
BOREL LINE GRAPHS

JAMES ANDERSON AND ANTON BERNSHTEYN

Abstract. We characterize Borel line graphs in terms of 10 forbidden induced subgraphs, namely
the 9 finite graphs from the classical result of Beineke together with a 10th infinite graph associated
to the equivalence relation E0 on the Cantor space. As a corollary, we prove a partial converse to
the Feldman–Moore theorem, which allows us to characterize all locally countable Borel line graphs
in terms of their Borel chromatic numbers.

1. Introduction

For a set X and k ∈ N, we use [X]k to denote the set of all k-element subsets of X. When A ¦ X,
we let Ac := X \ A be the complement of A. All graphs in this paper are simple, i.e., a graph G
consists of a vertex set V (G) and an edge set E(G) ¦ [V (G)]2. When there is no chance of confusion,
we use the standard graph-theoretic convention and write xy instead of {x, y} to indicate an edge
joining vertices x and y. The line graph L(G) of a graph G is defined by:

V (L(G)) := E(G),

E(L(G)) := {{e, e′} ∈ [E(G)]2 : e ∩ e′ ̸= ∅}.

We say that a graph L is a line graph if it is isomorphic to the line graph of some graph G. Beineke
famously characterized all line graphs by a list of 9 forbidden induced subgraphs:

Theorem 1.1 (Beineke [Bei70]). A graph is a line graph if and only if it does not have an induced

subgraph isomorphic to any of the 9 graphs in Fig. 1.

We are interested in extending Beineke’s result to the setting of Borel graphs, that is, graphs
G such that V (G) is a standard Borel space and E(G) is a Borel subset of [V (G)]2. (We refer
the reader unfamiliar with such terminology to Kechris’s book on descriptive set theory [Kec12];
we also review some necessary descriptive set-theoretic background in §2.) The systematic study
of Borel graphs and their combinatorics was initiated in the landmark 1999 paper by Kechris,
Solecki, and Todorcevic [KST99], who applied descriptive set theory to the study of graph colorings.
This launched the development of the highly fruitful field of descriptive combinatorics, which has
connections to many areas of mathematics, including group theory, measure theory, ergodic theory,
theoretical computer science, and more. For an overview of the field, see the 2020 survey by Kechris
and Marks [KM20] and the 2021 survey by Pikhurko [Pik21].

Borel graphs G and H are Borel isomorphic, in symbols G ∼=B H, if there exists a Borel
isomorphism from G to H (i.e., a graph isomorphism f : V (G) → V (H) that is a Borel function).
Note that the line graph L(G) of a Borel graph G is itself a Borel graph. We say that a Borel graph
L is a Borel line graph if there exists a Borel graph G such that L ∼=B L(G). Clearly, if a graph
is a Borel line graph, then it is both a Borel graph and a line graph. Conversely, we ask:

Given a Borel graph that is a line graph, when is it a Borel line graph?

To demonstrate that this question is nontrivial, let us give an example of a Borel graph that is
a line graph but not a Borel line graph. Recall that the Cantor space is the set C := {0, 1}N of
countably infinite binary strings endowed with the product topology, where the topology on {0, 1}
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Figure 1. The 9 graphs of Beineke.

is discrete. The equivalence relation E0 is defined on C by relating two elements if they are equal
after some index; that is, given ³, ´ ∈ C, we have

³E0 ´ ⇐⇒ ∃m ∈ N, ∀n ⩾ m (³(n) = ´(n)).

This is a Borel equivalence relation1 with countable classes (for a survey on such equivalence relations,
see the recent manuscript by Kechris [Kec23]). From E0, we define a graph K0 as follows:

V (K0) := C, E(K0) := {{³, ´} ∈ [C]2 : ³E0 ´}.

In other words, K0 is obtained by making every E0-equivalence class into a clique. Then K0 is a
Borel graph, and, being a collection of vertex-disjoint cliques, it is a line graph (a clique is isomorphic
to the line graph of a star). However, K0 is not a Borel line graph. This essentially boils down to
the fact that the relation E0 is not smooth (see Definition 2.8), as if K0 were a Borel line graph, the
map picking out the center of the star corresponding to each component of K0 would witness that
E0 is smooth. Another simple proof uses Borel chromatic numbers:

Definition 1.2 (Borel chromatic number). Given a graph G, a proper coloring of G is a function
f : V (G) → C, where C is some set, such that for all xy ∈ E(G), f(x) ̸= f(y). The chromatic

number of G, denoted by Ç(G), is the smallest cardinality of a set C such that G has a proper
coloring f : V (G) → C. For a Borel graph G, its Borel chromatic number , ÇB(G), is the smallest
cardinality of a standard Borel space X such that there exists a Borel proper coloring f : V (G) → X.

A standard Baire category argument proves that ÇB(K0) > ℵ0 [KM20, p. 27]. On the other hand,
if K0 were a Borel line graph, then by the Feldman–Moore theorem (see Theorem 1.4 below), we
would have ÇB(K0) ⩽ ℵ0. It follows that K0 is not a Borel line graph.

Given a graph G and a subset U ¦ V (G), we let G[U ] denote the subgraph of G induced by the
vertices of U , i.e., G[U ] := (U,E(G) ∩ [U ]2). Given graphs G and H, we say that G contains a

copy of H if G has an induced subgraph isomorphic to H, i.e., if there exists a set U ¦ V (G) such
that G[U ] ∼= H. Similarly, if G and H are Borel graphs, we say that G contains a Borel copy

of H if there exists a Borel set U ¦ V (G) such that G[U ] ∼=B H. It is clear that the property of
being a Borel line graph is preserved under taking Borel induced subgraphs. Therefore, for a Borel
graph to be a Borel line graph, it must contain no copies of the 9 forbidden subgraphs of Beineke
nor a Borel copy of K0

2. Our main result is that the converse is true, i.e., K0 is the only additional
obstruction in the Borel setting.

1As usual, we view binary relations as sets of ordered pairs and say that a binary relation R on a standard Borel
space X is Borel if it is a Borel subset of X2.

2
Borel copy is important here, for there are Borel graphs G whose line graphs contain a copy, but no Borel copy, of

K0. For example, consider the Borel graph with vertex set R and edge set {{x, x + n} : x ∈ [0, 1), n ∈ Z \ {0}}. This
graph has continuum many components isomorphic to countably infinite stars, and thus its line graph L is isomorphic
to K0. However, since K0 is not a Borel line graph, L cannot contain a Borel copy of K0.
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Theorem 1.3. Let L be a Borel graph. Then L is a Borel line graph if and only if it contains

neither a copy of any of the 9 graphs of Beineke nor a Borel copy of K0.

In view of Theorem 1.1, the above statement is equivalent to the assertion that a Borel graph L
is a Borel line graph if and only if it is a line graph that does not contain a Borel copy of K0.

As an immediate consequence of Theorem 1.3, we obtain a characterization of locally countable
Borel line graphs in terms of their Borel chromatic numbers. This follows from the graph-theoretic
version of the Feldman–Moore theorem [FM77] due to Kechris, Solecki, and Todorcevic [KST99],
which states that locally countable Borel line graphs have countable Borel chromatic numbers.

Theorem 1.4 (Feldman–Moore: Graph version [KST99, Theorem 4.10]). If L is a locally countable

Borel line graph, then ÇB(L) ⩽ ℵ0.

As mentioned above, ÇB(K0) > ℵ0, and thus Theorems 1.1 and 1.3 imply the following partial
converse to the Feldman–Moore theorem:

Corollary 1.5. Let L be a locally countable Borel graph. If L is a line graph and ÇB(L) ⩽ ℵ0, then

L is a Borel line graph.

