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ABSTRACT

Facial Recognition Systems (FRS) have become one of the
most viable biometric identity authentication approaches in
supervised and unsupervised applications. However, FRSs are
known to be vulnerable to adversarial attacks such as iden-
tity theft and presentation attacks. The master face dictionary
attacks (MFDA) leveraging multiple enrolled face templates
have posed a notable threat to FRS. Federated learning-based
FRS deployed on edge or mobile devices are particularly vul-
nerable to MFDA due to the absence of robust MF detectors.
To mitigate the MFDA risks, we propose a trustworthy au-
thentication system against visual MFDA (Trauma). Trauma
leverages the analysis of specular highlights on diverse fa-
cial components and physiological characteristics inherent to
human faces, exploiting the inability of existing MFDAs to
replicate reflective elements accurately. We have developed
a feature extractor network that employs a lightweight and
low-latency vision transformer architecture to discern inconsis-
tencies among specular highlights and physiological features
in facial imagery. Extensive experimentation has been con-
ducted to assess Trauma’s efficacy, utilizing public GAN-face
detection datasets and mobile devices. Empirical findings
demonstrate that Trauma achieves high detection accuracy,
ranging from 97.83% to 99.56%, coupled with rapid detec-
tion speeds (less than 11 ms on mobile devices), even when
confronted with state-of-the-art MFDA techniques.

Index Terms— Master Face Dictionary Attacks, Trust-
worthy, GAN-generated Faces, Facial Recognition Systems,
Vision Transformer.

1. INTRODUCTION

With significant advancements in vision-based artificial intelli-
gence (AI) technologies, Facial Recognition Systems (FRS)
have emerged as one of the most practical and viable authen-
tication approaches. The utilization of FRS has been gaining
traction in various sectors, such as payment, access control,
and security, due to their quick authentication processes and
contactless and uninterrupted user interaction. However, FRS’s
trustworthiness is known to be vulnerable to various adversar-
ial attacks, such as identity theft, spoofing, and presentation
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Fig. 1: An Overview of Trauma Authentication System
Against Visual Master Face Dictionary Attacks (MFDA) [1].

attacks. Recently, Generative Adversarial Networks (GAN)
generated master face dictionary attacks (MFDA)[1, 2] pose a
significant risk to FRS with the reasonably high matching ratio
(40%) to multiple enrolled face templates. MFDA is especially
damaging to FRS applications with the federated learning en-
vironment on the edge and mobile devices due to the lack of
computationally effective master face detectors. While [1] has
suggested that GAN face detection methods may be able to
detect MFDA, there is currently no widely accepted or imple-
mented MFDA countermeasure available for edge and mobile
applications. Hence, developing a lightweight and real-time
MFDA detector optimized for the edge computing environ-
ment could significantly enhance spoofing detection capabili-
ties, ultimately enabling AI-based FRS’s more widespread and
secure deployment in edge computing applications.

This paper presents a novel, trustworthy authentication
system against visual MFDA (Trauma). Trauma takes specu-
lar reflections on different facial parts (e.g., eyes, cheeks, nose,
chin, forehead, etc.) to extract their physiological character-
istics, such as intensity and shape. We hypothesize that the
existing MFDAs fail to coordinate their counterfeits with the
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reflective elements on each facial component and demonstrate
noticeable physiological flaws on different facial parts. Instead
of assessing particular facial attributes or features, we have
developed a streamlined and sensible feature extraction net-
work based on Vision Transformer (ViT) technology [3]. This
network can identify incongruences between specular high-
lights and physiological traits by analyzing non-overlapping,
minuscule segments of a facial image. Our lightweight and
low-latency approach renders it an efficient and practical solu-
tion for facial recognition tasks. The Trauma model leverages
the strengths of Convolutional Neural Networks (CNN) and
ViT architectures to incorporate and process local and global
information, ultimately improving the representation learn-
ing process from facial images with fewer parameters. By
fusing these two methods, Trauma effectively encodes the spa-
tially localized features captured by CNNs with the global
context awareness capabilities of ViT. As illustrated in Figure
1, Trauma comprises Training Data Annotation (TDA), Face
Specular Highlights Detection (FSHD), and Feature Extraction
and Classification (FEC) modules. We create a new Trauma
dataset with high-resolution images from real and master faces
(MF). The TDA annotates the Face Specular Highlight (FSH)
regions with a range of environmental parameters to enable
more accurate and precise analysis. For a given input image,
the FSHD module can identify various FSHs across different
regions of the face by analyzing the HSV (hue, saturation,
value) color space of the pixels within the image. The FEC

