

1 **Hydrogenation of calcite and change in chemical bonding at high pressure:**
2 **diamond formation above 100 GPa**

3 Alexander F. Goncharov¹, Huiyao Kuang², John S. Tse², Eric Edmund¹, Maxim Bykov^{3,4},
4 Elena Bykova⁵, Stella Chariton⁶, Vitali B. Prakapenka⁶, Timofey Fedotenko⁷, Nico Giordano⁷,
5 Mohamed Mezouar⁸, Jesse S. Smith⁹

6 ¹ Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA

7 ² Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon,
8 Canada

9 ³ Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne,
10 Germany

11 ⁴ Institute of Inorganic and Analytical Chemistry, Johann Wolfgang Goethe Universität
12 Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany

13 ⁵ Goethe-Universität Frankfurt am Main, Facheinheit Mineralogie, 60438 Frankfurt am Main,
14 Germany

15 ⁶ Center for Advanced Radiation Sources, University of Chicago, Lemont, IL 60637, USA

16 ⁷ Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

17 ⁸ European Synchrotron Radiation Facility BP 220, 38043 Grenoble Cedex, France

18 ⁹ HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

19

20 **Synchrotron X-ray diffraction (XRD) and Raman spectroscopy in laser heated diamond**
21 **anvil cells and first principles molecular dynamics (FPMD) calculations have been used to**
22 **investigate the reactivity of calcite and molecular hydrogen (H₂) at high pressures up to 120**
23 **GPa. We find that hydrogen reacts with calcite starting below 0.5 GPa at room temperature**

24 forming chemical bonds with carbon and oxygen. This results in the unit cell volume
25 expansion; the hydrogenation level is much higher for powdered samples. Single-crystal
26 XRD measurements at 8-24 GPa reveal the presence of previously reported III, IIIb, and VI
27 calcite phases; some crystallites show up to 4% expansion, which is consistent with the
28 incorporation of ≤ 1 hydrogen atom per formula unit. At 40-102 GPa XRD patterns of
29 hydrogenated calcite demonstrate broadened features consistent with the calcite VI
30 structure with incorporated hydrogen atoms. Above 80 GPa, the C-O stretching mode of
31 calcite splits suggesting a change in the coordination of C-O bonds. Laser heating at 110 GPa
32 results in the formation of C-C bonds manifested in the crystallization of diamond recorded
33 by *in situ* XRD at 300 K and 110 GPa and by Raman spectroscopy on recovered samples
34 commenced with C¹³ calcite. We explored several theoretical models, which show that
35 incorporation of atomic hydrogen results in local distortions of CO₃ groups, formation of
36 corner-shared C-O polyhedra, and chemical bonding of H to C and O, which leads to the
37 lattice expansion and vibrational features consistent with the experiments. The experimental
38 and theoretical results support recent reports on tetrahedral C coordination in high-pressure
39 carbonate glasses and suggest a possible source of the origin of ultradeep diamonds.

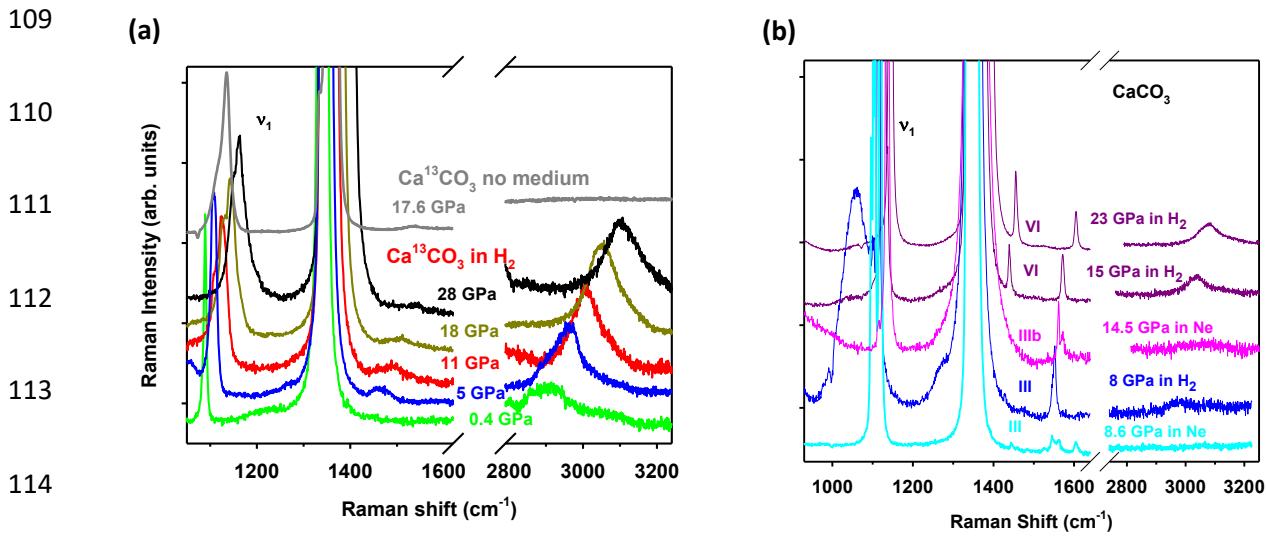
40

41 INTRODUCTION

42 The transport of hydrogen in minerals and sediments at high pressures is important for the
43 interpretation of the geochemical cycles which extend into Earth's deep interior (Poli and Schmidt,
44 2002). The subduction of oceanic crust delivers fluids, minerals, and sediments into the mantle
45 (e.g., (Schmidt and Poli, 2014) (Rapp and Watson, 1995)), and dehydration melting of these
46 aggregates drives buoyant C-O-H fluids to resurface underneath the mantle wedge, while

47 remaining solids subduct deeper into the Earth's interior. Knowing the hydrogen storage capacity
48 of the subducted constituent minerals, and mineral chemical interactions with fluid components
49 such as H₂ or H₂O is critically important to understand fluid-rock interactions and the cycling of
50 volatiles in Earth's interior. Calcite (CaCO₃) can comprise up to several wt% in subducted basalt,
51 meaning that it is a significant mineral component in subduction zones, and provides a simple end-
52 member carbonate to study hydrogen-carbonate interactions. Molecular H₂ is a component of
53 reduced C-O-H fluids (Bali et al., 2013; Kadik, 2006; Weidendorfer et al., 2020), and so our
54 experiments can be used to better understand the chemical interactions between carbonates and
55 these fluids. Furthermore, recent *ab initio* calculations have reported that carbonates can
56 decompose into hydroxides and diamond in hydrogenated environments at high pressures and
57 temperatures (Kuang and Tse, 2022).

58 Anhydrous calcite has been extensively studied before (Bayarjargal et al., 2018; Catalli and
59 Williams, 2005; Gavryushkin et al., 2017; Liu et al., 2016; Lobanov et al., 2017; Merlini et al.,
60 2012; Ono et al., 2007; Ono et al., 2005; Pennacchioni et al., 2023; Suito et al., 2001; Zhao et al.,
61 2022) demonstrating a series of phase transformations with pressure and temperature. Each
62 polymorph of CaCO₃ below 100 GPa (e.g., post-aragonite (Yao et al., 2018)) consists of *sp*² -
63 hybridized carbon, forming triangular CO₃⁻ carbonate groups. At higher pressure carbon is
64 expected to become *sp*³ -hybridized. Accordingly, theoretical structure searches discovered two
65 high-pressure phases with infinite chains of CO₄ tetrahedra (Oganov et al., 2006; Pickard and
66 Needs, 2015), which were later reported experimentally (Lobanov et al., 2017; Ono et al., 2007).
67 Recent first-principles theoretical calculations demonstrate that calcium carbonate melt reacts with
68 hydrogen at the Earth's lower mantle conditions, forming various transient chemical species
69 including C-C bonds suggesting possible diamond crystallization (Kuang and Tse, 2022).


70 Investigations of calcite in hydrous conditions up to 12 GPa and 400 °C do not report incorporation
71 of water in the crystals based on Raman and infrared (IR) results in recovered samples, and also
72 no structural difference compared to the behavior of anhydrous crystals has been reported (Zhao
73 et al., 2022).

74 Here, we report on the experimental XRD and Raman investigation of calcite which has been
75 saturated and temperature annealed in an H₂ medium at high pressures up to 110 GPa. We find
76 that H₂ incorporates in the calcite lattice in an atomic form at room temperature starting from the
77 lowest pressure studied, demonstrated by the lattice expansion and appearance of the Raman C(O)-
78 H bonds. Above 80 GPa, XRD peaks broaden, while Raman spectra show the appearance of new
79 C-O stretching modes manifesting changes in the C-O bonds related to a partial sp³ hybridization.
80 At above 105 GPa, we detected the formation of diamond crystallites after laser heating, which
81 manifests the formation of C-C bonds. First-principles molecular dynamics (FPMD) calculations
82 show that the incorporation of atomic hydrogen results in chemical bonding of H to C and O and
83 facilitates the formation of corner-shared C-O polyhedral and C-C bonds. These findings suggest
84 a new source of ultradeep diamonds.

