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BOREL VIZING’S THEOREM FOR GRAPHS
OF SUBEXPONENTIAL GROWTH

ANTON BERNSHTEYN AND ABHISHEK DHAWAN

ABSTRACT. We show that every Borel graph G of subexponential growth has a Borel proper
edge-coloring with A(G) + 1 colors. We deduce this from a stronger result, namely that an n-vertex
(finite) graph G of subexponential growth can be properly edge-colored using A(G) + 1 colors by
an O(log™ n)-round deterministic distributed algorithm in the LOCAL model, where the implied
constants in the O(-) notation are determined by a bound on the growth rate of G.

1. INTRODUCTION

In this note we study a classical concept in graph theory—namely proper edge-colorings—from the
perspective of descriptive set theory. This line of inquiry forms part of the active and growing field
of descriptive combinatorics, which was created in the seminal work of Kechris, Solecki, and
Todorcevic [[KST99]. For surveys of this area, see [[XM20] by Kechris and Marks and [Pik21] by
Pikhurko. We use standard terminology from graph theory [Diel7; BMO0g] and from descriptive set
theory [I[<ccO5; Tsel6]. A graph G consists of a vertex set V(G) and an edge set E(G) < [V(G)]?,
where for a set X, we write [X]? to denote the set of all 2-element subsets of X. We shall mostly
be concerned with infinite (in fact, uncountable) graphs in this paper. However, all graphs we shall
work with will have finite maximum degree, i.e., there will be a uniform finite upper bound on the
number of neighbors of every vertex. As usual, N is the set of all non-negative integers and each
q € N is identified with the g-element set ¢ = {i e N : i < ¢}.

Definition 1.1 (Edge-colorings and chromatic index). Let G be a graph and let ¢ € N. A proper
q-edge-coloring of G is a function ¢: E(G) — ¢ such that ¢(e) # p(e’) whenever e, ¢’ € E(G)
are distinct edges that share an endpoint. The chromatic index of G, denoted by x/'(G), is the
minimum ¢ € N such that G has a proper g-edge-coloring (if no such ¢q € N exists, we set x'(G) = o0).

If G is a graph of finite maximum degree A, then x/'(G) > A, since all edges incident to a vertex
of degree A must be colored differently. Vizing famously proved an upper bound on x'(G) that is
only 1 larger than this trivial lower bound:

Theorem 1.2 (Vizing [Viz64]). If G is a graph of finite maximum degree A, then x'(G) < A + 1.

See [Sti+12, §A.1] for an English translation of Vizing’s original paper and [BMO08, §17.2; Diel7,
§5.3] for modern textbook presentations.
We are interested in edge-colorings of Borel graphs:

Definition 1.3 (Borel graphs and their edge-colorings). A graph G is Borel if V(G) is a standard
Borel space and E(G) is a Borel subset of [V(G)]?. The Borel chromatic index xg(G) of G
is the smallest ¢ € N such that G has a Borel proper g-edge-coloring ¢: E(G) — ¢, meaning that
¢©~1(i) is a Borel subset of E(G) for all 0 < i < ¢. If no such g € N exists, we set xg(G) = 0.
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The best general upper bound on xg(G) in terms of the maximum degree of G is 2A — 1:

Theorem 1.4 (Kechris—Solecki-Todorcevic [[KST99, p. 15], Marks [Mar16, Theorem 1.4]). Fix an
integer A € N.

(i) Every Borel graph G of maximum degree A satisfies xg(G) < 2A — 1.
(77) On the other hand, there exists a Borel graph G of maximum degree A with x5(G) = 2A —1.

It has been a matter of interest to discover whether in some special cases the bound on xg(G)
given by Theorem 1.4 can be lowered, ideally all the way down to Vizing’s bound A + 1. For
example, Grebik [Gre23] recently showed that the Borel chromatic index of any Borel graph can be
reduced to A + 1 by throwing away a set of vertices of measure 0 (this result builds on the earlier
breakthrough work of Grebik and Pikhurko [GP20]). In a similar vein, Qian and Weilacher [()W22]
showed that the bound can be reduced to A + 2 after removing a meager set of vertices (in the sense
of Baire category). Alternatively, instead of discarding a small set of vertices, one may try to prove
stronger upper bounds on xg(G) under extra assumptions on the structure of G; see, e.g., [BW23;
QW22; Wei2l] for some instances of this approach. Our main result is of this type: we establish the
bound xg(G) < A + 1 for Borel graphs G of subexponential growth.