module employs a lightweight ViT-based backbone model
to extract features effectively from the FSH images. The
extracted features are employed to classify the input image,
distinguishing between MFDA-generated and authentic facial
representations. To gauge the effectiveness of Trauma, we have
conducted comprehensive experiments, assessing its perfor-
mance using publicly available GAN-face detection datasets.
The empirical results show that Trauma achieves high accu-
racy, ranging from 97.83% to 99.56% against state-of-the-art
(SOTA) MFDA and fast detection speed (less than 11 ms) on
mobile devices. Further, the modular design of Trauma ren-
ders itself a complementary MFDA detection module for any
existing FRS. The main contributions of this work include:

• Generating and annotating a new Trauma dataset with MF
and real face images for MFDA detection.

• Exploiting reflective elements of the human face to detect
physiological flaws effectively.

• Designing a lightweight, modular, and real-time approach to
render a complementary MFDA detection module for edge
and mobile FRSs.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the existing MFDA and GAN-face detection
methods. Section 3 describes our design of Trauma. Section 4
discusses the experiment setups and results. Section 5 con-
cludes the paper.

2. RELATED WORK

We briefly discuss the existing MFDA and GAN-face detection
methods. The authors in [2] used StyleGAN [4] to generate
MFDAs resulting in 40 percent of the 5,749 people in the
Labeled Faces in the Wild (LFW) dataset [5]. They use three
facial recognition models: Dlib, FaceNet, and SphereFace.
The authors in [2] presented a comprehensive comparison be-
tween the different latent variable evaluation strategies (e.g.,
(LM-MA-ES) [6], (DE) [7], etc.) for the MFDA generation
task. [1] used the StyleGAN face generator and the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [8] to
generate high-resolution MFDA.

The existing GAN-face detection methods comprise deep
learning-based, physical-based, and physiological-based meth-
ods [9]. The deep learning-based GAN-face detection methods
trained DNN, such as VGG-16 [10], one-shot learning [11],
incremental learning [12], and attention-based [13] models,
to learn deep hierarchical features and the classifiers jointly
in an end-to-end manner to identify fake faces. On the other
hand, the physical-based GAN-face detection methods [14, 15]
detected GAN-synthesised faces through the inconsistency
of the corneal specular highlights between the two synthe-
sized eyes. Furthermore, the physiological-based GAN-face
detection methods utilized noticeable artifacts in generated
faces, such as asymmetric faces [16], eyes’ inconsistent iris
color [14], and irregular pupil shapes [17], to spot GAN-faces.
However, physical and physiological-based methods cannot
generalize against highly realistic MFDA because they only
consider single artifacts of eyes, such as iris color, pupil shapes,
or similarity of corneal reflections on both eyes. In addition,
such artifacts may only sometimes be available due to the lim-
itations of the images with blurriness, low-quality images, or
occlusions.

The proposed Trauma system represents the pioneering
effort to detect MFDA by leveraging specular reflection high-
lights. Its uniqueness and efficacy stem from its ability to
discern physiological attributes across diverse facial elements
(e.g., eyes, nose, cheeks, etc.) through the analysis of specular
reflection highlights.

3. ARCHITECTURE

Trauma consists of Training Data Annotation (TDA), Face
Specular Highlights Detection (FSHD), and Feature Extraction
and Classification (FEC) modules to analyze the semantic
aspect of the MFDAs using inconsistencies among specular
highlights on various facial parts and physiological flaws of
the MF images.

3.1. Training Data Annotation (TDA)

A large-scale benchmark dataset for evaluating GAN-based
MFDA detection still needs to be improved. First, we created a
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Fig. 2: The Trauma Architecture Block-diagram.