Theorem 1.3 allows the Feldman–Moore theorem to be stated in terms of forbidden subgraphs:

Corollary 1.6. If L is a locally countable Borel graph that contains neither a copy of any of the 9

graphs of Beineke nor a Borel copy of K0, then ÇB(L) ⩽ ℵ0.

An intriguing question is whether the hypotheses of Corollary 1.6 can be weakened. For instance,
it would be interesting to know if forbidding only some of the 9 graphs of Beineke together with K0

is enough to reach the same conclusion. This line of inquiry can be naturally viewed as an extension
to the Borel setting of the theory of Ç-boundedness [SS20], which aims to bound the chromatic
number of a graph with certain forbidden substructures by a function of its clique number. More
broadly, our work indicates the prospect of fruitful interactions between descriptive set theory and
structural (as opposed to extremal or probabilistic) graph theory and leads to general problems such
as what other natural classes of Borel graphs can be characterized by means of excluding certain
Borel induced subgraphs.

The remainder of the paper is organized as follows. In §2, we review some necessary background
and tools from descriptive set theory. A reader familiar with descriptive set theory may proceed
directly to §3, where we provide a road map for the proof of Theorem 1.3. The rest of the paper
contains proofs of the intermediate theorems and lemmas needed in the proof of Theorem 1.3.

2. Tools from descriptive set theory

In this section, we provide some fundamental tools from descriptive set theory and the study of
Borel equivalence relations. Our main references for descriptive set theory are [Kec12; Tse22], and
the reader is invited to consult them for any background not mentioned here.

A standard Borel space is a set X equipped with a Ã-algebra B(X) (called Borel subsets) that
coincides with the Borel Ã-algebra generated by some Polish (i.e., separable completely metrizable)
topology on X. All uncountable standard Borel spaces are isomorphic [Kec12, Theorem 15.6], so
there is usually no loss of generality in assuming that X is some specific space such as R or the
Cantor space C. If X is a standard Borel space and A ¦ X is a Borel set, then A equipped with
the Ã-algebra {B ∩ A : B ∈ B(X)} is also a standard Borel space [Kec12, Corollary 13.4]. A
function f : X → Y between two standard Borel spaces is Borel if for every Borel set A ¦ Y , its
preimage f−1(A) is a Borel subset of X. Equivalently, a function f : X → Y is Borel if and only if
graph(f) := {(x, y) : f(x) = y} is a Borel subset of X × Y [Kec12, Theorem 14.12].

It is often convenient to describe a subset B ¦ X via a statement P (x) with one free variable x
such that B = {x ∈ X : P (x)}. To verify such a set B is Borel, we will usually not explicitly write
its definition out set-theoretically, but instead rely on the form of the statement P (x) itself, keeping
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in mind that conjunctions and universal quantifiers (resp. disjunctions and existential quantifiers) in
P (x) correspond to intersections (resp. unions) in the construction of B, while negations correspond
to complements.

Let X be a standard Borel space. The diagonal of X is the set

∆(X) := {(x, x) : x ∈ X} ¦ X2.

Note that ∆(X) is a Borel subset of X2 (it is the graph of the identity function on X). Now consider
the map pair : X2 \ ∆(X) → [X]2 given by pair(x, y) := {x, y}. We endow [X]2 with the Ã-algebra

B([X]2) := {A ¦ [X]2 : pair−1(A) ∈ B(X2)}.

This makes [X]2 a standard Borel space [KM04, Example 6.1 and Proposition 6.3]. By construction,
the function pair : X2 \ ∆(X) → [X]2 is Borel.

Definition 2.1 (Analytic and coanalytic sets). Let X be a standard Borel space. A set A ¦ X is
analytic if there exist a standard Borel space Y and a Borel function f : Y → X such that f(Y ) = A.
Equivalently, A is analytic if there exist a standard Borel space Y and a Borel set B ¦ X × Y such
that x ∈ A ⇐⇒ ∃ y ∈ Y ((x, y) ∈ B). A set A ¦ X is coanalytic if its complement is analytic.

In practice, to show a set A is analytic we will typically write

x ∈ A ⇐⇒ ∃ y ∈ Y (P (x, y)),

where P (x, y) is a statement with two free variables such that P (x, y) holds if and only if (x, y) ∈ B
for some Borel set B ¦ X × Y . Verifying that P (x, y) really does correspond to a Borel set will
often be routine and left to the reader. Similarly, a set A ¦ X is coanalytic when

x ∈ A ⇐⇒ ∀ y ∈ Y (P (x, y)),

where P (x, y) describes a Borel subset of X × Y . We give an example of a proof of this type below;
in the sequel, equally straightforward arguments will be omitted.

Example 2.2. For a Borel graph G, the set I ¦ V (G) of all isolated vertices is coanalytic. Indeed,

x ∈ I ⇐⇒ ∀ y ∈ V (G) (xy /∈ E(G)).

To see that the set {(x, y) ∈ V (G)2 : xy /∈ E(G)} is Borel, we observe that it is equal to

V (G)2 \ pair−1(E(G)).

It follows that the set I is coanalytic.

The family of all analytic subsets of a standard Borel space is closed under countable unions and
intersections, and the same is true for the family of all coanalytic subsets [Kec12, Proposition 14.4].

Example 2.3. We argue that for a Borel graph G, the equivalence relation ≡G whose classes are
the connected components of G is analytic. Indeed, we have

x ≡G y ⇐⇒ ∃ d ∈ N, ∃ (u0, . . . , ud) ∈ V (G)d+1

(

x = u0, u0u1 ∈ E(G), . . . , ud−1ud ∈ E(G), ud = y
)

.

This means that we can write ≡G =
⋃

d∈N Sd, where

(x, y) ∈ Sd ⇐⇒ ∃ (u0, . . . , ud) ∈ V (G)d+1

(

x = u0, u0u1 ∈ E(G), . . . , ud−1ud ∈ E(G), ud = y
)

.

Since E(G) is Borel, we see that each set Sd is analytic, and hence their union is analytic as well.

It should be noted that there exist analytic sets that are not Borel. This follows from a diagno-
lization argument originally given by Suslin, see [Kec12, Theorem 14.2]. We now present a classical
result of Luzin and Novikov that provides a sufficient condition for an analytic set to be Borel. A
proof can be found in [Kec12, Theorem 18.10] or [Mil12, Theorem 32].
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Theorem 2.4 (Luzin–Novikov). Let X and Y be standard Borel spaces and let B ¦ X × Y be a

Borel set. If for every x ∈ X, the set {y ∈ Y : (x, y) ∈ B} is countable, then

{x ∈ X : ∃ y ∈ Y ((x, y) ∈ B)}

is a Borel subset of X.

Example 2.5. Thanks to the Luzin–Novikov theorem, many combinatorial constructions on locally
countable Borel graphs can be shown to result in Borel sets. For instance, as in Example 2.2, let
I ¦ V (G) be the set of all isolated vertices of G. Then

x ∈ Ic ⇐⇒ ∃ y ∈ V (G) (xy ∈ E(G)).

If G is a locally countable Borel graph, then for each x ∈ V (G), the set {y ∈ V (G) : xy ∈ E(G)} is
countable, and hence, by the Luzin–Novikov theorem, the set Ic is Borel. It follows that the set of
all isolated vertices in a locally countable Borel graph is Borel. A similar argument shows that for a
locally countable Borel graph G, the relation ≡G defined in Example 2.3 is Borel.

Another classical theorem of Suslin allows separating two analytic sets by a Borel set. A proof
can be found in [Kec12, Theorem 14.7].

