in form.

With unbiased mutation and population means evenly distrib
uted around θS, there is no expected gradient in the overall mean 
phenotype with increasing Ns. Not surprisingly, however, the 
mean absolute deviation declines rapidly with an increase in the 
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composite parameter Ns, which is equivalent to the ratio of the 
strength of selection to the power of drift (assuming Ne = N) 
(Fig. 1). It also increases with the size of the linkage block, although 
not greatly so, as explained below. There is an upper bound to the 
mean deviation from the optimum at Ns ≪ 1, as populations then 
converge on the neutral expectation for the dispersion of mean 
phenotypes, defined by the balance between forward and reverse 
mutations, although the effect is only noticeable at low L.

To explain these results in a more mechanistic way, note that a 
diffusion approximation applied to a quantitative-genetic model 
suggests that the distribution of mean phenotypes should be pro
portional to the product of the expectation under neutrality and 
the fitness of each genotypic class taken to the 2N power (Lande 
1976; Lynch 2018; Appendix B). The distribution is expected to 
be approximately Gaussian in form with expected means and var
iances of phenotypic means equal to

μ(z) =
κθS + θN

κ + 1
, (3) 

σ2(z) =
σ2

N

κ + 1
, (4) 

where θN = Lβ/(1 + β) is the expected mean phenotype under 
selective neutrality, and

κ =
σ2

N

σ2
S

(5) 

is the ratio of the expected variance of the distribution of means 
under mutation pressure alone vs. under conditions in which se
lection is the prevailing force (both of which are further described 
in terms of the underlying population-genetic parameters in 
Appendix B). For in the case of no mutational bias, κ ≃ 2NLs, the 
grand mean phenotype coincides with θS, and the mean absolute 
deviation simplifies to

|δ|1 ≃

��������������
L

π(2NLs + 1)

􏽳

(6) 

(Appendix C). This suggests that the mean absolute deviation 
from the optimum is a function of the ratio of the strengths of se
lection and drift (Ns) and of the number of selected sites (L), inde
pendent of the mutation rate. With sufficiently large numbers of 

Fig. 1. Average absolute deviation of phenotypic means from the optimum, |δ|, for the case in which the optimum is located in the middle of the range of 
possible variation, θS = L/2, and there is no mutational bias, β = 1.0. Points were obtained by computer simulations. Lines are predictions from Equations 
(6)–(8), and for the most part, they are hidden by the dots, as the fits are excellent. For Ns < L/20, the mean deviation is simply a function of NLs, as given by 
Equation (6), whereas for larger Ns, it converges on values that depend only on u

��
L

√
/s, as defined by Equation (7).
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sites (NLs ≫ 1), Equation (6) further reduces to (2πNs)−0.5, so that 
the magnitude of drift from the optimum is expected to be in
versely related to the square root of Ns, superficially appearing 
to be independent of L.

A potential issue here is the need to distinguish between effect
ive and absolute population sizes, Ne vs. N, as interference between 
simultaneously segregating mutations is expected to reduce the ef
ficiency of selection relative to the case of free recombination. For 
the question at hand, Ne can be defined as the population size re
quired for Equation (3) to yield an estimate of the mean phenotype 
equivalent to that obtained by computer simulations. Letting 
Ne = ϕN, and substituting the latter for N in the expression for κ, 
one can then solve for the value of ϕ that yields a match between 
the observed and predicted mean deviation. For the current case 
of β = 1, we find that over the full range of parameter space evalu
ated in Fig. 1, Ne is never depressed more than 15% below N, and for 
most cases is essentially equal to the latter, i.e. 0.85 < ϕ ≤ 1.00. (By 
embedding a neutral site within haplotypes during simulations, we 
also found that the neutral heterozygosity was depressed by no 
more than 15%). Thus, for the special case of no mutation bias 
around an intermediate optimum phenotype, there is minimal se
lective interference, and Equation (6) provides a very good fit to the 
simulation data using Ne = N, although only up to Ns ≃ L/20.

For Ns larger than this critical value, the population behaves in 
a near deterministic fashion with most sites in selection–muta
tion balance, with those marginally above and below the optimum 
wandering very slightly in time (Barton 1989). The absolute mean 
deviation then becomes a matter of the average difference in the 
number of sites segregating for deleterious mutations above and 
below the optimum, which we find to be

|δ|2 ≃
2u

��
L

√

s
(7) 

for Ns ≫ 1. A general expression allowing a transition between 
these two domains of behavior,

|δ| = |δ|2 + (|δ|1 − |δ|2)e−2Ns/L, (8) 

provides an excellent fit to the simulated data over the full range 

of Ns (Fig. 1). (Note that |δ| declines with increasing Ns in Fig. 1 sim
ply because the mutation rates deployed in the simulations are 
scaled to decline with increasing N.)

Effects of mutation bias. Mutation bias introduces complications 
in the preceding theory because the steady-state distribution of 
mean phenotypes is no longer symmetrical around the optimum 
and may even be essentially nonoverlapping. Provided the distri
bution of means remains approximately Gaussian, Equations (3) 
and (4) (further developed in Appendices B and D) can still be 
used to estimate |δ|, although the need to account for the fact 
that Ne < N becomes more significant.

Under the assumption that mutation bias is strong enough that 
θs falls outside of essentially the entire range of variation of mean 
phenotypes, Charlesworth (2013, his Equation 9) derived an ex
pression for the expected deviation of the grand mean from the 
optimum for the special case of free recombination and NLs ≫ 1 
(satisfied in almost all of our analyses),

δ ≃
1 − ln (β)

4Ns
. (9) 

This provides a benchmark for considering the effects of linkage, 
as implemented here.

Simulation results indicate that Ns is still a primary factor in 
determining the absolute mean deviation from the optimum, 
and that |δ| is progressively increased with increasing degrees of 
mutational bias, especially when linkage blocks are large 
(L = 103 and 104; Fig. 2). However, there is an additional effect of 
s beyond that coming through Ns. For small numbers of sites 
(L = 10), Equations (6)–(8) (which assume β = 1) continue to provide 
adequate fits in all cases unless population sizes are extremely 
small (Ns ≪ 1) and mutation is extremely biased (in which case, 
the distribution gravitates towards the neutral expectation). 
Equations (6)–(8) also provide excellent fits to the data for all cases 
when mutation bias is weak (β = 0.9), but can yield large underes
timates of |δ| as β declines further. Although Equation (9) implies 
scaling behavior of |δ| with Ns that is qualitatively consistent 
with the simulation results when L < 10, it becomes increasingly 
problematic with larger linkage blocks, where the decline in ac
tual |δ| with Ns becomes shallower and the observed deviations 
become increasingly underestimated (by one to two orders of 
magnitude).

A more revealing understanding of the behavior of |δ| can be 
achieved by considering the ways in which the effective popula
tion size is influenced by the underlying processes. As can be 
seen in Fig. 3, for L < 100, observed ϕ = Ne/N [obtained from the si
mulated data, by optimizing the fit to Equation (3)] is nearly al
ways larger than 0.5, but for larger linkage blocks, there is a 
pronounced u-shaped response of ϕ to increasing Ns. ϕ converges 
to 1.0 at very low Ns because selection is no longer effective, and 
also converges to 1.0 at very high Ns because selection is so effect
ive that there are few segregating polymorphisms to cause select
ive interference. For 1 < Ns < 100, ϕ can decline below 0.1 and even 
approach 10−3.