Trauma dataset [18] by collecting and annotating real-face and
GAN-based MF images. The Trauma dataset contains 28,620
(29.40 GB) high-resolution facial images. Since MFDA de-
tection is a binary classification problem, we collected 14,310
MF images using various SOTA GAN models, including 6,580
images from StyleGAN [4], 6,580 images from StyleGAN2
[19], and 1,150 images from StyleGAN3 [20]. In addition, we
also collected 14,310 real-face images from diverse datasets,
including 4,770 images from the FFHQ dataset [4], 4,770 im-
ages from the CelebA-HQ dataset [21], and 4,770 from the
CelebA dataset [22]. Second, as presented in Figure 2 (a-1),
the TDA module extracts environmental parameters, including
illumination conditions, background colors, indoor or outdoor
settings, face pose orientations, age, ethnicity, and appear-
ances (e.g., wearing makeup and accessories) from the Trauma
dataset images (1). Then, TDA annotates dataset images in a
couple of different types. The Face Specular Highlight (FSH)

annotation in Figure 2 (a-2) identifies various highlight pat-
terns from the reflective facial regions. The image annotation

in Figure 2 (a-3) labels the images either Real or MFDA. TDA
also resizes all images to the same 256 ⇥ 256 images. TDA
applies various augmentations, including horizontal flip, crop,
and adjusting brightness and saturation to increase the diversity
of the training set.

3.2. Face Specular Highlights Detection (FSHD)

The FSHD module in Figure 2 (b) detects the FSH patterns
from various face parts by taking a 256 ⇥ 256 RGB image
as an input. First, it remaps the primary colors of the input
images into HSV (Hue (H), Saturation (S), Value (V)) color
space dimensions. H specifies the angle of the color from 0
to 360 degrees, S controls the used color amount from 0 to
100 percent, and V maintains the brightness of the color from
0 (black) to 100. Then, FSHD identifies the FSH regions by
performing backward conversion from HSV to BGR (RGB,
revered) to highlight the brightest point with high and low
saturation values.

3.3. Feature Extraction and Classification (FEC)

As illustrated in Figure 2 (c), the FEC module conducts image
preprocessing, deep hierarchical feature extraction from the
FSH images, and classification by employing a lightweight
ViT-based backbone model [23].

We built an input processing pipeline that standardizes
the input images by rescaling their values from the [0, 255]
range to the [-1, 1] range. Then, it applies random augmenta-
tion transforms during training, including contrast, brightness,
horizontal flip, crop, and zoom.

The FEC also leverages the strengths of both CNN and ViT
architectures by fusing the spatially-localized features captured
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Table 1: Classification performance with three different Trauma backbones and datasets.

Backbones Trauma (StyleGAN): Trauma (StyleGAN2): Trauma (StyleGAN3):
A dataset with 13,160 images A dataset with 13,160 images A dataset with 2,300 images

(50% real & 50% MF), (50% real & 50% MF), (50% real & 50% MF),
training 10,000, validation 2,100, training 10,000, validation 2,100, training 1,600, validation 500,

and testing 1,060. and testing 1,060. and testing 200.
Acc" Loss# FAR# FRR# Acc" Loss# FAR# FRR# Acc" Loss# FAR# FRR#

Trauma (S) 99.25% 0.056 0.56% 0.94% 98.87% 0.082 0.37% 1.88% 99.56% 0.010 0.37% 0.50%
Trauma

(XS)
98.87% 0.071 0.56% 1.69% 99.34% 0.030 0.37% 0.94% 99.43% 0.011 0.50% 0.62%

Trauma
(XXS)

97.83% 0.116 1.69% 2.64% 99.25% 0.032 0.18% 1.32% 98.81% 0.044 0.87% 1.75%

Table 2: Inference time with three different Trauma backbones
on CPU and GPU.