Theorem 2.6 (Analytic separation). Let A1 and A2 be disjoint analytic subsets of a standard Borel

space X. Then there exists a Borel set B ¦ X such that A1 ¦ B ¦ Ac
2.

An immediate corollary of Theorem 2.6 is that a set that is both analytic and coanalytic must be
Borel, since it can be separated from its complement by a Borel set.

Given a set X and an equivalence relation E on X, we say a set A ¦ X is E-invariant if no
element of A is related by E to an element of Ac. The following result is [Kec12, Exercise 14.14]; we
provide a proof for completeness.

Lemma 2.7 (Invariant analytic separation). Let X be a standard Borel space and let E be an

analytic equivalence relation on X. Suppose Y , Z ¦ X are analytic sets such that no element of Y is

E-related to an element of Z. Then there is an E-invariant Borel set B ¦ X such that Y ¦ B ¦ Zc.

Proof. Given A ¦ X, let [A]E be the E-saturation of A, i.e.,

[A]E := {x ∈ X : ∃ a ∈ A (xE a)}.

Observe that the set [A]E is E-invariant; furthermore, since E is analytic, if A is analytic, then [A]E
is analytic as well. Upon replacing Y by [Y ]E and Z by [Z]E , we may assume that Y and Z are
E-invariant and disjoint.

We will now inductively define an increasing sequence of Borel sets (Bi)i∈N such that Y ¦ Bi ¦ Zc

and [Bi]E ¦ Bi+1. We do so as follows: by analytic separation, there exists a Borel set B0 such that
Y ¦ B0 ¦ Zc. Now let Bi be Borel with Y ¦ Bi ¦ Zc. Since B is Borel, it follows [Bi]E is analytic;
furthermore, as Bi ¦ Zc and Z is E-invariant, it follows [Bi]E ¦ Zc. Thus by analytic separation
there exists Borel Bi+1 with [Bi]E ¦ Bi+1 ¦ Zc. This completes the inductive construction.

Let B :=
⋃

n∈NBn. Clearly B is Borel and Y ¦ B ¦ Zc. Finally, since B =
⋃

n∈N[Bn]E , the set
B is E-invariant, as desired. ■

An important role in our arguments will be played by the following special class of equivalence
relations on standard Borel spaces:

Definition 2.8 (Smoothness). Let E be an equivalence relation on a standard Borel space X. Then
E is smooth if there exist a standard Borel space Y and Borel function f : X → Y such that for
all x, y ∈ X we have xE y ⇐⇒ f(x) = f(y). We say f witnesses the smoothness of E.

Note that a smooth equivalence relation on a standard Borel space is automatically Borel. Since
all uncountable standard Borel spaces are isomorphic [Kec12, Theorem 15.6], we may, without loss
of generality, use R as the codomain of f in Definition 2.8 for concreteness.
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Recall the equivalence relation E0 discussed in §1. Harrington, Kechris, and Louveau showed
that not only is E0 nonsmooth, but it is a “smallest” nonsmooth equivalence relation [HKL90]. This
result is known as the E0-dichotomy. While the original proof due to Harrington, Kechris, and
Louveau uses methods of effective descriptive set theory, a classical, graph-theoretic proof was given
by Miller [Mil12, Theorem 26].

Theorem 2.9 (E0-dichotomy). Let X be a standard Borel space and let E be a Borel equivalence

relation on X. Then exactly one of the following holds:

(1) E is smooth, or

(2) there exists a Borel embedding from E0 to E; that is, there is an injective Borel function

f : C → X such that ³E0 ´ ⇐⇒ f(³)E f(´).

3. Outline of the proof of Theorem 1.3

3.1. Line graph decompositions and line graph relations

An important role in our arguments in played by a characterization of line graphs via a partition of
their edges into cliques, which we call a line graph decomposition.

Definition 3.1 (Line graph decompositions). A line graph decomposition of a graph L is a
collection C of nonempty subsets of V (L) such that:

• for all C ∈ C , L[C] is a clique;

• the sets E(L[C]), C ∈ C are pairwise disjoint and their union is E(L);

• each non-isolated vertex of L is contained in exactly two sets in C ; each isolated vertex is
contained in exactly one set in C .

Note that any two sets in a line graph decomposition have at most one common vertex. Krausz
observed that a graph L is a line graph if and only if L has a line graph decomposition [Kra43].
Indeed, if L = L(G) for some graph G, then {{e ∈ E(G) : e ∋ v} : v ∈ V (G)} is a line graph
decomposition of L. Conversely, given a line graph decomposition C of a graph L without isolated
vertices, one can form a graph G such that L(G) ∼= L as follows:

V (G) := C , E(G) := {{C,C ′} ∈ [C ]2 : C ∩ C ′ ̸= ∅}. (3.1)

Here an isomorphism φ : E(G) → V (L) is given by letting φ({C,C ′}) for each edge {C,C ′} ∈ E(G)
be the unique vertex in C ∩ C ′. If L has isolated vertices, we simply add to G an isolated edge
corresponding to each isolated vertex of L.

Since a line graph decomposition of L induces a partition of the edge set of L, we can use it to
define an equivalence relation on E(L), called the line graph relation:

Definition 3.2 (Line graph relations). Let C be a line graph decomposition of a graph L. The
equivalence relation

∼C := {(e, e′) ∈ E(L)2 : ∃C ∈ C
(

{e, e′} ¦ E(L[C])
)

}

on E(L) is called the line graph relation on L under C . An equivalence relation ∼ on E(L) is
called a line graph relation if there is a line graph decomposition C of L such that ∼ = ∼C .

Note that if ∼ is a line graph relation on L, then each ∼-class is the edge set of a clique in L.
Furthermore, the following combinatorial characterization of line graph relations is an immediate
consequence of the above definitions:

Lemma 3.3 ([Bei70, p. 130]). Let L be a graph. An equivalence relation ∼ on E(L) is a line graph

relation if and only if each ∼-equivalence class is the edge set of a clique in L and every vertex of L
is incident to at most two ∼-classes.
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Let G be a graph and let R be a binary relation on E(G). If H ¦ G is a subgraph of G, we let
R|H := R ∩ E(H)2 be the restriction of R to H. If U ¦ V (G), then we let R|U := R|G[U ] be the
restriction of R to U .

Lemma 3.4. Let L be a graph with a line graph relation ∼. If H is an induced subgraph of L,

then ∼|H is a line graph relation on H.

Proof. Follows immediately from Lemma 3.3. ■

3.2. Main steps of the proof of Theorem 1.3

We can now describe the key steps in the proof of our main result. To begin with, we note that,
thanks to Beineke’s Theorem 1.1, Theorem 1.3 is equivalent to the following statement:

Theorem 3.5. Let L be a Borel graph that is a line graph. Then L is a Borel line graph if and

only if L does not contain a Borel copy of K0.

A significant complication in proving Theorem 3.5 arises from the fact that L is not assumed to
be locally countable. As briefly discussed in Example 2.5, in the study of locally countable Borel
graphs, the Luzin–Novikov theorem is routinely used to show that various combinatorially defined
sets are Borel, but such arguments are unavailable for general Borel graphs. As a result, even very
simple sets associated to L, such as the set of all isolated vertices, may fail to be Borel. This makes
analyzing the structure of L through the lens of Borel combinatorics a particularly intricate task.

Let L be a Borel graph that is a line graph. Below we outline the major intermediate results
that go into the proof of Theorem 3.5. Each of them presents interesting challenges in its own right,
which we will comment on in the subsequent subsections.

Since L is a line graph, it has a line graph decomposition, and hence there is a line graph relation
on L. The first step in our proof is to find a Borel line graph relation on L:

Theorem 3.6 (Borel line graph relations). If L is a Borel graph that is a line graph, then L has a

Borel line graph relation.