Semi-analytical expressions for ϕ in terms of the model para
meters, developed in Appendix E using approaches previously in
troduced in Devi et al. (2023), take into consideration the numbers 
of parallel, competing mutations arising during the expansion of a 
potentially favorable mutation. These expressions generally lead 
to estimates of ϕ that are within a factor of two of observed esti
mates (Supplementary Fig. 1), provided Ns < L/20 (the determinis
tic limit), and therefore yield insight into the general underlying 
determinants of the selective interference reducing the effective
ness of stabilizing selection. For very strong and effective selec
tion, Ns ≫ L/20, a generalization of Equation (7) with (1 + β) 
substituted for 2 provides a good estimate of the mean deviation. 
Thus, Equations (3), (6), and (8) work well upon substitution of an 
appropriately defined measure of Ne for N.

Although somewhat complicated algebraically, the formulae 
for ϕ [Equations (E6a)–(E7b)] indicate that when the phenotypic 
optimum is intermediate on the scale of L, ϕ declines in a non
linear way with increasing values of the composite bias parameter 
β(1 − β)/(1 + β)2. Thus, the effect of mutational bias is nonmono
tonic in β, reaching a minimum when β = 0.33, consistent with 
the observations for ϕ in Fig. 3. For large linkage blocks and rela
tively weak selection (Ns ≪ L/20), ϕ also decreases with increasing 
strength of the population-level mutation rate (LNu10) and with 
the ratio of the strength of selection relative to drift (Ns). In this do
main, a separate effect of L also enters through the steady-state 
distance of the grand mean from the optimum, yielding an ap
proximate overall scaling of ϕ with [(LN)2u10s]−1/3 [Equation (E7b)].

Finally, it is also notable that the behavior of ϕ, which relates to 
fixation probabilities, is not reflected in levels of depression of 
standing variation at linked neutral sites (which we determined 
by embedding a neutral marker into the haplotypes), consistent 
with earlier findings with an exponential fitness function 
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(Devi et al. 2023). That is, the Ne governing divergence is not the 
same as the coalescent effective population size that is conven
tionally inferred from measures of silent-site variation in natural 
populations; for the latter, ϕ rarely drops below 0.25 in any of the 
preceding analyses.

Nonintermediate optimum
Although it is common practice among theoreticians to model 
Gaussian selection as though the optimum (and the range around 
it) resides well within the range of possible phenotypic variation, 
there is no reason to think that cases of asymmetry (with or with
out the optimum within the bounds of the possible genotypic 
range) are uncommon. Such conditions can greatly alter the de
gree to which mean phenotypes can drift from the optimum. 
Consider, for example, the case of a half-Gaussian fitness func
tion, such that the optimum genotypic state contains a + allele 
at each site, i.e. θS = L. In this situation, selection operates in a 
purely directional manner, with all − alleles being unconditionally 
deleterious. The mean phenotype will then always be ≤ θS, so that 
the mean deviation below the optimum is also the average abso
lute deviation. Thinking more generally, so that θS = xL, as x de
clines from 1 to 1/2 (the case of an intermediate optimum), the 
mean phenotype will be increasingly prone to drifting both above 
and below the optimum, to a degree dictated by the strength and 
direction of mutation bias.

Three striking patterns are revealed in Fig. 4 for the case of 
the half-Gaussian fitness function. First, relative to the situ
ation in which θS = L/2, the deviation of the mean from the opti
mum can be increased by one to two orders of magnitude. The 
effect is most pronounced when selection is not overwhelming
ly strong and the number of sites is large (Ns < L/10). In effect, 
the hard reflecting boundary of the half-Gaussian reduces the 
width of phenotypic space within which a particular deviant 
can wander and remain in an elevated fitness state. Second, 
the effect of mutation bias on the mean deviation is very small 
unless Ns ≪ 1, in which case the population means start to 
evolve in a nearly neutral fashion and hence are largely dic
tated by β. Third, the main determinants of the mean deviation 
are the selection-drift ratio Ns and the number of sites L, with 
an additional effect of s alone restricted to the deterministic do
main, similar to what was found for the case of θS = L/2 and 
β = 1.

A rough analytical approximation to the mean deviation can 
be obtained by using the same approach that led to Equation 
(3), i.e. by weighting the distribution expected under neutrality, 
Φn(z), by W(z)2N, and then normalizing to obtain the distribution 
expected under the joint influence of drift, mutation, and 
selection,

Φs(z) = C · Φn(z) · W(z)2N, (10a) 

Fig. 2. Results analogous to the plots in Fig. 1, but for situations involving four levels of mutation bias (β < 1.0). The dashed lines are the expectations from 
Equation (9) (which assumes free recombination, and a strong deviation of the overall phenotypic mean from the optimum), given for low and high 
mutation biases (β = 0.9, lower black dots, and 0.1, upper white triangles). The thick solid lines (where visible) are the analytical expectations, using 
Equations (6)–(8), which assume no mutation bias (β = 1.0).
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where C is a constant equal to the reciprocal of the sum of Φn(z) ·

W(z)2N over z = 0 to L, which ensures that the probability density 
sums to 1.0, and

Φn(z) =
L!

(L − z)!z!

β
1 + β

􏼒 􏼓z 1
1 + β

􏼒 􏼓L−z

(10b) 

is the distribution of means under neutrality. Equation (10a) can 
be viewed as a multistate generalization of the Li–Bulmer model 
for the steady-state distribution of two-allele systems (Li 1987; 
Bulmer 1991), and similar expressions have been previously in
troduced in the context of quantitative genetics (Lande 1976; 
Barton 1989, 2017; Sella and Hirsh 2005; Barton and Coe 2009; 
and references therein). The expected mean phenotype resulting 
from fixations is then

μ(z) =
􏽘L

z=0

Φs(z) · z. (11) 

A more mechanistic explanation for the mean deviation in this 
case can be achieved by setting θS = L in Equation (3) and applying 
the expressions in Appendix B,

[θS − μ(z)] ≃
L(1 + β)

4NesLβ + (1 + β)2 ≃
1 + β
4Nesβ

, (12) 

which unlike Equations (10)–(11), assumes a normal distribution of 
mean phenotypes. The approximation applies when NesLβ ≫ 1, 
and reduces further to 1/(2Nes) in the absence of mutation bias, 
and to 1/(4Nesβ) when β ≪ 1. Equation (12) generally yields results 
that are similar to those obtained with Equation (11), although the 

Fig. 3. Estimates of ϕ = Ne/N obtained from the application of computer-simulation data to Equation (3), as a function of Ns, L, β, and s for the case in which 
the optimum θS = L/2 is intermediate on the scale of L.
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formulaic predictions of |δ|1 using Ne = N can often be substantially 
below the mean deviations observed in computer simulations.

