
Dynamic Gradient Influencing for Viral Marketing Using Graph
Neural Networks

Saurabh Sharma
University of California, Santa Barbara

United States
saurabhsharma@ucsb.edu

Ambuj Singh
University of California, Santa Barbara

United States
ambuj@cs.ucsb.edu

(a) Initial State (b) Referral induced �ip (c) Co-marketing induced �ip

Figure 1: Overview of the Dynamic Viral Marketing (DVM) problem. At each time step, adopters and non-adopters in an
attributed user network are speci�ed using a GNN classi�er. Referral and co-marketing perturbations accelerate spreading
from adopters to non-adopters. DVM seeks to �nd the minimum budget and dynamic perturbation set to attain a spread goal.

Abstract
The problem of maximizing the adoption of a product through viral
marketing in social networks has been studied heavily through
postulated network models. We present a novel data-driven formu-
lation of the problem. We use Graph Neural Networks (GNNs) to
model the adoption of products by utilizing both topological and at-
tribute information. The resulting Dynamic Viral Marketing (DVM)
problem seeks to �nd the minimum budget and minimal set of
dynamic topological and attribute changes in order to attain a spec-
i�ed adoption goal. We show that DVM is NP-Hard and is related to
the existing in�uence maximization problem. Motivated by this con-
nection, we develop the idea of Dynamic Gradient In�uencing (DGI)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1274-6/25/04
https://doi.org/10.1145/3696410.3714886

that uses gradient ranking to �nd optimal perturbations and targets
low-budget and high in�uence non-adopters in discrete steps. We
use an e�cient strategy for computing node budgets and develop
the “Meta-In�uence” heuristic for assessing a node’s downstream
in�uence. We evaluate DGI against multiple baselines and demon-
strate gains on average of 24% on budget and 37% on AUC on real-
world attributed networks. Our code is publicly available at https:
//github.com/saurabhsharma1993/dynamic_viral_marketing.

CCS Concepts
• Information systems! Social networks.

Keywords
Graph Neural Networks, Viral Marketing, Social Network Analysis,
In�uence Propagation

ACM Reference Format:
Saurabh Sharma and Ambuj Singh. 2025. Dynamic Gradient In�uencing
for Viral Marketing Using Graph Neural Networks. In Proceedings of the
ACM Web Conference 2025 (WWW ’25), April 28-May 2, 2025, Sydney, NSW,
Australia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3696410.3714886

3982

https://doi.org/10.1145/3696410.3714886
https://github.com/saurabhsharma1993/dynamic_viral_marketing
https://github.com/saurabhsharma1993/dynamic_viral_marketing
https://doi.org/10.1145/3696410.3714886
https://doi.org/10.1145/3696410.3714886
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696410.3714886&domain=pdf&date_stamp=2025-04-22

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Saurabh Sharma & Ambuj Singh

1 Introduction
Viral marketing is a highly signi�cant strategy used to maximize the
adoption of products [7, 26], through di�usion in a social network
of users [23]. Prior work is based mainly on postulated network
propagation models of viral phenomena that focus on static topolo-
gies and ignore node attributes [15]. Furthermore, while �nding
the in�uential seed set has been extensively studied, the problem of
making “dynamic” topological and attribute perturbations to maxi-
mize spread from adopters to non-adopters has not been addressed.

Instead of designed/postulated network propoagation models,
we adopt data-driven models, speci�cally non-linear Graph Neural
Networks (GNNs) [6, 16] to learn a propagation model directly
from attributed network data, and then use it to forecast future
states of the spread after the network is perturbed. We train a
GNN model on the initial state of the attributed network to learn
a data-driven mapping from user attributes and neighborhood to
its adoption label. Thereafter, the GNN parameters are �xed and
the decision boundary of the GNN is used to identify adopters
and non-adopters after the network is perturbed. This self-labeling
technique allows us to study the e�ect of perturbations on user
adoption by alleviating the issue of data scarcity regarding users
with unseen combinations of attribute and neighborhoods.

In order to model the e�ect of perturbations, we propose a real-
istic model that can be used to strategically accelerate spread from
adopters to non-adopters. The attributed networks we consider are
unweighted, undirected graphs with binary node attributes and
labels, where states of both attributes and labels correspond to the
adoption of marketable products. Accordingly, at any given time, (a)
new edges can be added only between adopters and non-adopters,
as in referral marketing [2], and (b) adopters can further adopt
similar products or products by �ipping corresponding attributes
from 0 to 1, as in joint or co-marketing [12].

The resulting Dynamic Viral Marketing (DVM) problem seeks
to �nd the minimum budget and minimal dynamic perturbation set
to attain a spread goal. We show that DVM is NP-Hard and relate
it to the In�uence Maximization (IM) problem [15]. Similar to IM
under the linear threshold model, nodes in DVM �ip when the sum
of incoming in�uence edge weights exceeds the node’s adoption
threshold. Despite the similarity, the two problems are di�erent as
incoming in�uence edge weights and node thresholds in DVM are
dynamic and governed by the underlying GNN propagation model.

Motivated by the connection of IM to DVM, we develop the
Dynamic Gradient In�uencing (DGI) framework to solve the DVM
problem. DGI unrolls in discrete steps; each step involves �ipping a
non-adopter node that has the lowest budget and maximum down-
stream in�uence. We use gradient-guided node �ipping to �nd
the required dynamic perturbations. We develop an e�cient node
�ipping budget computation approach using bisection search to
maintain node budgets at each step. To estimate a node’s down-
stream in�uence, we develop the gradient based “Meta In�uence”
heuristic and the corresponding “Meta Attribute Flips” to increase
the potency of edge perturbations.

Our contributions are as follows:

• We propose the novel Dynamic Viral Marketing (DVM) prob-
lem to �nd the minimum budget and a minimal dynamic per-
turbation set to attain a spread goal; a non-linear GNN acts

as the propagation model and perturbations are restricted
by referral and co-marketing constraints. We show DVM is
NP-Hard and connect it to in�uence maximization.

• We develop the Dynamic Gradient In�uencing (DGI) frame-
work that targets low budget and high in�uence non-adopters,
using (a) e�cient budget computation, and (b) a novel Meta
In�uence heuristic with Meta Attribute Flips.

• We comprehensively evaluate DGI on 3 real-world attributed
networks and show gains of 24% on budget and 37% on
AUC over multiple baselines. Further, we extensively analyze
cascade patterns created by DGI and intermediary nodes.

2 Preliminaries
Consider a graph ⌧ = (�,-), with the associated adjacency matrix
� 2 {0, 1}=⇥= and node attribute matrix- 2 {0, 1}=⇥3 respectively,
and node labels . 2 {0, 1}= . We refer to the associated node-ids
as V = {1, . . . ,=}. We denote the node feature GE 2 {0, 1}3 , and
the node label ~E 2 {0, 1}. The set of adopters and non-adopters is
denoted as (and ⇡ respectively. For convenience, we denote the
sub-matrix of � de�ning node connectivity from a set of nodes (to
a set of nodes ⇡ as �(,⇡ , the sub-matrix of - containing features
for a set of nodes (as-(, and the vectors of ones and zeros as 1 and
0 respectively. We denote the weights on edge and feature pertur-
bations as %� and %- respectively. The gradient scores on edge and
feature perturbations are denoted by %̂� and %̂- respectively. For a
dynamic network, the superscript C is used to indicate the variable
at time C ; we drop the superscript if it’s clear from the context.

