
Hybrid Cyber-attack Detection in Photovoltaic 
Farms 

Jinan Zhang 
Eaton Research Lab 
Golden, CO, USA 

jinanzhang@eaton.com 

Jin Ye 
University of Georgia 
Athens, GA, USA 

jin.ye@uga.edu 

Wenzhan Song 
University of Georgia 
Athens, GA, USA 

wsong@uga.edu 

Jianming Lian 
Oak Ridge National Laboratory 

Oak Ridge, TN, USA 
lianj@oml.gov 

Dongbo Zhao 
Eaton Research Lab 
Golden, CO, USA 

dongbozhao@eaton.com 

Abstract-To address the cyber-physical security in PV farms, 
a hybrid cyber-attack detection is proposed in this manuscript. 
To secure PV farms, the proposed method integrates model-based 
and data-driven methods by fusing the detection score at the de-
vice and system levels. First, a model-based cyber-attack detection 
method is developed for each PV inverter. A residual between the 
estimation of the Kalman filter and measurement is calculated. 
By leveraging the calculated residual from all inverters, a squared 
Mahalanobis distance is developed for device detection score 
generation. At the system level, a convolutional neural network 
(CNN) is proposed to detect cyber-attack using the waveform 
data at the point of common coupling (PCC) in PV farms. 
To improve the CNN detection accuracy, a set of well-designed 
features are extracted from the raw waveform data. Finally, a 
weighted detection score fusion method is proposed to combine 
device and system detection scores by using their complementary 
strength. The feasibility and robustness of the proposed method 
are validated by testing cases and a comparative experiment. 

Index Terms-Kalman filter, squared Mahalanobis distance, 
convolutional neural network, score fusion, hybrid detection, 
cyber-attack, PV farm security 

I. INTRODUCTION 

The smart grid, one of the largest cyber-physical systems, 
is a critical infrastructure for society. Due to the reliance 
on information and communication technologies, the smart 
grid faces a significant risk in security [l]. For example, 
attackers hack the power grid leading to a power outage 
for 16 hours in Ukraine [2]. Malware Stuxnet compromises 
critical equipment in utilities is reported in [3]. With a growing 
number of distributed energy sources (DERs), a new type of 
cyber-attack compromising DERs inverter also appears [4]. 
In [5], the authors introduce a non-invasive attack targeting 
the PV inverter. A noise injection attack in a grid-connected 
inverter is demonstrated in [6]. 

PV farm plays a vital role in smart grid operation. With 
built-in remote function in inverters, PV farms have started 
to anticipate the grid support service [7]. Once attackers 
compromise PV farms, it not only destroys the power gen-
eration of PV farms but also impacts the stability of the 
smart grid. To secure the PV farms, attack detection has 
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been designed to alleviate the attack impact at an early stage. 
Existing works on attack detection are categorized into data-
driven and model-based approaches. Data-driven strategies 
show promise in attack detection without using any physical 
model information. Because of their reliance on sufficient data, 
data-driven approaches are typically deployed at the system 
level. For example, features in the time and frequency domain 
are proposed to detect cyber-attack using measurement at PCC 
of photovoltaic (PV) farms [8]. In [9], a deep learning model 
is developed to detect false data injection attacks in the state 
estimation of the power grid. Although data-driven methods 
can achieve a high detection accuracy in offline training, they 
require a large amount of training data that is unavailable in 
the real world. Deficient attack cases causing the imbalanced 
data set may degrade the detection performance of the data-
driven method. In addition, some data-driven methods cannot 
address stealthy attacks without physical model information. 
On the contrary, the model-based approach makes use of the 
physical model to estimate system status. By leveraging the 
residual between estimates and measurement, cyber-attacks 
are detected. As discussed in [6], the high-frequency noise 
is analyzed and identified by Kalman filter-based detection 
approach in the inverter controller. While data-driven and 
model-based approaches can, to some extent, address cyber 
attacks at the system and device levels, respectively, a com-
prehensive framework for cyber attack detection for PV farms 
is still lacking. It is an open challenge to combine model-based 
detection methods in each inverter and data-driven methods for 
PV farms. 