To gain some insight into the degree to which Ne is suppressed 
relative to N, one can equate Equation (12) to the observed mean 
deviation and solve for ϕ. Such analyses show that for the 
half-Gaussian fitness function, ϕ decreases monotonically with in
creasing Ns, increasing L, and decreasing β, diminishing to 10−3 in 
extreme cases (Supplemental Fig. 2). The estimates of ϕ can be 
predicted to a good degree of accuracy using the same formulae 
in Appendix E used for the case of an intermediate optimum, 
with one modification—letting the fraction of newly arising muta
tions having interference effects equal to (1/2)1/β. This then yields 
estimates of ϕ in terms of the underlying model parameters (u10, β, 
L, and Ns) that are generally within a factor of three relative to the 
observations and often only differing by a few percent.

There will again be an additional slight downward bias in the 
mean associated with segregating deleterious variants main
tained by selection–mutation balance, noticeable only at very 
high Ns, and we find that this can be closely approximated by 
the use of a transitional expression as in Equations (7) and (8), 
in this case leading to an overall mean deviation from the 
optimum of

|δ| ≃ (Lu10/s) + [L − μ(z) − (Lu10/s)]e−2Ns, (13) 

where Lu10/s is the approximate number segregating deleterious 
mutations per genome in large populations, and μ(z) is estimated 
using Equation (12) with Ne = ϕN. The predicted results from 
Equation (13) are for the most part extremely close to the data ob
tained by computer simulations (dashed lines in Fig. 4), the only 

Fig. 4. Average absolute deviation of phenotypic means from the optimum, |δ|, for the case in which the optimum is located at the extreme value of the 
genotype distribution (the half-Gaussian fitness function), θS = L. Results from computer simulations are given for the case of no mutational bias (β = 1, 
open points) and β = 0.33 (closed points); except for Ns < 1, these two sets of results are nearly indistinguishable. Solid lower lines, given for reference, are 
the theoretical results for an intermediate optimum with no mutational bias (from Fig. 1). Dashed lines are the analytical approximations given by 
Equation (13) shown for β = 0.33 (and in most cases obscured by the closely fit data points).
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moderate exceptions involving large linkage blocks (L > 103) and 
intermediate strengths of selection (0.1 < Ns < 100), where the 
mean deviation is overestimated.

Complications arise when the optimum is not as extreme as 
θS = L, as the possibility then exists that the mean phenotype 
can wander above and below the optimum. If there is significant 
overlap between the distribution of means and θS, it becomes es
sential to separately evaluate the mean deviations conditional on 
residing above and below θS, as the absolute deviation is no longer 
equal to the mean deviation. An understanding of when this par
titioning needs to be implemented can be achieved by considering 
the overall mean and standard deviation of the mean deviations 
from the optimum using Equations (3) and (4). Letting θS = xL, 
Equation (12) generalizes to

[θS − μ(z)] =
L(1 + β)[x(1 + β) − β]

4NesLβ + (1 + β)2
≃

(1 + β)[x(1 + β) − β]
4Nesβ

, (14a) 

where the second approximation applies when NesLβ ≫ 1. This 
can provide an adequate entry for the first term of Equation (13) 
provided the distribution of mean phenotypes resides sufficiently 
far from θS, say >2 standard deviations away. The standard devi
ation of the distribution of means is

SD(z) =
Lβ

4NesLβ + (1 + β)2

􏼠 􏼡1/2

≃
1

4Nes

􏼒 􏼓1/2

. (14b) 

Under a wide range of conditions, [θS − μ(z)]/SD(z) will be substan
tially smaller than two, in which case these expressions should be 

applied to Equation (D2) in the Appendix to obtain estimates of |δ|. 
As a first-order approximation, provided β < 1, the additional load 
associated with segregating polymorphisms maintained by selec
tion–mutation balance in large populations (Ns ≫ 1), is

|δ|2 =
Lu10

(1 + β)s
. (15) 

As an example of the effects of less extreme θS than under the 
half-Gaussian, results are provided in Supplemental Fig. 3 for 
the case in which θS = 3L/4. These again show that the mean devi
ation from the optimum can be one to two orders of magnitude 
greater than that for the case of θS = L/2 and β = 1, that the effect 
of mutation bias is of second order relative to that of Ns, and that 
the theoretical predictions obtained with appropriate modifica
tions of the methods noted above yield results that are satisfyingly 
close to those obtained by computer simulations.

Distribution of site types
Finally, we consider the complications that arise when genomic 
sites differ in the magnitude of the selective effects associated 
with mutations. Such conditions are virtually certain to occur 
for most complex traits, as for example: (1) underlying amino-acid 
replacement sites will differ with respect to their contributions to 
core functions, protein folding, etc.; (2) silent sites will have vary
ing influences on functions such as splicing of precursor mRNAs, 
folding of mature transcripts, and attractiveness to tRNAs; and (3) 
sites in noncoding regions will have variable effects on gene 
expression.

Fig. 5. Average deviation of phenotypic means from the optimum for the 
case in which there are three types of sites, numbering L3 = 3333, L2 = 333, 
and L1 = 33, with selection coefficients denoted in the legend. Results 
obtained by computer simulations are given for two levels of mutation 
bias for cases in which the optimum is intermediate (θS = L/2) or at the 
extreme of the range of phenotypic variation (θS = L). Performance is 
defined as n1 + n2(s2/s1) + n3(s3/s1), where nx denotes the number of + 
alleles at the designated site type, which yields a maximum value of 100 
when all sites are occupied by + alleles. The upper solid and dashed lines 
denote the expectations based on the theory outlined in the text. The two 
lower lines denote the theoretical expectations for the case of a single site 
type with no mutation bias.

Divergence of mean phenotypes under Gaussian selection | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/229/4/iyaf031/8042346 by Arizona State U
niversity W

est user on 29 M
ay 2025

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf031#supplementary-data


Multiple site types are expected to influence the evolutionary 
divergence patterns outlined above in three ways (Devi et al. 
2023). First, a distribution of site types will extend the response 
of mean phenotypes to a wider range of population sizes, as sites 
with large effects will become fixed for favorable alleles at small 
N, whereas those with smaller effects will be rendered effectively 
neutral until population sizes have increased to the point where 
the strength of selection exceeds that of drift. Second, because se
lective interference is maximized among sites with mutations 
with identical fitness effects, distributing such effects across sites 
will alter the degree to which ϕ is reduced below 1.0, although each 
site type will have its own unique value of ϕ depending on its own 
abundance and that of adjacent types. An approximate rule of 
thumb is that if the ratio of selection coefficients between two 
site types (large and small) is sL/sS, from the perspective of 
large-effect sites, (sL/sS)2 small-effect sites impose approximately 
the same amount of selective interference as one additional 
large-effect site (Devi et al. 2023). Finally, at any particular N, the 
overall level of selective interference will largely depend on the 
pool of sites with s in the vicinity of 1/N as sites with much larger 
effects will be essentially fixed for favorable alleles, whereas those 
with much smaller effects will be uninfluenced by selection.