85 **METHODS**

86 Experiments were performed in diamond anvil cells (DAC) with 200- and 100-μm culet diameters.
87 Calcite in two physical forms were used. The powdered samples mixed with very fine Au particles
88 were pressed in thin pellets and loaded in the DAC cavity in a rhenium gasket with molecular H₂
89 using a gas loading at 0.14 GPa. To avoid the anvil damage due to penetration of H₂, we used
90 freshly polished diamond anvils and reduced the heating time. We used microsecond pulsed laser
91 heating where the sample is heated by a sequence of laser pulses, which are sufficiently long to
92 heat the bulk of the sample, while suppressing unwanted chemical reactions (e.g., Ref. (Goncharov

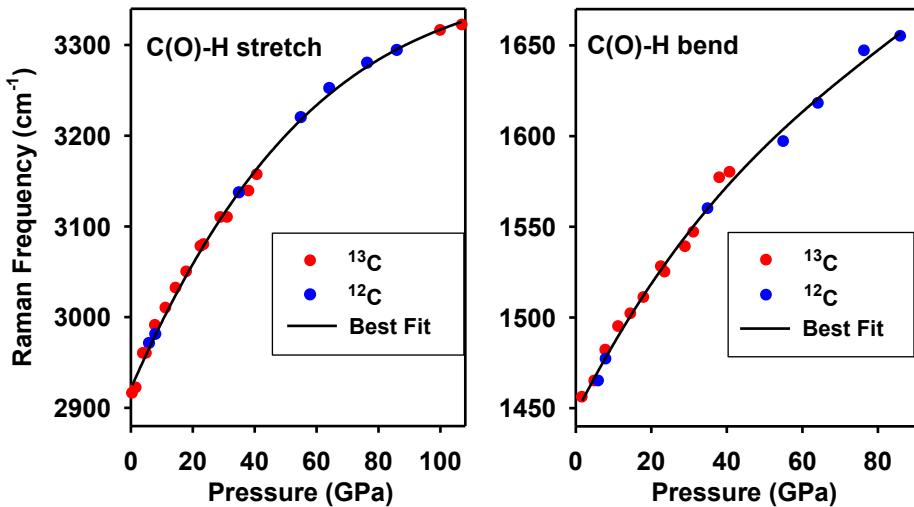
93 et al., 2010)). Single crystalline samples were cleaved from large calcite single crystals (MTI).
 94 Gold particles were used as in-situ pressure calibrants and to absorb the laser radiation in laser
 95 heating experiments. In addition, ruby balls were also used to measure pressure in combined
 96 Raman and XRD experiments to pressures up to 80 GPa. Calcites with natural carbon isotope
 97 composition (Alfa Aesar) and that of 99% ^{13}C isotope composition (Cambridge Isotope
 98 Laboratories) were used in different experiments. Synchrotron XRD and Raman experiments were
 99 performed concomitantly in several experiments to highest pressures. Powder XRD experiments
 100 were performed at ESRF (ID27 (Mezouar et al., 2017)) and APS (GSECARS and HPCAT); similar
 101 measurements combined with laser heating were performed at GSECARS (Prakapenka et al.,
 102 2008). Single-crystal experiments were performed at the Extreme Conditions Beamline at Petra
 103 III (DESY, Hamburg). In these measurements, XRD patterns were taken sequentially while the
 104 sample was rotated around a vertical ω axis in a range of $\pm 35^\circ$ with an angular step $\Delta\omega = 0.5^\circ$ and
 105 an exposure time of 1–5 seconds per frame. Raman experiments were performed at GSECARS
 106 (Holtgrewe et al., 2019) and Carnegie Science Laboratory (Lobanov et al., 2013) using single-
 107 grating spectrometers with CCD detectors; the spectra were excited with 488 and 532 nm laser
 108 wavelengths.

115 **Figure 1.** Raman spectra of $\text{Ca}^{13}\text{CO}_3$ powder pellet (the control spectrum measured without PTM
116 is shown for comparison) (a) and single-crystal CaCO_3 (the control spectra measured in Ne PTM
117 is shown for comparison) (b) in H_2 medium measured on pressure increase. The 2900 cm^{-1} band
118 is detected at the lowest pressure in powder experiment after gas-loading of H_2 in a DAC (within
119 20 minutes at 0.4 GPa, the subsequent spectra are taken in hours to days' time interval), while
120 longer times are needed to hydrogenate single-crystal samples (days to months). The lattice modes
121 of calcite are largely blocked by the rotational excitations of molecular H_2 at $350\text{-}1100 \text{ cm}^{-1}$ in the
122 powdered sample, but they are well resolved in the single-crystal sample. The Raman spectrum of
123 molecular H_2 is dominated by a strong intramolecular stretching mode at about 4200 cm^{-1} , which
124 does not interfere with hydrogen originated modes reported here. A strong band at $1330\text{-}1400 \text{ cm}^{-1}$
125 ¹ is due to the stressed diamond anvils.

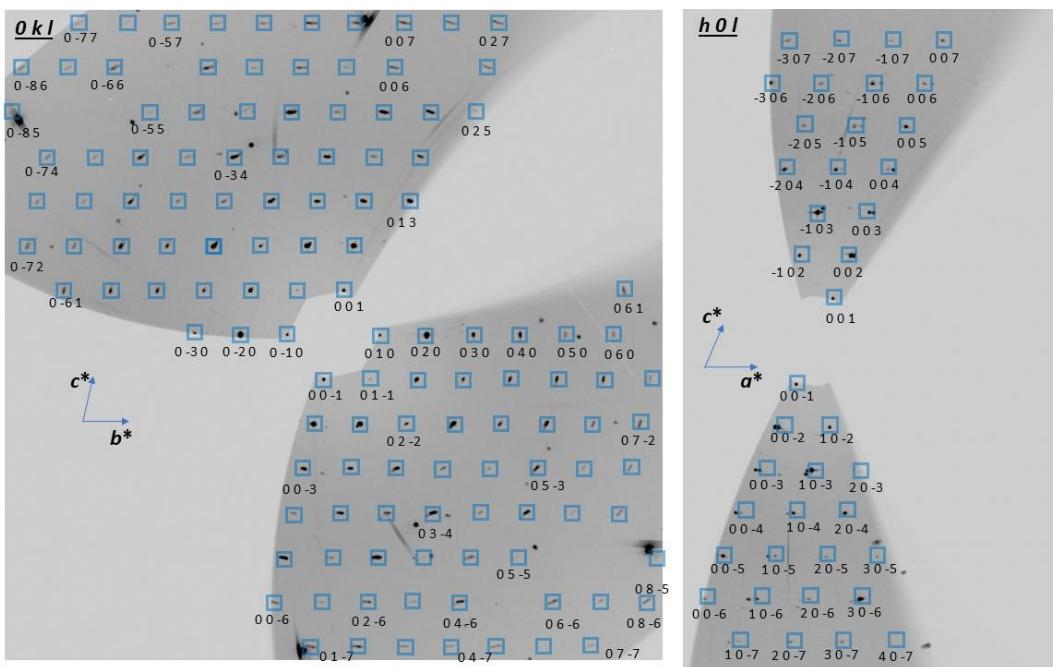
126 First-principles molecular dynamics (FPMD) calculations were performed using the Vienna Ab
127 initio Simulation Package (VASP) code Ultrasoft pseudopotentials (US) (42) were used in the
128 simulations. The energy cutoff of the plane-wave basis set was 396 eV. The valence configurations
129 employed in this work are $\text{H} 1s^1$, $\text{C} 2s^22p^2$, $\text{O} 2s^22p^6$, and $\text{Ca} 3p^64s^2$. Langevin thermostats were
130 used to control the pressure and temperature of the system. Three CaCO_3 model structures with
131 different initial H positions and content were used in the simulation. They are all based on a post-
132 aragonite structure with 2 CaCO_3 formular units in the unit cell. Model-I started with 4 H atoms
133 attached to C atoms, which are positioned above and below the carbonate ion plane. Model-II had
134 4 H atoms attached to O atoms in the carbonate plane. Model-III was hydrogen-rich, where 8 H_2
135 molecules were incorporated in the lattice. The structures were optimized at 48, 66, 78, 90, and
136 102 GPa.

137

138


139 **RESULTS**

140 **HYDROGENATION**


141 To characterize the hydrogenation of calcite at pressures below 24 GPa, we combined Raman
142 spectroscopy and single-crystal XRD. From Raman spectroscopy, we found that hydrogen
143 incorporates into the calcite lattice at very low pressures, starting <0.5 GPa. This is evident in the
144 powdered samples from the appearance of a 2900 cm^{-1} band, which increases in intensity with
145 pressure up to 10 GPa (Fig. 1(a)). The vibration frequency of this band increases with pressure
146 indicating the C-H stretch origin as in hydrocarbons (see Ref. (Bykov et al., 2021) and Refs.
147 therein). In addition, we recorded another weaker hard mode near 1450 cm^{-1} (Figs. 1-2). As will
148 be discussed in more detail below, these new Raman bands indicate that hydrogen is incorporated
149 in an atomic form and chemically bonded to calcite. These bands persist to the highest pressures
150 explored (Fig. 2) and exhibit a substantial broadening. Control experiments show that these new
151 bands do not appear in calcite loaded without a pressure-transmitting medium (PTM) or with a Ne
152 PTM (Fig. 1). In comparison, the C(O)-H stretch Raman band at 2900 cm^{-1} is much weaker in
153 single-crystal samples, even after calcite was kept in an H_2 PTM for several months (Fig. 1(b)); a
154 second associated band at 1450 cm^{-1} can also be seen at the level of sensitivity. The intensity of
155 these bands depends on the crystallite: generally, visually clear grains show weaker H-related
156 Raman bands suggesting that H enters the grains that are not optically clear and have internal
157 defects or grain boundaries.

