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Figure 1: Overview of the Dynamic Viral Marketing (DVM) problem. At each time step, adopters and non-adopters in an
attributed user network are specified using a GNN classifier. Referral and co-marketing perturbations accelerate spreading
from adopters to non-adopters. DVM seeks to find the minimum budget and dynamic perturbation set to attain a spread goal.

Abstract

The problem of maximizing the adoption of a product through viral
marketing in social networks has been studied heavily through
postulated network models. We present a novel data-driven formu-
lation of the problem. We use Graph Neural Networks (GNNs) to
model the adoption of products by utilizing both topological and at-
tribute information. The resulting Dynamic Viral Marketing (DVM)
problem seeks to find the minimum budget and minimal set of
dynamic topological and attribute changes in order to attain a spec-
ified adoption goal. We show that DVM is NP-Hard and is related to
the existing influence maximization problem. Motivated by this con-
nection, we develop the idea of Dynamic Gradient Influencing (DGI)
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that uses gradient ranking to find optimal perturbations and targets
low-budget and high influence non-adopters in discrete steps. We
use an efficient strategy for computing node budgets and develop
the “Meta-Influence” heuristic for assessing a node’s downstream
influence. We evaluate DGI against multiple baselines and demon-
strate gains on average of 24% on budget and 37% on AUC on real-
world attributed networks. Our code is publicly available at https:
//github.com/saurabhsharma1993/dynamic_viral marketing.
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1 Introduction

Viral marketing is a highly significant strategy used to maximize the
adoption of products [7, 26], through diffusion in a social network
of users [23]. Prior work is based mainly on postulated network
propagation models of viral phenomena that focus on static topolo-
gies and ignore node attributes [15]. Furthermore, while finding
the influential seed set has been extensively studied, the problem of
making “dynamic” topological and attribute perturbations to maxi-
mize spread from adopters to non-adopters has not been addressed.

Instead of designed/postulated network propoagation models,
we adopt data-driven models, specifically non-linear Graph Neural
Networks (GNNs) [6, 16] to learn a propagation model directly
from attributed network data, and then use it to forecast future
states of the spread after the network is perturbed. We train a
GNN model on the initial state of the attributed network to learn
a data-driven mapping from user attributes and neighborhood to
its adoption label. Thereafter, the GNN parameters are fixed and
the decision boundary of the GNN is used to identify adopters
and non-adopters after the network is perturbed. This self-labeling
technique allows us to study the effect of perturbations on user
adoption by alleviating the issue of data scarcity regarding users
with unseen combinations of attribute and neighborhoods.

In order to model the effect of perturbations, we propose a real-
istic model that can be used to strategically accelerate spread from
adopters to non-adopters. The attributed networks we consider are
unweighted, undirected graphs with binary node attributes and
labels, where states of both attributes and labels correspond to the
adoption of marketable products. Accordingly, at any given time, (a)
new edges can be added only between adopters and non-adopters,
as in referral marketing [2], and (b) adopters can further adopt
similar products or products by flipping corresponding attributes
from 0 to 1, as in joint or co-marketing [12].

The resulting Dynamic Viral Marketing (DVM) problem seeks
to find the minimum budget and minimal dynamic perturbation set
to attain a spread goal. We show that DVM is NP-Hard and relate
it to the Influence Maximization (IM) problem [15]. Similar to IM
under the linear threshold model, nodes in DVM flip when the sum
of incoming influence edge weights exceeds the node’s adoption
threshold. Despite the similarity, the two problems are different as
incoming influence edge weights and node thresholds in DVM are
dynamic and governed by the underlying GNN propagation model.

Motivated by the connection of IM to DVM, we develop the
Dynamic Gradient Influencing (DGI) framework to solve the DVM
problem. DGI unrolls in discrete steps; each step involves flipping a
non-adopter node that has the lowest budget and maximum down-
stream influence. We use gradient-guided node flipping to find
the required dynamic perturbations. We develop an efficient node
flipping budget computation approach using bisection search to
maintain node budgets at each step. To estimate a node’s down-
stream influence, we develop the gradient based “Meta Influence”
heuristic and the corresponding “Meta Attribute Flips” to increase
the potency of edge perturbations.

Our contributions are as follows:

e We propose the novel Dynamic Viral Marketing (DVM) prob-
lem to find the minimum budget and a minimal dynamic per-
turbation set to attain a spread goal; a non-linear GNN acts
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as the propagation model and perturbations are restricted

by referral and co-marketing constraints. We show DVM is

NP-Hard and connect it to influence maximization.

We develop the Dynamic Gradient Influencing (DGI) frame-
work that targets low budget and high influence non-adopters,
using (a) efficient budget computation, and (b) a novel Meta

Influence heuristic with Meta Attribute Flips.

We comprehensively evaluate DGI on 3 real-world attributed

networks and show gains of 24% on budget and 37% on

AUC over multiple baselines. Further, we extensively analyze

cascade patterns created by DGI and intermediary nodes.

2 Preliminaries

Consider a graph G = (A, X), with the associated adjacency matrix
A € {0, 1} and node attribute matrix X € {0, 1}"%4 respectively,
and node labels Y € {0, 1}". We refer to the associated node-ids
asV = {1,...,n}. We denote the node feature x, € {0,1}<, and
the node label y, € {0, 1}. The set of adopters and non-adopters is
denoted as S and D respectively. For convenience, we denote the
sub-matrix of A defining node connectivity from a set of nodes S to
a set of nodes D as Ag p, the sub-matrix of X containing features
for a set of nodes S as X, and the vectors of ones and zeros as 1 and
0 respectively. We denote the weights on edge and feature pertur-
bations as P4 and Py respectively. The gradient scores on edge and
feature perturbations are denoted by P4 and Py respectively. For a
dynamic network, the superscript ¢ is used to indicate the variable
at time t; we drop the superscript if it’s clear from the context.