Here, for illustrative purposes, we simply examine the case of 
an approximately negative exponential distribution of sites with 
three effects, arranged such that the pool of each of three effects 
contributes equally to overall performance, e.g. L1 = 33 sites with 
s = 0.001, L2 = 333 sites with s = 0.0001, and L1 = 3333 sites with 
s = 0.00001. Not surprisingly, the response of the mean deviation 
to the population size N is greatly diminished but also extended, 
relative to the case of single site types, owing to the progressive 
exit of site types from the realm of effective neutrality as N in
creases (Fig. 5). Roughly speaking, with the distribution of site 
types employed, each order of magnitude of increase in N opens 
up to selection a window of sites with an order of magnitude re
duction in s. With the choice of site types used here, involving 
order-of-magnitude differences in s, there is little interference 
among sites, and some progress can be made in demonstrating 
how these more complicated scenarios might be dealt with.

For the case of a Gaussian fitness function with an intermediate 
optimum, the general approaches used above for single site types 
can be readily extended to obtain the mutual effects of all site 
types in an additive fashion. For example, for the situation in 
which there is no mutation bias (β = 1) and the optimum for 
each site type x is Lx/2, Equations (6) to (8) can be used to estimate 
the total deviation associated with each site type, and the total 
mean absolute deviation from the optimum on the phenotypic 
scale is obtained as |δ| major + (|δ|medium/10) + (|δ|minor/100). 
Here, the weightings are based on the 10-fold differences in the 
contributions of the different site types to the final phenotype, 
with the scale being set by the selection coefficient of the major 
site type (with the largest selection coefficient). When there is sig
nificant mutation bias, it again becomes necessary to calculate ϕ, 
the measure of the reduction in Ne relative to N, and this needs to 
be done separately for each site type using Equations (E6a,b). 
Equations (3), (4), and (D2) are then used to obtain the mean devi
ation from the optimum for each site type associated with fixa
tions, setting the additional small deviation associated with 
standing variation to (1 + β)u10

���
Lx

√
/sx as in the single site-type 

case, and blending the two together using e−2Nsx/Lx . The total influ
ence of all three site types is then obtained using the weighted 
sum noted above.

As can be seen in the upper panel of Fig. 5, these approaches 
yield good first-order approximations to the results obtained by 

simulation. The same approach should work for a distribution of 
effects with more finely spaced categories, but if adjacent 
categories have similar enough selection coefficients so as to 
cause mutual interference, these additional effects would need 
to be incorporated by increasing the counts of effectively interfer
ing sites using the squared weighting scheme noted above. 
Supposing there are nx sites with selection coefficient sx, if for 
the next closest site type (y), ny(sx/sy)2 ≪ nx, then mutual interfer
ence can safely be ignored.

Things are less straightforward when the optimum is located at 
the end of the range of possible phenotypic variation. As antici
pated in the prior section, the magnitude of deviation from the op
timum is inflated in this case, as the scaling of phenotypic changes 
with biologically discernible differences (greater than a few per
cent of the phenotypic range) extends over several orders of mag
nitude of N. Again in this particular example, as the three effects 
employed are far enough apart that they cause minimal interfer
ence with each other, it is possible to sum the results noted above 
for the half-Gaussian fitness function. This first requires esti
mates of ϕ for each effect (each with its values of L and s), obtained 
by the approaches outlined in the previous section, and then the 
category-specific deviations are obtained with Equation (12). 
Using Equation (13), the deviation associated with standing vari
ation is further incorporated, and then

|δ| ≃ θS −
s1(L1 − |δ|1) − s2(L2 − |δ|2) − s3(L3 − |δ|3)

s1
, (16) 

where |δ|x now refers to the total deviation associated with site- 
type x. There is one final nuance for this analysis—as each cat
egory of site contributes only partially to total trait performance, 
the upper limit to performance shifts as the population size in
creases and opportunities for selective advance of mutations 
with smaller effects (which were previously kept at mutation bal
ance) are opened up. This causes a reduction in the effective 
strength of selection typically operating on sites, and we have 
found that using s/10, rather than s, as a measure of selection in
tensity yields respectable fits to the data (again for the particular 
cases outlined in Fig. 5), whereas the use of s does not.

Again, although some aspects of these analyses are not formal
ly rigorous, the fits to the simulated data are seen to be reasonably 
good in the lower panel of Fig. 5. This suggests that the general ap
proaches being used capture the essence of the overall process, 
and may be useful starting points for future attempts to explore 
the influences of alternative distributions of site types. The 
more significant issue is the difficulty of achieving empirical in
sight into the latter. For complex traits, there are reasons to expect 
such distributions to be strongly skewed to sites with smaller ef
fects, as employed above (Walsh and Lynch 2018; Lynch 2024), al
though this is ultimately an empirical issue. (In the illustrated 
examples in Fig. 5, L1 = 33, L2 = 333, and L3 = 3333, with two sets 
of sx used such that Lxsx remains constant across categories, i.e. 
each category of sites contributes equally to a trait with maximum 
value 100).

Discussion
Owing to random genetic drift and recurrent mutation, no charac
ter can evolve to an absolute state of perfection, although very 
large populations may come close barring the additional matters 
of biophysical constraints and the baseline load of recurrent dele
terious mutations. Drift barriers, which are universal properties of 

10 | M. Lynch and S. Menor

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/229/4/iyaf031/8042346 by Arizona State U

niversity W
est user on 29 M

ay 2025



all finite populations (i.e. all of biology), denote the limits to which 
mean phenotypes are expected to wander over evolutionary time, 
with their exact positions depending on the strength of selection 
relative to drift and on the degree of mutation bias. However, popu
lation mean phenotypes do not simply evolve to drift barriers. 
Rather, they wander within a particular range set by the latter. For 
example, with purely directional selection for larger phenotypes, 
the upper bound to which the mean phenotype evolves represents 
the position above which further refinements cannot be advanced 
by selection, whereas the lower bound represents the position below 
which further descent is readily opposed by selection. In the case of 
a fitness function with an optimum intermediate to the range of at
tainable genotypic values, two drift barriers straddle the optimum, 
but in this case the optimum is at least transiently accessible.

An understanding of the limited reach of selection can aid in the 
interpretation of comparative phenotypic data among species, in 
particular the degree to which these may be compatible with altera
tions associated with shifts in baseline population-genetic para
meters (e.g. power of drift, recombination, and mutation bias) 
rather than consequences of adaptive divergence. As population 
mean phenotypes are free to wander within the confining drift- 
barrier limits, over time a steady-state distribution of mean pheno
types can be expected to arise, provided the population-genetic 
parameters and underlying genetic architecture of the trait remain 
unchanged. Under this view, with all features remaining constant 
except the effective population size, gradients of mean phenotypes 
with respect to changes in Ne can be expected under a regime of per
sistent directional selection (Lynch 2018, 2020; Devi et al. 2023). 
However, as shown here, this is also true in the case of stabilizing 
selection, provided the equilibrium mean phenotype under muta
tion alone differs from the optimum, which is likely nearly always 
the case. That is, mutation bias at the molecular level is not essen
tial to the generation of gradients of mean phenotypes, although 
such bias can sometimes magnify the degree of such variation.

Here, we have examined some of the nuances that arise with a 
Gaussian (bell-shaped) fitness function, which naturally stabilizes 
phenotype distributions as the strength of selection progressively 
increases with greater deviations from the optimum. This work 
complements prior work on a form of pure directional selection, 
the exponential fitness function (Devi et al. 2023). Through the 
combined use of computer simulations and development of ana
lytical approximations for the population-genetic outcomes, sev
eral significant features have been revealed with respect to the 
deviation of mean phenotypes from their optimum values.