158

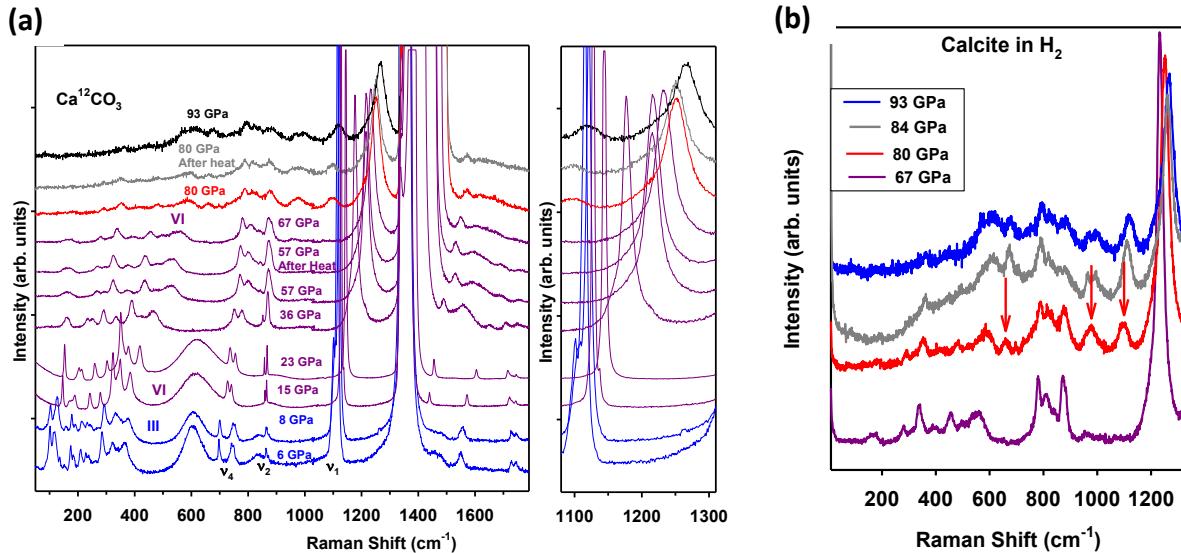
159

Figure 2. Raman frequencies of the vibrational modes related to the hydrogenation of calcite.

Figure 3. XRD results on single-crystal calcite-VI in H₂ medium at 15 GPa. (a) Reconstructed reciprocal lattice plane defined by various directions. The reflections are framed in blue squares

178 and hkl 's of some reflections are labeled (sufficient to easily assign the unlabeled reflections). The
179 X-ray wavelength is 0.290 Å.

180 Single-crystal XRD measurements were performed at 8.5, 15, and 23 GPa on the same samples in
181 various sample positions, where the best quality patterns could be collected. The structural
182 information has been determined by applying the technique of multigrain X-ray crystallography
183 to single-crystal samples in DAC (Fig. 3). Up to 20 different crystallites with different orientations
184 and even different structures have been detected and analyzed from the same observation point.
185 These different crystals likely appear due to inhomogeneous stress conditions, inhomogeneous
186 hydrogenation, and phase transformations. At 8 GPa, we found a mixture of calcite-III and calcite-
187 IIIb (Merlini et al., 2012), at 15 GPa we find additional calcite-VI (Merlini et al., 2012) (Fig. 3),
188 and finally, at 24 GPa, there is only calcite-VI. We also measured the same material in identical
189 conditions in a Ne transmitting medium at 14.5 GPa, where calcite-IIIb was found and
190 investigated. In calcite in an H₂ medium, we find that there are crystallites with distinctly different
191 lattice parameters for crystallites of the same symmetry. Such effects were not observed in the
192 control experiment with Ne as a transmitting medium. It is natural to assume that the expanded
193 crystals are due to hydrogen incorporation consistently with Raman observations, described above.


194

195

196

197

198

207 **Figure 4.** Raman spectra of $\text{Ca}^{12}\text{CO}_3$ in an H_2 medium measured on pressure increase. (a) The
 208 phase assignment (calcite III and calcite VI) is based on similarity of the low-frequency modes of
 209 calcite with the results of the previous experiments (Bayarjargal et al., 2018; Fong and Nicol,
 210 1971). (b) Close up of the high-pressure spectra where a series of new Raman bands appears at 80
 211 GPa (marked by arrows). The excitation wavelength is 488 nm.

212 The Raman spectra measured in a powder sample up to 93 GPa (Fig. 4(a)) showed that there is a
 213 good correspondence of the measured Raman spectra of calcite to those previously reported up to
 214 45 GPa (Bayarjargal et al., 2018; Farsang et al., 2018; Fong and Nicol, 1971; Liu and Mernagh,
 215 1990). At 6–8 GPa, the Raman spectra are consistent with calcite III (Fong and Nicol, 1971), while
 216 above 15 GPa the spectra indicate that calcite is in phase VI (Bayarjargal et al., 2018). Pulsed
 217 microsecond laser heating at 55 and 76 GPa did not change the XRD patterns and Raman spectra.
 218 However, above 80 GPa, the Raman peaks broaden and weaken, and new peaks appear (Fig. 4(b))
 219 demonstrating the appearance of new bonding schemes.

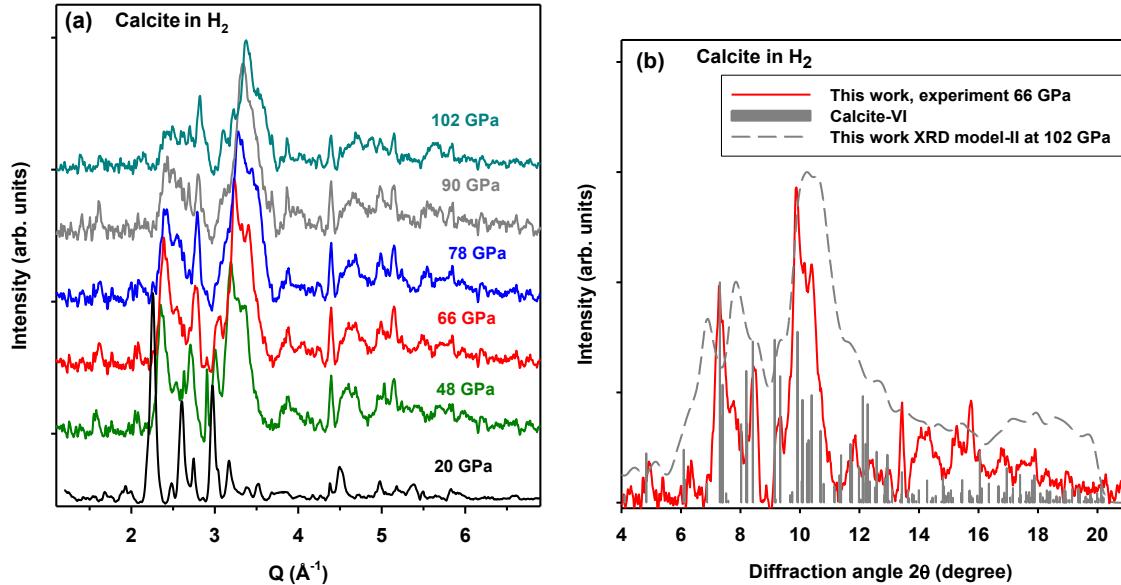
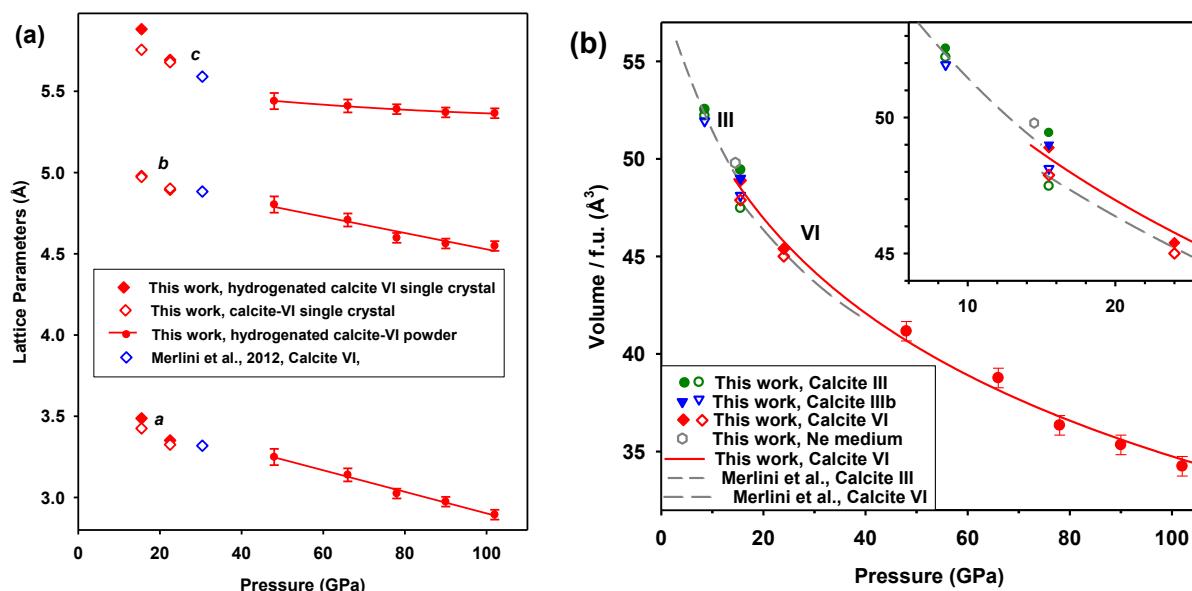
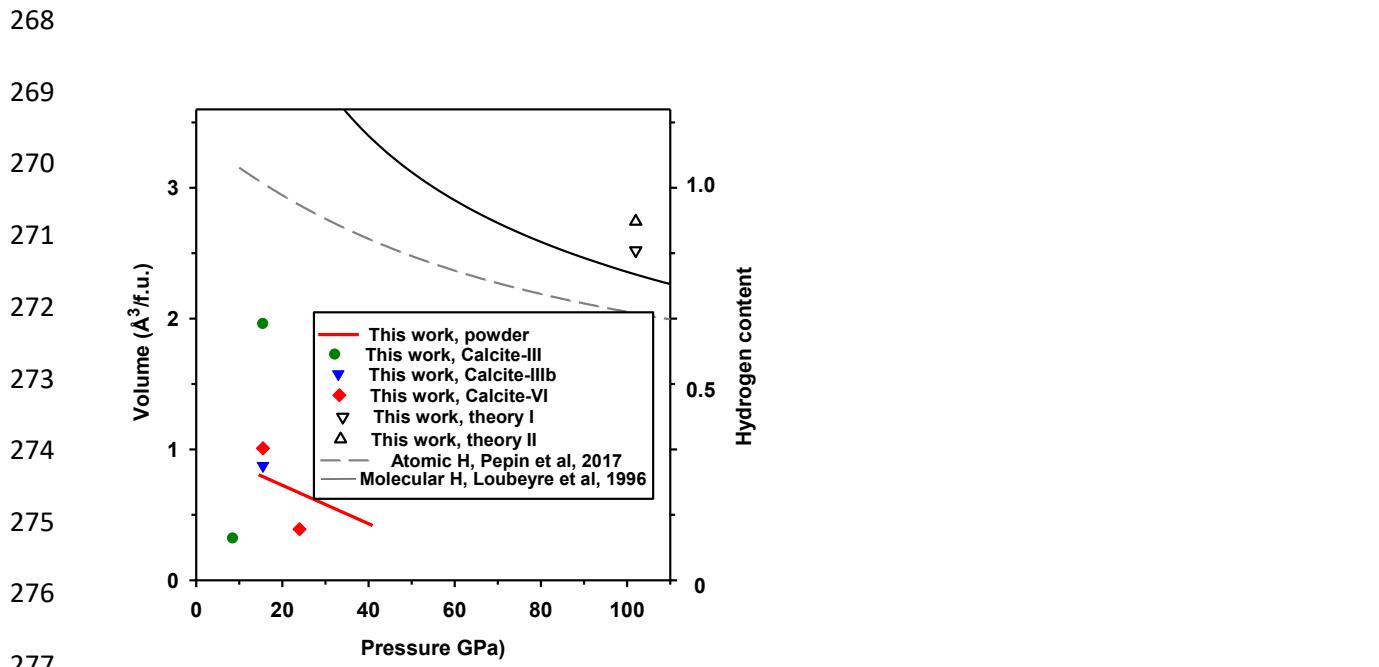