In [10], a fusion method is proposed for decision-making. 
It fuses different decisions into a new or better decision which 
provides a new fundamental solution for the coordination 
of model-based and data-driven cyber-attack detection in PV 
farms. Based on this decision-in and decision-out approach 
[10], a hybrid cyber-attack detection framework is proposed 
for PV farms as shown in Fig, 1. In each PV inverter, 
a model-based cyber-attack detector is developed. With the 
Kalman filter in the proposed detector, a residual between 
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Fig. 1. Schematic diagram of hybrid cyber-attack detection in PY farms. 

estimation and measurement is calculated. Then, the squared 
Mahalanobis distance is developed to fuse the residual of all 
inverters and generate a device detection score. At the system 
level, a convolutional neural network (CNN) is developed for 
system detection score using measurement data at the point 
of common coupling (PCC). In addition, a set of features 
is extracted to improve the model training efficiency and 
detection accuracy. Finally, a weighted detection score fusion 
method is designed for cyber-attack detection in PV farms. 

II. PV FARM AND CYBER-ATTACK MODELING 

A. PV Fanns Modeling 
a large-scale PV farm consists of two-stage PV inverters 

connected in parallel. Within each PV conversion system, the 
PV array is linked to a DC/DC converter, which then converts 
the DC power to AC power through a DC/ AC inverter. On 
the grid side of the PV inverter, an LCL filter is employed 
to effectively mitigate the presence of harmonics in the AC 
current. The dynamics of the inverter are depicted below. 

(1) 

where ufn is the inverter-side voltage in phase p, SP is the 
switch signal in phase p, p = a, b, c, Ude is the DC-link 
voltage. Then, the model of the PV inverter referring to the 
LCL filter can be derived as 

x = Ax+Bu (2) 

Where x = [I'J,IJ,I'j]I', Ir is the inverter-side inductance 
current, u = [Ub,, Ufn, Ufn, ui, Ut, U~JI', Ufn is the inverter-
side voltage, U[ is the capacitor voltage. 
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(3) 

Fig. 2. A PV inverter controller. 

As shown in Fig. 2, maximum power point tracking (MPPT) 
method is designed to force the PV array generate maximum 
power to power grid. Additionally, a Pl-based PV inverter 
controller, comprising a DC-link voltage control loop, current 
control loop, and reactive control loop, is developed for the PV 
system. The DC-link voltage controller is designed to maintain 
the stability of the capacitor voltage, while the reactive power 
control loop regulates the generation of the required reactive 
power. The control reference for If ,q is denoted as 1f*,q*. 

B. Cyber-attack Modeling 
In this paper, a cyber-attack is defined to compromise the 

measured data in the PV inverter sensor as shown in Fig. 1. To 
clarify the attack model, the cyber-attack is expressed during 
attack time as follows. 

(4) 

where YJ is the compromised sensor data which is the final 
input of the controller; Y0 is the original measurement data; 
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a represents the false data that is injected into the sensor of 
the inverter, w is attack gain. 

III. HYBRID CYBER-ATTACKS DETECTION METHOD 

In this section, a hybrid cyber-attack detection method is 
developed, including device detection score, system detection 
score, and weighted score fusion techniques. 

A. Kalman Filter in PV inverter 

Kalman filter is widely used in time-series data analysis 
and is good at state estimating with noise and uncertainties. 
In the Kalman filter, the sensor measurements are forwarded 
to Kalman Filter at a certain time interval. Then, at each 
time step, the Kalman filter calculates an accurate estimation 
result of the system state based on the system model from the 
previous time step and the real-time sensor data. Based on the 
PV inverter, the inverter can be derived considering the impact 
of noise and uncertainties which is expressed as follows. 

x[k + 1] = Adx[k] + Bdu[k] + Bw, Cov(w) = Q 
y[k] = Cdx[k] + v, Gov( v) = R 

(5) 

Where Q is the process noise covariance matrix, R is the 
measurement noise covariance matrix. Based on the above 
inverter model, the estimation of the Kalman Filter can be 
derived, which has been described in [11]. 