First, for the special case of an optimum exactly intermediate in 
the range of possible genotypic values (L/2) and no mutation bias 
(β = 1), the steady-state distribution of mean phenotypes is symmet
rical about the optimum, which also coincides with the neutral ex
pectation. In this case, although the grand mean phenotype 
coincides with the optimum regardless of the population size (N), 
the width of the distribution increases with decreasing N, reducing 
the average performance of the trait. Under this ideal setting, com
monly employed in quantitative-genetic theory, the absolute devi
ation of the mean phenotype from the optimum decreases with 
Nes, a measure of the strength of selection relative to that of drift, 
and increases with the number of genomic sites within linkage blocks 
(L) (Fig. 1), which defines the level of selective interference among 
simultaneously segregating mutations, as shown in Equation (6).

Second, when the optimum deviates from L/2, even with no 
mutation bias, there is a directional pull on the mean phenotype 
because the optimum does not coincide with the expectation 
resulting from mutation alone. The distribution of mean pheno
types is then no longer symmetrical about the optimum, and 

the mean deviation is increased relative to the expectation under 
the ideal symmetrical model. For the case in which the optimum 
is located at one end of the realizable range, so that selection is 
purely directional, the mean deviation from the optimum can be 
up to two orders of magnitude greater than when the optimum 
is intermediate. For even more extreme situations in which the 
optimum resides well outside of the range (0, L), we expect the re
sults to converge on those already found for an exponential fitness 
function (Devi et al. 2023), as the tail of the Gaussian function is ap
proximately exponential in form.

As there is no reason to think that the distribution of genotypes 
governed by mutation alone will have a mean that exactly 
coincides with the optimum phenotype, these kinds of effects 
are likely to be biologically general. Similar points have been 
made before with different models for quantitative traits under 
Gaussian selection (Waxman and Peck 2003; Zhang and Hill 
2008; Charlesworth 2013), where it has been noted that the incorp
oration of mutation bias can lead to quite different predictions 
than in prior models that assume mutational effects to be uncon
ditionally and symmetrically distributed around the current 
mean phenotype (e.g. Bürger and Lande 1994). Unlike the current 
study, all of these models assume free recombination, no linkage 
disequilibrium, and an optimum well-embedded in the range of 
phenotypic variation. The model of Charlesworth (2013) is closest 
to ours, as it employs biallelic loci and finite population sizes, 
whereas the others utilize a continuum-of-allele framework, 
which can yield some unusual results. For example, Waxman 
and Peck (2003) assume an infinite population size, which leads 
to a peculiar situation in which high mutation bias brings the 
mean phenotype closer to the optimum because most mutations 
are so extreme as to be effectively lethal.

Third, there are three general domains in the response of the 
deviation of mean phenotypes from the optimum, |δ|, to shifts in 
population size. For Ns progressively declining below 1.0, the 
mean phenotype converges on the expectation under effective 
neutrality, and |δ| approaches a constant maximum value. For 
0.1 < Ns < L/20, the absolute mean deviation typically declines 
as an approximate power-law relationship with Ns, as the mean 
phenotype asymptotically approaches the optimum. Finally, as 
Ns exceeds L/20, the system behaves in an essentially determinis
tic fashion, with drift no longer playing a role, and the small devi
ation from the optimum being solely dictated by the recurrent 
introduction of deleterious mutations.

Fourth, although analytical expectations can be developed for 
the behavior of the mean phenotype in terms of the absolute popu
lation size N, for most situations these expressions have to be modi
fied to incorporate an effective population size Ne, which can be 
well below N/100 depending on the size of the linkage block, mag
nitude of mutation bias, and strength of selection. Unfortunately, 
the Ne associated with the drift of mean phenotypes need not be 
closely related to the Ne dictating the maintenance of variation 
within populations, which is generally fairly close to the N used 
in the preceding formulations. This raises challenges in the appli
cation of theory to data, as extrapolation from silent-site variation 
is the primary method for obtaining empirical estimates of effective 
sizes of natural populations (Walsh and Lynch 2018). Heuristic 
first-order approximations have been obtained for the Ne asso
ciated with the drift of mean phenotypes (Appendix E), although 
more rigorous derivations are needed.

Moreover, as illustrated in Fig. 3, the same reduction in Ne rela
tive to N can be obtained with many different combinations of s, Ns, 
β, and L. Notably, the influence of mutation bias on the drift Ne is 
nonmonotonic, with the maximum reduction occurring when 
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β = 0.33. The key point here is that although Ns < 1 is often taken to 
be the approximate benchmark below which drift starts to have a 
substantial impact on evolution and standing variation, this ap
proximation becomes increasingly unreliable when sites are 
linked, mutation is directionally biased, and multiple site types 
are simultaneously segregating. As similar points have been 
made previously by Good et al. (2014) using a very different model 
involving unconditionally deleterious and unbiased mutation, 
these concerns seem to be quite general. This raises significant con
cerns for studies that attempt to infer historical patterns of selec
tion and drift from measures of standing variation.

Finally, we note that aside from allowing the fitness function to 
be truncated on one side, we have only considered the situation in 
which the decline in fitness around the optimum is symmetrical. 
Some attempts have been made to evaluate how asymmetrical 
(skewed) fitness functions can lead to the evolution of mean pheno
types deviating from the optimum and more towards the shoulder 
of the fitness function (Vercken et al. 2012; Urban et al. 2013). 
Although an absence of mutation bias was apparently assumed in 
both studies, as noted above, there will be some effect owing to 
the displacement of the mean from the optimum. Thus, an exten
sion of this work to include varying levels of mutation bias could 
provide interesting insight into how this might interact with asym
metrical selection to produce more- vs. less-pronounced deviations 
of mean phenotypes from their optima, and help identify ways to de
termine the extent to which apparently maladapted phenotypes are 
a consequence drift, mutation bias, and/or asymmetrical fitness 
functions.

The essential concluding point from the preceding results and 
from prior analyses (e.g. Lynch 2018, 2020; Devi et al. 2023) is that 
differences in Ne alone can cause observable gradients in the 
mean phenotypes of populations experiencing identical selection 
and mutation pressures. The degree to which such scaling rela
tionships can be detected and interpreted in broad phylogenetic 
comparisons depends on numerous factors, including the form 
of the fitness function, the distribution of genomic site types, 
the degree of mutational bias, and the strength of recombination. 
Nonetheless, the fact that power-law relationships relating mean 
phenotypes to N are predicted under plausible distributions of 
mutational effects and constant forms of selection raises issues 
with respect to the interpretations of studies in evolutionary al
lometry commonly focused on such bivariate regressions. This 
is a concern because the explanatory variable (on the x axis) in 
such studies is almost always a measure of body size, which in a 
broad phylogenetic context scales negatively with N. Yet, almost 
all studies in evolutionary allometry focus entirely on explana
tions based on adaptive tradeoffs or physical constraints, and 
leave no room for involvement of population-genetic processes.