We consider the large family of graph neural networks [11, 16]
to construct layerwise hidden representations and finally output
classifier logit scores Z € R™*2. For an L-layer GNN,

H; = o(AW;H_,),
Hy=X, Z=H

where W, refers to the learnable GNN parameters at layer |, o is
a nonlinear activation, and A is the GNN propagation matrix. For
Graph Convolutional Networks (GCN) [16], A=A"1AA": , where
A = A+I and A is the associated degree matrix. For GraphSAGE [11]
with mean pooling, A = A~'A. The predicted labels ¢, € {0, 1} for
each node v € V are given by the class with the maximum logit
score. In typical semi-supervised learning for node classification,
referred to as transductive learning, the GNN parameters W are
learned by minimizing the cross-entropy classification loss,

(1)

where z, denotes logit scores for node v and o the softmax function.

Lir(0) = —loga(zo)y,

3 Dynamic Viral Marketing Problem

In this section, we present the problem of viral marketing [7, 26]
in the context of dynamic changes for accelerating the adoption of
products by customers. Specifically, we consider a dynamic mar-
keting scenario with the following salient properties:

(1) Referral marketing: Companies incentivize people who arere
already using their product to refer it to others; adopters
make new connections in the network to non-adopters.
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(2) Co-marketing: Companies partner with other companies or
jointly market a group of products; people who adopt the
target product likely adopt similar products and vice versa.

Formally, consider G! = (A%, X! Y?), a series of undirected, un-
weighted, and dynamic attributed networks, observed at time steps
t =1,...,T, where A represents the adjacency matrix defining
node connectivity, X! represents a binary node feature matrix con-
taining adoption labels for related products, and Y? represents the
binary adoption labels for the target product. We assume that adop-
tion labels are given by Y* = f(A?, X?, Y?), where f() is a general
propagation model that governs diffusion of the initial labels Y° us-
ing network structure and attributes at time . The sets of adopters
and non-adopters at time ¢ are denoted by S? and D? respectively,

s'=> 1lgh=11, D' =) 1y, =0] @
0 0
The final spread, o() in the network at time T is given by,
a(G") =157, ©

Due to the representation learning ability of graph neural net-
works (GNNs) [6, 16, 18, 30] through the propagation of feature
and label information, we use them as our propagation model f().
Specifically, a GNN fj is trained on the initial network G° and its pa-
rameters 6 are then fixed. The GNN uses both structure and feature
information to yield a decision boundary between adopters and non-
adopters; the marketing objective is to flip nodes from non-adopters
to adopters. Thereafter, we use self-labeling: the predictions from
the GNN on G? yield adoption states Y?. Therefore, both our seed
nodes, Y%, and our propagation model, f(), are data-driven.

The dynamic network transitions are constrained as follows:

o Referral marketing: Edge insertions can be made only be-
tween S'™! and D'~ at time ¢ — 1; total cost of structural
changes is |A? — A*71.

e Co-marketing: Features of nodes in S*~! can flip from 0 to 1
at time ¢ — 1; total cost of attribute changes is | X! — X*71].

As all the changes are made incrementally, the total cost incurred
is given by |AT — A% + |XT — x9|.

Dynamic Viral Marketing (DVM). : We now state the DVM op-
timization problem of finding the minimum budget, y(), and a
minimal set of changes to reach a spread ¢,

arg-min o(GT) > o, (4)
Al AT X1, XT
p(,Go) = |AT = A%+ [xT - X°|. ()

Fig. 1 depicts the DVM problem schematically. Note that while
the total budget is a function of the final adjacency and feature
matrices, to solve the DVM problem a sequence of structural and
attribute changes under the referral and co-marketing contraints
are required. Furthermore, while we use a uniform cost model on
edge and attribute perturbations, the problem can be extended to
bespoke settings by using edge-specific and attribute-specific costs.

NP-Hardness of DVM decision problem: Consider an instance of
the NP-hard Knapsack problem, defined by a maximum value V, a
maximum weight W, and aset of nitems X = {(v1, w1),..., (vn, wn)}
where v; and w; denote the i*" item’s value and weight respectively.
The decision problem is whether there exists a subset of items
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Z c X with total weight }};c > w; < W and total value }};c 7 v; > V.
We show that this problem reduces to the decision problem of DVM.
Given an arbitrary instance of the Knapsack problem, consider
a star network with node t at the center which is connected to n
nodes s; and another n nodes t;. Each s; is in turn connected to two
other nodes b; and c;. The initial labels on ¢, s;, t; are 0 and that on
bj, c; are 1. Each node has one feature that is initially 1 — w; at b;,
V —1atc;, v; at s; and V at t. The cost of changing the feature at
a node b; from a value of 1 — w; to 1 is w;. The feature values are
held constant at all other nodes. The GNN classifier parameters are
tuned such that the prediction on a node flips from 0 to 1 when the
sum of its neighborhood features at nodes labeled 1 is at least V.

Note that at a cost of w;, the feature at node b; can be set to 1.
This causes the label at s; to flip. If there is a subset Z of s; nodes
whose labels are 1 with X;c zv; > V then the label on ¢ will also flip
to 1. This will then cascade to flips at all the n nodes ¢;.

Thus, if there is a solution to the Knapsack problem then there
is a spread of size > n + 1 with a cost < W. Similarly, if there is
a spread of size > n + 1 with a cost < W then node t must have
flipped implying that there is a subset of s; nodes with label 1 and
whose features add up to at least V. This subset of s; nodes must
have flipped due to the features of the corresponding b; nodes being
incremented by w;. The sum total of these increments is bounded
by W, thus leading to a solution to the Knapsack problem. 0O

3.1 Relating DVM to Influence Maximization

We draw an interesting connection between DVM and the related
problem of influence maximization (IM) [15]. Consider the linear
threshold propagation model [10], where nodes i € [n] randomly
choose a threshold §; € [0, 1] and incoming influence edge weights
Iij such that Vi, 3}; I j < 1. The propagation unfolds in discrete
time steps—if the set of active nodes at any given step is S, then an
inactive node becomes active if the following constraint is satisfied:

Z Iij > 6;. (6)

jes
While the objective in IM is to find a set of seed nodes for maximiz-
ing spread, we instead search for a sequence of dynamical changes
to maximize spread. Despite the difference, given the set of adopters
St=1 at step t — 1, the criterion for a node to flip in DVM has a
similar form as Eq. 6. Suppose that the L-layer GNN fj has the
associated L-step random walk propagation matrix M. Then the
following theorem holds,

THEOREM 1. Let the vector ¢! = xjt

xjt._1 denote the change in
the feature of node j from time t — 1 to t. Further, let the matrix
&= M" — M*~1 denote the change in the L-step random walk matrix
M from timet — 1 to t. Then the dynamic threshold and influence
edge weights for node i to flip at time t according to the criterion in
Eq. 6 are given by:

t t—1

_ -1
Hi_zi,o Zj

i1
t _ gt Tty T t-1
Ii!j—Ma £j+§i’ja x

7)
)
where a is a vector which depends on the parameters 6 of the GNN.