Proof. §4. ■

Theorem 3.6 yields a Borel line graph relation regardless of whether L is a Borel line graph. The
question arises: Given a Borel graph L with a Borel line graph relation ∼, how can we tell whether
L is a Borel line graph? The answer is given by the following theorem:

Theorem 3.7 (Smooth line graph relations). Let L be a Borel graph that is a line graph. Then the

following are equivalent:

(1) L is a Borel line graph,

(2) L has a smooth line graph relation,

(3) all Borel line graph relations on L are smooth.

Of the above equivalences, we only use (1) ⇐⇒ (2) in our proof of Theorem 1.3. Still, the
equivalence (2) ⇐⇒ (3) is of independent interest, as it is a natural addition to our characterization
of Borel line graphs by the smoothness of their Borel line graph relations. The implication (2) ⇒
(3) is proved in Appendix A, and the details of (2) ⇒ (1) are presented in §5 (see also §3.4 for an
informal discussion of this implication). The other implications in Theorem 3.7 are straightforward:

Proof. (1) ⇒ (2): Without loss of generality, we may assume that L = L(G) for some Borel graph
G. The following definition gives a line graph relation on E(L):

{e1, e2} ∼ {e′

1, e
′

2} ⇐⇒ e1 ∩ e2 = e′

1 ∩ e′

2.

The smoothness of ∼ is witnessed by the function f : E(L) → V (G) defined by letting f({e1, e2})
be the unique vertex in e1 ∩ e2. Therefore, L has a smooth line graph relation.

7



G L(G)
K3 or K1,3 K3

K+
1,3 K−

4

K−

4 Square pyramid
K4 Octrahedron

Table 1. Exceptional graphs in Whitney’s strong isomorphism theorem (left) with
the corresponding line graphs (right).

Figure 2. The four singular graphs.

(2) ⇒ (1): §5.
(2) ⇒ (3): Appendix A.
(3) ⇒ (2): Follows from Theorem 3.6. ■

Assuming L is not a Borel line graph, Theorems 3.6 and 3.7 yield a nonsmooth Borel line graph
relation ∼ on E(L), which we utilize in §6 to find a desired Borel copy of K0 in L.

In the following subsections we describe in a little more detail some of the ideas used in accom-
plishing these steps.

3.3. Finding a Borel line graph relation (Theorem 3.6)

A key ingredient in our proof of Theorem 3.6 is the fact that a connected line graph has a unique

line graph decomposition, save for four graphs. This is shown in Corollary 3.9 below. These four
graphs are listed in the second column of Table 1 and illustrated in Fig. 2. We call a graph singular

if it is isomorphic to any of these 4 graphs, and we call a graph exceptional if its line graph is
singular. The exceptional graphs are listed in the first column of Table 1 (here K+

1,3 is K1,3 with

one additional edge, and K−

4 is K4 with a single edge removed.)

Theorem 3.8 (Whitney’s strong isomorphism theorem). If G and H are connected non-exceptional

graphs, then every isomorphism φ : E(G) → E(H) from L(G) to L(H) is induced by an isomorphism

Ã : V (G) → V (H) from G to H, that is, if xy ∈ E(G), then φ(xy) = Ã(x)Ã(y).

Whitney [Whi32] proved Theorem 3.8 for finite graphs in 1932. A short alternative proof was
given by Jung [Jun66], who also extended the result to infinite graphs. Jung’s paper is in German;
for an English version of the proof, see [Hem72] or [Har69, Theorem 8.3]. We shall apply Theorem 3.8
in the form of the following corollary:

Corollary 3.9 (Uniqueness of line graph decompositions). If L is a connected nonsingular line

graph, then L has a unique line graph decomposition (and thus a unique line graph relation).

Proof. Let L be a connected nonsingular line graph. If L has one vertex, its line graph decomposition
is clearly unique. Otherwise, suppose C and C ′ are line graph decompositions of L. Let G and G′

be the graphs obtained from C and C ′ respectively as in (3.1). Then L(G) ∼= L and L(G′) ∼= L, say
by isomorphisms φ and φ′ respectively. By construction, for all C ∈ C and C ′ ∈ C ′,

C = {φ({C,B}) : B ∈ NG(C)} and C ′ = {φ′({C ′, B′}) : B′ ∈ NG′(C ′)}.

Since È := (φ′)−1 ◦ φ is an isomorphism from L(G) to L(G′), by Theorem 3.8, È is induced by an
isomorphism Ã from G to G′, i.e., if {C,C ′} ∈ E(G), then È({C,C ′}) = {Ã(C), Ã(C ′)} ∈ E(G′).
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Now, for any C ∈ C , we can write

Ã(C) = {φ′({Ã(C), B′}) : B′ ∈ NG′(Ã(C))}

= {φ′({Ã(C), Ã(B)}) : B ∈ NG(C)}

= {φ′(È({C,B})) : B ∈ NG(C)} = {φ({C,B}) : B ∈ NG(C)} = C.

Thus C ∈ C ′, and hence C ¦ C ′. A symmetrical argument shows that C ′ ¦ C and thus C = C ′. ■

With Corollary 3.9 in hand, it is not difficult to argue that if a Borel graph L is a line graph and
all its components are nonsingular, then the unique line graph relation on L must be Borel. On the
other hand, if all components of L are singular, then in particular they are finite, and it is again
straightforward to find a Borel line graph relation on L by picking one of the finitely many such
relations on each component of L. (This is an instance of the generally well-understood fact that
Borel combinatorics essentially trivialize on Borel graphs with finite components, see, e.g., [Pik21,
§5.3; BW23, §2.2].) The difficult case in the proof of Theorem 3.6 is when L has a mixture of singular
and nonsingular components. The challenge is that it may be impossible to separate the singular
components from the nonsingular ones in a Borel way: the union of all singular components of L is
a coanalytic—but not necessarily Borel—set. To overcome this difficulty, we use Corollary 3.9 and
the analytic separation theorem to first construct a Borel relation R on E(L) that induces a line
graph relation on every infinite component of L, but can behave arbitrarily on finite components.
Next we consider the following two sets:

A1 := {x ∈ V (L) : the component of x is infinite},

A2 := {x ∈ V (L) : R does not induce a line graph relation on the component of x}.

These sets are analytic and—by the construction of R—disjoint. With the help of invariant analytic
separation (Lemma 2.7), we are able to find a Borel set B such that A1 ¦ B ¦ Ac

2 and B is a union
of connected components of L. Since B ∩A2 = ∅, every component of L contained in Bc is finite,
which allows us to modify R on Bc to obtain a desired line graph relation on L. The details are
presented in §4.

The argument sketched above is representative of the techniques used in this paper, in that it
involves a series of applications of analytic separation to construct a Borel structure with desirable
combinatorial properties. The proof of Theorem 3.7 relies on similar ideas, but with even more
rounds of analytic separation.

3.4. Analyzing smooth line graph relations (Theorem 3.7)

The proof of the implication (2) ⇒ (1) is not as straightforward as may initially appear. To indicate
the source of the difficulty, let us sketch an obvious naive approach (which ends up failing). Suppose
that ∼ is a smooth line graph relation on L and let f : E(L) → R be a Borel function witnessing the
smoothness of ∼. This means that for each point x in the image of f , f−1(x) is a ∼-class. Recall the
endpoints of the edges of each ∼-class induce a clique in L; let us denote this clique by Cx ¦ V (L).
For x ∈ R \ im(f), set Cx := ∅. In an attempt to mimic (3.1), let us consider the graph G with
V (G) := R and

E(G) := {xy ∈ [R]2 : Cx ∩ Cy ̸= ∅},

and define a map φ : E(G) → V (L) by letting φ(xy) for each edge xy ∈ E(G) be the (necessarily
unique) vertex in Cx ∩ Cy. Ideally, φ witnesses L(G) ∼=B L by φ. Unfortunately, there are two
issues with the construction:

• First, the map φ defined in this way is an embedding of L(G) into L, but it is only surjective
if every vertex of L is incident to exactly two ∼-classes. In general, some vertices of L may be
incident to one ∼-class or be isolated. Note that the set of all isolated vertices, as well as the set of
all vertices incident to a single ∼-class, need not be Borel.
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• The second problem is that the set E(G) defined above is analytic but not necessarily Borel.
In other words, G may fail to be a Borel graph.