Of course, the strength and pattern of selection operating on 
many traits, particularly those relating to external ecological fac
tors, can vary widely among species for multiple reasons, thereby 
obscuring any anticipated effects of drift, which may be second
ary. However, this may be less of a problem for intracellular fea
tures with conserved functions across the Tree of Life, and the 
drift-barrier hypothesis has been invoked to explain a diversity 
of evolutionary patterns involving such traits, including mutation 
rates, ages at senescence, strengths of transcription-factor bind
ing sites and interfaces within multimeric proteins, and distribu
tions of phosphorylation sites (reviewed in Lynch 2024).

One of the most compelling examples of the limitations of trait 
evolution by a drift barrier is revealed by ∼ 100 genome-wide esti
mates of mutation rates, which scale strongly negatively with 
measures of the coalescent Ne, the interpretation being that 

persistent downward directional selection on error rates is pro
gressively thwarted by drift in populations with diminished Ne 

(Lynch et al. 2023). However, drawing from observations on labora
tory constructs of yeast, Liu and Zhang (2021) argued for a rejec
tion of this hypothesis in favor of one invoking stabilizing 
selection alone. Here, we take the opportunity to outline some 
of the practical difficulties in using comparative data to infer the 
operation of specific forms of selection, e.g. directional vs. stabil
izing, and the interactive role played by random genetic drift.

First, as demonstrated above, the operation of stabilizing selec
tion is not incompatible with the functional role of a drift barrier, 
as such constraints exist under virtually any fitness function. 
Moreover, when the expectations of mean phenotypes under mu
tation alone are not aligned with the optimum under stabilizing 
selection, populations may effectively behave as though they 
are evolving directionally even though the fitness function is sta
bilizing. Second, as noted above, the mean phenotypes of popula
tions are not expected to reside specifically at a drift barrier, even 
under purely directional selection. Rather, the latter is best 
viewed as a reflecting boundary, above which there is a range 
within which the mean phenotype is able to wander in an effect
ively neutral manner, which in some cases can be considerable 
(Lynch 2011, 2018). For this reason, although theory may allow 
qualitative statements on the scaling of mean phenotypes with re
spect to Ne, quantitative statements about the precise locations of 
drift barriers require information on the distribution of fitness ef
fects of new mutations, degree of linkage, and mutation bias, none 
of which is easily acquired. Third, an ability to produce favorable 
mutant phenotypes beyond a supposed drift barrier does not neg
ate the latter’s existence, as the key issue is whether natural selec
tion’s ability to promote such mutations is compromised. Finally, 
one might think that a comparison of standing levels of variation 
of a trait with the neutral expectation would be revealing as to the 
form of selection and the degree to which a trait mean is close to a 
drift barrier. However, the level of genetic variance maintained in 
a population under the joint influence of drift and selection is not 
equivalent to that expected under a neutral model (Walsh and 
Lynch 2018; Devi et al. 2023), and depression of the genetic vari
ance relative to neutrality is incapable of distinguishing between 
models of directional vs. stabilizing selection (Barton 1989).

These caveats raise significant challenges in connecting obser
vational data with drift-barrier theory. Drift barriers must be uni
versal to the evolution of all traits across the Tree of Life, just as 
gravity is a universal physical force. However, the degree to which 
differences in the magnitude of random genetic drift translate 
into substantial lineage-specific phenotypic differences, including 
the scaling relationships of phenotypes with Ne (should the appro
priate measure of the latter even be obtainable), is a matter of the 
genetic architecture of the trait under consideration as well as the 
ability of the investigator to make precise measures in reasonably 
controlled environmental settings. There remains a need for fur
ther theoretical work in this area, but this should ultimately be 
guided by the acquisition of key information on the links between 
genotypes, phenotypes, and fitness of diverse organisms experi
encing substantially different population-genetic environments.

Data availability
The authors affirm that all data necessary for confirming the con
clusions presented in the article are represented fully within the art
icle and figures. The C++ code for the simulation data can be found 
at https://github.com/LynchLab/Asexual-Gaussian-Selection).

Supplemental material available at GENETICS online.
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Appendix A: Local strength of selection with 
the Gaussian fitness function
With a fitness function defined by Equation (2), although there is a 
single parameter describing the overall strength of selection (s), 
only when the deviation from the optimum δ = z − θS = 1 is the 
strength of selection on a haplotype essentially equal to s, as 
this leads to a reduction in fitness from the optimum of 
1 − e−s ≃ s, assuming s ≪ 1. However, as the curvature of the 
Gaussian selection function is a function of |δ|, to understand 
the strength of selection separating adjacent haplotypes, we re
quire their relative fitness difference,

s∗ =
W(δ) − W(δ + 1)

W(δ)
= 1 − e−s(2δ+1). (A1) 

This shows that as a parent allele deviates further and further 
from the optimum, the relative reduction in fitness of the next 
worst allele increases. This measure is of significance, as we ex
pect the power of drift to compete with the strength of selection 
only up to the point at which 1/N > s∗. For a population stalled 
at mean phenotype z, for sδ ≪ 1, the effective strength of selection 
for a beneficial mutation (moving the mean closer to θs) is 
s∗ ≃ 2s(z − θs).

Appendix B: Diffusion approximation with 
an intermediate optimum
Using a quantitative genetics approach for the case of Gaussian 
selection combined with reversible mutation of L equivalent bial
lelic sites and with random genetic drift, Lynch (2018) found that 
the steady-state distribution of mean phenotypes under 
drift-mutation-selection balance, (z), is Gaussian with mean and 
variance, respectively,

μ(z) =
κθS + θN

κ + 1
, (B1) 

σ2(z) =
σ2

N

κ + 1
, (B2) 

where θS and θN are the expected means of the distributions in the 
presence of strong selection and complete neutrality, the first 
being the optimum phenotype (on the scale of L, under the as
sumption of additive genetic effects), and

θN =
Lu01

u01 + u10
, (B3) 

where L is the number of sites, and u01 and u10 are the rates of for
ward (− to +) and reverse (+ to −) mutation. In addition,

σ2
N =

σ2
M

2N(u01 + u10)
(B4a) 

is the variance among means under neutrality, with N being the 

population size, and σ2
M being the within-population genetic vari

ance (sum of expected heterozygosities over all sites) under the 
assumption of mutation-drift equilibrium,

σ2
M =

4NLβu10

1 + β + Nu10(1.0 + 6β + β2)
≃

4NLβu10

1 + β
, (B4b) 

with mutational bias β = u01/u10, and the approximation applying 
for Nu10 ≪ 1, which is the case for all conditions in evaluated in 
this paper. Finally, letting

σ2
S =

(1/2s) + σ2
G

2Ne
, (B5) 

where Ne is the effective population size, be the variance of means 

when selection is the prevailing force, with σ2
G being the equilib

rium within-population genetic variance,

κ =
σ2

N

σ2
S

. (B6) 

Lande (1976) obtained a less general result than that above; by as
suming an absence of mutational bias (with mean mutational ef
fect equal to zero) and negligible mutational variance relative to 
standing variation, he derived an asymptotic Gaussian distribu
tion of mean phenotypes with an overall mean of θS and variance 
given by Equation (B5).