The proof can be found in Sec A. Intuitively, the dynamic node
threshold depends on its logit margin, and the dynamic influence
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Figure 2: Overview of the Dynamic Gradient Influencing (DGI) framework. DGI picks candidate nodes to flip using Node
Flipping Budget Compute, which involves gradient sorting along with bisection search, hashing and affected set estimation.
The gradient-based Meta Influence Heuristic is used to tiebreak among least budget candidate nodes, as well as thresholding
for Meta Attribute Flips that enhance node potency. Red lines and circles indicate candidate perturbations.

edge weights depend on both the feature change ¢; and the random
walk propagation change &; j. Theorem 1 suggests that budget
should be spent on changes which contribute most to the incoming
influence weights and push the node just beyond its threshold.

4 Dynamic Gradient Influencing Framework

Motivated by the criterion for node flipping in Thm. 1, that the sum
of the dynamic influence edge weights must exceed the dynamic
node threshold, we develop the Dynamic Gradient Influencing (DGI)
framework to solve the DVM problem. DGI uses Gradient-Guided
Node Flipping (c.f. Sec. 4.1), to flip a particular candidate node in
each step. At each step t, the candidate node to flip, o%, is given by:

©

arg-max I’ (v), where N = arg-min B? (w)
vEN weD

where B! (w) denotes the budget required to flip node w, and I? (v)
denotes the Meta Influence of node v. In other words, we choose the
node with the least budget to flip and the highest Meta Influence.
Using our novel Node Flipping Budget Computation algorithm (c.f.
Sec. 4.2) candidate nodes are picked in order of lowest budget first.
Further, we develop a novel Meta Influence heuristic (c.f. Sec. 4.3)
for tiebreaking between equal budget candidates and thresholding
for Meta Attribute Flips. We use Meta Attribute Flips to enhance
a flipped node’s downstream edge influence. Sec. E details DGI’s
asymptotic running time complexity. The complete DGI pipeline is
depicted in Fig. 2, and the algorithm can be found in Alg. 2.

4.1 Gradient-Guided Node Flipping

In DGI, the core functionality for flipping nodes is accomplished
through gradients on the restricted set of perturbations arising from
the referral and co-marketing constraints of DVM. Specifically, the
only changes that can happen to the adjacency matrix A and feature
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matrix X are restricted to the submatrices Ag p and Xg respectively.
Therefore, we define:
t _ at=1_ pt T t=1y At _ st T
Asp =Asp +Py 0 (117 = Agp), Aps = (Agp)

>

(10)

X=X+ Phoo (11T - XY (11)

where PA and P)t< represent the weights on the edge and feature
perturbations, S = S t=1and D = D=1, and o denotes the Hadamard
product. We initialize P/g =007 and P)t( =007,

While it is an NP-Hard combinatorial optimization problem to
find the minimal perturbation that flips a node, given that the adja-
cency and feature matrices are both discrete, first-order gradients
work well enough in practice to find the required perturbations
[5, 34]. We consider the negative cross-entropy loss as our flip loss
for the chosen candidate node v € D:

Ly (0) = log a(zh™)o. (12)

Note that y, = 0 for non-adopters and y, = 1 for adopters. We
then compute non-negative gradient scores on edge perturbation
weights, P4, and feature perturbation weights, 155(, with respect to
the flip loss:

t t
pt = aLflip(v) ht_ aLflip(o)
A—max T ,O ,PX—max T ,O . (13)
0 A X

We only compute the gradients once for all the perturbations.
While it is possible to recompute gradients after every perturba-
tion [5], we find that this is not that necessary to find the minimal
set of perturbations. Moreover, as shown later, by merging and sort-
ing the perturbations using the gradients, we can find the minimal
perturbation set and minimum budget efficiently. Finally, suppose
the minimum budget required to convert v is B(v), then we find
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the top-B(v) indices in the union of edge and feature perturbations:

Pt = sort(merge(pft‘,f’;)) (14)
ity i = argtop-ki_p ) p. (15)

Using the index sets ifq and ig( we can make the updates to the
network to convert v:

T
[AQ,D]ij‘ — 1 Apg < (A5p)

[Xé]l;( «— 1.

(16)
17)

4.2 Node Flipping Budget Computation

The budget needed to flip a node v depends on both the logit mar-
gin in Eq. 7 and the node’s degree deg(v) [8, 24]. In the adversarial
attack framework, the practice is to set the node budget equal to
its degree for local attacks [24], or choose a loss function which
orders gradients in order of nodes closer to the decision boundary
for global attacks [8]. However, due to the budget minimizing ob-
jective of DVM, we need to compute the budget precisely and pick
candidate nodes that need the least budget.

Therefore, to compute the minimum budget B? (v) that converts
node v, we use the bisection method [1, 27]. For each node, we
compute the sorted gradients, P in Eq. 15 once and run bisection
search over these gradients to find the minimal set of perturbations
required to convert v. We initialize the lower and upper bound for
search as 0 and deg(v), the degree of v, respectively. Thereafter, the
upper bound is doubled until it is sufficient to convert v. We set the
maximum upper bound equal to the maximum node degree of the
network. After fixing the upper bound, bisection search repeatedly
halves the search interval by checking feasibility of conversion at
the midpoint of the interval and converges logarithmically.

