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Abstract—To address the cyber-physical security in PV farms,
a hybrid cyber-attack detection is proposed in this manuscript.
To secure PV farms, the proposed method integrates model-based
and data-driven methods by fusing the detection score at the de-
vice and system levels. First, a model-based cyber-attack detection
method is developed for each PV inverter. A residual between the
estimation of the Kalman filter and measurement is calculated.
By leveraging the calculated residual from all inverters, a squared
Mahalanobis distance is developed for device detection score
generation. At the system level, a convolutional neural network
(CNN) is proposed to detect cyber-attack using the waveform
data at the point of common coupling (PCC) in PV farms.
To improve the CNN detection accuracy, a set of well-designed
features are extracted from the raw waveform data. Finally, a
weighted detection score fusion method is proposed to combine
device and system detection scores by using their complementary
strength. The feasibility and robustness of the proposed method
are validated by testing cases and a comparative experiment.

Index Terms—Kalman filter, squared Mahalanobis distance,
convolutional neural network, score fusion, hybrid detection,
cyber-attack, PV farm security

I. INTRODUCTION

The smart grid, one of the largest cyber-physical systems,
is a critical infrastructure for society. Due to the reliance
on information and communication technologies, the smart
grid faces a significant risk in security [1]. For example,
attackers hack the power grid leading to a power outage
for 16 hours in Ukraine [2]. Malware Stuxnet compromises
critical equipment in utilities is reported in [3]. With a growing
number of distributed energy sources (DERs), a new type of
cyber-attack compromising DERs inverter also appears [4].
In [5], the authors introduce a non-invasive attack targeting
the PV inverter. A noise injection attack in a grid-connected
inverter is demonstrated in [6].

PV farm plays a vital role in smart grid operation. With
built-in remote function in inverters, PV farms have started
to anticipate the grid support service [7]. Once attackers
compromise PV farms, it not only destroys the power gen-
eration of PV farms but also impacts the stability of the
smart grid. To secure the PV farms, attack detection has
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been designed to alleviate the attack impact at an early stage.
Existing works on attack detection are categorized into data-
driven and model-based approaches. Data-driven strategies
show promise in attack detection without using any physical
model information. Because of their reliance on sufficient data,
data-driven approaches are typically deployed at the system
level. For example, features in the time and frequency domain
are proposed to detect cyber-attack using measurement at PCC
of photovoltaic (PV) farms [8]. In [9], a deep learning model
is developed to detect false data injection attacks in the state
estimation of the power grid. Although data-driven methods
can achieve a high detection accuracy in offline training, they
require a large amount of training data that is unavailable in
the real world. Deficient attack cases causing the imbalanced
data set may degrade the detection performance of the data-
driven method. In addition, some data-driven methods cannot
address stealthy attacks without physical model information.
On the contrary, the model-based approach makes use of the
physical model to estimate system status. By leveraging the
residual between estimates and measurement, cyber-attacks
are detected. As discussed in [6], the high-frequency noise
is analyzed and identified by Kalman filter-based detection
approach in the inverter controller. While data-driven and
model-based approaches can, to some extent, address cyber
attacks at the system and device levels, respectively, a com-
prehensive framework for cyber attack detection for PV farms
is still lacking. It is an open challenge to combine model-based
detection methods in each inverter and data-driven methods for
PV farms.

In [10], a fusion method is proposed for decision-making.
It fuses different decisions into a new or better decision which
provides a new fundamental solution for the coordination
of model-based and data-driven cyber-attack detection in PV
farms. Based on this decision-in and decision-out approach
[10], a hybrid cyber-attack detection framework is proposed
for PV farms as shown in Fig, 1. In each PV inverter,
a model-based cyber-attack detector is developed. With the
Kalman filter in the proposed detector, a residual between
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estimation and measurement is calculated. Then, the squared
Mahalanobis distance is developed to fuse the residual of all
inverters and generate a device detection score. At the system
level, a convolutional neural network (CNN) is developed for
system detection score using measurement data at the point
of common coupling (PCC). In addition, a set of features
is extracted to improve the model training efficiency and
detection accuracy. Finally, a weighted detection score fusion
method is designed for cyber-attack detection in PV farms.