Figure 5. XRD pattern of $\text{Ca}^{13}\text{CO}_3$ in H_2 measured up to 102 GPa (a) and at 66 GPa (b). Solid red line in (b) is the experiment. Vertical bars correspond to the calculated XRD peaks of *P*-1 calcite VI (Merlini et al., 2012) structure. The lattice parameters of this structure ($a=3.14(4)$ \AA , $b=4.71(4)$ \AA , $c=5.41(4)$ \AA) were approximately adjusted to match the positions of the strongest experimental XRD features (the angles were fixed $\alpha=103.30^\circ$, $\beta=94.73^\circ$, $\gamma=89.21^\circ$ using the values from (Merlini et al., 2012) at 30.4 GPa). Dashed grey line is the theoretically calculated XRD pattern calculated using Model-II (see text). The X-ray wavelength used was 0.3344 \AA except for the pattern at 20 GPa, which was 0.2952 \AA .

XRD powder diffraction measured up to 102 GPa demonstrated broadening and weakening of the Bragg peaks above 48 GPa (Fig. 5), which makes it difficult for definitive structural identification. However, we find a reasonably good match with the *P*-1 calcite VI of Ref. (Merlini et al., 2012) (Fig. 5 (b)). The lattice parameters and volumes (Figs. 6, 7) determined in this procedure were

235 used to evaluate the hydrogenation content in powdered samples. The effects of hydrogenation on
 236 the lattice parameters is moderate based on the volume expansion determined in our single-crystal
 237 study below 24 GPa and the difference in the volume vs pressure curves measured here in
 238 hydrogenated powdered calcite and hydrogen-free calcite of Ref. (Merlini et al., 2012) (Fig. 6(b)).
 239 In the case of our powder diffraction data, the effect is within the experimental uncertainty.


240

241
 242
 243
 244
 245
 246
 247
 248
 249
 250 **Figure 6.** The lattice parameters (a) and volumes (b) of CaCO_3 as a function of pressure
 251 determined in experiments at room temperature. Symbols correspond to measurements in various
 252 calcite structures. Filled symbols correspond to hydrogenated materials. Solid lines through these
 253 data are guides to the eye in (a) and the Birch -Murnaghan equation of state ($P_0=15$ GPa, $V_0=48.8$
 254 \AA^3 , $K_0=128$ GPa, $K_0'=4.0$) in (b). Red filled circles show the results of our analysis of powder
 255 XRD data of $\text{Ca}^{13}\text{CO}_3$ in H_2 assuming the calcite VI structure and the pressure independent unit
 256 cell angles. The uncertainties in the lattice parameters and the volumes are estimated by the quality
 257 of the fit based on this approximation. The results of previous experiment in $P-1$ calcite VI (Merlini
 258 et al., 2012) are presented for comparison. Dashed grey lines correspond to the volume vs pressure

259 curves measured in Ref. (Merlini et al., 2012) for calcite-III and calcite-VI. The inset shows an
260 expanded view near 15 GPa.

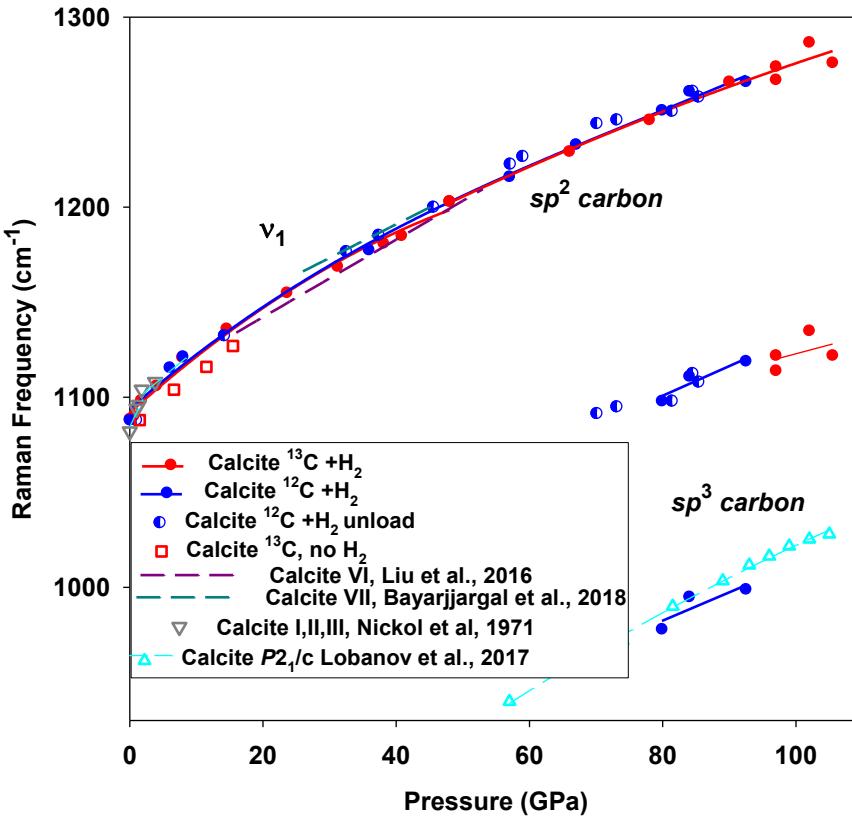
261
262 The lattice expansion due to hydrogenation varies for different types of samples (single-crystal vs
263 powder), phase, and pressure (Fig. 7). The value of the lattice expansion is a fraction of that
264 expected empirically for incorporation of one H atom per formula unit from the EOS of atomic
265 and molecular hydrogen (Loubeyre et al., 1996; Pépin et al., 2017). The latter values are in fair
266 agreement with the volume expansion determined in our theoretical models (see below), with two
267 H atoms incorporated per CaCO_3 unit.