The crux of the difficulty here is that the following relation may not be Borel:

R := {(v, x) ∈ V (L) × R : ∃ e ∈ E(L) (f(e) = x, v ∈ e)}.

To circumvent this obstacle, we repeatedly apply analytic separation to construct a sequence R0,
R1, R2, R3, R4, R5 of Borel relations that in some sense “approximate” R. With care, we are able
to ensure that the final relation, R5, has the following properties:

• R ¦ R5, and if v R5 x and x ∈ im(f), then v Rx,

• every vertex of L R5-relates to at most two elements of R,

• every element of R \ im(f) R5-relates to at most one vertex of L.

We then show that these properties enable us to use R5 in place of R in the construction of a Borel
graph G with L(G) ∼=B L. The details are given in §5.

3.5. Finishing the proof

Let L be a Borel graph with a nonsmooth Borel line graph relation ∼. To obtain a Borel copy of
K0 in L, we seek a Borel induced subgraph H ¦ L such that:

• every component of H is a clique, and

• the equivalence relation ≡H on V (H) whose classes are the components of H is nonsmooth.

Once we find such H, we can take φ : C → V (H) to be a Borel embedding from E0 to ≡H guaranteed
by the E0-dichotomy and observe that L[im(φ)] is a Borel copy of K0 in L, as desired.

To motivate our construction of H, note that since ∼ is nonsmooth, the E0-dichotomy yields a
Borel embedding Ä : C → E(L) from E0 to ∼. In particular, if ³, ´ ∈ C are not E0-related, then
Ä(³) ̸∼ Ä(´). We want to strengthen this property as follows:

If ³, ´ ∈ C are not E0-related, then the endpoints of the edge Ä(³) are not adjacent

to the endpoints of Ä(´).
(3.2)

It is not hard to see that if (3.2) holds, we can let H be the subgraph of L induced by the vertices
incident to im(Ä). In order to find Ä satisfying (3.2), we rely on the following lemma:

Lemma 3.10. Let X be a standard Borel space and let E ¦ X2 be a nonsmooth Borel equivalence

relation on X. If R ¦ X2 is a Borel set such that for each x ∈ X, the restriction of E to the set

R(x) := {y ∈ X : xR y}

is smooth, then there is a Borel injective homomorphism Ä : C → X from (Ec
0, E0) to (Rc, E).

Here, given binary relations (E1, . . . , En) on a set X and (F1, . . . , Fn) on a set Y , a homomor-

phism from (E1, . . . , En) to (F1, . . . , Fn) is a function Ä : X → Y such that xEi y ⇒ Ä(x)Fi Ä(y)
for all x, y ∈ X and 1 ⩽ i ⩽ n. We derive Lemma 3.10 from the E0-dichotomy and a Mycielski-style
theorem due to Miller [Mil11, Proposition 3]. We then argue that it can be applied with E = ∼ and

R := {(e, e′) : e and e′ have adjacent endpoints},

resulting in a mapping Ä : C → E(L) with the desired properties. The details are presented in §6.

4. Proof of Theorem 3.6

Theorem (3.6). If L is a Borel graph that is a line graph, then L has a Borel line graph relation.

Proof. Given e, f ∈ E(L), we write e ⋆ f whenever there exists a clique C in L with e, f ∈ E(C).
Note that the relation ⋆ is Borel, since

{x1, x2} ⋆ {x3, x4} ⇐⇒ ∀ 1 ⩽ i, j ⩽ 4 (xi = xj or xixj ∈ E(L)).
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Let ∼L be an arbitrary (not necessarily Borel) line graph relation on L. Then ∼L ¦ ⋆. Call an
induced subgraph Γ ¦ L nice if Γ is connected, finite, and |V (Γ)| ⩾ 7. Note that if Γ is a nice
subgraph of L, then it is a nonsingular line graph, as it is an induced subgraph of L and all singular
graphs have at most 6 vertices. Thus, by Corollary 3.9, every nice graph Γ has a unique line graph
relation, ∼Γ. By Lemma 3.4, ∼L|Γ is also a line graph relation on Γ, and thus ∼Γ = ∼L|Γ.

Define relations R1 and R2 on E(L) as follows:

eR1 f ⇐⇒ ∃ nice Γ ¦ L with e, f ∈ E(Γ) and e ∼Γ f .

eR2 f ⇐⇒ e ⋆ f and ∀ nice Γ ¦ L (e, f ∈ E(Γ) ⇒ e ∼Γ f).

Claim 4.1. The relations R1 and R2 have the following properties:

(i) R1 ¦ R2 ¦ ⋆,

(ii) if H is an infinite component of L, then R1|H = R2|H = ∼L|H ,

(iii) R1 is analytic, while R2 is coanalytic.

Proof. We start by observing that if edges e, f ∈ E(L) are contained in some nice graph, then

eR1 f ⇐⇒ eR2 f ⇐⇒ e ∼L f, (4.1)

because ∼Γ = ∼L|Γ for every nice graph Γ and ∼L ¦ ⋆.

(i) The inclusion R2 ¦ ⋆ is clear, while R1 ¦ R2 follows by (4.1).

(ii) If H is an infinite component of L, then for any pair of edges e, f ∈ E(H) we can find a nice
subgraph of H containing both e and f , so R1|H = R2|H = ∼L|H by (4.1).

(iii) For each n ∈ N, let

Pn :=
{

(e, f, v1, . . . , vn) ∈ E(G)2 × V (G)n :

the graph Γ := L[{v1, . . . , vn}] is nice, e, f ∈ E(Γ), and e ∼Γ f
}

.

The statement “the graph Γ := L[{v1, . . . , vn}] is nice, e, f ∈ E(Γ), and e ∼Γ f” can be expressed
as a Boolean combination of statements of the form “vi = vj ,” “vivj ∈ E(L),” “e = {vi, vj},” and
“f = {vi, vj}.” It follows that the set Pn is Borel. By definition,

eR1 f ⇐⇒ ∃n ∈ N, ∃ (v1, . . . , vn) ∈ V (G)n
(

(e, f, v1, . . . , vn) ∈ Pn

)

,

which shows that R1 is a countable union of analytic sets, hence it is itself analytic. The proof that
R2 is coanalytic is similar, so we omit the details. ⊠

By Claim 4.1 and the analytic separation theorem, there exists a Borel set R ¦ E(L)2 such that
R1 ¦ R ¦ R2. Let ≡ be the equivalence relation on V (L) whose classes are the components of L.
Note that ≡ is analytic (see Example 2.3). For a vertex x ∈ V (L), let [x] denote the component of
L containing x, and define:

A1 := {x ∈ V (L) : [x] is infinite},

A2 := {x ∈ V (L) : R|[x] is not a line graph relation on [x]}.

Claim 4.2. A1 and A2 are disjoint analytic ≡-invariant sets.