We consider the large family of graph neural networks [11, 16]
to construct layerwise hidden representations and �nally output
classi�er logit scores / 2 R=⇥2. For an L-layer GNN,

�; = f (�̂,;�;�1),

�0 = - , / = �!

where,; refers to the learnable GNN parameters at layer l, f is
a nonlinear activation, and �̂ is the GNN propagation matrix. For
Graph Convolutional Networks (GCN) [16], �̂ = �̄�

1
2 �̄�̄�

1
2 , where

�̄ = �+� and �̄ is the associated degree matrix. For GraphSAGE [11]
with mean pooling, �̂ = �̄�1�̄. The predicted labels ~0E 2 {0, 1} for
each node E 2 V are given by the class with the maximum logit
score. In typical semi-supervised learning for node classi�cation,
referred to as transductive learning, the GNN parameters, are
learned by minimizing the cross-entropy classi�cation loss,

LCA (E) = � logf (IE)~E (1)

where IE denotes logit scores for node E and f the softmax function.

3 Dynamic Viral Marketing Problem
In this section, we present the problem of viral marketing [7, 26]
in the context of dynamic changes for accelerating the adoption of
products by customers. Speci�cally, we consider a dynamic mar-
keting scenario with the following salient properties:

(1) Referral marketing: Companies incentivize people who arere
already using their product to refer it to others; adopters
make new connections in the network to non-adopters.

3983

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

(2) Co-marketing: Companies partner with other companies or
jointly market a group of products; people who adopt the
target product likely adopt similar products and vice versa.

Formally, consider ⌧C = (�C ,- C ,. C
), a series of undirected, un-

weighted, and dynamic attributed networks, observed at time steps
C = 1, . . . ,) , where �C represents the adjacency matrix de�ning
node connectivity, - C represents a binary node feature matrix con-
taining adoption labels for related products, and . C represents the
binary adoption labels for the target product. We assume that adop-
tion labels are given by . C = 5 (�C ,- C ,. 0

), where 5 () is a general
propagation model that governs di�usion of the initial labels . 0 us-
ing network structure and attributes at time C . The sets of adopters
and non-adopters at time C are denoted by (C and ⇡C respectively,

(C =
’
E

1[~CE = 1], ,⇡C =
’
E

1[~CE = 0] (2)

The �nal spread, f () in the network at time) is given by,

f (⌧)
) = |() |. (3)

Due to the representation learning ability of graph neural net-
works (GNNs) [6, 16, 18, 30] through the propagation of feature
and label information, we use them as our propagation model 5 ().
Speci�cally, a GNN 5\ is trained on the initial network⌧0 and its pa-
rameters \ are then �xed. The GNN uses both structure and feature
information to yield a decision boundary between adopters and non-
adopters; the marketing objective is to �ip nodes from non-adopters
to adopters. Thereafter, we use self-labeling: the predictions from
the GNN on ⌧C yield adoption states . C . Therefore, both our seed
nodes, . 0, and our propagation model, 5 (), are data-driven.

The dynamic network transitions are constrained as follows:
• Referral marketing: Edge insertions can be made only be-
tween (C�1 and ⇡C�1 at time C � 1; total cost of structural
changes is |�C

��C�1
|.

• Co-marketing: Features of nodes in (C�1 can �ip from 0 to 1
at time C � 1; total cost of attribute changes is |- C

� - C�1
|.

As all the changes are made incrementally, the total cost incurred
is given by |�) ��0

| + |-)
� - 0

|.

Dynamic Viral Marketing (DVM). : We now state the DVM op-
timization problem of �nding the minimum budget, ` (), and a
minimal set of changes to reach a spread q ,

arg-min
�1,...,�) ,- 1,...,-)

f (⌧)
) � q, (4)

` (q,⌧0) = |�) ��0
| + |-)

� - 0
|. (5)

Fig. 1 depicts the DVM problem schematically. Note that while
the total budget is a function of the �nal adjacency and feature
matrices, to solve the DVM problem a sequence of structural and
attribute changes under the referral and co-marketing contraints
are required. Furthermore, while we use a uniform cost model on
edge and attribute perturbations, the problem can be extended to
bespoke settings by using edge-speci�c and attribute-speci�c costs.

NP-Hardness of DVM decision problem: Consider an instance of
the NP-hard Knapsack problem, de�ned by a maximum value + , a
maximumweight, , and a set of= items- = {(E1,F1), . . . , (E=,F=)}

where E8 andF8 denote the 8C⌘ item’s value and weight respectively.
The decision problem is whether there exists a subset of items

/ ⇢ - with total weight
Õ
82/ F8 , and total value

Õ
82/ E8 � + .

We show that this problem reduces to the decision problem of DVM.
Given an arbitrary instance of the Knapsack problem, consider

a star network with node C at the center which is connected to =
nodes B8 and another = nodes C8 . Each B8 is in turn connected to two
other nodes 18 and 28 . The initial labels on C, B8 , C8 are 0 and that on
18 , 28 are 1. Each node has one feature that is initially 1 �F8 at 18 ,
+ � 1 at 28 , E8 at B8 and + at C . The cost of changing the feature at
a node 18 from a value of 1 �F8 to 1 isF8 . The feature values are
held constant at all other nodes. The GNN classi�er parameters are
tuned such that the prediction on a node �ips from 0 to 1 when the
sum of its neighborhood features at nodes labeled 1 is at least + .

Note that at a cost of F8 , the feature at node 18 can be set to 1.
This causes the label at B8 to �ip. If there is a subset / of B8 nodes
whose labels are 1 with ⌃82/ E8 � + then the label on C will also �ip
to 1. This will then cascade to �ips at all the = nodes C8 .

Thus, if there is a solution to the Knapsack problem then there
is a spread of size � = + 1 with a cost  , . Similarly, if there is
a spread of size � = + 1 with a cost  , then node C must have
�ipped implying that there is a subset of B8 nodes with label 1 and
whose features add up to at least + . This subset of B8 nodes must
have �ipped due to the features of the corresponding 18 nodes being
incremented byF8 . The sum total of these increments is bounded
by, , thus leading to a solution to the Knapsack problem. É

3.1 Relating DVM to In�uence Maximization
We draw an interesting connection between DVM and the related
problem of in�uence maximization (IM) [15]. Consider the linear
threshold propagation model [10], where nodes 8 2 [=] randomly
choose a threshold \8 2 [0, 1] and incoming in�uence edge weights
�8, 9 such that 88,

Õ
9 �8, 9  1. The propagation unfolds in discrete

time steps—if the set of active nodes at any given step is (, then an
inactive node becomes active if the following constraint is satis�ed:’

92(

�8, 9 � \8 . (6)

While the objective in IM is to �nd a set of seed nodes for maximiz-
ing spread, we instead search for a sequence of dynamical changes
to maximize spread. Despite the di�erence, given the set of adopters
(C�1 at step C � 1, the criterion for a node to �ip in DVM has a
similar form as Eq. 6. Suppose that the L-layer GNN 5\ has the
associated L-step random walk propagation matrix " . Then the
following theorem holds,

T������ 1. Let the vector YC9 = GC9 � G
C�1
9 denote the change in

the feature of node 9 from time C � 1 to C . Further, let the matrix
b = "C

�"C�1 denote the change in the L-step random walk matrix
" from time C � 1 to C . Then the dynamic threshold and in�uence
edge weights for node 8 to �ip at time C according to the criterion in
Eq. 6 are given by:

\C8 = IC�18,0 � I
C�1
8,1 (7)

�C8, 9 = "CU) YC9 + bC8, 9U
) GC�1 (8)

where U is a vector which depends on the parameters \ of the GNN.