B. Device Detection Score 

C. Data-driven cyber-attacks detection method using CNN 
Fig. 1 presents that the measurement at PCC is used for 

cyber-attack detection at the system level. Several critical 
features are extracted from measurement data first. Then, 
all extracted features are labeled and normalized in the data 
pre-processing. The data-driven model is trained to make an 
accurate classification using these features. Finally, the cyber-
attack is identified using a well-trained neural network. Three-
phase voltage and current at PCC are used as the input data 
of the proposed method, which is denoted by: 

(9) 

where the subscript t represents the time; Ua, Ub, Uc and 
Ia, h, Ic are the 3-phase voltage [V] and current [A] sample 
measurement at the PCC node, respectively. To improve the 
efficiency of the data model, a set of critical features is 
extracted from Xtc, which is expressed as 

Xjr = [Fu,Mu,THDu,Fr,Mr,THDrf (10) 

where Fu,1 are the frequency of three-phase voltage and 
current at PCC, respectively; Mu,r are the magnitude of three-
phase voltage and current at PCC, respectively; TH Du,r are 
TH D of three-phase voltage and current at PCC, respectively. 

In recent years, CNN is trained to detect anomalous behav-
iors, such as [12], [13]. With the noise-resistance, CNN has 
the potential to process time-series data. In this paper, CNN is 
used as a data model to detect cyber-attacks in PV farms. In 
addition, a sigmoid activation function in the output layer is 
often used for classification. The sigmoid function is expressed 

To detect cyber-attacks, the residual between states esti- as 
mation of Kalman filter and measurement in PV inverters is 
calculated as follows, 

sigmoid(x) = 
eX + 1 

(11) 

A classification layer is adopted by using the cross-entropy 
(6) error to calculate the cost function, as 

Where r = [,1, ... , 1'n] is calculated residual, X = [xi, ... , Xn] 

is the measurement signal, Xn is nth PV inverter measurement, 
X = [xi, ... , Xn] is the estimation of the Kalman filter, Xn is 
nth PV inverter estimation. With Kalman filter, the calculated 
residual r represents the status variation of PV inverters. To 
detect cyber-attacks, squared Mahalanobis distance (SMD) is 
calculated as follows, 

(7) 

where µ and I; are the expectation and covariance matrices of 
r under normal conditions, respectively. The I; is calculated 
by using a maximum likelihood estimator. Then, the device 
detection score is derived as 

8sMD Sdevice = tanh( -------;y-) (8) 

Where tanh is a hyperbolic tangent function, 8sMD is the 
squared Mahalanobis distance, T is a detection threshold value 
of the device detection method in the PV inverter. 

. J 1 LM Lnc i 1 (Ai) mm = -- Y • • og Y · w M 3 3 
i=l j=l 

(12) 

where M is the number of training samples; y represents the 
ground truth; y is the predicted result; W represents weights 
and biases. Because the sigmoid function is used to normalize 
the output prediction to be a valid probability distribution. 
Thus, the output of the sigmoid function at the classification 
layer is used as the system detection score Bsystem• 

D. Weighted Detection Score Fusion 
To increase detection accuracy, detection capabilities from 

devices and systems are used simultaneously. The device de-
tection score represents the model-based cyber-attack detection 
result considering the dynamics in each PV inverter. The 
system detection score is the output of the data-driven method 
using the measurement at PCC. To fuse two scores, a weighted 
detection score is proposed as 
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(a) (b)

TABLE I 
[w, a] SETTING IN SINGLE ATTACKS 

Attack I1 Target Attack Time 
Attack 1 [1, lOO]a, [1, 200]b, [1, 300]c 
Attack 2 [1,100 + 200sin(207rt)]a, [1, O]b, [1, O]c 
Attack 3 [1,300 + 100sin(27rt)]a, [1,200 + 300sin(27rt)]b, [1,100 + 200sin(27rt)]c 
Attack 4 [1,300 + 100sin(207rt)]a, [1,200 + 300sin(607rt)]b, [1,100 + 200sin(407rt)]c 
Attack 5 [1, 100sin(2007rt)]a, [1, 300sin(6007rt)]b, [1, 200sin(4007rt)]c 
Attack 6 [1, 300sin(2007rt)]a, [1, 300sin(6007rt)]b, [1, 300sin(4007rt)]c 
Attack 7 [1, O]a, [1, 300sin(6007rt)]b, [1, O]c 
Attack 8 [1, O]a, [1, O]b, [1, 300sin(6007rt)]c 
Attack 9 [1, O]a, [1, 300sin(6007rt)]b, [1, 300sin(6007rt)]c 
Attack 10 [1, 200sin(10007rt)]a, [1, 500sin(2007rt)]b, [1, 100sin(4007rt)]c 
Attack 11 [1, 100sin(1107rt)]a, [1, 300sin(307rt)]b, [1, 200sin(427rt)]c 
Attack 12 [1, 100sin(1207rt)]a, [1, 300sin(1207rt)]b, [1, 200sin(1207rt)]c 