We observe that other nodes also flip due to the same structure
or attribute changes made for flipping a candidate node. Therefore,
to choose the best candidate, we update the budget:

B'(0) < B'(0) + (IS = IS5]) (18)

where S/ is the set of adopters at time ¢ if node v is selected as the
candidate node to flip. Thus, B! (v) represents both the node flipping
budget and the "collateral damage" to other nodes from flipping
it. Therefore, if a node with more budget causes high collateral
damage it is preferable to a node with a lesser actual budget.

Since budgets need to be recomputed for all non-adopters at
every step, we make the algorithm faster by hashing node budgets
and only recomputing budgets for nodes whose budget has changed.
The recompute set R is defined as the set of nodes whose logit
scores changed in the previous time step:

Rl ={vjoe D' 2} # zg_l}.

(19)

For nodes whose logit scores are unchanged the actual budget
might still change slightly, but for the purposes of picking the best
candidate node we ignore these small changes. The entire algorithm
for budget computation can be found in Alg. 1.

4.3 Meta Influence Using Meta Attribute Flips

Due to the dynamic sequence of changes involved in spreading
product adoption in DVM, first-order gradients in Eq. 13 are insuf-
ficient to capture the long-range effects of a perturbation. While
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the flipping budget is minimized at each step, we need to charac-
terize nodes that have high influence so that adoptions can cascade
sequentially. Therefore, we develop the Meta Influence heuristic
to model long-range effects and estimate downstream influence.
Meta Influence uses Meta Attribute Flips which are feature pertur-
bations that increase the potency of outgoing edge perturbations
at an adopter node. Consequently, the Meta Influence is defined
as the normalized gradient score on an adopter’s outgoing edge
perturbations post Meta Attribute Flips.
For Meta Attribute Flips, we restrict feature perturbations only
to the features of node v and define perturbation weights Py:
f,’ =xl+Pxo(1-x)

X (20)

where ¢’ indicates an auxilliary time step. We initialize Px = 0. To
capture the effect of Meta Attribute Flips, we consider an influence
loss that is the sum on all non-adopters nodes of a CW-type loss [3]
based on the logit margin, and compute gradient scores Py:

L@ = D (1 =0 (21)
weD
ALY . (v)
gt 1
P)t(:max L ,0]. (22)
aP)f(

Thereafter, we update the features x, using Meta Attribute Flips,
which are the top-k ranked perturbations in P. ", for the purposes
of computing Meta Influence:

i;; = argtop-k P, [xf,/]i,/ —1 (23)
X

where k is a hyper-parameter controlling the number of Meta At-
tribute Flips. From Thm. 1, Meta Attribute Flips find feature changes
that align with the GNN’s classifier weights and increase the dy-
namic outgoing edge influence to other nodes in Eq. 8. Further, they
also help to increase the margin from the GNN decision boundary
and thus increase the node’s potency.

For finding the Meta Influence, we restrict the outgoing edge
perturbations P4 from node v to the non-adopters D, and define
corresponding edge perturbation weights P4:

v o .
Ayp=AyptPy c(1-A,p) (24)
where ¢ indicates another auxilliary time step after ¢’ and Pg/ =0.

Now consider the same influence loss in Eq. 21 on all non-adopters
at time t”, and compute non-negative gradient scores Pg,:

oLt (v)
" 1
P,tA = max % ,0]. (25)
aPA

Note that influence loss uses the discrete perturbed feature xf)’,

which is computed using first order gradients, therefore Meta Influ-
ence can capture second order gradient effects. Finally, we denote
the Meta Influence I* (v) of a node v as the normalized gradient
score in 152// averaged over the number of non-adopters:

T pt”
A

t _
F@ =5

(26)
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During candidate node selection, Meta Influence is used for
tiebreaking between equal budget nodes (Eq. 9). Further, we thresh-
old on Meta Influence to perform Meta Attribute Flips:

t’ et
e ifI*(v) > B
x5

otherwise
where f is a hyper-parameter controlling the threshold. Using Meta
Influence, we can estimate which nodes will have high influence on
their outgoing edges after Meta Attribute Flips, and thus judiciously
allocate budget for Meta Attribute Flips. In Sec. 5.2, we validate that
nodes with high Meta Influence indeed contribute more outgoing
edge perturbations to non-adopters.

t
o

x (27)

5 Experiments

We conducted experiments on real-world attributed network datasets
to answer the following research questions:

e RQ1: How does DGI compare with baselines for DVM?

e RQ2: Does Meta Influence accelerate spread and capture a
node’s actual dynamic influence?

e RQ3: What kinds of cascade patterns are created by DGI?

e RQ4: What are the properties of intermediary nodes in cas-
cades created by DGI?

Datasets: We utilize three real-world attributed datasets to eval-
uate DGI and baseline approaches. Epinions and Ciao [28] are
datasets collected from two popular product review sites, where
each user can specify their trust relation in addition to rating prod-
ucts. Flixster [13] is a dataset collected from a popular movie rating
website with an associated social graph. We create new small-scale
and large-scale splits for these datasets using the provided user net-
works and product ratings from [28, 36]. For small-scale split gener-
ation, we sort the nodes using their degrees and take the subgraph
corresponding to the lowest degree nodes. To generate features for
each user, we pick a binary value for each product/movie based on
whether they rated it or not. We choose the product/movie with
the least number of seeds as the optimization goal for DVM. The
analysis in the main paper is conducted on the small-scale splits
and their statistics are depicted in Table 1. Additional details and
results on large-scale splits using Fast-DGI can be found in Sec. C.

Table 1: Dataset statistics. |S| denotes seed set size.