The proof can be found in Sec A. Intuitively, the dynamic node
threshold depends on its logit margin, and the dynamic in�uence

3984

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Saurabh Sharma & Ambuj Singh

Figure 2: Overview of the Dynamic Gradient In�uencing (DGI) framework. DGI picks candidate nodes to �ip using Node
Flipping Budget Compute, which involves gradient sorting along with bisection search, hashing and a�ected set estimation.
The gradient-based Meta In�uence Heuristic is used to tiebreak among least budget candidate nodes, as well as thresholding
for Meta Attribute Flips that enhance node potency. Red lines and circles indicate candidate perturbations.

edge weights depend on both the feature change Y 9 and the random
walk propagation change b8, 9 . Theorem 1 suggests that budget
should be spent on changes which contribute most to the incoming
in�uence weights and push the node just beyond its threshold.

4 Dynamic Gradient In�uencing Framework
Motivated by the criterion for node �ipping in Thm. 1, that the sum
of the dynamic in�uence edge weights must exceed the dynamic
node threshold, we develop the Dynamic Gradient In�uencing (DGI)
framework to solve the DVM problem. DGI uses Gradient-Guided
Node Flipping (c.f. Sec. 4.1), to �ip a particular candidate node in
each step. At each step C , the candidate node to �ip, EC , is given by:

arg-max
E2#

�C (E), where # = arg-min
F2⇡

⌫C (F) (9)

where ⌫C (F) denotes the budget required to �ip nodeF , and �C (E)
denotes the Meta In�uence of node E . In other words, we choose the
node with the least budget to �ip and the highest Meta In�uence.
Using our novel Node Flipping Budget Computation algorithm (c.f.
Sec. 4.2) candidate nodes are picked in order of lowest budget �rst.
Further, we develop a novel Meta In�uence heuristic (c.f. Sec. 4.3)
for tiebreaking between equal budget candidates and thresholding
for Meta Attribute Flips. We use Meta Attribute Flips to enhance
a �ipped node’s downstream edge in�uence. Sec. E details DGI’s
asymptotic running time complexity. The complete DGI pipeline is
depicted in Fig. 2, and the algorithm can be found in Alg. 2.

4.1 Gradient-Guided Node Flipping
In DGI, the core functionality for �ipping nodes is accomplished
through gradients on the restricted set of perturbations arising from
the referral and co-marketing constraints of DVM. Speci�cally, the
only changes that can happen to the adjacency matrix� and feature

matrix- are restricted to the submatrices�(,⇡ and-(respectively.
Therefore, we de�ne:

�C
(,⇡ = �C�1

(,⇡ + %C� � (11
)
��C�1

(,⇡), �C
⇡,(= (�C

(,⇡)
) (10)

- C
(= - C�1

(+ %C- � (11
)
� - C�1

() (11)

where %C� and %C- represent the weights on the edge and feature
perturbations, (= (C�1 and⇡ = ⇡C�1, and � denotes the Hadamard
product. We initialize %C� = 00) and %C- = 00) .

While it is an NP-Hard combinatorial optimization problem to
�nd the minimal perturbation that �ips a node, given that the adja-
cency and feature matrices are both discrete, �rst-order gradients
work well enough in practice to �nd the required perturbations
[5, 34]. We consider the negative cross-entropy loss as our �ip loss
for the chosen candidate node E 2 ⇡ :

!C5 ;8? (E) = logf (IC�1E)0 . (12)

Note that ~E = 0 for non-adopters and ~E = 1 for adopters. We
then compute non-negative gradient scores on edge perturbation
weights, %̂C� , and feature perturbation weights, %̂C- , with respect to
the �ip loss:

%̂C� = max

 "
m!C5 ;8? (E)

m%C�

#
, 0

!
, %̂C- = max

 "
m!C5 ;8? (E)

m%C-

#
, 0

!
. (13)

We only compute the gradients once for all the perturbations.
While it is possible to recompute gradients after every perturba-
tion [5], we �nd that this is not that necessary to �nd the minimal
set of perturbations. Moreover, as shown later, by merging and sort-
ing the perturbations using the gradients, we can �nd the minimal
perturbation set and minimum budget e�ciently. Finally, suppose
the minimum budget required to convert E is ⌫(E), then we �nd

3985

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

the top-B(v) indices in the union of edge and feature perturbations:

%̂C = sort(merge(%̂C�, %̂
C
-)) (14)

8C�, 8
C
- = argtop-k:=⌫ (E) %̂ . (15)

Using the index sets 8C� and 8C- we can make the updates to the
network to convert E :

[�C
(,⇡]8C�

 1, �C
⇡,((�C

(,⇡)
) (16)

[- C
(]8C-

 1. (17)

4.2 Node Flipping Budget Computation
The budget needed to �ip a node E depends on both the logit mar-
gin in Eq. 7 and the node’s degree deg(E) [8, 24]. In the adversarial
attack framework, the practice is to set the node budget equal to
its degree for local attacks [24], or choose a loss function which
orders gradients in order of nodes closer to the decision boundary
for global attacks [8]. However, due to the budget minimizing ob-
jective of DVM, we need to compute the budget precisely and pick
candidate nodes that need the least budget.

Therefore, to compute the minimum budget ⌫C (E) that converts
node E , we use the bisection method [1, 27]. For each node, we
compute the sorted gradients, %̂ in Eq. 15 once and run bisection
search over these gradients to �nd the minimal set of perturbations
required to convert E . We initialize the lower and upper bound for
search as 0 and deg(E), the degree of E , respectively. Thereafter, the
upper bound is doubled until it is su�cient to convert E . We set the
maximum upper bound equal to the maximum node degree of the
network. After �xing the upper bound, bisection search repeatedly
halves the search interval by checking feasibility of conversion at
the midpoint of the interval and converges logarithmically.

We observe that other nodes also �ip due to the same structure
or attribute changes made for �ipping a candidate node. Therefore,
to choose the best candidate, we update the budget:

⌫C (E) ⌫C (E) + (|(C�1 | � |(CE |) (18)

where (CE is the set of adopters at time C if node E is selected as the
candidate node to �ip. Thus, ⌫C (E) represents both the node �ipping
budget and the "collateral damage" to other nodes from �ipping
it. Therefore, if a node with more budget causes high collateral
damage it is preferable to a node with a lesser actual budget.

Since budgets need to be recomputed for all non-adopters at
every step, we make the algorithm faster by hashing node budgets
and only recomputing budgets for nodes whose budget has changed.
The recompute set 'C is de�ned as the set of nodes whose logit
scores changed in the previous time step:

'C = {E |E 2 ⇡C , ICE < IC�1E }. (19)

For nodes whose logit scores are unchanged the actual budget
might still change slightly, but for the purposes of picking the best
candidate node we ignore these small changes. The entire algorithm
for budget computation can be found in Alg. 1.

4.3 Meta In�uence Using Meta Attribute Flips
Due to the dynamic sequence of changes involved in spreading
product adoption in DVM, �rst-order gradients in Eq. 13 are insuf-
�cient to capture the long-range e�ects of a perturbation. While

the �ipping budget is minimized at each step, we need to charac-
terize nodes that have high in�uence so that adoptions can cascade
sequentially. Therefore, we develop the Meta In�uence heuristic
to model long-range e�ects and estimate downstream in�uence.
Meta In�uence uses Meta Attribute Flips which are feature pertur-
bations that increase the potency of outgoing edge perturbations
at an adopter node. Consequently, the Meta In�uence is de�ned
as the normalized gradient score on an adopter’s outgoing edge
perturbations post Meta Attribute Flips.