[1, 100sin(1207rt)]a, [1, 300sin(1207rt)]b, [1, 200sin(1207rt)]c 
Attack 13 [1, 400sin(12007rt)]a, [1, 100sin(207rt)]b, [1, 300sin(807rt)]c 

[1, O]a, [1, 500sin(6007rt)]b, [1, O]c 
Attack 14 [1, 200sin(327rt)]a, [1, 100sin(387rt)]b, [1, 150sin(407rt)]c 

[1, lOO]a, [1, 200]b, [1, 300]c 
Attack 15 [1,200 + 100sin(267rt)]a, [1,100 + 300sin(247rt)]b, [1,150 + 200sin(347rt)]c 

[1, 200sin(10007rt)]a, [1, 500sin(2007rt)]b, [1, 100sin(4007rt)]c 
Attack 16 [0.8, O]a, [0.8, O]b, [0.8, O]c 
Attack 17 [0.2, O]a, [0.2, O]b, [0.2, O]c 

where ad and as are detection weight, S fusion, Sdevice, and 
Ssystem are the fusion detection score, device detection score, 
and system detection score, respectively. The detection result 
is obtained using following equation. 

training performance 

o.96 l . . , l j ,,! :.:I, 
o.94 :~'it:~::::,:,:-:,•~!.+-~::::,~l i,,\1~1nf\.., 
0.92 

0.90 

. {Normal, Sjusion < Tjusion, Detection Result = 
Attack, Sjusion > Tjusion• 

(14) 
' ' 0.88 : 

Q, 86 
1

:

0

: 

0.84 --- Training accuracy 
- - - Testing accuracy 

Where Tfusion is the threshold in the score fusion. 0 20 40 60 80 100 120 

PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 
PV2 [0.2, l]s 
PVl [0.2, l]s 
PV2 [0.2, l]s 
PVl [0.2, l]s 
PV2 [0.2, l]s 
PVl [0.2, l]s 
PV2 [0.2, l]s 
PVl [0.2, l]s 
PVl [0.2, l]s 

1.0 

0.6 

• ·0 .2 

- o.o 

0.066 

IV. SIMULATION RESULT 

A. Simulation Model Fig. 3. (a) Training and Testing Accuracy of CNN; (b) fusion matrix of CNN. 

To test the proposed detection algorithm, four two-stage PV 
inverters enabled PV farm is simulated in the MATLAB as 
shown in Fig. 1. The rated power in each PV inverter is 125kW. 
The DC-link voltage of the PV inverter is 1500V. The grid 
voltage is 480Vrms· To test the proposed detection method in 
the PV farm, several attacks are designed in Table. I. As shown 
in Table. I, different set of attack vector [w, a] are designed 
to compromise the sensor measurement in PV inverter l(PVl) 
and PV inverter 2(PV2). [w, a]a is the attack vector in phase 
A measurement. 

B. Training, Testing Cases and Accuracy Definition 
Under the different attack cases in Table I, a large number 

of data set in the PV farm is generated. The sampling rate is 
20 kHz. For a detailed analysis of the introduced features and 
detection algorithm, we compare the results of using the two 
different methods. One only employs CNN to detect cyber-
attacks. The other one uses the proposed hybrid cyber-attack 
detection method which fuses the device detection score of 
SMD and system detection score from CNN. For convenient 
expression, we denote the these two methods as CNN and 
SMD+CNN, respectively. 

In the training process of CNN, the data of attack 1-16 
scenarios in TABLE. I is randomly split into a training (70% 
of data) set and a test (30%) set. To validate the performance 
of the proposed method, the stealthy attack 17 in TABLE. I, 
which is not included in the model training, is designed as a 
validation case for both methods. 

To evaluate the performance of detection methods, the 
testing accuracy is defined as follows: 

Ace= Nnt + Nat 
Ntotal 

(15) 

where Nnt and Nat represent the number of samples that are 
correctly identified as normal and attack, respectively; Ntatal 
represents the total number of testing samples. 