II. PV FARM AND CYBER-ATTACK MODELING
A. PV Farms Modeling

a large-scale PV farm consists of two-stage PV inverters
connected in parallel. Within each PV conversion system, the
PV array is linked to a DC/DC converter, which then converts
the DC power to AC power through a DC/AC inverter. On
the grid side of the PV inverter, an LCL filter is employed
to effectively mitigate the presence of harmonics in the AC
current. The dynamics of the inverter are depicted below.

u
Pn - gP %
where ul is the inverter-side voltage in phase p, S? is the
switch signal in phase p, p = a,b,c, ug. is the DC-link
voltage. Then, the model of the PV inverter referring to the
LCL filter can be derived as

)

&= Ax + Bu 2)
Where = = [I§,1 f,I {17, I% is the inverter-side inductance
current, u = [Ug,, U, U U“ UL, UST, UP is the inverter-
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side voltage, U? is the capacitor voltage.
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Schematic diagram of hybrid cyber-attack detection in PV farms.
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As shown in Fig. 2, maximum power point tracking (MPPT)
method is designed to force the PV array generate maximum
power to power grid. Additionally, a PI-based PV inverter
controller, comprising a DC-link voltage control loop, current
control loop, and reactive control loop, is developed for the PV
system. The DC-link voltage controller is designed to maintain
the stability of the capacitor voltage, while the reactive power
control loop regulates the generation of the required reactive
power. The control reference for I}i’q is denoted as I}i*’q*.

B. Cyber-attack Modeling

In this paper, a cyber-attack is defined to compromise the
measured data in the PV inverter sensor as shown in Fig. 1. To
clarify the attack model, the cyber-attack is expressed during
attack time as follows.

—R _
Zt 0 0 £ 00 7 0 0 Y; =wY, +a )
A=|0 =£ o] B=|0 £ 0 0 F o0
0 0 _TR 0 0 % 0 0 _Tl where Y} is the compromised sensor data which is the final
(3) input of the controller; Y, is the original measurement data;
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« represents the false data that is injected into the sensor of
the inverter, w is attack gain.

III. HYBRID CYBER-ATTACKS DETECTION METHOD

In this section, a hybrid cyber-attack detection method is
developed, including device detection score, system detection
score, and weighted score fusion techniques.

A. Kalman Filter in PV inverter

Kalman filter is widely used in time-series data analysis
and is good at state estimating with noise and uncertainties.
In the Kalman filter, the sensor measurements are forwarded
to Kalman Filter at a certain time interval. Then, at each
time step, the Kalman filter calculates an accurate estimation
result of the system state based on the system model from the
previous time step and the real-time sensor data. Based on the
PV inverter, the inverter can be derived considering the impact
of noise and uncertainties which is expressed as follows.

z[k + 1] = Agz[k] + Bqulk] + Bw, Cov(w) = Q 5)
ylk] = Caxlk] + v,Cov(v) = R
Where @ is the process noise covariance matrix, R is the
measurement noise covariance matrix. Based on the above
inverter model, the estimation of the Kalman Filter can be
derived, which has been described in [11].