Two key issues in the above derivations are the definitions of 
the genetic variance and the effective population size used in 
Equation (B5). For situations in which the mean is close to the op
timum, an approximation for σ2

G can be obtained by assuming 
that most of the sites are fixed for the appropriate numbers of 
+ and − alleles, and that genetic variation is maintained by the 
balance between recurrent mutation and selection. For example, 
if the optimum is in the center of the range of possible haplo
types, θS = L/2, then the numbers of the two types of alleles will 
be in equal abundances within most haplotypes, with half mu
tating at rate u10 and the other half mutating at rate βu10, which 
with a fractional removal equal to s in both cases per generation, 
yields

σ2
G ≃

(L/2)(1 + β)u10

s + (1 + β)u10
≃

L(1 + β)u10

2s
, (B7) 

where the second approximation applies when mutation is weak 
relative to selection. Both approximations work well when the 
mean deviates less than 1% from the optimum, but otherwise 
can overestimate the observed genetic variance by several fold. 
In any event, in comparing Equation (B7) with the first term in 
Equation (B5), it is clear that the total haplotype mutation rate 
must be >0.1 or so for the genetic variance term to make a mean
ingful contribution to the numerator, suggesting that as a first- 

order approximation, σ2
S ≃ 1/(4Nes).

Appendix C: Analytical approximation of the 
absolute mean deviation from an 
intermediate optimum, assuming unbiased 
mutation
The preceding results can be distilled down to a relatively simple 
expression for the behavior of |δ| when the mutation rates between 
the two alleles are directionally unbiased, i.e. u10 = u01 = u, β = 1.0, 
and θN = L/2. From Equation (B4b), the equilibrium genetic variance 
under neutrality reduces to

σ2
M =

2NLu
1 + 4Nu

≃ 2NLu, (C1a) 
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the approximation applying when Nu ≪ 1, and from Equation 
(B4a),

σ2
N =

σ2
M

4Nu
=

L
2(1 + 4Nu)

≃
L
2

. (C1b) 

Further using the approximation, σ2
S = 1/(4Nes), from Equation (B6),

κ =
σ2

N

σ2
S

≃ 2NeLs. (C2) 

Because it is assumed here that there is no mutational bias, the 
grand mean phenotype coincides with the optimum, θS, and from 
Equation (B2), the variance of means is

σ2(z) ≃
L

2(2NeLs + 1)
, (C3) 

the approximation again assuming weak mutation. The mean ab
solute deviation from the optimum is then simply the scaled stand
ard deviation,

|δ| =
����������

2σ2(z)/π
􏽱

. (C4) 

Appendix D: Mean absolute deviation of 
means from the optimum
Given that our focus is on the efficiency of selection, when a fit
ness function has a stabilizing component, there is a need for a 
measure of the absolute deviation from the optimum, as the 
steady-state distribution of means may straddle the optimum. 
With a Gaussian fitness function, the solution is straightfor
ward under two conditions. First, if the steady-state distribu
tion is much more than two standard deviations from the 
optimum, the mean deviation is closely approximated by the 
difference between the overall mean and the optimum. 
Second, if the overall mean coincides with the optimum, and 
the distribution is Gaussian, the mean absolute deviation is 
σ

�����
2/π

􏽰
. More generally, we need to determine the fractions of 

the distribution above and below the optimum, and the means 
of these two portions of the distribution relative to the trunca
tion point.

Following the results from the preceding section, we assume 
that the distribution of means, φ(z), is Gaussian with mean μ and 
variance σ2, e.g. as given by Equations (B1) and (B2). Denoting 
the optimum phenotype as θS, the desired measure is

|δ| = ∫
∞

−∞
|z − θS|φ(z) dz, (D1a) 

which expands to

|δ| =
1

������
2πσ2

√

􏼢

∫
∞

θS

(z − θS) exp −
(z − μ)2

2σ2

􏼠 􏼡

dz

− ∫
θS

−∞
(z − θS) exp −

(z − μ)2

2σ2

􏼠 􏼡

dz

􏼣

.

(D1b) 

This can be shown to be

|δ| = σ
��
2
π

􏽲

exp −
(θS − μ)2

2σ2

􏼠 􏼡

+ (θS − μ) erf
θS − μ
σ

��
2

√

􏼒 􏼓

, (D2) 

where erf denotes the error function. Consistent with the verbal 
argument given above, when θS = μ, Equation (D2) simplifies to

|δ| = σ
��
2
π

􏽲

, (D3a) 

and when |θS − μ| is large relative to σ, it converges to

|δ| ≃ |θS − μ|. (D3b) 

Appendix E: Reduction in effective 
population size resulting from selective 
interference between competing favorable 
mutations
If a population finds itself slightly off a selective optimum, then 
mutations moving haplotypes back towards the optimum will be 
selectively favored. However, in sufficiently large populations, mul
tiple secondary mutations will arise prior to the fixation of the first 
such mutation otherwise destined to fixation. This then diminishes 
the efficiency of selection, as only one mutation can fix at a time, 
thereby reducing the fixation effective population size.

There are two ways by which secondary mutations can influ
ence the sojourns of beneficial mutations. Lineage interference 
occurs when another competing beneficial arises in a lineage out
side of that containing the target mutation, inhibiting the latter 
from going to fixation, given that the competing lineages are 
equivalent in fitness. Lineage contamination occurs when second
ary deleterious mutations arise in the target lineage, impeding 
progress towards fixation. In the following, we focus only on lin
eage interference, as secondary deleterious mutations will occur 
in both the target and off-target lineages.

To obtain an approximation for the interference effect, we fol
low the logic outlined in Devi et al. (2023), denoting the effective 
population size as Ne = ϕN, with

ϕ =
1

1 + I
, (E1a) 

being the reduction in the effective population size resulting from I 
effectively competing parallel mutations arising while the target 
beneficial mutation is otherwise en route to fixation. Given the 
complexity of the issues, the approach we take is heuristic, not a 
derivation from first principles, But as will be shown, the resultant 
expressions provide good approximations to the behavior of ϕ in re
lation to the underlying genetic parameters, and therefore seem to 
capture the essence of interference processes.

First, we require information on the mean time to fixation of a 
beneficial mutation (conditional upon fixation), τ, as this determines 
the length of time during which the target mutation is vulnerable to 
interference. As pointed out by Charlesworth (2020), numerous ex
pressions have been suggested for τ as a function of Ne, some of 
which give nonsensical values in certain domains of Nes. An expres
sion from Charlesworth (2022) is useful in the weak selection regime,

τ = 2ϕN 1 −
(ϕNs)2

18

􏼠 􏼡

, (E2a) 

and we rely on this until it breaks down when ϕNs > 1. A derivation of 
Gale (1990), modified for haploids,

τ ≃
3.927 + 2 ln (ϕNs/2)

s
− 2ϕ −

2
Ns

, (E2b) 
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is reasonably suitable for Nes ≫ 1. The transition between the two is 
relatively seamless from the standpoint of the current analyses.