C. Detection Result Analysis 
The testing accuracy of CNN for attack 1-16 is summarized 

in Fig. 3. The testing accuracy of the CNN is 96.5%. It is 
noted that 6.6% of attack data are misclassified to normal 
condition in Fig. 3(b). This error mainly comes from attack 
16. Fig. 4 shows the attack 16 impact on the PVl. Due to 
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Fig. 4. (a) Output current lg of PVl; (b) calculated residual 1 1 of PVl; (c) 
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Fig. 5. (a) Output current lg of PVl; (b) calculated residual 1 1 of PVl; (c) 
detection result of CNN; ( d) Device and system detection score; ( e) weighted 
fusion score; (f) detection result of attack 17 using fusion score. 

the minor impact around 0.2s, it is hard for CNN to detect 
attack. After the 0.25s in Fig. 4(a), there is no distortion 
and harmonics in the output current. This attack leads to the 
degraded performance of CNN as shown in Fig. 4(c). 

But at the device level, the residual in Fig. 4 (b) illustrates 
the discrepancy between estimation and measurement. Based 
on the Kalman filter, the device detector identifies attack 16. 
Then, the proposed method, SMD+CNN, makes full use of 
device and system detection scores in the PV farm simultane-
ously. The corresponding detection result is shown in Fig. 4( d-
t). Based on the Eq. (13), the weighted fusion score fusion is 
calculated in Fig. 4(d,e). Compared to CNN, the attack 16 is 
identified by the proposed method SMD+CNN as shown in 
Fig. 4(t). Compared to Fig. 4(c), the detection accuracy for 
attack 16 is improved from 35.42% to 86.46% in Fig. 4(t). 

D. Stealthy Attack Detection Analysis 
In this section, stealthy attack 17 is tested using CNN 

and SMD+CNN, respectively. Fig. 5(a) shows that attack 17 
impacts the output of PVl. With extracted features, CNN 
still identifies the anomaly in the current waveform at PCC 
in Fig. 5(c). Although the waveform restores to normal after 
the transit impact, the false data injected by attack 17 does 
not disappear which is observed by the calculated residual by 
Kalman filter in Fig. 5(b). Compared to CNN, the SMD+CNN 
shows better resilience in the stealthy attack 17. As shown 
in Fig. 5(e-t), the device detection score is fused into the 
detection result using a weighted fusion score. Fig. 5(t) shows 
attack 17 is identified by the proposed method. 

- Device Detection Score 
1 ~ ~ -----,--J- System Detection Score 

8 0.5 
u, 0 "--+--~~-~-~------" 

0!2 0.3 0.4 0.5 0.6 0.7 0.8 

nn.Y~ 
012 0.3 0.4 0.5 0.6 0.7 0.8 

J0 ~f ~I IMHI II~ 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Time(s) 

- Device Detection Score 
I! 1 c-r-, ~--- - system Detection Score 
8 0.5 I 

rt) 0 cc,_-~~-~-~~---" 
0:2 0.3 0.4 0.5 0.6 0.7 0.8 

CD 0.8 1 - Weighted Fusion Score 
0.6 I 
0.4 --1 --------

0:2 0.3 0.4 0.5 0.6 0.7 0.8 

)o.~f W l 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Time(s) 

Fig. 6. (a) Device, system detection score, and detection result of attack 16 
using hierarchical clustering+CNN; (b) Device, system detection score, and 
detection result of attack 17 using hierarchical clustering+CNN. 

E. Comparison Simulation Result of the Hybrid Method using 
Clustering and CNN 

Clustering is an unsupervised learning technique. Since it 
does not require data labeling in model training, many works 
have developed cyber-attack detection and diagnosis by utiliz-
ing clustering method. In [14], a hybrid cyber-attack detection 
method in power grids is proposed by integrating hierarchical 
clustering and decision tree. Motivated by the high efficiency 
of the clustering method, a comparative experiment is con-
ducted by replacing SMD with hierarchical clustering. Fig. 6 
shows the detection result of hierarchical clustering+CNN in 
attack 16 and attack 17. The detection accuracy of attack 16 
and attack 17 are 63.54% and 31.25%, respectively. Compared 
to SMD+CNN, hierarchical clustering cannot capture more 
dynamic information in the device detection score, resulting in 
a moderate performance after data fusion. This experiment also 
demonstrates a better performance of the proposed method 
(SMD+CNN) in cyber-attack detection. 
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