278 **Figure 7.** The volume expansion (per formula unit) due to hydrogenation of CaCO_3 as a function
279 of pressure compared to the atomic volumes of hydrogen atoms. The volume expansion in single
280 crystals is referenced to the nonhydrogenated crystals in the same point of observation. In powder
281 samples, we determined it with respect to the volume vs pressure curves measured in Ref. (Merlini
282 et al., 2012) in calcite-VI. The right axis shows an approximate hydrogen content in the pressure

283 range of measurements (scaled at 15 GPa). The experimental data in single-crystal (filled symbols)
284 and powder (solid red line) are compared to the equations of state of molecular crystalline H₂ and
285 in atomic hydrogen (volumes per hydrogen atom) taken from Refs. (Loubeyre et al., 1996; Pépin
286 et al., 2017), respectively. Also, the results of theoretical calculations of this work in post-aragonite
287 structure (Yao et al., 2018) are shown with open triangles for the two models described in the text
288 referenced to the results of calculations in hydrogen-free crystals.

289 Raman spectroscopy below 67 GPa is consistent with calcite-VI (Fig. 4). However, this
290 interpretation is not unique due to the hydrogenated nature of calcite, which is clearly manifested
291 by the presence of the C(O)-H stretch and C(O)-H bend modes (Fig. 2). The presence of hydrogen
292 attached to the carbonate CO₃ group adds extra vibrational modes and changes the crystal
293 chemistry and symmetry thus affecting the vibrational frequencies and the Raman selection rules.
294 It is worth noting that the association of two hydrogens to carbonate produces carbonic acid, which
295 has the Raman frequencies similar to those observed here (Fig. 2) (Kohl et al., 2009). However,
296 due to a relatively small hydrogenation, the Raman spectra below 67 GPa remain mainly that of
297 anhydrous calcite-VI apart from the extra modes associated with the vibrations of hydrogens (Figs.
298 1, 2).

299


300

301

302

303

304

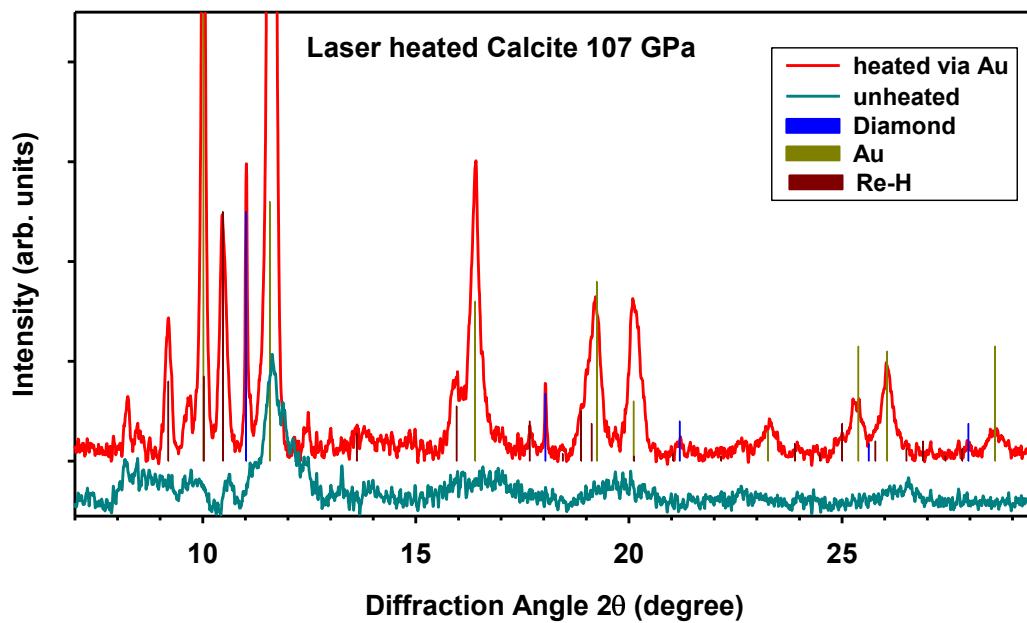
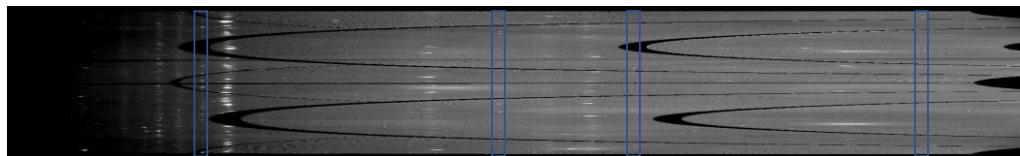



Figure 8. Raman frequencies of the C-O stretch mode of calcite as a function of pressure. The data for hydrogenated calcite of this work are presented by the filled and semi-filled circles. Open squares are from the control experiment with no medium. The results of previous experiments are shown by dashed lines and open symbols (Bayarjargal et al., 2018; Fong and Nicol, 1971; Liu and Mernagh, 1990; Lobanov et al., 2017).

sp³ HYBRIDIZATION

The Raman peaks broaden and weaken above 67 GPa suggesting that a structural disorder occurs. Above 80 GPa new vibrational modes appear (Figs. 4(b), 8). The position of one of the newly appearing bands correlates well with that of the C-O stretch mode of *P2*₁/*c* calcite with *sp*³ bonded carbon (Lobanov et al., 2017) (Fig. 8). The major Raman peak of *P2*₁/*c* calcite is the symmetric

328 breathing mode of oxygen atoms in CO_4 tetrahedra, which form at the transformation. The second
 329 strong band at 1100 cm^{-1} , which appears in hydrogenated calcite above 80 GPa (Figs. 4(b), 8) must
 330 also originate from the C-O vibrations, but with an intermediate between sp^3 and sp^2 carbon
 331 hybridization patterns, for example, in the lattice where sp^2 bonded CO_3 groups are getting linked
 332 as in a transition state TS_3 of Ref. (Lobanov et al., 2017). It is important to note that such an
 333 intermediate state has not been detected in anhydrous calcite (Lobanov et al., 2017), while such
 334 states have been theoretically predicted in hydrogenated material (Kuang and Tse, 2022). The third
 335 new band recorded in hydrogenated calcite at 700 cm^{-1} (Fig. 4(b)) is close in frequency to the
 336 second strongest Raman mode of anhydrous calcite. Overall, our Raman observations at 80 GPa
 337 demonstrate a gradual transformation to the state sp^3 hybridized state in hydrogenated calcite at
 338 substantially lower pressure than in anhydrous calcite (105 GPa), where no sp^2 - sp^3 transformation
 339 was not found below 105 GPa even after the temperature annealing.

352 **Figure 9.** XRD patterns of $\text{Ca}^{13}\text{CO}_3$ in H_2 at 107 GPa. The top curve is taken near the laser heated
353 position, while the bottom pattern is taken in the unheated area close to the center of the high-
354 pressure cavity. Ticks correspond to Bragg peaks of the fitted phases. Calcite is represented by
355 broad peaks (see the bottom curve), the strongest of which is at 11.7° ; no structural information
356 can be deduced from this information. The top panel is a 2D image of the heated area in rectangular
357 coordinates. Blue rectangles frame single-crystal like diffraction peaks of diamond. The X-ray
358 wavelength was 0.3738 Å.

359

360 DIAMOND FORMATION

361 Increasing pressure beyond 80 GPa further broadens the Raman spectra and leads to the
362 disappearance of weaker peaks. XRD measurements above 100 GPa show very broad peaks which
363 are not suitable for analysis (Fig. 9). Laser heating of hydrogenated calcite up to 2700 K at these
364 conditions via coupling to Au pieces did not result in the improvement of crystallinity of calcite
365 (cf. (Lobanov et al., 2017)). However, we find that diamond crystallized (Fig. 9) in the form of
366 tiny crystallites near the heated spot. At least four peaks have been used to identify the diamond
367 structure; the fitted lattice parameter (3.372(1) Å) shows a good agreement with the diamond EOS
368 (Aleksandrov et al., 1987; Occelli et al., 2003).

369 The diamond synthesis from calcite at megabar pressure has been verified by performing Raman
370 spectroscopy measurements of sample quenched to the ambient pressure. We used calcite with ^{13}C
371 isotope to rule out that diamond is crystallized due to carbon transport from diamond anvils
372 (Prakapenka et al., 2003) and to make sure that the Raman signal from the synthesized ^{13}C
373 diamond (Chrenko, 1988) is evidently spectrally separated from the diamond anvils. The Raman

374 spectrum recorded on the recovered sample, which resides on one of the anvils in the sample cavity
375 clearly demonstrates the signal of ^{13}C diamond (Fig. 10).