Proof. That A1 and A2 are ≡-invariant is immediate from the way they are defined. Next, we write

x ∈ A1 ⇐⇒ ∀n ∈ N, ∃ y1, . . . , yn ∈ V (L)
(

y1, . . . , yn are distinct and ∀i ∈ [n] (x ≡ yi)
)

,

which shows that A1 is a countable intersection of analytic sets, so it is itself analytic. To see that
A2 is analytic, recall that by Lemma 3.3, R|[x] is a line graph relation if and only if:

(1) R|[x] is an equivalence relation,

(2) each equivalence class of R|[x] is the edge set of a clique in [x], and

(3) for each vertex y ≡ x, y is incident to at most two equivalence classes of R|[x].
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For the first condition, we have:

(1) ⇐⇒ ∀ e, f, g ∈ E([x])

(

eR e, eR f ⇒ f R e,
(

eR f and f R g
)

⇒ eR g

)

.

For the second condition, assuming (1) holds, we have

(2) ⇐⇒ ∀ e = {a, b}, f = {c, d} ∈ E([x])

(

eR f ⇒
(

a = c or
(

{a, c} ∈ E(L), {a, c}Re
)

)

)

.

For the third condition, assuming (1) holds, we have

(3) ⇐⇒ ¬

(

∃ y ≡ x, ∃ e, f, g ∈ E([x])
(

y ∈ e ∩ f ∩ g, eRc f, eRc g, f Rc g
)

)

.

Since R is Borel and the relation

e ∈ E([x]) ⇐⇒ ∃u ≡ x (u ∈ e),

is analytic, these three conditions define coanalytic sets, and thus A2 is analytic.
Finally, to see that A1 and A2 are disjoint, let H be an infinite component of L. By Claim 4.1,

R1|H = R2|H = ∼L|H . Since R1 ¦ R ¦ R2, it follows that R|H = ∼L|H . In particular, R|H is a
line graph relation on H, so H is contained in Ac

2, as desired. ⊠

By Claim 4.2, we may apply invariant analytic separation (Lemma 2.7) with X = V (L), E = ≡,
Y = A1, and Z = A2 to obtain a Borel ≡-invariant set B ¦ V (L) such that A1 ¦ B ¦ Ac

2. Since
B ¦ Ac

2, it follows that R|B is a Borel line graph relation on L[B]. On the other hand, since A1 ¦ B,
every component of L[Bc] is finite. This means that we may employ the Luzin–Novikov theorem to
pick, in a Borel way, a single line graph relation on each component of L[Bc] and form a Borel line
graph relation R∗ on L[Bc]. (Since arguments dealing with Borel graphs with finite components in
this manner are standard, we defer the details to Appendix B.) As B is ≡-invariant, we conclude
that R|L[B] ∪R∗ is a desired Borel line graph relation on L. ■

5. Proof of Theorem 3.7, (2) ⇒ (1)

Theorem (3.7, (2) ⇒ (1)). Let L be a Borel graph that is a line graph. If L has a smooth line

graph relation ∼, then L is a Borel line graph.

Proof. Let f : E(L) → R witness the smoothness of ∼. Define R, R′ ¦ V (L) × R by:

v Rx ⇐⇒ ∃uw ∈ E(L)
(

f(uw) = x and (v = u or v = w)
)

,

v R′ x ⇐⇒ ∀uw ∈ E(L)
(

f(uw) = x ⇒

(

(vu ∈ E(L), f(vu) = x) or (vw ∈ E(L), f(vw) = x)
)

)

.

Note that R ¦ R′ and R′ \R = {(v, x) ∈ V (L) ×R : x /∈ im(f)}. Since f is Borel, it follows that R
is analytic and R′ is coanalytic.

As R ¦ R′, analytic separation yields a Borel set R0 such that R ¦ R0 ¦ R′. Define B0 ¦ R0 by

B0 := {(v, z) ∈ R0 : ∃u ∈ V (L) ((u, z) ∈ R0, uv ∈ E(L), f(uv) ̸= z)}.

Since R0 is Borel, B0 is analytic. Note that if (v, z) ∈ R, then z ∈ im(f), so if u is a neighbor of v
such that (u, z) ∈ R0, then (u, z) ∈ R as well. Thus both u and v are incident to edges that are
mapped by f to z. Since f−1(z) is the edge set of a clique, it follows that f(uv) = z for all such u,
so (v, z) /∈ B0. In other words, R ∩B0 = ∅.

By analytic separation, there is a Borel set R1 with R ¦ R1 ¦ R0 \B0. Define B1 ¦ R1 by

B1 := {(v, z) ∈ R1 : ∃u ∈ V (L) (u ̸= v, uv /∈ E(L), (u, z) ∈ R1)}.

12



v1

v2

v3

v4

v5

v6
v7 v8 v9

x1 x2 x3 x4 x5 x6 x7

im(f)

L

R

v1

v2

v4

(0, v8)
(1, v8) v9

x1 x2 x3 x4 x5 x6 x7

G

⇝

Figure 3. The construction of G using the relation R5. Here the dashed edges
represent the relation R and the dotted ones represent the relation R5 \R. In this

example, V0 = {v8}, V1 = {v1, v2, v4, v9}, and V2 = {v3, v5, v6, v7}.

Again, B1 is analytic. Moreover, for each z ∈ im(f), the vertices of L to which z is R-related form a
clique, so R ∩B1 = ∅. Thus, by analytic separation, there is a Borel set R2 with R ¦ R2 ¦ R1 \B1.

Next we define a subset B2 ¦ R2 by

B2 := {(v, z) ∈ R2 : ∃x, y ∈ R ((v, x), (v, y) ∈ R, |{x, y, z}| = 3)}.

Since R2 is Borel and R is analytic, B2 is analytic. Furthermore, each vertex of L can be R-related
to at most two elements of R, so R ∩B2 = ∅. By analytic separation, there exists a Borel set R3

with R ¦ R3 ¦ R2 \B2. Let B3 ¦ R3 be defined as follows:

B3 := {(v, z) ∈ R3 : ∃x, y ∈ R ((v, x) ∈ R, (v, y) ∈ R3, |{x, y, z}| = 3)}.

Since R3 is Borel and R is analytic, B3 is analytic. Take any (v, z) ∈ B3 with (v, x) ∈ R, (v, y) ∈ R3,
and |{x, y, z}| = 3. If (v, z) ∈ R, then (v, y) ∈ B2, and thus (v, y) /∈ R3, which is a contradiction.
Thus, R ∩B3 = ∅. By analytic separation, there is a Borel set R4 with R ¦ R4 ¦ R3 \B3. Let

B4 := {(v, z) ∈ R4 : ∃x, y ∈ R ((v, x) ∈ R4, (v, y) ∈ R4, |{x, y, z}| = 3)}.

Since R4 is Borel, B4 is analytic. If (v, z) ∈ B4 with (v, x) ∈ R4, (v, y) ∈ R4, and |{x, y, z}| = 3,
and (v, z) ∈ R, then (v, x) ∈ B3, which is impossible. Therefore, R ∩B4 = ∅.

Finally, analytic separation yields a Borel set R5 with R ¦ R5 ¦ R4 \B4. Observe that R5 has
the following properties:

(i) R ¦ R5 ¦ R′.

This is clear from the construction.

(ii) Every vertex of L R5-relates to at most two elements of R.

This follows since R5 ∩B4 = ∅.

(iii) Every element of R \ im(f) R5-relates to at most one vertex of L.

Indeed, suppose z ∈ R R5-relates to two different vertices u, v ∈ V (L). Since R5 ∩B1 = ∅, it follows
that uv ∈ E(L). Then, since R5 ∩B0 = ∅, we have f(uv) = z, i.e., z ∈ im(f), as claimed.