B. Device Detection Score

To detect cyber-attacks, the residual between states esti-
mation of Kalman filter and measurement in PV inverters is
calculated as follows,

r=x-X (6)

Where T = [y1, ..., vn] is calculated residual, X = [z1, ..., %)
is the measurement signal, x,, is n., PV inverter measurement,
X = [Z1, ..., &y] is the estimation of the Kalman filter, &,, is
nen, PV inverter estimation. With Kalman filter, the calculated
residual I' represents the status variation of PV inverters. To
detect cyber-attacks, squared Mahalanobis distance (SMD) is
calculated as follows,

Ssmp = (0= p)"S7HI = p) @)

where 1 and ¥ are the expectation and covariance matrices of
I" under normal conditions, respectively. The ¥ is calculated
by using a maximum likelihood estimator. Then, the device
detection score is derived as

dsmp ) )

Sdem'ce - tanh( T

Where tanh is a hyperbolic tangent function, dgpsp is the
squared Mahalanobis distance, 7" is a detection threshold value
of the device detection method in the PV inverter.

C. Data-driven cyber-attacks detection method using CNN

Fig. 1 presents that the measurement at PCC is used for
cyber-attack detection at the system level. Several critical
features are extracted from measurement data first. Then,
all extracted features are labeled and normalized in the data
pre-processing. The data-driven model is trained to make an
accurate classification using these features. Finally, the cyber-
attack is identified using a well-trained neural network. Three-
phase voltage and current at PCC are used as the input data
of the proposed method, which is denoted by:

X7 = [Ua, Uy, Ue, Lo, I, 1" ©)

where the subscript t represents the time; U,, Uy, U. and
1., Iy, I. are the 3-phase voltage [V] and current [A] sample
measurement at the PCC node, respectively. To improve the
cfficiency of the data model, a set of critical features is
extracted from X7P°, which is expressed as

XP¢ = [Fy, My, THDy, Fr,M;, THD,;]"  (10)

where Fy; are the frequency of three-phase voltage and
current at PCC, respectively; My r are the magnitude of three-
phase voltage and current at PCC, respectively; T'"H Dy ; are
THD of three-phase voltage and current at PCC, respectively.

In recent years, CNN is trained to detect anomalous behav-
iors, such as [12], [13]. With the noise-resistance, CNN has
the potential to process time-series data. In this paper, CNN is
used as a data model to detect cyber-attacks in PV farms. In
addition, a sigmoid activation function in the output layer is
often used for classification. The sigmoid function is expressed

as
et

e +1

(1n

sigmoid(x) =

A classification layer is adopted by using the cross-entropy
error to calculate the cost function, as

M n.
: 1 ~ i
min J = i z;z;y] ~log(7;) (12)
1= j:

where M is the number of training samples; y represents the
ground truth; ¢ is the predicted result; W represents weights
and biases. Because the sigmoid function is used to normalize
the output prediction to be a valid probability distribution.
Thus, the output of the sigmoid function at the classification
layer is used as the system detection score Sgystem.

D. Weighted Detection Score Fusion

To increase detection accuracy, detection capabilities from
devices and systems are used simultaneously. The device de-
tection score represents the model-based cyber-attack detection
result considering the dynamics in each PV inverter. The
system detection score is the output of the data-driven method
using the measurement at PCC. To fuse two scores, a weighted
detection score is proposed as
(13)

Sfusion = ”"deevice + (ksSsystem
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TABLE 1
[w, a] SETTING IN SINGLE ATTACKS

Attack Iy Target | Attack Time

Attack 1 [L,100]q, [1, 200],, [1, 300]. PVI [0.2, s

Attack 2 [1, 100 + 200sin(207t)]a, [1, 0]s, [1,0]c PVI [0.2,1]s

Attack 3 [1,300 + 100sin(2mt)]a, [1,200 + 300sin(2t)]y, [1, 100 + 200sin(27t)]e PVI [0.2,1]s

Attack 4 | [1,300 + 100sin(207t)]a, [1, 200 4+ 300sin(60mt)]y, [1, 100 + 200sin(40xt)]. | PVI [0.2,1]s

Attack 5 1, 1005in(2007t)]a, [1, 300sin(6007L)],, [1, 200sin(4007L)] . PV1 [0.2,1]s

Attack 6 [1,300sin(2007t)]q, [1, 300sin(600mt)]s, [1, 300sin(400mt)]. PVI [0.2,1]s