376

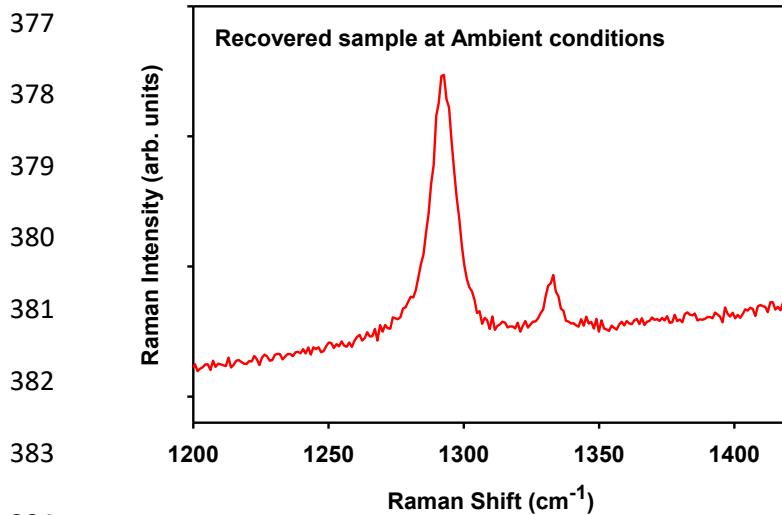


Figure 10. Raman spectra of diamond synthesis from $\text{Ca}^{13}\text{CO}_3$ calcite at 107 GPa. The peak at 1292 cm^{-1} is due to the synthesized ^{13}C diamond, while that at 1333 cm^{-1} is a background signal from the diamond anvil at which the sample resides after recovering to ambient conditions. The excitation wavelength is 488 nm.

390 THEORETICAL MODELS

391 Three CaCO_3 model structures with different initial H positions and content were used in the
392 simulation. They are all based on a post-aragonite structure with 2 CaCO_3 formular units in the
393 unit cell. Model-I started with 4 H atoms attached to C atoms, which are positioned above and
394 below the carbonate ion plane. Model-II had 4 H atoms attached to O atoms in the carbonate plane.
395 Model-III was hydrogen-rich, where 8 H_2 molecules were incorporated in the lattice. The
structures were optimized at 48, 66, 78, 90, and 102 GPa.

396 The optimized structures have atomic H in Model-I and contain H₂ molecules in Model-II and
397 Model-III. These structures are the same up to 90 GPa in all models except in Model-III, where
398 H-CO₃-H, O-CH₂-OH, OH⁻ species form at 102 GPa. The optimized structures were expanded to
399 2x2x2 and 3x3x3 superstructures and then FPMD calculations were performed at 102 GPa and
400 1500 K for 20000 fs using isothermal-isobaric ensemble (NPT) ensemble.

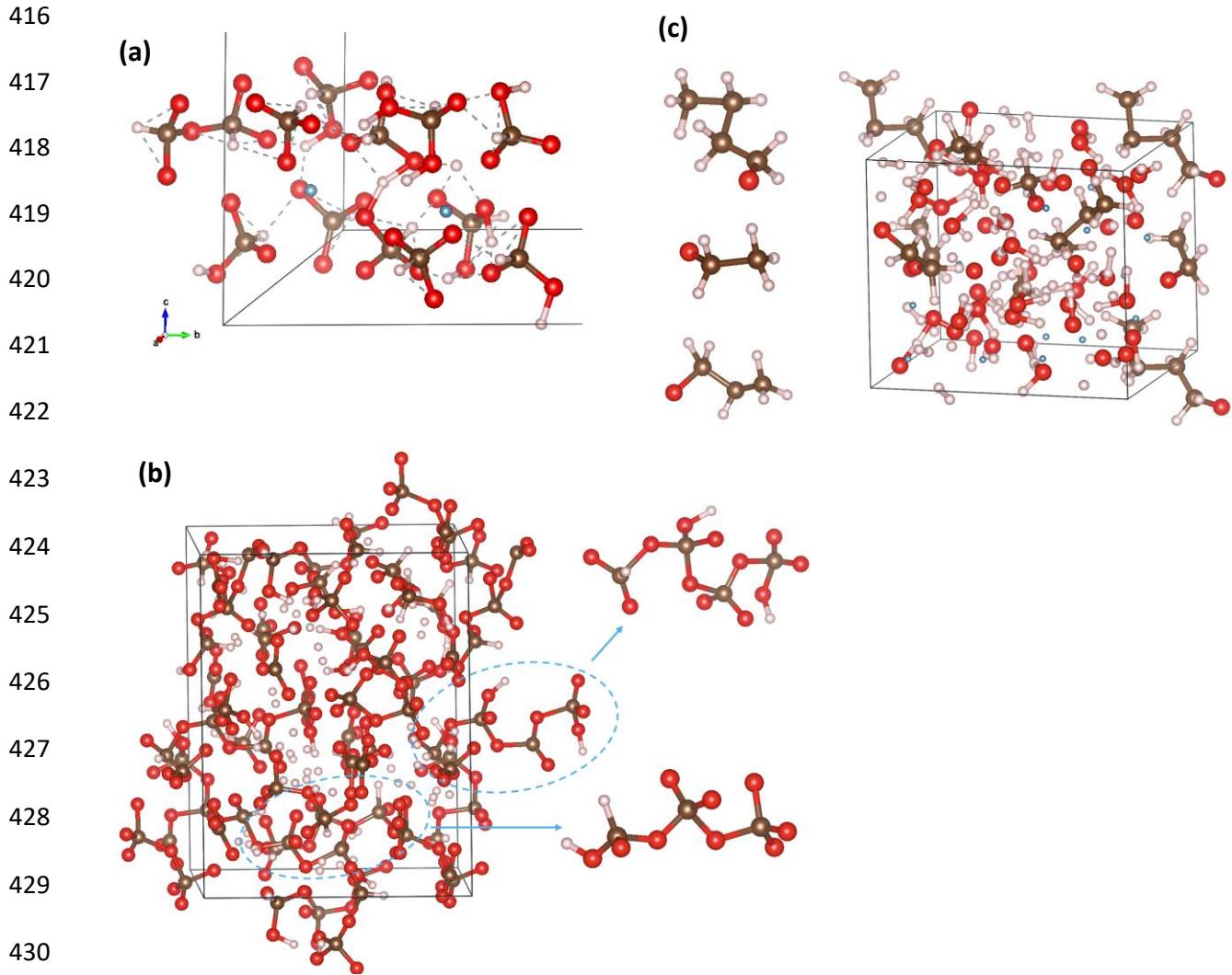
401 The C-H and O-H bonds were observed to form associated with the creation of corner-shared C-
402 O polyhedra, usually consisting of 2 or 3 CO₃ clusters (Fig. 11). We find transient H₂O molecules
403 for about 4500 fs in Model-I, while many H₂O molecules form in Model-III. Molecular H₂ formed
404 in Model-II and Model-III. Longer C-O corner-shared polyhedra exist in simulations of Model-II
405 compared to Model-I, while C-C bonds and associated chains formed in Model-III but not in
406 Model-I and Model-II.

407

408

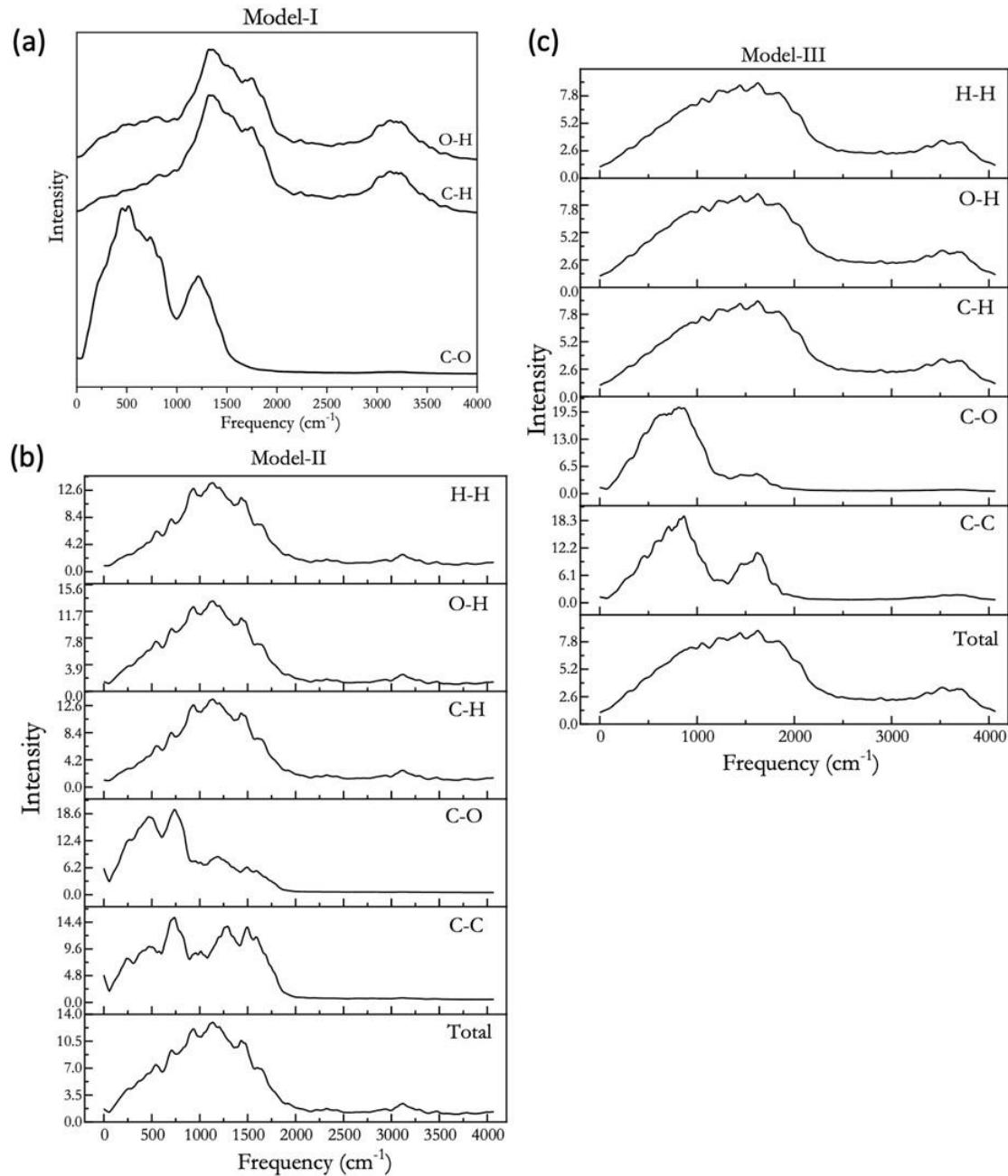
409

410


411

412

413


414

415

Figure 11. Snapshots of crystal structures of Model-I (a), Model-II (b), and Model-III (c) from FPMD simulations.