Backbones Size
(MB)

Params Inf. Time (ms)

CPU
Batch

Size (1)

GPU
Batch

Size (32)

Trauma (S) 81.6 MB 7,040,002 10.55 ms 194 ms
Trauma

(XS)
32.8 MB 2,774,890 7.56 ms 146 ms

Trauma
(XXS)

16 MB 1,306,658 3.93 ms 126 ms

by CNNs with the global context awareness capabilities of ViT,
ultimately improving the representation learning process from
facial images with fewer parameters. The FEC architecture is
comprised of six blocks. The first block consists of a strode
3 ⇥ 3 standard convolution, followed by one MobileNetV2
(MV2) [24] inverted residual block. The second block contains
three inverted residual MV2s for downsampling the resolution
of the intermediate feature maps. The 3 to 5 blocks comprise a
sequence of one inverted residual MV2 for downsampling and
a MobileViT that captures local features through convolutional
layers and global elements from the small patches using a
transformer block [25] with different lengths. The 6th block
comprises a global average pooling (GAP) and fully connected
layers. The GAP layer performs downsampling, and the fully
connected layer (predication layer) returns a probability distri-
bution with two nodes and a softmax activation function for
binary classification. A binary cross-entropy probabilistic loss
function is used to compute the cross-entropy loss between
actual and predicted labels and to measure the model’s accu-
racy during training and testing. Eventually, it creates a binary
classification result (either MF or real).

All images were pre-processed and scaled between -1 and
1. We used the Glorot normal initializer from the Keras library
for the default weight initialization. We trained all three mod-
els on the GPU environment using the Google Colab Compute

Engine (GCE) VM backend with (NVIDIA Tesla-P100-PCIE-
16GB) model for 64 iterations with an Adam optimizer, batch
size of 32, a learning rate of 1e-5, and patch size of 2⇥ 2 for
the transformer blocks. In MV2s, we used an expansion fac-
tor of 4 for Trauma (S) and Trauma (XS), except for Trauma
(XXS), we used an expansion factor of 2.

4. EVALUATIONS

We conducted inference time and classification performance

tests on Trauma modules trained on three different backbone
architectures (Trauma (S), Trauma (XS), and Trauma (XXS)
in Table 2) with three distinct datasets (Trauma (StyleGAN),
Trauma (StyleGAN2), and Trauma (StyleGAN3) in Table 1).
Our evaluation study aimed to determine whether particular
combinations of backbones and datasets produce better in-
ference time results on resource-constrained devices and to
evaluate the effectiveness of the Trauma modules in classify-
ing images. Our experimental setup measured the inference

time of different Trauma backbones (size and parameters) with
CPU and GPU environments. A batch of 32 images was used
for GPU, while one image per batch is used for an 8-core CPU.
We evaluated its classification performance on predefined im-
age classes, including binary cross-entropy loss function, a
dense layer of two nodes, and Softmax activation at the top of
every network.

The inference time tests results are presented in Table 2.
Trauma (XXS), with 1.3 M parameters and 16 MB size, is the
fastest network (within 4 ms) across all devices. On the other
hand, Trauma (S), with 7 M parameters and 81.6 MB size, is
the slowest. All models can evaluate within 200 ms for the
typical batch size of 32 images with GPU and within 11 m for a
single batch with CPU. The results have important implications
for developing and deploying lightweight Trauma modules to
detect MFDA in practical edge and mobile environments.

The outcome of classification performance tests, including
the classification accuracy, loss, false acceptance rate (FAR),
and false rejection rate (FRR), are summarized in Table 1. We
observed that the Trauma (S), the largest backbone, consis-
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tently outperformed the XS and XXS backbones in all metrics
on Trauma (StyleGAN) and Trauma (StyleGAN3) datasets.
However, the smaller backbones, Trauma (XS) or Trauma
(XXS), result in better performance on Trauma (StyleGAN2)
dataset. Overall, our findings indicate that the classification

performance is very effective (e.g., higher than 97.83 % accu-
racy) regardless of the choice of backbone and dataset.

5. CONCLUSIONS

We proposed a novel, trustworthy authentication against visual
MFDA (Trauma) that generates and annotates a new dataset
with MFDA and real images to detect MFDA. It uses reflective
elements to extract characteristics for MFDA detection that
enable the detection of noticeable physiological flaws. We
designed it as a lightweight, modular, real-time system to
render a complementary MFDA detection module for edge
and mobile FRSs. The empirical results show that Trauma
achieves detection accuracy ranging from 97.83% to 99.56%
and rapid detection speed (less than 11 ms) against the current
SOTA MFDAs.
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