For Meta Attribute Flips, we restrict feature perturbations only
to the features of node E and de�ne perturbation weights %- :

GC
0

E = GCE + %- � (1 � GCE) (20)

where C 0 indicates an auxilliary time step. We initialize %- = 0. To
capture the e�ect of Meta Attribute Flips, we consider an in�uence
loss that is the sum on all non-adopters nodes of a CW-type loss [3]
based on the logit margin, and compute gradient scores %̂- :

!C
0

8=5 ; (E) =
’
F2⇡

(ICF,1 � I
C
F,0) (21)

%̂C
0

- = max ©≠
´
266664
m!C

0

8=5 ; (E)

m%C
0

-

377775
, 0™Æ

¨
. (22)

Thereafter, we update the features GE using Meta Attribute Flips,
which are the top-k ranked perturbations in %C

0

- , for the purposes
of computing Meta In�uence:

8C
0

- = argtop-k %̂C
0

- , [GC
0

E]8C
0

-
 1 (23)

where : is a hyper-parameter controlling the number of Meta At-
tribute Flips. From Thm. 1, Meta Attribute Flips �nd feature changes
that align with the GNN’s classi�er weights and increase the dy-
namic outgoing edge in�uence to other nodes in Eq. 8. Further, they
also help to increase the margin from the GNN decision boundary
and thus increase the node’s potency.

For �nding the Meta In�uence, we restrict the outgoing edge
perturbations %� from node E to the non-adopters ⇡ , and de�ne
corresponding edge perturbation weights %�:

�C 00
E,⇡ = �C 0

E,⇡ + %C
00

� � (1 ��
C 0
E,⇡) (24)

where C 00 indicates another auxilliary time step after C 0 and %C
00

� = 0.
Now consider the same in�uence loss in Eq. 21 on all non-adopters
at time C 00, and compute non-negative gradient scores %̂C

00

� :

%̂C
00

� = max ©≠
´
266664
m!C

00

8=5 ; (E)

m%C
00

�

377775
, 0™Æ

¨
. (25)

Note that in�uence loss uses the discrete perturbed feature GC
0

E ,
which is computed using �rst order gradients, therefore Meta In�u-
ence can capture second order gradient e�ects. Finally, we denote
the Meta In�uence �C (E) of a node E as the normalized gradient
score in %̂C

00

� averaged over the number of non-adopters:

�C (E) =
1) %̂C

00

�

|⇡ |
. (26)

3986

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Saurabh Sharma & Ambuj Singh

During candidate node selection, Meta In�uence is used for
tiebreaking between equal budget nodes (Eq. 9). Further, we thresh-
old on Meta In�uence to perform Meta Attribute Flips:

GCE

(
GC
0

E if �C (E) � V

GCE otherwise
(27)

where V is a hyper-parameter controlling the threshold. Using Meta
In�uence, we can estimate which nodes will have high in�uence on
their outgoing edges after Meta Attribute Flips, and thus judiciously
allocate budget for Meta Attribute Flips. In Sec. 5.2, we validate that
nodes with high Meta In�uence indeed contribute more outgoing
edge perturbations to non-adopters.

5 Experiments
We conducted experiments on real-world attributed network datasets
to answer the following research questions:

• RQ1: How does DGI compare with baselines for DVM?
• RQ2: Does Meta In�uence accelerate spread and capture a
node’s actual dynamic in�uence?

• RQ3: What kinds of cascade patterns are created by DGI?
• RQ4: What are the properties of intermediary nodes in cas-
cades created by DGI?

Datasets: We utilize three real-world attributed datasets to eval-
uate DGI and baseline approaches. Epinions and Ciao [28] are
datasets collected from two popular product review sites, where
each user can specify their trust relation in addition to rating prod-
ucts. Flixster [13] is a dataset collected from a popular movie rating
website with an associated social graph. We create new small-scale
and large-scale splits for these datasets using the provided user net-
works and product ratings from [28, 36]. For small-scale split gener-
ation, we sort the nodes using their degrees and take the subgraph
corresponding to the lowest degree nodes. To generate features for
each user, we pick a binary value for each product/movie based on
whether they rated it or not. We choose the product/movie with
the least number of seeds as the optimization goal for DVM. The
analysis in the main paper is conducted on the small-scale splits
and their statistics are depicted in Table 1. Additional details and
results on large-scale splits using Fast-DGI can be found in Sec. C.

Table 1: Dataset statistics. |S| denotes seed set size.

Dataset |V| |E | Avg, Max Deg. |S| #Features

Flixster 1045 1488 2.8, 153 5 839
Epinions 1054 1214 2.3, 25 5 2999
Ciao 1057 1190 2.3, 36 7 2999

Evaluation metric: The e�cacy of the proposed dynamic DGI and
baselines is evaluated using the minimum budget needed to spread
to ⇠ = 500 target nodes on the respective network. We use a �xed
number of targets to spread to make the results across di�erent
datasets comparable. We also report the Area Under Curve (AUC) of
the budget-spread curve, which gives an aggregate estimate of the
budget required for di�erent spread values. For calculating AUC,
we normalize the budget by (

Õ
(�)/2 +

Õ
(-)), i.e., the sum of the

number of edges and turned on features. Lower values of budget
and AUC indicate better performance.

Variants: We consider three variants of DGI in our experiments:
• Base is DGI without Meta Attribute Flips. It uses Meta In�u-
ence only for tiebreaking in Eq. 9.

• Fixed is DGI with �xed Meta Attribute Flips. It is equivalent
to using a threshold V = 0 in Eq. 7.

• Dynamic is DGI with optimally chosen threshold V .

Baselines: We compare with the following approaches:
• Degree selects target nodes in order of low-degree �rst. Until
the target is �ipped, Degree repeatedly spends a unit budget
by �rst randomly picking a seeder node, then either adds a
link from the seeder to the target if they aren’t connected,
else turns on a feature with high-correlation to the label.

• Margin selects target nodes based on the low-margin �rst
heuristic, i.e., nodes that have a smaller margin to the de-
cision boundary are picked �rst. Edits to the structure and
features are made in the same way as Degree.

• GradArgmax [5] is a gradient based white-box adversarial
attack on structure. Target nodes are selected in the order of
lower losses �rst. We adapt GradArgmax to make edits to
both structure and features.

• MiBTack [36] is another white-box adversarial attack that
dynamically adjusts node budgets for topology-based PGD
[34]. We adapt MiBTack to make edits to both structure and
features while selecting target nodes same as GradArgmax.

5.1 Performance Comparison (RQ1)
We compare DGI variants to baselines using budget and AUC at
⇠ = 500 in Table 2 and Table 3 respectively. We report results with
both GCN [16] and GraphSAGE [11] as the propagation models.
DGI variants outperform the baselines in all the scenarios. Among
the variants, Dynamic does the best, followed by Base and then
Fixed. Fixed overspends budget on Meta Attribute Flips over Base
by using a threshold of V = 0, and Dynamic spends the least budget
by optimally selecting nodes with high Meta In�uence (for spend-
ing additional budget) for Meta Attribute Flips. Further, we plot
budget spread curves on Flixster and Epinions in Fig. 3. Dynamic
DGI consistently achieves the minimum budget across all levels. To
understand the time evolution of the spread for di�erent variants,
we plot spread as a function of time in Fig. 4a. Due to the accelerat-
ing e�ect of Meta Attribute Flips, Fixed spreads fastest, followed
by the economical Dynamic and the conservative Base approach.