Having found a Borel relation R5 satisfying conditions (i)–(iii), we can now define a Borel graph
G such that L(G) ∼=B L. To this end, let

V0 := {v ∈ V (L) : ∀x ∈ R ((v, x) /∈ R5)},

V1 := V (L) \ (V0 ∪ V2), where

V2 := {v ∈ V (L) : ∃x, y ∈ R ((v, x), (v, y) ∈ R5, x ̸= y)}.

As R5 is Borel, the Luzin–Novikov theorem together with property (ii) of R5 shows that V0 and
V2 are Borel sets, and thus V1 is Borel as well. Without loss of generality (e.g., by replacing V (L)
with {2} × V (L)), we may assume that the sets R, V (L), and {0, 1} × V (L) are disjoint. We then
construct G as follows:

V (G) := ({0, 1} × V0) ∪ V1 ∪ R, E(G) := E0 ∪ E1 ∪ E2,
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where

E0 :=
{

{(0, v), (1, v)} : v ∈ V0

}

,

E1 :=
{

{v, x} : v ∈ V1, (v, x) ∈ R5

}

,

E2 :=
{

{x, y} : x ̸= y and ∃ v ∈ V2
(

(v, x), (v, y) ∈ R5
)

}

.

This construction is illustrated in Fig. 3. To see that G is a Borel graph, we need to verify that the
sets E0, E1, and E2 are Borel. For E0 and E1, this is clear. For E2, notice that if x, y ∈ im(f) are
distinct, then there is at most one vertex v ∈ V2 such that (v, x), (v, y) ∈ R5, namely the common
vertex of the cliques f−1(x) and f−1(y). On the other hand, if, say, x ∈ R \ im(f), then by (iii),
there is at most one vertex v such that (v, x) ∈ R5. In either case, there is at most one vertex v
with (v, x), (v, y) ∈ R5 and hence, by the Luzin–Novikov theorem, the set E2 is Borel.

To argue that L ∼=B L(G), we define a Borel isomorphism φ from L(G) to L as follows. For
{(0, v), (1, v)} ∈ E0, let φ({(0, v), (1, v)}) := v ∈ V0, for {v, x} ∈ E1, define φ({v, x}) := v ∈ V1, and
for {x, y} ∈ E2, let φ({x, y}) be the unique v ∈ V2 such that (v, x), (v, y) ∈ R5. It is immediate
from the definition that φ is indeed a desired Borel isomorphism. ■

6. Finishing the proof

Recall that a subset of a topological space is meager if it is a union of countably many nowhere
dense sets. We shall use the following result of Miller [Mil11]:

Theorem 6.1 (Miller [Mil11, Proposition 3]). Let R ¦ C2 be a meager set. Then there exists a

continuous injective homomorphism Ä : C → C from (Ec
0, E0) to (Rc, E0).

With Theorem 6.1 in hand, we can prove Lemma 3.10:

Lemma (3.10). Let X be a standard Borel space and let E ¦ X2 be a nonsmooth Borel equivalence

relation on X. If R ¦ X2 is a Borel set such that for each x ∈ X, the restriction of E to the set

R(x) := {y ∈ X : xR y}

is smooth, then there is a Borel injective homomorphism Ä : C → X from (Ec
0, E0) to (Rc, E).

Proof. By the E0-dichotomy, there is a Borel embedding f : C → X from E0 to E. Since f is injective,
its image is Borel, so we may, without loss of generality, replace X by im(f) and assume that f is a
bijection. (For each x ∈ X, the restriction of E to R(x) ∩ im(f) ¦ R(x) remains smooth, so the
assumptions of the lemma are still satisfied.) Since Borel bijections between standard Borel spaces
are isomorphisms [Kec12, Corollary 15.2], we may in fact assume that X = C, f is the identity map,
and E = E0. If A ¦ C is a Borel set such that E0|A is smooth, then A is meager [Uzc95, Corollary
4.12], so R(x) is meager for all x ∈ C. By the Kuratowski–Ulam theorem [Kec12, Theorem 8.41], it
follows that R is a meager subset of C2. Therefore, we may apply Theorem 6.1 to get a continuous
(hence Borel) injective homomorphism Ä : C → C from (Ec

0, E0) to (Rc, E0), as desired. ■

Now we have all the necessary ingredients to complete the proof of our main result.

Theorem (3.5). Let L be a Borel graph that is a line graph. Then L is a Borel line graph if and

only if L does not contain a Borel copy of K0.

Proof. By Theorem 3.6, there is a Borel line graph relation ∼ on L. If ∼ is smooth, then L is a
Borel line graph by Theorem 3.7, and thus contains no Borel copies of K0. Now suppose that ∼ is
nonsmooth. Our goal is to show that L contains a Borel copy of K0.

As ∼ is Borel, every ∼-class is a Borel subset of E(L). For a ∼-class C, let V (C) ¦ V (L) be the
set of all vertices incident to an edge in C. The set V (C) is Borel since, fixing an arbitrary edge
e ∈ C and a vertex x ∈ e, we can write

V (C) = {w ∈ V (L) : w = x or wx ∼ e}.
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For an edge e ∈ E(L), let Ce be the ∼-class containing e, and for each ∼-class C, define

S(C) := {e ∈ E(L) : e ̸∈ C and V (Ce) ∩ V (C) ̸= ∅}.

Claim 6.2. For each ∼-class C, S(C) is a ∼-invariant Borel set and the relation ∼|S(C) is smooth.

Proof. Fix a ∼-class C. It is clear from the definition that S(C) is ∼-invariant. Observe that

S(C) = {uv ∈ E(L) \ C : ∃w ∈ V (C) (w = u or wu ∼ uv)}.

Since for e ̸∈ C, there can be at most one vertex w in V (Ce) ∩ V (C), the set S(C) is Borel by the
Luzin–Novikov theorem. Additionally, the following function f : S(C) → V (C) is Borel:

f(e) := the unique vertex w ∈ V (Ce) ∩ V (C).

If e, e′ ∈ S(C) are ∼-equivalent, then f(e) = f(e′) by construction. Conversely, if f(e) = f(e′) =: w,
then e and e′ belong to the same ∼-class, namely the unique ∼-class other than C incident to w. In
other words, f witnesses the smoothness of ∼|S(C), as desired. ⊠

Define a relation R ¦ E(L)2 as follows:

x1x2Ry1y2 ⇐⇒ ∃ i, j ∈ {1, 2} (xiyi ∈ E(L)).

Claim 6.3. For each xy ∈ E(L), the restriction of ∼ to R(xy) := {e ∈ E(L) : xy R e} is smooth.

Proof. Fix an edge xy ∈ E(L) and observe that

R(xy) ¦ Cxy ∪ S(Cxy) ∪ S(Cx) ∪ S(Cy), (6.1)

where Cx and Cy are the ∼-classes distinct from Cxy containing x and y respectively (if x or y is
incident to only one ∼-class, we let the corresponding set in (6.1) be empty). For each t ∈ {xy, x, y},
let ft : S(Ct) → R witness the smoothness of ∼|S(Ct) (such functions ft exist by Claim 6.2). Then
the following map f : R(xy) → {0, 1, 2, 3} × R witnesses the smoothness of ∼|R(xy):

f(e) :=























(0, 0) if e ∈ Cxy,

(1, fxy(e)) if e ∈ S(Cxy),

(2, fx(e)) if e ∈ S(Cx) \ (Cxy ∪ S(Cxy)),

(3, fy(e)) if e ∈ S(Cy) \ (Cxy ∪ S(Cxy) ∪ S(Cx)).