Dataset ‘ V| ‘ |E] ‘Avg, Max Deg. ‘ |S| ‘ #Features

Flixster | 1045 | 1488 2.8, 153 5 839
Epinions | 1054 | 1214 2.3,25 5 2999
Ciao 1057 | 1190 2.3, 36 7 2999

Evaluation metric: The efficacy of the proposed dynamic DGI and
baselines is evaluated using the minimum budget needed to spread
to C = 500 target nodes on the respective network. We use a fixed
number of targets to spread to make the results across different
datasets comparable. We also report the Area Under Curve (AUC) of
the budget-spread curve, which gives an aggregate estimate of the
budget required for different spread values. For calculating AUC,
we normalize the budget by (31(A)/2 + (X)), i.e., the sum of the
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number of edges and turned on features. Lower values of budget
and AUC indicate better performance.

Variants: We consider three variants of DGI in our experiments:

e Base is DGI without Meta Attribute Flips. It uses Meta Influ-
ence only for tiebreaking in Eq. 9.

o Fixed is DGI with fixed Meta Attribute Flips. It is equivalent
to using a threshold f = 0 in Eq. 7.

e Dynamic is DGI with optimally chosen threshold f.

Baselines: We compare with the following approaches:

e Degree selects target nodes in order of low-degree first. Until
the target is flipped, Degree repeatedly spends a unit budget
by first randomly picking a seeder node, then either adds a
link from the seeder to the target if they aren’t connected,
else turns on a feature with high-correlation to the label.
Margin selects target nodes based on the low-margin first
heuristic, i.e., nodes that have a smaller margin to the de-
cision boundary are picked first. Edits to the structure and
features are made in the same way as Degree.
GradArgmax [5] is a gradient based white-box adversarial
attack on structure. Target nodes are selected in the order of
lower losses first. We adapt GradArgmax to make edits to
both structure and features.

MiBTack [36] is another white-box adversarial attack that
dynamically adjusts node budgets for topology-based PGD
[34]. We adapt MiBTack to make edits to both structure and
features while selecting target nodes same as GradArgmax.

5.1

We compare DGI variants to baselines using budget and AUC at
C =500 in Table 2 and Table 3 respectively. We report results with
both GCN [16] and GraphSAGE [11] as the propagation models.
DGI variants outperform the baselines in all the scenarios. Among
the variants, Dynamic does the best, followed by Base and then
Fixed. Fixed overspends budget on Meta Attribute Flips over Base
by using a threshold of § = 0, and Dynamic spends the least budget
by optimally selecting nodes with high Meta Influence (for spend-
ing additional budget) for Meta Attribute Flips. Further, we plot
budget spread curves on Flixster and Epinions in Fig. 3. Dynamic
DGI consistently achieves the minimum budget across all levels. To
understand the time evolution of the spread for different variants,
we plot spread as a function of time in Fig. 4a. Due to the accelerat-
ing effect of Meta Attribute Flips, Fixed spreads fastest, followed
by the economical Dynamic and the conservative Base approach.

Performance Comparison (RQ1)

5.2 Strategy of Meta Influence (RQ2)

To validate the effectiveness of Meta Influence and Meta Attribute
Flips, we plot the histogram of perturbations contributed by nodes
with respect to their Meta Influence in Fig. 4b. For each dataset, we
normalize the Meta Influence to lie in the interval [0,1] and divide
uniformly into 10 sub-intervals. For each sub-interval, we count
the number of perturbations contributed by nodes whose Meta
Influence lies within it. We carry out the analysis on Fixed DG, in
which Meta Attribute Flips are made at each node. We observe a
high correlation of Meta Influence to the number of contributed
perturbations across all the datasets. Note that the Meta Influence



Dynamic Gradient Influencing for Viral Marketing Using Graph Neural Networks

Table 2: Comparison of DGI variants to baselines. Numbers
indicate minimum budget to spread to 500 nodes. GCN and
SAGE are used as the GNN propagation backbones. Dynamic
DGI consistently achieves the minimum budget.

Flixster Epinions Ciao

GCN | SAGE | GCN | SAGE | GCN | SAGE
Degree 2551 6573 22076 | 21125 | 25162 | 45291
Margin 8136 7655 26109 | 18550 | 20814 | 41077
GradArgmax | 1012 625 5893 859 2620 972
MiBTack 843 583 2828 866 5111 1035
Base 791 543 3342 1099 3525 856
Fixed 831 571 1985 1297 2221 1094
Dynamic 667 494 1893 | 803 2096 | 821

Table 3: Comparison of DGI variants to baselines. Numbers
indicate AUC of budget-spread curves. Dynamic DGI consis-
tently achieves the minimum AUC.

Flixster Epinions Ciao

GCN | SAGE | GCN | SAGE | GCN | SAGE
Degree 19.48 | 150.50 | 215.33 | 328.15 | 349.48 | 631.66
Margin 173.70 | 177.71 | 366.43 | 284.77 | 287.11 | 595.69
GradArgmax | 23.32 | 13.72 | 112.84 | 16.36 | 54.46 | 18.52
MiBTack 21.78 | 16.77 | 50.70 | 21.03 | 80.95 | 21.91
Base 19.06 | 11.68 | 56.82 | 19.23 | 46.59 | 14.46
Fixed 20.78 | 12.53 | 36.41 | 23.75 |36.20 | 19.82
Dynamic 18.27 | 10.17 | 31.93 | 15.18 | 33.84 | 13.33

— Base
Fixed
—— Dynamic

0.25{ — Base
Fixed
—— Dynamic

Rel. Budget
H

Rel. Budget

300 200 300
Spread Spread

(a) Flixster (b) Epinions

Figure 3: Budget spent as a function of increasing spread
with GCN as the GNN propagation model. Dynamic requires
consistently lower budgets across all spreads.

is computed at the step when the node is flipped, but even then
it provides a good signal of how important that node will be later.
This shows that the Meta Influence is a close approximation of the
actual node influence in terms of perturbations it makes. Further,
by thresholding on the Meta Influence, we are able to save budget
by not applying Meta Attribute Flips on low-influence nodes.