5.2 Strategy of Meta In�uence (RQ2)
To validate the e�ectiveness of Meta In�uence and Meta Attribute
Flips, we plot the histogram of perturbations contributed by nodes
with respect to their Meta In�uence in Fig. 4b. For each dataset, we
normalize the Meta In�uence to lie in the interval [0,1] and divide
uniformly into 10 sub-intervals. For each sub-interval, we count
the number of perturbations contributed by nodes whose Meta
In�uence lies within it. We carry out the analysis on Fixed DGI, in
which Meta Attribute Flips are made at each node. We observe a
high correlation of Meta In�uence to the number of contributed
perturbations across all the datasets. Note that the Meta In�uence

3987

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 2: Comparison of DGI variants to baselines. Numbers
indicate minimum budget to spread to 500 nodes. GCN and
SAGE are used as the GNN propagation backbones. Dynamic
DGI consistently achieves the minimum budget.

Flixster Epinions Ciao
GCN SAGE GCN SAGE GCN SAGE

Degree 2551 6573 22076 21125 25162 45291
Margin 8136 7655 26109 18550 20814 41077
GradArgmax 1012 625 5893 859 2620 972
MiBTack 843 583 2828 866 5111 1035
Base 791 543 3342 1099 3525 856
Fixed 831 571 1985 1297 2221 1094
Dynamic 667 494 1893 803 2096 821

Table 3: Comparison of DGI variants to baselines. Numbers
indicate AUC of budget-spread curves. Dynamic DGI consis-
tently achieves the minimum AUC.

Flixster Epinions Ciao
GCN SAGE GCN SAGE GCN SAGE

Degree 19.48 150.50 215.33 328.15 349.48 631.66
Margin 173.70 177.71 366.43 284.77 287.11 595.69
GradArgmax 23.32 13.72 112.84 16.36 54.46 18.52
MiBTack 21.78 16.77 50.70 21.03 80.95 21.91
Base 19.06 11.68 56.82 19.23 46.59 14.46
Fixed 20.78 12.53 36.41 23.75 36.20 19.82
Dynamic 18.27 10.17 31.93 15.18 33.84 13.33

(a) Flixster (b) Epinions

Figure 3: Budget spent as a function of increasing spread
with GCN as the GNN propagation model. Dynamic requires
consistently lower budgets across all spreads.

is computed at the step when the node is �ipped, but even then
it provides a good signal of how important that node will be later.
This shows that the Meta In�uence is a close approximation of the
actual node in�uence in terms of perturbations it makes. Further,
by thresholding on the Meta In�uence, we are able to save budget
by not applying Meta Attribute Flips on low-in�uence nodes.

5.3 Cascades created by DGI (RQ3)
To understand cascades created by the DGI spread, in Fig. 5a, we
qualitatively visualize a subgraph spanned by the Dynamic DGI
edges rooted at a single source node on Flixster, and color each
node according to its cascade hop distance from the root. We de�ne

(a) Flixster Time Evolution (b) Meta In�uence Strategy

Figure 4: (a) Spread achieved with increasing time steps for
Flixster with GCN backbone. Fixed and Dynamic spread
faster than Base due to acceleration from Meta Attribute
Flips. (b) Histogram of perturbations contributed by interme-
diary adopter nodes with increasing Meta In�uence, where
scaling is used for mapping Meta In�uence to [0,1]. Higher
Meta In�uence adopter nodes contributemore perturbations.

the cascade hop distance of a node from the seed set inductively:

⌘>? (8) = 1 + max
92%# (8)

⌘>? (9) (28)

where⌘>? (8) = 0 for nodes in the initial seed set, and %# (8) denotes
perturbed neighbors of node 8 at the step when it �ips. Further, we
use node size to indicate the number of perturbations the node
contributes in the course of the multi-step spread. We clearly see
a strong pattern of cascading �ips, whereby a node �ipped earlier
later �ips many more and so on inductively. Therefore, the DGI
spread creates cascading �ipping, similar to a chain of referrals in a
social network, where each referral is an entirely new edge. We also
see from the node sizes that a few nodes are dominant spreaders
while others contribute very little.

To understand the cascades created by DGI quantitatively, in
Fig. 5b we plot the number of non-adopter �ips with increasing hop
distances for Flixster, Epinions and Ciao. Multi-hop cascade �ips
account for a sizable number of the total �ips, which indicates that
multi-hop path �ips help in decreasing the budget required for the
spread. Further, the cascade hop length can be considerably large.
Particularly, for Flixster, we see nodes with cascade hop lengths
up to 30, indicating how the added perturbations can percolate the
adoption far from the seed set.

5.4 Properties of Intermediary spreaders (RQ4)
To understand the properties of intermediary spreader nodes, we
plot the histogram of perturbations contributed by intermediary
spreader nodes with respect to their degree and classi�cation mar-
gin in Fig. 6a and Fig. 6b respectively. For each dataset, we count the
number of perturbations arising from nodes with the degree and
classi�cationmargin lying within the same sub-interval. The degree
and margin are considered at the moment the perturbation is made
to account for dynamic changes. Due to the degree normalization
in GNN message passing, low degree nodes have a higher in�uence
edge weight, and we observe that nodes with low degree are highly
correlated to higher number of perturbations. On the other hand,
high classi�cation margin indicates high feature and neighborhood
alignment with the GNN classi�er, therefore making outgoing edge

3988

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Saurabh Sharma & Ambuj Singh

(a) (b)

Figure 5: (a): Visualization of cascading dynamics of DGI.
Node sizes and colors correspond to number of perturbations
and cascade hops respectively. Only edges added by DGI are
depicted. (b): Number of �ipped nodes at di�erent cascade
hops. DGI creates long and staggered cascades for DVM.

or feature perturbations more potent. Thus, perturbations are made
exclusively at nodes with the maximum possible margin.

(a) (b)

Figure 6: (a) Histogram of perturbations contributed by
intermediary spreader nodes with increasing degree. (b)
Histogram of perturbations contributed by intermediary
spreader nodes with increasing GCN classi�cation margin.
Higher contributions are made by spreader nodes with low
degrees and high margins.

6 Related Work
Models for Network Di�usion. The modeling of the di�usion of

innovations in a network through the process of social contagion
is a long studied topic [17]. Granovetter [10] developed a threshold
based model of collective behaviour where individuals are in�u-
enced by the proportion of others who come to a particular deci-
sion. Morris [23] studied a coordination game of direct bene�ts from
aligning choices with neighbors in a social network. In epidemiol-
ogy, the spread of biological disease is studied using probabilistic
transmission models of Susceptible, Infected and Recovered (SIR)
individuals [25]. The use of the network value of customers for
marketing was �rst explored in [7, 26]. Consequently, In�uence
Maximization (IM), the problem of �nding the most in�uential seed
set for viral marketing has been studied extensively [9, 15, 31].
Dynamic Viral Marketing lies within the broad class of spreading
network processes and we show how it is connected to IM.

Graph Neural Networks. Graph Neural Networks (GNN) are mes-
sage passing neural networks that operate on attributed networks

and have shown great success in problems such as node classi�-
cation, link prediction, recommendation systems, and community
detection. Various GNN architectures have been proposed since
their �rst inception—Graph Convolutional Networks [16], Graph-
SAGE [11], Graph Attention Networks [29], Simplifying Graph
Convolutional Networks [32]. We refer the reader to [33] for an
extensive survey of graph neural networks. We use GNNs as the
underlying propagation model for Dynamic Viral Marketing.

Gradient-based Network Optimization. Gradient-based network
optimization is used in many combinatorial network optimization
problems. In the context of adversarial attacks on GNNs, pertur-
bations are made using gradient optimization on the input net-
work structure to reduce the accuracy of a GNN classi�er [5, 34,
37]. Global attacks with dynamic budget adjustment for Topology
PGD [34] are considered by [36]. In [21], reinforcement learning
policies are optimized to solve Maximum Coverage, Vertex Cover,
and In�uence Maximization problems on networks. In [19], graph
neural networks are optimized to create graph embeddings and pre-
dict in�uence of nodes for solving In�uence Maximization. We use
gradient-based network optimization within the DGI framework.