⊠

With Claim 6.3 in hand, we may apply Lemma 3.10 to obtain a Borel injective homomorphism
Ä : C → E(L) from (Ec

0, E0) to (Rc, ∼). Since Ä is injective, its image im(Ä) is a Borel subset of
E(L). Let U ¦ V (L) be the set of all vertices incident to an edge in im(Ä). Since every E0-class is
countable, each ∼-class contains countably many edges in im(Ä). As every vertex belongs to at most
two ∼-classes, it is incident to countably many edges in im(Ä). It follows by the Luzin–Novikov
theorem that the set U is Borel, and hence H := L[U ] is a Borel induced subgraph of L.

Observe that if xy, yz ∈ E(H), then xy ∼ yz. Indeed, let ³, ´, µ ∈ C be such that the edges
Ä(³), Ä(´), and Ä(µ) are incident to x, y, and z respectively. Then Ä(³)RÄ(´)RÄ(µ), and thus
³E0 ´ E0 µ because Ä is a homomorphism from E

c
0 to Rc. Since Ä is a homomorphism from E0 to ∼,

we conclude that Ä(³) ∼ Ä(´) ∼ Ä(µ). Therefore, x, y, and z are all incident to the same ∼-class,
and thus xy ∼ yz, as desired.

We conclude that the edge set of every component of H is contained in a single ∼-class. Define
the relation ≡H on V (H) by

x ≡H y ⇐⇒ x and y are in the same component of H.

Since H is locally countable, ≡H is Borel by the Luzin–Novikov theorem (see Examples 2.3 and 2.5).

Claim 6.4. ≡H is nonsmooth.

Proof. Suppose to the contrary that ≡H is smooth, and let f : V (H) → R witness the smoothness
of ≡H . Then À : E(H) → R defined by À(xy) := f(x) is well-defined and witnesses the smoothness
of ∼|H . But ∼|H is nonsmooth as Ä is an embedding from E0 to ∼|H . ⊠

15



Since ≡H is nonsmooth, by the E0-dichotomy there exists a Borel embedding φ : C → V (H) from
E0 to ≡H . As H is a union of disjoint cliques, it follows that φ is a Borel isomorphism from K0 to
L[im(φ)]. Therefore, L contains a Borel copy of K0, as desired. ■
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A. Proof of Theorem 3.7, (2) ⇒ (3)

As Corollary 3.9 implies two line graph relations differ only on singular components, which are all
finite, the statement (2) ⇒ (3) is an immediate corollary of the following lemma:

Lemma A.1. If E and E′ are Borel equivalence relations on a standard Borel space X such that E
is smooth and every infinite E′-class is also an E-class, then E′ is smooth.

Proof. Let f : X → R witness the smoothness of E. Define the following subsets of X:

A1 := {x ∈ X : [x]E′ is infinite},

A2 := {x ∈ X : ∀ y ∈ X (xE′y ⇐⇒ xEy)}.

Clearly A1 is analytic and A2 is coanalytic. Furthermore, if x ∈ A1, then [x]E′ = [x]E , and thus
x ∈ A2. So A1 ¦ A2. Since A1 is E′-invariant and analytic, while A2 is coanalytic, invariant analytic
separation (Lemma 2.7) yields an E′-invariant Borel set B such that A1 ¦ B ¦ A2.

Fix a Borel linear ordering, say ≼, on X (for instance, we may assume that X = R [Kec12,
Theorem 15.6] and use the standard ordering on R). If x ∈ Bc, then [x]E′ is finite. Thus there
exists a ≼-minimum element, say µ(x) ∈ Bc, such that xE′ µ(x). For each x ∈ Bc, there are only
finitely many y ∈ X such that xE′ y, and so the map µ : Bc → Bc is Borel by the Luzin–Novikov
theorem. Furthermore, for x, y ∈ Bc, we have xE′ y if and only if µ(x) = µ(y). On the other hand,
if x, y ∈ B, then, since B ¦ A2, we have xE′ y if and only if f(x) = f(y).

Without loss of generality, we may assume that X ∩ R = ∅. Define g : X → X ∪ R by

g(x) :=

{

f(x) if x ∈ B,

µ(x) if x ∈ Bc.

Since f and µ are Borel functions and B is a Borel set, g is a Borel function. Furthermore, the
above discussion implies that g witnesses the smoothness of E′, as desired. ■

B. Borel line graph relations for graphs with finite components

In this appendix we prove the following lemma, which was used in the proof of Theorem 3.6:

Lemma B.1. Let L be a Borel graph with finite components. If L is a line graph, then L has a

Borel line graph relation.

Statements such as Lemma B.1 are considered routine in descriptive set theory. Indeed, Lemma B.1
can be seen as a special case of certain general facts about Borel combinatorics on Borel graphs with
finite components, for example, [Pik21, §5.3; BW23, §2.2]. Nevertheless, in an effort to make this
paper more accessible to non-experts, we present a complete proof here. In the following argument,
it will be useful to keep in mind that if X is a standard Borel space and Y is a countable set, then
a map f : X → Y is Borel if and only if f−1(y) is a Borel set for each y ∈ Y .
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Proof. Let L be a Borel graph with finite components such that L is a line graph. For each
x ∈ V (L), let [x] denote the component of L containing x. Since the components of L are finite, the
Luzin–Novikov theorem implies that the relation ≡ := {(x, y) ∈ V (L)2 : y ∈ V ([x])} is Borel (see
Examples 2.3 and 2.5). Fix a Borel linear ordering, say ≼, on V (L) (for instance, we may assume
that V (L) = R [Kec12, Theorem 15.6] and use the standard ordering on R). Define a function
r : V (L) → N by

r(x) = k ⇐⇒ x is the k-th element of V ([x]) under ≼

⇐⇒ ∃x1, . . . , xk−1 ∈ V ([x])
(

(x1 z x2 z · · · z xk−1 z x) and

∀ y ∈ V ([x])\{x1, . . . , xk−1} (x ≼ y)
)

.

As [x] is finite, all the quantifiers in the above definition range over finite sets, so the function r is
Borel by the Luzin–Novikov theorem. The map s(x) := |V ([x])| is also Borel, since we can write

s(x) = k ⇐⇒
(

∃ y ≡ x (r(y) = k)
)

and
(

∀ y ≡ x (r(y) ⩽ k)
)

.

Next we define, for each positive integer k, a partial mapping nk : V (L) 99K V (L) as follows:

nk(x) = y ⇐⇒ y ≡ x and r(y) = k.

The function nk is again Borel. Note that for each x ∈ V (L),

V ([x]) = {n1(x), n2(x), . . . , ns(x)(x)} and n1(x) z n2(x) z · · · z ns(x)(x).

Let G<∞ be the (countable) set of all finite line graphs with vertex set a subset of N. For every
Γ ∈ G<∞, fix an arbitrary line graph relation ∼Γ on Γ. Given x ∈ V (L), define Γx ∈ G<∞ by:

V (Γx) := {1, 2, . . . , s(x)}, E(Γx) :=
{

{i, j} : {ni(x), nj(x)} ∈ E(L)
}

.

Then r establishes an isomorphism [x] ∼= Γx, and if y ≡ x, then Γx = Γy. Since the set E(L) and
the functions s and nk for all k are Borel, the map V (L) → G<∞ : x 7→ Γx is Borel as well. (To
clarify, this means that for each graph Γ ∈ G<∞, the set of all x ∈ V (L) with Γx = Γ is Borel.)

Finally, we define a relation ∼ on E(L) as follows: if e = xy and f = uv, let

e ∼ f ⇐⇒ x ≡ u and r(x)r(y) ∼Γx
r(u)r(v).

In other words, ∼ is obtained by “copying” ∼Γx
from Γx onto [x] for each x ∈ V (L) in the obvious

way. It is now clear that ∼ is a desired Borel line graph relation on L. ■
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