5.3 Cascades created by DGI (RQ3)

To understand cascades created by the DGI spread, in Fig. 5a, we
qualitatively visualize a subgraph spanned by the Dynamic DGI
edges rooted at a single source node on Flixster, and color each
node according to its cascade hop distance from the root. We define
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Figure 4: (a) Spread achieved with increasing time steps for
Flixster with GCN backbone. Fixed and Dynamic spread
faster than Base due to acceleration from Meta Attribute
Flips. (b) Histogram of perturbations contributed by interme-
diary adopter nodes with increasing Meta Influence, where
scaling is used for mapping Meta Influence to [0,1]. Higher
Meta Influence adopter nodes contribute more perturbations.

the cascade hop distance of a node from the seed set inductively:

hop(i) =1 +jen1}2[>ii) hop(j) (28)
where hop (i) = 0 for nodes in the initial seed set, and PN (i) denotes
perturbed neighbors of node i at the step when it flips. Further, we
use node size to indicate the number of perturbations the node
contributes in the course of the multi-step spread. We clearly see
a strong pattern of cascading flips, whereby a node flipped earlier
later flips many more and so on inductively. Therefore, the DGI
spread creates cascading flipping, similar to a chain of referrals in a
social network, where each referral is an entirely new edge. We also
see from the node sizes that a few nodes are dominant spreaders
while others contribute very little.

To understand the cascades created by DGI quantitatively, in
Fig. 5b we plot the number of non-adopter flips with increasing hop
distances for Flixster, Epinions and Ciao. Multi-hop cascade flips
account for a sizable number of the total flips, which indicates that
multi-hop path flips help in decreasing the budget required for the
spread. Further, the cascade hop length can be considerably large.
Particularly, for Flixster, we see nodes with cascade hop lengths
up to 30, indicating how the added perturbations can percolate the
adoption far from the seed set.

5.4 Properties of Intermediary spreaders (RQ4)

To understand the properties of intermediary spreader nodes, we
plot the histogram of perturbations contributed by intermediary
spreader nodes with respect to their degree and classification mar-
gin in Fig. 6a and Fig. 6b respectively. For each dataset, we count the
number of perturbations arising from nodes with the degree and
classification margin lying within the same sub-interval. The degree
and margin are considered at the moment the perturbation is made
to account for dynamic changes. Due to the degree normalization
in GNN message passing, low degree nodes have a higher influence
edge weight, and we observe that nodes with low degree are highly
correlated to higher number of perturbations. On the other hand,
high classification margin indicates high feature and neighborhood
alignment with the GNN classifier, therefore making outgoing edge
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Figure 5: (a): Visualization of cascading dynamics of DGI.
Node sizes and colors correspond to number of perturbations
and cascade hops respectively. Only edges added by DGI are
depicted. (b): Number of flipped nodes at different cascade
hops. DGI creates long and staggered cascades for DVM.

or feature perturbations more potent. Thus, perturbations are made
exclusively at nodes with the maximum possible margin.
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Figure 6: (a) Histogram of perturbations contributed by
intermediary spreader nodes with increasing degree. (b)
Histogram of perturbations contributed by intermediary
spreader nodes with increasing GCN classification margin.
Higher contributions are made by spreader nodes with low
degrees and high margins.

6 Related Work

Models for Network Diffusion. The modeling of the diffusion of
innovations in a network through the process of social contagion
is a long studied topic [17]. Granovetter [10] developed a threshold
based model of collective behaviour where individuals are influ-
enced by the proportion of others who come to a particular deci-
sion. Morris [23] studied a coordination game of direct benefits from
aligning choices with neighbors in a social network. In epidemiol-
ogy, the spread of biological disease is studied using probabilistic
transmission models of Susceptible, Infected and Recovered (SIR)
individuals [25]. The use of the network value of customers for
marketing was first explored in [7, 26]. Consequently, Influence
Maximization (IM), the problem of finding the most influential seed
set for viral marketing has been studied extensively [9, 15, 31].
Dynamic Viral Marketing lies within the broad class of spreading
network processes and we show how it is connected to IM.

Graph Neural Networks. Graph Neural Networks (GNN) are mes-
sage passing neural networks that operate on attributed networks
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and have shown great success in problems such as node classifi-
cation, link prediction, recommendation systems, and community
detection. Various GNN architectures have been proposed since
their first inception—Graph Convolutional Networks [16], Graph-
SAGE [11], Graph Attention Networks [29], Simplifying Graph
Convolutional Networks [32]. We refer the reader to [33] for an
extensive survey of graph neural networks. We use GNNs as the
underlying propagation model for Dynamic Viral Marketing.

Gradient-based Network Optimization. Gradient-based network
optimization is used in many combinatorial network optimization
problems. In the context of adversarial attacks on GNNs, pertur-
bations are made using gradient optimization on the input net-
work structure to reduce the accuracy of a GNN classifier [5, 34,
37]. Global attacks with dynamic budget adjustment for Topology
PGD [34] are considered by [36]. In [21], reinforcement learning
policies are optimized to solve Maximum Coverage, Vertex Cover,
and Influence Maximization problems on networks. In [19], graph
neural networks are optimized to create graph embeddings and pre-
dict influence of nodes for solving Influence Maximization. We use
gradient-based network optimization within the DGI framework.

7 Concluding Remarks

We proposed the novel Dynamic Viral Marketing (DVM) problem
to find the minimum budget and minimal perturbation set to attain
a spread goal, where the propagation model is a non-linear GNN
and perturbations are restricted by referral and co-marketing con-
straints. We showed that DVM is NP-Hard and is related to influence
maximization. We developed the Dynamic Gradient Influencing
(DQI) framework, which targets non-adopters with low budget and
high influence. DGI uses gradient ranking to order perturbations
and utilizes an efficient budget computation approach, a novel Meta
Influence heuristic, and Meta Attribute Flips to increase a node’s
influence. We comprehensively evaluated DGI on three real world
attributed networks and demonstrated gains on average of 24% on
budget and 37% on AUC over multiple gradient and non-gradient
baselines. We validated the efficacy of budget computation and
the Meta Influence heuristic. We extensively analyzed the cascade
patterns through intermediary adopter nodes discovered by DGI.