7 Concluding Remarks
We proposed the novel Dynamic Viral Marketing (DVM) problem
to �nd the minimum budget and minimal perturbation set to attain
a spread goal, where the propagation model is a non-linear GNN
and perturbations are restricted by referral and co-marketing con-
straints.We showed that DVM is NP-Hard and is related to in�uence
maximization. We developed the Dynamic Gradient In�uencing
(DGI) framework, which targets non-adopters with low budget and
high in�uence. DGI uses gradient ranking to order perturbations
and utilizes an e�cient budget computation approach, a novel Meta
In�uence heuristic, and Meta Attribute Flips to increase a node’s
in�uence. We comprehensively evaluated DGI on three real world
attributed networks and demonstrated gains on average of 24% on
budget and 37% on AUC over multiple gradient and non-gradient
baselines. We validated the e�cacy of budget computation and
the Meta In�uence heuristic. We extensively analyzed the cascade
patterns through intermediary adopter nodes discovered by DGI.

This work opens up a new research direction: data-driven mod-
els for network propagation as alternatives to postulated models
such as Linear Threshold [10]. Data-driven models can incorporate
attributes and long-range interactions. This research also motivates
a number of future research questions, including model-based re-
inforcement learning [22] using such GNN models in unknown
environments, and development of data-driven competitive strate-
gies between groups, each trying to increase their spread.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under grant no. 2229876 and is supported in part by
funds provided by the National Science Foundation, by the Depart-
ment of Homeland Security, and by IBM.

Any opinions, �ndings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily re�ect the views of the National Science Foundation or
its federal agency and industry partners.

3989

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

References
[1] Stephen P Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge

university press.
[2] Francis A Buttle. 1998. Word of mouth: understanding and managing referral

marketing. Journal of strategic marketing 6, 3 (1998), 241–254.
[3] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of

neural networks. In 2017 ieee symposium on security and privacy (sp). Ieee, 39–57.
[4] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and Relieving the Over-Smoothing Problem for Graph Neural Networks from the
Topological View. In The Thirty-Fourth AAAI Conference on Arti�cial Intelligence,
AAAI. AAAI Press, 3438–3445. doi:10.1609/AAAI.V34I04.5747

[5] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
2018. Adversarial attack on graph structured data. In International conference on
machine learning. PMLR, 1115–1124.

[6] Michaël De�errard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral �ltering. Advances
in neural information processing systems 29 (2016).

[7] Pedro M. Domingos and Matthew Richardson. 2001. Mining the network value
of customers. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, San Francisco, CA, USA, August 26-29,
2001, Doheon Lee, Mario Schkolnick, Foster J. Provost, and Ramakrishnan Srikant
(Eds.). ACM, 57–66. doi:10.1145/502512.502525

[8] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bo-
jchevski, and Stephan Günnemann. 2021. Robustness of graph neural networks
at scale. Advances in Neural Information Processing Systems 34 (2021), 7637–7649.

[9] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2011. A Data-Based
Approach to Social In�uence Maximization. Proc. VLDB Endow. 5, 1 (2011), 73–84.
doi:10.14778/2047485.2047492

[10] Mark Granovetter. 1978. Threshold models of collective behavior. American
journal of sociology 83, 6 (1978), 1420–1443.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[12] Ironclad Journal. 2024. Joint Marketing Agreements. https://ironcladapp.com/
journal/contracts/joint-marketing-agreement/. Accessed: 2024-08-29.

[13] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In Proceedings of the
2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain,
September 26-30, 2010, Xavier Amatriain, Marc Torrens, Paul Resnick, and Markus
Zanker (Eds.). ACM, 135–142. doi:10.1145/1864708.1864736

[14] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An e�cient SMT solver for verifying deep neural networks. In
Computer Aided Veri�cation: 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I 30. Springer, 97–117.

[15] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2015. Maximizing the Spread
of In�uence through a Social Network. Theory Comput. 11 (2015), 105–147.
doi:10.4086/TOC.2015.V011A004

[16] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classi�cation with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[17] Jon Kleinberg. 2010. Networks, Crowds, and Markets. Cambridge University Press.
[18] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=H1gL-
2A9Ym

[19] Sanjay Kumar, Abhishek Mallik, Anavi Khetarpal, and Bhawani Sankar Panda.
2022. In�uence maximization in social networks using graph embedding and
graph neural network. Inf. Sci. 607 (2022), 1617–1636. doi:10.1016/J.INS.2022.06.
075

[20] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. 2020. Deeprobust: A pytorch library
for adversarial attacks and defenses. arXiv preprint arXiv:2005.06149 (2020).

[21] Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu,
and Ambuj K. Singh. 2020. GCOMB: Learning Budget-constrained Com-
binatorial Algorithms over Billion-sized Graphs. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
e7532dbe�7ef901f2e70daacb3f452d-Abstract.html

[22] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. 2023.
Model-based reinforcement learning: A survey. Foundations and Trends® in
Machine Learning 16, 1 (2023), 1–118.

[23] Stephen Morris. 2000. Contagion. The Review of Economic Studies 67, 1 (2000),
57–78.

[24] Felix Mujkanovic, Simon Geisler, Stephan Günnemann, and Aleksandar Bo-
jchevski. 2022. Are Defenses for Graph Neural Networks Robust? Advances in

Neural Information Processing Systems 35 (2022), 8954–8968.
[25] Mark Newman. 2018. Networks. Oxford university press.
[26] Matthew Richardson and Pedro M. Domingos. 2002. Mining knowledge-sharing

sites for viral marketing. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton,
Alberta, Canada. ACM, 61–70. doi:10.1145/775047.775057

[27] Pedro Tabacof and Eduardo Valle. 2016. Exploring the space of adversarial images.
In 2016 international joint conference on neural networks (IJCNN). IEEE, 426–433.

[28] Jiliang Tang, Huiji Gao, and Huan Liu. 2012. mTrust: discerning multi-faceted
trust in a connected world. In Proceedings of the Fifth International Conference
on Web Search and Web Data Mining, WSDM 2012, Seattle, WA, USA, February
8-12, 2012, Eytan Adar, Jaime Teevan, Eugene Agichtein, and Yoelle Maarek (Eds.).
ACM, 93–102. doi:10.1145/2124295.2124309

[29] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.
net/forum?id=rJXMpikCZ

[30] Hongwei Wang and Jure Leskovec. 2020. Unifying Graph Convolutional Neural
Networks and Label Propagation. CoRR abs/2002.06755 (2020). arXiv:2002.06755
https://arxiv.org/abs/2002.06755

[31] Ying Wang and Yanhao Wang. 2023. Opinion-aware In�uence Maximization
in Online Social Networks. In 6th International Conference on Data Science and
Information Technology, DSIT 2023, Shanghai, China, July 28-30, 2023. IEEE, 214–
221. doi:10.1109/DSIT60026.2023.00040

[32] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA (Proceedings of Machine Learning
Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
6861–6871. http://proceedings.mlr.press/v97/wu19e.html

[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24. doi:10.1109/TNNLS.2020.
2978386

[34] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,
and Xue Lin. 2019. Topology attack and defense for graph neural networks: an
optimization perspective. In Proceedings of the 28th International Joint Conference
on Arti�cial Intelligence. 3961–3967.