Attack 7 [1,0]a, [1,300sin(6007t)]p, [1, 0] PVI [0.2,1]s

Attack 8 [1,0]a, [1,0]5, [1, 300sin(600mt)]. PV1 [0.2,1]s

Attack 9 L, 0], [1,300sin(6007L)]s, [L, 300sin(600mL)]. PV1 [0.2,1]s

Attack 10 [1,200sin(10007t)]a, [1, 500sin(200mt)],, [1, 100sin(400mt)]. PVI [0.2,1]s

Attack 11 [1, 100sin(1107t)]a, [1, 300sin(30mt)]y, [1, 200sin(427t)]. PVI [0.2,1]s

Attack 12 (1, 100sin(1207t)]a, [1, 300sin(120mt)]p, [1, 200sin(1207t)]. PV1 [0.2,1]s

[1, 100sin(1207t)]a, [1, 300sin(120mL)]p, [1, 200sin(1207L)]. PV2 [0.2,1]s

Attack 13 [1, 400sin(12007t)]a, [1, 100sin(207t)]s, [1, 300sin(807t)]. PVI [0.2,1]s

[1,0]a, [1,500sin(6007t)]y, [1, 0] PV2 [0.2,1]s

Attack 14 [1,200sin(327t)]a, [L, 100sin(387t)]s, [1, 150sin(40mt)]. PV1 [0.2,1]s

[1,100]q, [1,200]y, [1,300]. PV2 [0.2,1]s

Attack 15 | [1,200 + 100sin(267t)]a, [1, 100 + 300sin(24xt)]y, [1, 150 + 200sin(34xt)]. | PVI1 [0.2,1]s

[1,200sin(10007t)]a, [1, 500sin(2007t)],, [1, 100sin(400mt)]. PV2 [0.2,1]s

Attack 16 [0.8,0]4, [0.8,0]5, [0.8,0] PV1 [0.2,1]s

Attack 17 [0.2,0]4,[0.2,0]s,[0.2,0] PV1 [0.2,1]s
where a4 and o are detection weight, Styusion, Sdevice, and training performance )

Ssystem are the fusion detection score, device detection score, 09 L \ } o ffn
and system detection score, respectively. The detection result — ©941 el e R o . 0 o
is obtained using following equation. 8221 o5
0.909 i
o - 0.884 1 0.4
Detection Result = Normal, Sfusion < L fusion: (14) g6 | .
Attack, Sfusion > Tfusion~ g E - 0.066 0.93 n
084 2 Tesig scareey
Where T'yysion is the threshold in the score fusion. Y 3 @ & % 10 3o 5 i -0
(a) (b)

IV. SIMULATION RESULT
A. Simulation Model

To test the proposed detection algorithm, four two-stage PV
inverters enabled PV farm is simulated in the MATLAB as
shown in Fig. 1. The rated power in each PV inverter is 125kW.
The DC-link voltage of the PV inverter is 1500V. The grid
voltage is 480V/.,,,s. To test the proposed detection method in
the PV farm, several attacks are designed in Table. I. As shown
in Table. I, different set of attack vector [w,«] are designed
to compromise the sensor measurement in PV inverter 1(PV1)
and PV inverter 2(PV2). [w, o], is the attack vector in phase
A measurement.

B. Training, Testing Cases and Accuracy Definition

Under the different attack cases in Table I, a large number
of data set in the PV farm is generated. The sampling rate is
20 kHz. For a detailed analysis of the introduced features and
detection algorithm, we compare the results of using the two
different methods. One only employs CNN to detect cyber-
attacks. The other one uses the proposed hybrid cyber-attack
detection method which fuses the device detection score of
SMD and system detection score from CNN. For convenient
expression, we denote the these two methods as CNN and
SMD+CNN, respectively.

Fig. 3. (a) Training and Testing Accuracy of CNN; (b) fusion matrix of CNN.