Second, we must account for the number of potentially com
peting mutations, denoted here as Ip. One way to approach the 
problem is to assume that selection is strong enough that the 
population typically finds itself nearly fixed for a mean phenotype 
just one unit above or below the optimum. Supposing the popula
tion finds itself one position below the optimum, θS (which is on 
the scale of L), then βu10(θS − 1) ≃ βu10θS is the rate of origin of 
new competing (upward) mutations per individual in nontarget 
lineages, with βu10 being the rate of origin of new competing (up
ward) mutations per individual site in the nontarget lineage, and 
the approximation assuming large L (justified by the fact that 
interference will be minimal with small L). Given that the target 
lineage has an average population size of ≃ N/2 during its sojourn 
from a frequency of 1/N to 1.0 (assuming it is destined to fixation), 
this implies a total of βu10NθS/2 potentially competing beneficial 
mutations. Alternatively, should the population find itself one 
position above the optimum, there would be u10N(L − θS)/2 poten
tially competing (downward) beneficial mutations. As these two 
starting points have approximate probabilities of 1/(1 + β) and 
β/(1 + β), respectively, the predicted total number of interfering 
mutations per target event is

Ip ≃
βu10NL
2(1 + β)

. (E3a) 

An alternative approach to the problem is to assume that mutation 
bias is strong enough that the full distribution of genotypes is to one 
side of the optimum, so that all of the mutations in the appropriate 
direction (here assumed to upward, given the downward mutation 
pressure), regardless of genetic background, are beneficial. If it is 
further assumed that selection is strong enough to keep the popu
lation mean sufficiently close to the optimum that (L − θS)/L is the 
average fraction of sites occupied by − alleles, then

Ip ≃
βu10N(L − θS)

2
. (E3b) 

For an intermediate optimum, θS = L/2 and no mutation bias (β = 1), 
the two approaches give identical results. If θS = L/2 (intermediate 
optimum), the first approach predicts more interference if β < 1. If 
β < 1 and the optimum is intermediate or larger, the first approach 
always gives more interference.

Third, only a fraction of competing mutations is destined to fix
ation, which we define as the standard fixation probability of a 
new mutation with fitness benefit s,

pf =
1 − e−2Nes∗/N

1 − e−2Nes∗ (E4a) 

(Kimura 1983). The relevant selection coefficient here depends on 
the distance of the genotypic mean from the optimum, with dif
ferentiation of the fitness function showing that

s∗ ≃ 2s(θS − z), (E4b) 

assuming θS > z. This expression also needs to be substituted for s 
in the expressions for τ. However, a circularity arises here in that 
z depends on ϕ and cannot be predicted in advance. To circumvent 
this issue, we assume that the mean phenotype is positioned at the 
neutral expectation, such that z = θN = Lβ/(1 + β), which necessarily 
means that we are overestimating the prevailing strength of selec
tion. We will make further use of the approximation

pf =
2ϕs∗

1 − e−2ϕNs∗ , (E4c) 

given that the numerator term is generally ≪ 1.
Fourth, we suggest that the strength of selection operating on a 

mutation must be on the order of the magnitude of genetic drift or 
greater if it is to compete for fixation, and to allow for this, we use 
the weighting term Nes∗/(1 + Nes∗), which asymptotically ap
proaches zero as Nes∗ → 0 and 1.0 as Nes∗ → ∞.

Fifth, owing to the presence of segregating mutations in the 
population, there is an additional factor k to account for the fact 
that not all mutations in the nontarget lineage are positioned in 
the full haplotype distribution such that they equal or surpass 
the target mutation in terms of fitness. The idea here is that sec
ondary mutations arising on haplotypes with phenotypes further 
from the optimum than the mean phenotype will typically be des
tined to loss and hence irrelevant to the fixation process, whereas 
those arising on haplotypes closer to the optimum will compete 
with the target mutation for fixation. (When examining selection 
under an exponential fitness function, Devi et al. (2023) found that 
k ≃ 1/4 serves as a decent first-order approximation. Here, we find 
by inspection that k ≃ 1/32 provides an optimal fit of predicted to 
observed ϕ from computer simulations involving an intermediate 
optimum). This simple treatment assumes that k is independent 
of all other genetic parameters. In the future, it will be desirable 
to have theory that predicts k from first principles, and this pre
sumably will be a function of the average form of the haplotype 
distribution.

Taking all of these terms together,

I ≃ τ · Ip · pf ·
Nes∗

1 + Nes∗
· k. (E5) 

Substituting and rearranging from Equation (E1), and further ex
panding terms, leads to the transcendental equation,

1 = ϕ 1 + τ · Ip ·
2ϕs∗

1 − e−2ϕNs∗ ·
ϕNs∗

1 + ϕNs∗
· k

􏼒 􏼓􏼚 􏼛

. (E6a) 

Equation (E6a) can be used to solve for ϕ by standard optimization 
procedures, noting that τ, as defined in Equations (E2a,b), is also a 
function of ϕ.

Owing to its multiple terms, Equation (E6a) is not very revealing 
with respect to the relative contributions and scaling relationships 
of the underlying factors influencing ϕ. However, if 2ϕNs∗ < 1, the 
first term in the denominator can be approximated as 2ϕNs∗, and 
Equation (E6a) can be written as a polynomial equation,

1 ≃ ϕ(1 − Ns∗) + ϕ2(Ns∗) + ϕ3(2IpkNs∗) − ϕ5 Ipk(Ns∗)3

9

􏼠 􏼡

, (E6b) 

where Equation (E2a) has been used for τ.
This approximation can be further simplified in special cases. In 

particular, because ϕ < 1, if Ns∗ < 1, the final term is small relative 
to the third term on the right (this is also equivalent to assuming 
that τ ≃ 2ϕN). In addition, because Ip is a linear function of L, in 
the limit of large L the first two terms on the right become of negli
gible importance. Recalling the definition of s∗ from Equation (E4b), 
then yields the approximation (for large L and weak selection),

ϕ ≃
1

2IpkNs(θS − z)

􏼒 􏼓1/3

. (E7a) 
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Note that because Ip scales linearly with NL and (θS − z) is expected 

to scale with L, this expression suggests that ϕ should scale with 

[(LN)2s]−1/3. There remains the problem of the term (θS − z) in s∗, 
as this is expected to be a function of other model parameters, 
including N and ϕ. If, however, we take (θS − z) ≃ (θS − θN) = L(1 − 
β)/[2(1 + β)] as a rough approximation (but overestimate), some fur
ther progress can be made, especially keeping in mind that use of 
an appropriate value for the scaling parameter k might accommo
date this overestimation. Further using Equation (E3a) to define Ip, 

Equation (E7a) becomes

ϕ ≃
(1 + β)2

β(1 − β)
·

1

u10k(LN)2s

􏼠 􏼡1/3

. (E7b) 

To evaluate the relative utility of these estimators of ϕ, we 
compared their predictions with estimates of ϕ obtained by 
computer simulations and using Equation (B1) to obtain the va
lue of Ne relative to N that best fits the observed genotypic 
mean. Despite the numerous assumptions in the preceding de

rivations, for large L = 104 and β = 0.10 to 0.60, Equation (E6a) 
yields estimates of ϕ that are generally within a factor of two 
of estimates derived by computer simulations if k is set to 
1/32, and the simplified solution given by (E7b) is nearly as 
good (Supplemental Fig. 1).
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