[35] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.
2018. E�cient neural network robustness certi�cation with general activation
functions. Advances in neural information processing systems 31 (2018).

[36] Mengmei Zhang, XiaoWang, Chuan Shi, Lingjuan Lyu, Tianchi Yang, and Junping
Du. 2023. Minimum Topology Attacks for Graph Neural Networks. In Proceedings
of the ACM Web Conference 2023. 630–640.

[37] Daniel Zügner and Stephan Günnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In International Conference on Learning
Representations (ICLR).

A Proof of Thm. 1
P����. Consider an L-layer GNN without non-linearities. Then

the criterion to �ip node 8 at time C can be expressed in terms of
the L-step random walk matrix" and the weights,; ,’

92# (8)

"C
8 9F

)
!,1,̄ GC9 >

’
92# (8)

"C
8 9F

)
!,0,̄ GC9 (29)

whereF!,1 andF!,0 represents the �nal layer classi�er vectors
for the two classes, and ,̄ =

Œ!�1
8=1 ,; is the combined feature

transform of the �rst ! � 1 layers.
The criterion can be equivalently written as,

’
92# (8)

["C
8 9F

)
!,1,̄ (GC9 � G

C�1
9) + ("C

8 9 �"
C�1
8 9)F)

!,1,̄ GC�19

+"C�1
8 9 F)

!,1,̄ GC�19] >’
92# (8)

["C
8 9F

)
!,0,̄ (GC9 � G

C�1
9) + ("C

8 9 �"
C�1
8 9)F)

!,0,̄ GC�19

+"C�1
8 9 F)

!,0,̄ GC�19] (30)

3990

https://doi.org/10.1609/AAAI.V34I04.5747
https://doi.org/10.1145/502512.502525
https://doi.org/10.14778/2047485.2047492
https://ironcladapp.com/journal/contracts/joint-marketing-agreement/
https://ironcladapp.com/journal/contracts/joint-marketing-agreement/
https://doi.org/10.1145/1864708.1864736
https://doi.org/10.4086/TOC.2015.V011A004
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://doi.org/10.1016/J.INS.2022.06.075
https://doi.org/10.1016/J.INS.2022.06.075
https://proceedings.neurips.cc/paper/2020/hash/e7532dbeff7ef901f2e70daacb3f452d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e7532dbeff7ef901f2e70daacb3f452d-Abstract.html
https://doi.org/10.1145/775047.775057
https://doi.org/10.1145/2124295.2124309
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/2002.06755
https://arxiv.org/abs/2002.06755
https://doi.org/10.1109/DSIT60026.2023.00040
http://proceedings.mlr.press/v97/wu19e.html
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Saurabh Sharma & Ambuj Singh

Rearranging terms,’
92# (8)

["C
8 9 (F

)
!,1 �F

)
!,0),̄ (GC9 � G

C�1
9)

+ ("C
8 9 �"

C�1
8 9) (F)

!,1 �F
)
!,0),̄ GC�19] >’

92# (8)

"C�1
8 9 F)

!,0,̄ GC�19 �

’
92# (8)

"C�1
8 9 F)

!,1,̄ GC�19 (31)

Denoting U = ,̄)
(F!,1 �F!,0), and observing that the right hand

side is the logit margin at time C � 1, the above simpli�es to,’
92# (8)

["C
8 9U

) nC9 + bC8, 9U
) GC�1] > IC�18,0 � I

C�1
8,1 (32)

É

B Another proof of NP-Hardness
For the proof in the main paper we assumed unweighted edges and
weighted features, and directly relied upon the cascading �ipping
under the GNN propagation model to attain a desired spread. Below
we provide an even simpler proof where we assume both weighted
edges and weighted features.

Given an arbitrary instance of the Knapsack problem, consider
a weighted star network with target node C at the center which is
connected to = source nodes. Each node has a single feature, whose
value at node C is 0 and at node 8 is G8 = 1 � F8 . The weight on
the edge between node 8 and C is set to 08 = E8 . The initial label on
node C is 0 and the initial label on the other nodes is 1. The cost of
changing the feature at a node from a value of 1�F8 to 1 isF8 . The
GNN classi�er parameters are tuned such that the prediction on
node C �ips from 0 to 1 when the weighted sum of its neighborhood
of = nodes with feature value G8 = 1 is at least + (spread q = 1).
The Knapsack problem is solvable i�

Õ
82 [=] 081[G8 = 1] � + andÕ

82 [=] F81[G8 = 1]  , . Thus, if the DVM problem can �nd
feature �ips costing at most, at C ’s neighbors whose edge weights
sum to at least + then the Knapsack problem is solvable. É

For the interested reader, we also point to prior work on cer-
ti�able adversarial robustness for neural networks with ReLU ac-
tivation functions. The general problem of �nding the minimum
distortion of adversarial samples in NNs with ReLU activations is
known to be an NP-Complete problem [35]. More generally, NNs
are large, non-linear, and non-convex, and verifying even simple
properties about them is an NP-complete problem, as can be shown
using a reduction from the 3-SAT problem [14].

C Additional Results
C.1 Implementation details
For the propagation model, we use 2-layer GNN architectures, as
stacking multiple layers can lead to oversmoothing in GNNs [4].
We report results with both GCN [16] and GraphSAGE [11] as the
backbone propagationmodels.We set the hidden layer to size 64 and
use ReLU as the intermediate non-linear function. We train models
using cross entropy loss for 200 epochs, a patience of 50, learning
rate 1e-2 with cosine annealing and weight decay regularization
5e-4. We use all nodes and edges during training to attain the best
GNN decision boundary. All models achieve 100% accuracy on the
seed set along with a small number of false positives that are in

Algorithm 1: Bisection search to �nd minimum budget.

Input: ⌧ = (�,-), GNN 5\ , %̂ , Target node E .
Output: ⌫(E), minimum budget to �ip E .

1 Init bounds* = deg(E) and ! = 0
2 do
3 * = 2*
4 while E is not �ipped by top-U perturbations in %̂ ;
5 do
6 ⇠ = b* +!

2 c

7 if E is not �ipped by top-C perturbations in %̂ then
8 ! = ⇠
9 else
10 * = ⇠
11 end
12 while * � ! > 1;

return :*

Algorithm 2: DGI
Input: G=(A,X), GNN 5\ , Adopters (, Non-Adopters ⇡ , :, V
Output: Minimum budget required s.t. |(| = 500

1 Init budget B = 0
2 do
3 for E 2 ⇡ do
4 Compute %̂ in Eq. 15
5 Call Algorithm 1 to compute ⌫(E)
6 end
7 Find # , the set of minimum budget nodes
8 for E 2 # do
9 Compute the Meta In�uence � (E)

10 end
11 E⇤ max

E2#
� (E)

12 Perturb the network to �ip E⇤

13 if � (E⇤) > V then
14 Make : Meta Attribute Flips at E⇤

15 ⌫(E⇤) ⌫(E⇤) + :
16 end
17 B B + ⌫(E⇤)
18 (,⇡ {E |~0E = 1}, {E |~0E = 0}
19 while |(| < 500;

return :B

the vicinity of the seeds and are included in the initial seed set.
For the spread approaches, the hyperparameter : for number of
Meta Attribute Flips is set to a value in [1, 2, 4, 8, 16] using grid
search with Fixed DGI. The threshold hyerparameter V is set to a
value within [0, 1] of the maximum Meta In�uence in Fixed DGI
using grid search with Dynamic DGI. The maximum upper bound
to convert a node is set to the maximum degree in the graph during
bisection search. If the spread approach is unable to increase the
size of the adopters for 40 steps, we halt and report failure. We use
spread approaches with GCN backbones for all our analysis, and
note that the SAGE backbone yields the same insights. DGI and

3991

Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

baselines are implemented using the DeepRobust library in Pytorch
[20] for adversarial attacks on GNNs. All GNN models and spread
approaches are trained and executed on a single NVIDIA RTX2080
GPU with 8GM RAM.