In the training process of CNN, the data of attack 1-16
scenarios in TABLE. I is randomly split into a training (70%
of data) set and a test (30%) set. To validate the performance
of the proposed method, the stealthy attack 17 in TABLE. I,
which is not included in the model training, is designed as a
validation case for both methods.

To evaluate the performance of detection methods, the
testing accuracy is defined as follows:

N, nt + N, at
N, total
where NV,,; and N,; represent the number of samples that are

correctly identified as normal and attack, respectively; Nyotar
represents the total number of testing samples.

Acec = (15)

C. Detection Result Analysis

The testing accuracy of CNN for attack 1-16 is summarized
in Fig. 3. The testing accuracy of the CNN is 96.5%. It is
noted that 6.6% of attack data are misclassified to normal
condition in Fig. 3(b). This error mainly comes from attack
16. Fig. 4 shows the attack 16 impact on the PV1. Due to
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Fig. 5. (a) Output current I, of PVI1; (b) calculated residual 1 of PVI; (c)
detection result of CNN; (d) Device and system detection score; (e) weighted
fusion score; (f) detection result of attack 17 using fusion score.

the minor impact around 0.2s, it is hard for CNN to detect
attack. After the 0.25s in Fig. 4(a), there is no distortion
and harmonics in the output current. This attack leads to the
degraded performance of CNN as shown in Fig. 4(c).

But at the device level, the residual in Fig. 4 (b) illustrates
the discrepancy between estimation and measurement. Based
on the Kalman filter, the device detector identifies attack 16.
Then, the proposed method, SMD+CNN, makes full use of
device and system detection scores in the PV farm simultane-
ously. The corresponding detection result is shown in Fig. 4(d-
f). Based on the Eq. (13), the weighted fusion score fusion is
calculated in Fig. 4(d,e). Compared to CNN, the attack 16 is
identified by the proposed method SMD+CNN as shown in
Fig. 4(f). Compared to Fig. 4(c), the detection accuracy for
attack 16 is improved from 35.42% to 86.46% in Fig. 4(f).

D. Stealthy Attack Detection Analysis

In this section, stealthy attack 17 is tested using CNN
and SMD+CNN, respectively. Fig. 5(a) shows that attack 17
impacts the output of PV1. With extracted features, CNN
still identifies the anomaly in the current waveform at PCC
in Fig. 5(c). Although the waveform restores to normal after
the transit impact, the false data injected by attack 17 does
not disappear which is observed by the calculated residual by
Kalman filter in Fig. 5(b). Compared to CNN, the SMD+CNN
shows better resilience in the stealthy attack 17. As shown
in Fig. 5(e-f), the device detection score is fused into the
detection result using a weighted fusion score. Fig. 5(f) shows
attack 17 is identified by the proposed method.

—— Device Detection Score
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Fig. 6. (a) Device, system detection score, and detection result of attack 16
using hierarchical clustering+CNN; (b) Device, system detection score, and
detection result of attack 17 using hierarchical clustering+CNN.

E. Comparison Simulation Result of the Hybrid Method using
Clustering and CNN

Clustering is an unsupervised learning technique. Since it
does not require data labeling in model training, many works
have developed cyber-attack detection and diagnosis by utiliz-
ing clustering method. In [14], a hybrid cyber-attack detection
method in power grids is proposed by integrating hierarchical
clustering and decision tree. Motivated by the high efficiency
of the clustering method, a comparative experiment is con-
ducted by replacing SMD with hierarchical clustering. Fig. 6
shows the detection result of hierarchical clustering+CNN in
attack 16 and attack 17. The detection accuracy of attack 16
and attack 17 are 63.54% and 31.25%, respectively. Compared
to SMD+CNN, hierarchical clustering cannot capture more
dynamic information in the device detection score, resulting in
a moderate performance after data fusion. This experiment also
demonstrates a better performance of the proposed method
(SMD+CNN) in cyber-attack detection.
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