Fourier transform of the atomic position autocorrelation functions provides information about the vibrational frequencies, which can be compared to the experiments (Fig. 12). The C-O bonds exhibit vibrational frequencies at near 1200 cm^{-1} (Model-I) which is consistent with the stretching frequencies of C-O bands at $1000\text{-}1250\text{ cm}^{-1}$, observed on Raman experiments (Fig. 4(b)). All models demonstrate the vibrational frequencies near 3200 cm^{-1} , corresponding to C-H and O-H

438

439 **Figure 12.** Power spectra computed from the Fourier transformation of different atomic distance
 440 autocorrelation functions in Model-I (a), Model-II (b), and Model-III (c). See Supplementary
 441 materials for the corresponding CONTCAR files.

442

443 stretching vibrations, while the peaks at 1300 cm⁻¹ indicated the bending modes. The curves of C-
444 H and O-H are almost identical, suggesting that the vibrations of O-H and C-H are highly
445 correlated. These results correlate well with our Raman experiments, which demonstrate new
446 peaks in hydrogenated calcite (Figs. 1, 2). Finally, the calculated XRD patterns, which are very
447 similar for all models, are broadly consistent with the experiments (Fig. 5) even though the
448 underlying theoretical structure (post-aragonite) is slightly different from that inferred
449 experimentally (calcite VI). Our Raman experiments in the laser heated samples above 80 GPa did
450 not show any sign of molecular H₂, which suggests that hydrogen was in atomic forms, thus,
451 suggesting that Model-I is the best for describing the experimental data. Moreover, this is
452 supported by the fact that our Raman experiments did not show any sign of H₂O related bands in
453 the pressure range below 40 GPa, where the lattice modes and O-H stretch modes could be
454 observed (Goncharov et al., 1999). Model-I and Model-II seem more relevant also because the
455 experiments suggest low levels of hydrogenation (Fig. 7). Nevertheless, the modeling result
456 suggests that the formation of C-C bonds is favored for high levels of hydrogenation (Model-III)
457 and also stimulated by high pressures above 110 GPa (Kuang and Tse, 2022).

458

459 **DISCUSSION**

460 Calcite is one of the primary carbonate phases which enters the Earth's interior via subduction of
461 oceanic crust. Our results demonstrate that hydrogen can be readily incorporated into its crystal
462 structure at pressures above 0.5 GPa, and the interaction of hydrogen with the host lattice is largely
463 driven by interactions between H and the C-O network. Consequently, these mechanisms of
464 incorporation can be generalized to other carbonate systems as well. It has been shown that Ca-
465 bearing carbonates undergo substitution reactions to form (Mg,Fe) carbonates and Ca-rich fluids

466 at 1-3 GPa and high temperatures along the P-T pathways of subducting slabs (Chen et al., 2023;
467 Poli et al., 2009). All of these carbonates adopt similar C-O structural motifs below 70-80 GPa,
468 involving different arrangements of tetrahedrally coordinated Ca, Mg and Fe cations (Merlini et
469 al., 2012). As a result, nominally anhydrous carbonates will likely incorporate small quantities of
470 hydrogen at depth, enhancing the hydrogen storage capacity of subducting slabs at conditions
471 where carbonates are stable in the presence of reduced C-O-H fluids (Kadik, 2006; Weidendorfer
472 et al., 2020). The present results suggest that carbonates can store up to 5000 ppm H, when using
473 the molar weight and hydrogenation level of CaCO_3 determined here. This result differs from
474 experimental studies of the $\text{H}_2\text{O}-\text{CaCO}_3$ system at 1-12 GPa and up to 673 K (Zhao et al., 2022)
475 where no reaction is observed, indicating that redox conditions play a role in the hydrogen storage
476 capacity of CaCO_3 although further study is needed on the H_2-CaCO_3 system at mantle
477 temperatures.

478 Mg,Fe-carbonates can be petrologically stable in the lower mantle (Dorfman et al., 2018), and
479 recent work indicates that these phases react with Ca-silicate perovskite to form calcite and
480 bridgemanite at pressures above 70 GPa and high temperatures (Lv et al., 2021). Previous studies
481 have demonstrated that hydrogenation occurs when metallic iron is present in hydrous
482 environments extending from the conditions of the mantle transition zone to those of the core-
483 mantle boundary (Kim et al., 2023; Zhu et al., 2019)). Our results demonstrate that these
484 hydrogenated, reducing environments may result in carbonate decomposition. Consequently,
485 calcite formation in the deep lower mantle is more favorable under oxidizing or anhydrous
486 conditions.

487

488 **CONCLUSIONS**

489 Experiments and theory in the present study show that calcite hydrogenates in a H₂ medium at
490 high pressures starting from as low as <0.5 GPa. Calcite accepts up to 1 H atom per formula unit
491 depending on pressure, sample form (single-crystal or powder), and time. Hydrogenated calcite
492 under pressure below 40 GPa shows the same phase transition sequence as anhydrous calcite.
493 Above 40 GPa XRD and Raman features broaden, but the structural behavior is consistent with
494 calcite residing in phase VI. Above 80 GPa, new Raman features appear signaling chemical or
495 phase transformations in the C-O bonding scheme. Above 107 GPa, we find that heating results in
496 the formation of diamond. This behavior is in good accord with theoretical FPMD modeling, which
497 shows the formation of corner-shared C-O polyhedra and C-C bonds in the limit of high pressures
498 and high H concentration.

499

500 **ACKNOWLEDGEMENT**

501 Parts of this research were carried out at the GeoSoilEnviroCARS (The University of Chicago,
502 Sector 13), Advanced Photon Source (Argonne National Laboratory). GeoSoilEnviroCARS is
503 supported by the National Science Foundation—Earth Sciences (No. EAR-1634415). Use of the
504 GSECARS Raman System was supported by the NSF MRI Proposal (No. EAR-1531583).
505 Portions of this work were performed at HPCAT (sector 16) of the Advanced Photon Source
506 (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA's Office
507 of Experimental Sciences. The Advanced Photon Source is a U.S. Department of Energy (DOE)
508 Office of Science User Facility operated for the DOE Office of Science by Argonne National
509 Laboratory under Contract No. DE-AC02-06CH11357. We acknowledge DESY (Hamburg,
510 Germany), a member of the Helmholtz Association HGF, for the provision of experimental
511 facilities. Parts of this research were carried out at Petra III (beamline P02.2). Beamtime was

512 allocated for proposals I-20221160 and I-20230233. A.F.G. acknowledges the support of NSF
513 CHE 2302437. A.F.G. and J.S.T. acknowledge the support of Carnegie Canada. M.B.
514 acknowledges the support of Deutsche Forschungsgemeinschaft (DFG Emmy-Noether Program
515 project BY112/2-1). J.S.T. wishes to thank NSERC for a Discovery Grant.

516

517

518 Aleksandrov, I.V., Goncharov, A.F., Zisman, A.N., Stishov, S.M., 1987. Diamond at high pressures -
519 Raman scattering of light, equation of state, and a high pressure scale. Zhurnal Eksperimentalnoi i
520 Teoreticheskoi Fiziki 93, 680-691.

521 Bali, E., Audéat, A., Keppler, H., 2013. Water and hydrogen are immiscible in Earth's mantle. Nature
522 495, 220-222.

523 Bayarjargal, L., Fruhner, C.J., Schrottd, N., Winkler, B., 2018. CaCO₃ phase diagram studied with Raman
524 spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Physics of the Earth
525 and Planetary Interiors 281, 31-45.

526 Bykov, M., Bykova, E., Pickard, C.J., Martinez-Canales, M., Glazyrin, K., Smith, J.S., Goncharov, A.F.,
527 2021. Structural and vibrational properties of methane up to 71 GPa. Physical Review B 104, 184105.

528 Catalli, K., Williams, Q., 2005. Letter: A high-pressure phase transition of calcite-III. American
529 Mineralogist 90, 1679-1682.

530 Chen, C., Förster, M.W., Foley, S.F., Shcheka, S.S., 2023. Carbonate-rich crust subduction drives the
531 deep carbon and chlorine cycles. Nature 620, 576-581.