C.2 Results on large-scale data
The statistics for the larger scale datasets are presented in Table 4,
and the results are presented in Table 5 and Table 6 respectively. It
is interesting to note the distinction of the larger scale datasets from
the smaller scale datasets in that the former are more tree like and
the latter are more dense. This causes the propagation to happen
much faster in the dense networks and with lesser budgets, there-
fore it is an easier problem when the attributed network is larger
and more dense. This also matches our intuition that densely con-
nected networks allow for faster information spread. This suggests
that sparser networks require more e�ort for a network process
such as DVM to achieve an equivalent amount of spread.

Table 4: Dataset statistics. |S| denotes seed set size.

Dataset |V| |E | Avg, Max Deg. |S| Feats

Flixster 3000 29677 20, 1716 10 839
Epinions 15948 234438 29, 1443 11 2999
Ciao 6841 77404 22, 749 6 2999

Table 5: Comparison of DGI variants to baselines. Numbers
indicate minimum budget to spread to 500 nodes. GCN and
SAGE are used as the GNN propagation backbones.

Flixster Epinions Ciao
GCN SAGE GCN SAGE GCN SAGE

GradArgmax 459 241 489 425 1097 630
MiBTack 399 310 376 383 869 705
Base 466 92 332 318 1136 615
Fixed 222 106 623 615 737 576
Dynamic 195 87 287 291 501 509

Table 6: Comparison of DGI variants to baselines. Numbers
indicate AUC of budget-spread curves.

Flixster Epinions Ciao
GCN SAGE GCN SAGE GCN SAGE

GradArgmax 2.36 1.23 0.27 0.24 1.18 0.82
MiBTack 1.87 1.45 0.16 0.17 0.98 0.90
Base 2.38 0.57 0.13 0.14 1.20 0.81
Fixed 1.17 0.61 0.29 0.28 0.85 0.77
Dynamic 1.08 0.48 0.11 0.12 0.71 0.70

D Ablation study
We study the e�ect of the di�erent components of Dynamic DGI,
i.e, budget compute (BC), tiebreaking (TB) and Meta Attribute Flips
(MAF), in Table 7 and Table 8 respectively. We see that the di�erent
components indeed cause an additive increase in the performance
of Dynamic DGI in all the scenarios, thus validating their utility.

Table 7: Ablation study for the e�ect of budget compute (BC),
tiebreaking (TB) using Meta In�uence, and Meta Attribute
Flips (MAF).

BC TB MAF Flixster Epinions Ciao
GCN SAGE GCN SAGE GCN SAGE
1012 625 5893 859 2620 972

ÿ 797 506 3235 831 4231 878
ÿ ÿ 791 543 3342 1099 3525 856
ÿ ÿ ÿ 667 494 1893 803 2096 821

Table 8: Ablation study for the e�ect of budget compute (BC),
tiebreaking (TB) using Meta In�uence, and Meta Attribute
Flips (MAF).

BC TB MAF Flixster Epinions Ciao
GCN SAGE GCN SAGE GCN SAGE
23.32 13.72 112.84 16.36 54.46 18.52

ÿ 19.44 10.54 54.01 15.44 66.02 14.66
ÿ ÿ 19.06 11.68 56.82 19.23 46.59 14.46
ÿ ÿ ÿ 18.27 10.17 31.93 15.18 33.84 13.33

E Complexity
In each step, for each target, DGI makes 1 backward pass to com-
pute gradients and then sorts the gradients in $ (⇢0 log⇢0) time,
where ⇢0 is the number of non-edges in the graph. This is followed
by$ (log�) forward passes in bisection search, where � is the max-
imum allowed budget, which we set as the maximum degree of the
graph. For the set of minimum budget nodes, the Meta In�uence
makes two forward and two backward passes. The time taken for
a forward or backward pass in a 2-layer GNN on a GPU is O(1)
assuming small input, hidden, and output sizes. Thus, in the �rst
step of DGI, we make $ (|⇡ |) inner steps of gradient-guided node
�ipping, budget computation, meta attribute �ips and meta in�u-
ence, which takes a total of $ (|⇡ | (⇢0 log⇢0 + log�)) time. In later
steps, due to budget hashing, we only recompute budgets for $ (1)
nodes, which takes $ (⇢0 log⇢0 + log�). Assuming that every step
of DGI �ips $ (1) non-adopter nodes, the total runtime complexity
of DGI to achieve a spread of q can be determined as:

$ (q (⇢0 log⇢0 + log�)) +$ (|⇡ | (⇢0 log⇢0 + log�)) . (33)

Since real world networks are mostly sparse, ⇢0 is usually quadratic
and DGI is di�cult to scale up for larger networks. Therefore, we
also use a faster variant of DGI, Fast DGI, for large scale network
splits, where we recompute budgets after every q

10 steps, therefore
bringing down the time complexity to:

$ (⇢0 log⇢0 + log�) +$ (|⇡ | (⇢0 log⇢0 + log�)) . (34)

3992

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Saurabh Sharma & Ambuj Singh

F Sensitivity Analysis
Table 9 reports the hyperparameters used in this work. The sen-
sitivity of Dynamic DGI to the hyperparameter V for threshold is
presented in Fig. 7a and Fig. 7b respectively. Likewise, sensitivity of
Dynamic DGI to hyperparameter : for number of Meta Attribute
Flips is presented in Fig. 8a and Fig. 8b respectively. We see that
larger values of V and smaller values of : generally work better.

Table 9: Hyperparameter values used for Dynamic DGI on
various datasets and GNN backbones. : denotes number of
Meta Attribute Flips and V (quantile) denotes the quantile of
the threshold V applied to the Meta In�uence.

Flixster Epinions Ciao
GCN SAGE GCN SAGE GCN SAGE

: 2 2 4 2 4 1
V (quantile) 0.75 0.94 0.65 0.98 0.30 0.90

(a) (b)

Figure 7: Sensitivity of Dynamic DGI to the in�uence thresh-
old parameter V. The x-axis represents the quantile of the
threshold V applied to the Meta In�uence for each dataset. (a)
represents budget and (b) represents AUC of budget-spread
curve for a spread of 500.

(a) (b)

Figure 8: Sensitivity of Dynamic DGI to the parameter : con-
trolling the number of Meta Attribute Flips. (a) represents
budget and (b) represents AUC of budget-spread curve for a
spread of 500.

3993

	Abstract
	1 Introduction
	2 Preliminaries
	3 Dynamic Viral Marketing Problem
	3.1 Relating DVM to Influence Maximization

	4 Dynamic Gradient Influencing Framework
	4.1 Gradient-Guided Node Flipping
	4.2 Node Flipping Budget Computation
	4.3 Meta Influence Using Meta Attribute Flips

	5 Experiments
	5.1 Performance Comparison (RQ1)
	5.2 Strategy of Meta Influence (RQ2)
	5.3 Cascades created by DGI (RQ3)
	5.4 Properties of Intermediary spreaders (RQ4)

	6 Related Work
	7 Concluding Remarks
	Acknowledgments
	References
	A Proof of Thm. 1
	B Another proof of NP-Hardness
	C Additional Results
	C.1 Implementation details
	C.2 Results on large-scale data

	D Ablation study
	E Complexity
	F Sensitivity Analysis