This work opens up a new research direction: data-driven mod-
els for network propagation as alternatives to postulated models
such as Linear Threshold [10]. Data-driven models can incorporate
attributes and long-range interactions. This research also motivates
a number of future research questions, including model-based re-
inforcement learning [22] using such GNN models in unknown
environments, and development of data-driven competitive strate-
gies between groups, each trying to increase their spread.
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Proof of Thm. 1

Proor. Consider an L-layer GNN without non-linearities. Then
the criterion to flip node i at time t can be expressed in terms of
the L-step random walk matrix M and the weights W},

t T vt t T 1t
Z M;wp Wx; > Z M;;wp (W (29)

JEN(i) JEN(i)

where wr 1 and wy o represents the final layer classifier vectors
for the two classes, and W = H,-L:_ll W, is the combined feature
transform of the first L — 1 layers.

The criterion can be equivalently written as,
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Rearranging terms,
t T T \yi7 (ot _ -1
Z [M;(wp ;= wp )W (xj —x;77)
JEN(i)
— T T vy f—
+ (Mf; = M{7H) (w] | = w )W) >
t=1, T v t—1 t=1, T v t-1
>0 oMWl W 3T MW w31
JEN() JEN(i)
Denoting a = WT(WLJ — wL,0), and observing that the right hand
side is the logit margin at time ¢ — 1, the above simplifies to,

¢ T t, gt Tot-1 -1 _t-1
Z [Mjjorej+ & o x" 7] > 207 = 253
JEN(i)

(32)

]

B Another proof of NP-Hardness

For the proof in the main paper we assumed unweighted edges and
weighted features, and directly relied upon the cascading flipping
under the GNN propagation model to attain a desired spread. Below
we provide an even simpler proof where we assume both weighted
edges and weighted features.

Given an arbitrary instance of the Knapsack problem, consider
a weighted star network with target node t at the center which is
connected to n source nodes. Each node has a single feature, whose
value at node ¢t is 0 and at node i is x; = 1 — w;. The weight on
the edge between node i and ¢ is set to a; = v;. The initial label on
node ¢ is 0 and the initial label on the other nodes is 1. The cost of
changing the feature at a node from a value of 1 — w; to 1 is w;. The
GNN classifier parameters are tuned such that the prediction on
node ¢ flips from 0 to 1 when the weighted sum of its neighborhood
of n nodes with feature value x; = 1 is at least V (spread ¢ = 1).
The Knapsack problem is solvable iff };c(,) ail[x; = 1] > V and
2ie[n)Willx; = 1] < W. Thus, if the DVM problem can find
feature flips costing at most W at ’s neighbors whose edge weights
sum to at least V then the Knapsack problem is solvable. O

For the interested reader, we also point to prior work on cer-
tifiable adversarial robustness for neural networks with ReLU ac-
tivation functions. The general problem of finding the minimum
distortion of adversarial samples in NNs with ReLU activations is
known to be an NP-Complete problem [35]. More generally, NNs
are large, non-linear, and non-convex, and verifying even simple
properties about them is an NP-complete problem, as can be shown
using a reduction from the 3-SAT problem [14].

C Additional Results

C.1 Implementation details

For the propagation model, we use 2-layer GNN architectures, as
stacking multiple layers can lead to oversmoothing in GNNs [4].
We report results with both GCN [16] and GraphSAGE [11] as the
backbone propagation models. We set the hidden layer to size 64 and
use ReLU as the intermediate non-linear function. We train models
using cross entropy loss for 200 epochs, a patience of 50, learning
rate le-2 with cosine annealing and weight decay regularization
5e-4. We use all nodes and edges during training to attain the best
GNN decision boundary. All models achieve 100% accuracy on the
seed set along with a small number of false positives that are in
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Algorithm 1: Bisection search to find minimum budget.

Input: G = (A, X), GNN f,, P, Target node o.
Output: B(v), minimum budget to flip v.

1 Init bounds U = deg(v) and L = 0

2 do

s | U=2U

4 while o is not flipped by top-U perturbations in P;

5 do

s | c=15%

7 if" v is not flipped by top-C perturbations in P then

8 L=C

9 else

v | | U=C

1 end

12 while U-L > 1;
return:U

Algorithm 2: DGI

Input: G=(A,X), GNN fp, Adopters S, Non-Adopters D, k,
Output: Minimum budget required s.t. |S| = 500
1 Init budget 8 =0

2 do

3 forov e D do

4 Compute Pin Eq. 15

5 Call Algorithm 1 to compute B(v)

6 end

7 Find N, the set of minimum budget nodes
8 forou € N do

9 ‘ Compute the Meta Influence I(v)
10 end

1 0" « maxI(v)
vEN

12 Perturb the network to flip v*
if I(v*) > f then
Make k Meta Attribute Flips at v*
B(v*) « B(v*) +k
end
B «— B+ B(v")
| 8D {oly = 1} {oly) = 0}
9 while |S| < 500;
return: 5

13
14
15
16

17

-

the vicinity of the seeds and are included in the initial seed set.
For the spread approaches, the hyperparameter k for number of
Meta Attribute Flips is set to a value in [1, 2,4, 8, 16] using grid
search with Fixed DGI. The threshold hyerparameter f is set to a
value within [0, 1] of the maximum Meta Influence in Fixed DGI
using grid search with Dynamic DGI. The maximum upper bound
to convert a node is set to the maximum degree in the graph during
bisection search. If the spread approach is unable to increase the
size of the adopters for 40 steps, we halt and report failure. We use
spread approaches with GCN backbones for all our analysis, and
note that the SAGE backbone yields the same insights. DGI and
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baselines are implemented using the DeepRobust library in Pytorch
[20] for adversarial attacks on GNNs. All GNN models and spread
approaches are trained and executed on a single NVIDIA RTX2080
GPU with 8GM RAM.

C.2 Results on large-scale data

The statistics for the larger scale datasets are presented in Table 4,
and the results are presented in Table 5 and Table 6 respectively. It
is interesting to note the distinction of the larger scale datasets from
the smaller scale datasets in that the former are more tree like and
the latter are more dense. This causes the propagation to happen
much faster in the dense networks and with lesser budgets, there-
fore it is an easier problem when the attributed network is larger
and more dense. This also matches our intuition that densely con-
nected networks allow for faster information spread. This suggests
that sparser networks require more effort for a network process
such as DVM to achieve an equivalent amount of spread.