532 Chrenko, R.M., 1988. ¹³C-doped diamond: Raman spectra. Journal of Applied Physics 63, 5873-5875.

533 Dorfman, S.M., Badro, J., Nabiei, F., Prakapenka, V.B., Cantoni, M., Gillet, P., 2018. Carbonate stability
534 in the reduced lower mantle. Earth and Planetary Science Letters 489, 84-91.

535 Farsang, S., Facq, S., Redfern, S.A.T., 2018. Raman modes of carbonate minerals as pressure and
536 temperature gauges up to 6 GPa and 500 °C. American Mineralogist 103, 1988-1998.

537 Fong, M.Y., Nicol, M., 1971. Raman Spectrum of Calcium Carbonate at High Pressures. The Journal of
538 Chemical Physics 54, 579-585.

539 Gavryushkin, P.N., Martirosyan, N.S., Inerbaev, T.M., Popov, Z.I., Rashchenko, S.V., Likhacheva, A.Y.,
540 Lobanov, S.S., Goncharov, A.F., Prakapenka, V.B., Litasov, K.D., 2017. Aragonite-II and CaCO₃-VII:
541 New High-Pressure, High-Temperature Polymorphs of CaCO₃. Crystal Growth & Design 17, 6291-
542 6296.

543 Goncharov, A.F., Prakapenka, V.B., Struzhkin, V.V., Kantor, I., Rivers, M.L., Dalton, D.A., 2010. X-ray
544 diffraction in the pulsed laser heated diamond anvil cell. Review of Scientific Instruments 81.

545 Goncharov, A.F., Struzhkin, V.V., Mao, H.-k., Hemley, R.J., 1999. Raman Spectroscopy of Dense H₂O
546 and the Transition to Symmetric Hydrogen Bonds. Physical Review Letters 83, 1998-2001.

547 Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V.B., Goncharov, A.F., 2019. Advanced
548 integrated optical spectroscopy system for diamond anvil cell studies at GSECARS. High Pressure
549 Research 39, 457-470.

550 Kadik, A.A., 2006. Oxygen fugacity regime in the upper mantle as a reflection of the chemical
551 differentiation of planetary materials. Geochemistry International 44, 56-71.

552 Kim, T., O'Rourke, J.G., Lee, J., Chariton, S., Prakapenka, V., Husband, R.J., Giordano, N., Liermann,
553 H.-P., Shim, S.-H., Lee, Y., 2023. A hydrogen-enriched layer in the topmost outer core sourced from
554 deeply subducted water. Nature Geoscience 16, 1208-1214.

555 Kohl, I., Winkel, K., Bauer, M., Liedl, K.R., Loerting, T., Mayer, E., 2009. Raman Spectroscopic Study
556 of the Phase Transition of Amorphous to Crystalline β -Carbonic Acid. Angewandte Chemie
557 International Edition 48, 2690-2694.

558 Kuang, H., Tse, J.S., 2022. High-Temperature, High-Pressure Reactions of H₂ with CaCO₃ Melts. *Physica*
559 *Status Solidi (b)* 259, 2100644.

560 Liu, J., Caracas, R., Fan, D., Bobocioiu, E., Zhang, D., Mao, W.L., 2016. High-pressure compressibility
561 and vibrational properties of (Ca,Mn)CO₃. *American Mineralogist* 101, 2723-2730.

562 Liu, L.-G., Mernagh, T.P., 1990. Phase transitions and Raman spectra of calcite at high pressures and
563 room temperature. *American Mineralogist* 75, 801-806.

564 Lobanov, S.S., Chen, P.-N., Chen, X.-J., Zha, C.-S., Litasov, K.D., Mao, H.-K., Goncharov, A.F., 2013.
565 Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. *Nature*
566 *Communications* 4, 2446.

567 Lobanov, S.S., Dong, X., Martirosyan, N.S., Samtsevich, A.I., Stevanovic, V., Gavryushkin, P.N.,
568 Litasov, K.D., Greenberg, E., Prakapenka, V.B., Oganov, A.R., Goncharov, A.F., 2017. Raman
569 spectroscopy and x-ray diffraction of CaCO₃ at lower mantle pressures. *Physical Review B* 96,
570 104101.

571 Loubeyre, P., LeToullec, R., Hausermann, D., Hanfland, M., Hemley, R.J., Mao, H.K., Finger, L.W.,
572 1996. X-ray diffraction and equation of state of hydrogen at megabar pressures. *Nature* 383, 702-704.

573 Lv, M., Dorfman, S.M., Badro, J., Borensztajn, S., Greenberg, E., Prakapenka, V.B., 2021. Reversal of
574 carbonate-silicate cation exchange in cold slabs in Earth's lower mantle. *Nature Communications* 12,
575 1712.

576 Merlini, M., Hanfland, M., Crichton, W.A., 2012. CaCO₃-III and CaCO₃-VI, high-pressure polymorphs of
577 calcite: Possible host structures for carbon in the Earth's mantle. *Earth and Planetary Science Letters*
578 333-334, 265-271.

579 Mezouar, M., Giampaoli, R., Garbarino, G., Kantor, I., Dewaele, A., Weck, G., Boccato, S., Svitlyk, V.,
580 Rosa, A.D., Torchio, R., Mathon, O., Hignette, O., Bauchau, S., 2017. Methodology for in situ
581 synchrotron X-ray studies in the laser-heated diamond anvil cell. *High Pressure Research* 37, 170-180.

582 Occelli, F., Loubeyre, P., LeToullec, R., 2003. Properties of diamond under hydrostatic pressures up to
583 140 GPa. *Nature Materials* 2, 151-154.

584 Oganov, A.R., Glass, C.W., Ono, S., 2006. High-pressure phases of CaCO₃: Crystal structure prediction
585 and experiment. *Earth and Planetary Science Letters* 241, 95-103.

586 Ono, S., Kikegawa, T., Ohishi, Y., 2007. High-pressure transition of CaCO₃. *American Mineralogist* 92,
587 1246-1249.

588 Ono, S., Kikegawa, T., Ohishi, Y., Tsuchiya, J., 2005. Post-aragonite phase transformation in CaCO₃ at
589 40 GPa. *American Mineralogist* 90, 667-671.

590 Pennacchioni, L., Speziale, S., Winkler, B., 2023. Elasticity of natural aragonite samples by Brillouin
591 spectroscopy. *Physics and Chemistry of Minerals* 50, 22.

592 Pépin, C.M., Geneste, G., Dewaele, A., Mezouar, M., Loubeyre, P., 2017. Synthesis of FeH₅: A layered
593 structure with atomic hydrogen slabs. *Science* 357, 382-385.

594 Pickard, C.J., Needs, R.J., 2015. Structures and stability of calcium and magnesium carbonates at mantle
595 pressures. *Physical Review B* 91, 104101.

596 Poli, S., Franzolin, E., Fumagalli, P., Crottini, A., 2009. The transport of carbon and hydrogen in
597 subducted oceanic crust: An experimental study to 5 GPa. *Earth and Planetary Science Letters* 278,
598 350-360.

599 Poli, S., Schmidt, M.W., 2002. Petrology of Subducted Slabs. *Annual Review of Earth and Planetary*
600 *Sciences* 30, 207-235.

601 Prakapenka, V.B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers, M.L., Sutton,
602 S.R., 2008. Advanced flat top laser heating system for high pressure research at GSECARS:
603 application to the melting behavior of germanium. *High Pressure Research* 28, 225-235.

604 Prakapenka, V.B., Shen, G., Dubrovinsky, L.S., 2003. Carbon transport in diamond anvil cells. *High*
605 *Temperatures-high Pressures*, 237-249.

606 Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for
607 Continental Growth and Crust-Mantle Recycling. *Journal of Petrology* 36, 891-931.

608 Schmidt, M.W., Poli, S., 2014. 4.19 - Devolatilization During Subduction, in: Holland, H.D., Turekian,
609 K.K. (Eds.), *Treatise on Geochemistry (Second Edition)*. Elsevier, Oxford, pp. 669-701.
610 Suito, K., Namba, J., Horikawa, T., Taniguchi, Y., Sakurai, N., Kobayashi, M., Onodera, A., Shimomura,
611 O., Kikegawa, T., 2001. Phase relations of CaCO_3 at high pressure and high temperature. *American*
612 *Mineralogist* 86, 997-1002.
613 Weidendorfer, D., Manning, C.E., Schmidt, M.W., 2020. Carbonate melts in the hydrous upper mantle.
614 *Contributions to Mineralogy and Petrology* 175, 72.
615 Yao, X., Xie, C., Dong, X., Oganov, A.R., Zeng, Q., 2018. Novel high-pressure calcium carbonates.
616 *Physical Review B* 98, 014108.
617 Zhao, X., Zheng, Z., Chen, J., Gao, Y., Sun, J., Hou, X., Xiong, M., Mei, S., 2022. High P-T Calcite-
618 Aragonite Phase Transitions Under Hydrous and Anhydrous Conditions. *Frontiers in Earth Science* 10.
619 Zhu, F., Li, J., Liu, J., Dong, J., Liu, Z., 2019. Metallic iron limits silicate hydration in Earth's transition
620 zone. *Proceedings of the National Academy of Sciences* 116, 22526-22530.

621