Table 4: Dataset statistics. |S| denotes seed set size.

Dataset ‘ V| ‘ |E] ‘ Avg, Max Deg. ‘ |S| ‘ Feats
Flixster 3000 29677 20, 1716 10 839
Epinions | 15948 | 234438 29, 1443 11 2999

Ciao 6841 77404 22,749 6 2999

Table 5: Comparison of DGI variants to baselines. Numbers
indicate minimum budget to spread to 500 nodes. GCN and
SAGE are used as the GNN propagation backbones.

Flixster Epinions Ciao
GCN | SAGE | GCN | SAGE | GCN | SAGE
GradArgmax | 459 241 489 425 1097 | 630
MiBTack 399 310 376 383 869 705
Base 466 92 332 318 1136 | 615
Fixed 222 106 623 615 737 576
Dynamic 195 87 287 291 501 509

Table 6: Comparison of DGI variants to baselines. Numbers
indicate AUC of budget-spread curves.

Flixster Epinions Ciao
GCN | SAGE | GCN | SAGE | GCN | SAGE
GradArgmax | 2.36 1.23 0.27 0.24 1.18 0.82
MiBTack 1.87 1.45 0.16 0.17 0.98 0.90
Base 2.38 0.57 0.13 0.14 1.20 0.81
Fixed 1.17 0.61 0.29 0.28 0.85 0.77
Dynamic 1.08 0.48 0.11 0.12 0.71 0.70
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D Ablation study

We study the effect of the different components of Dynamic DGI,
i.e, budget compute (BC), tiebreaking (TB) and Meta Attribute Flips
(MAF), in Table 7 and Table 8 respectively. We see that the different
components indeed cause an additive increase in the performance
of Dynamic DGI in all the scenarios, thus validating their utility.

Table 7: Ablation study for the effect of budget compute (BC),
tiebreaking (TB) using Meta Influence, and Meta Attribute
Flips (MAF).

BC | TB | MAF Flixster Epinions Ciao
GCN | SAGE | GCN | SAGE | GCN | SAGE
1012 625 5893 859 2620 972

v 797 506 3235 831 4231 878

v |V 791 543 3342 1099 3525 856

vV v 667 494 1893 | 803 2096 | 821

Table 8: Ablation study for the effect of budget compute (BC),
tiebreaking (TB) using Meta Influence, and Meta Attribute
Flips (MAF).

BC | TB | MAF Flixster Epinions Ciao
GCN | SAGE | GCN | SAGE | GCN | SAGE
2332 | 13.72 | 112.84 | 16.36 | 54.46 | 18.52
v 19.44 | 10.54 | 54.01 | 15.44 | 66.02 | 14.66
v | Vv 19.06 | 11.68 | 56.82 | 19.23 | 46.59 | 14.46
v |V v/ | 18.27 | 10.17 | 31.93 | 15.18 | 33.84 | 13.33

E Complexity

In each step, for each target, DGI makes 1 backward pass to com-
pute gradients and then sorts the gradients in O(E’ log E’) time,
where E’ is the number of non-edges in the graph. This is followed
by O(log A) forward passes in bisection search, where A is the max-
imum allowed budget, which we set as the maximum degree of the
graph. For the set of minimum budget nodes, the Meta Influence
makes two forward and two backward passes. The time taken for
a forward or backward pass in a 2-layer GNN on a GPU is O(1)
assuming small input, hidden, and output sizes. Thus, in the first
step of DGI, we make O(|D|) inner steps of gradient-guided node
flipping, budget computation, meta attribute flips and meta influ-
ence, which takes a total of O(|D|(E’ log E’ + log A)) time. In later
steps, due to budget hashing, we only recompute budgets for O(1)
nodes, which takes O(E’ log E’ + log A). Assuming that every step
of DGI flips O(1) non-adopter nodes, the total runtime complexity
of DGI to achieve a spread of ¢ can be determined as:

O(¢(E'log E’ +1ogA)) + O(|D|(E" log E’ +1og A)).  (33)
Since real world networks are mostly sparse, E’ is usually quadratic
and DGI is difficult to scale up for larger networks. Therefore, we
also use a faster variant of DGI, Fast DGI, for large scale network
splits, where we recompute budgets after every % steps, therefore
bringing down the time complexity to:

O(E' logE’ +log A) + O(|D|(E' log E' +logA)).  (34)
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F Sensitivity Analysis

Table 9 reports the hyperparameters used in this work. The sen-
sitivity of Dynamic DGI to the hyperparameter f for threshold is
presented in Fig. 7a and Fig. 7b respectively. Likewise, sensitivity of
Dynamic DGI to hyperparameter k for number of Meta Attribute
Flips is presented in Fig. 8a and Fig. 8b respectively. We see that
larger values of f§ and smaller values of k generally work better.

Table 9: Hyperparameter values used for Dynamic DGI on
various datasets and GNN backbones. k denotes number of
Meta Attribute Flips and f (quantile) denotes the quantile of
the threshold § applied to the Meta Influence.

Flixster Epinions Ciao
GCN | SAGE | GCN | SAGE | GCN | SAGE
k 2 2 4 2 4 1
B (quantile) 0.75 0.94 0.65 0.98 0.30 0.90

ciao — diao

|
|
i ‘

06 07 038

Thresh. Quantile

(b)

09

Figure 7: Sensitivity of Dynamic DGI to the influence thresh-
old parameter . The x-axis represents the quantile of the
threshold f applied to the Meta Influence for each dataset. (a)
represents budget and (b) represents AUC of budget-spread
curve for a spread of 500.
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K 3

(2) (b)

Figure 8: Sensitivity of Dynamic DGI to the parameter k con-
trolling the number of Meta Attribute Flips. (a) represents
budget and (b) represents AUC of budget-spread curve for a
spread of 500.
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