Given a graph G, a vertex v, and an integer R € N, we write Ng [v] for the closed R-neighborhood
of v, i.e., the set of all vertices reachable from v by a path of at most R edges.

Definition 1.5 (Subexponential growth). A function f: N — N is subexponential if
Ve > 0, 3R(e) € N such that VR > R(e), f(R) < exp(e R). (1.1)
A function f: N — N bounds the growth of a graph G if
Vv e V(G), YRe N, |NE[v]| < f(R).
A graph is of subexponential growth if its growth is bounded by a subexponential function.

The main result of this paper is as follows:

Theorem 1.6 (Borel Vizing’s theorem for subexponential growth graphs). If G is a Borel
graph of subexponential growth and of finite maximum degree A, then x5(G) < A + 1.

Theorem 1.6 contributes to the growing body of research showing that various combinatorial
problems can be solved in a Borel way on graphs of subexponential growth; see, e.g., [C'T21; Cs6+22;
Tho22].

We deduce Theorem 1.6 from a related result in distributed computing—an area of computer
science concerned with problems that can be solved efficiently by a decentralized network of processors.
The connection between descriptive combinatorics and distributed computing has been discovered
by the first named author [Ber23a] and is actively studied by both descriptive set-theorists and
computer scientists [Ber23b; Bra+22; GR23; Wei22]. It is now understood that efficient distributed
algorithms can often be used in a “black box” manner to derive results in descriptive combinatorics
[Ber23a], and sometimes one can also go in the opposite direction [Ber23b; Bra+22; GR23].

The relevant model of distributed computation, introduced by Linial in [Lin92], is called LOCAL.
For an introduction to this subject, see the book [BE13] by Barenboim and Elkin. In this model an
n-vertex (finite) graph G abstracts a communication network where each vertex plays the role of
a processor and edges represent communication links. The computation proceeds in synchronous
rounds. During each round, the vertices first perform some local computations and then simul-
taneously broadcast messages to their neighbors. There are no restrictions on the complexity of
the local computations or on the length of the messages. After a certain number of rounds, each
vertex must output its part of the global solution (for instance, its own color or, in the context of
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edge-coloring, the colors of the edges incident to it). The efficiency of such an algorithm is measured
by the number of communication rounds required, as a function of n.

An important feature of the LOCAL model is that every vertex of G is executing the same
algorithm. Therefore, to make this model nontrivial, the vertices must be given a way of breaking
symmetry. In the deterministic variant of the model, this is achieved by assigning a unique
identifier ID(v) € {1,...,n} to each vertex v € V(G).! The identifier assigned to a vertex v is treated
as part of v’s input; that is, v “knows” its own identifier and can communicate this information
to its neighbors. When we say that a deterministic LOCAL algorithm solves a problem II on a
given class G of finite graphs, we mean that its output on any graph from G is a valid solution to II,
regardless of the way the identifiers are assigned. The word “deterministic” distinguishes this model
from the randomized version, where the vertices are allowed to generate sequences of random bits.
In this paper we shall only be concerned with deterministic algorithms.

An important observation is that if © and v are two vertices whose graph distance in G is greater
than 7', then no information from u can reach v in fewer than 7' communication rounds (this explains
the name “LOCAL”). Conversely, every T-round LOCAL algorithm can be transformed into one in
which every vertex first collects all the data present in its closed T-neighborhood and then makes a
decision, based on this information alone, about its part of the output (see [BE13, §4.1.2]).

The study of LOCAL algorithms for edge-coloring has a long history. We direct the reader to
[Cha-+18; Gha+ 18] for thorough surveys and [BD23; Dav23] for more recent developments. The
case of particular interest to us is when the maximum degree A is treated as a fixed parameter.
Similar to the situation with Borel edge-colorings, 2A — 1 is an important threshold:

Theorem 1.7 (Panconesi-Rizzi [PRO1; BE13, Theorem 8.5|, Chang—He-Li—Pettie-Uitto [Cha+18]).
Fix and integer A € N.

(@) There is a deterministic LOCAL algorithm that finds a proper (2A — 1)-edge-coloring of an
n-vertex graph of maximum degree A in O(A + log* n) rounds.

(7)) On the other hand, every deterministic LOCAL algorithm for (2A — 2)-edge-coloring n-vertex
graphs of maximum degree A requires at least 2(logn/log A) rounds.

In the above statement, log* n is the iterated logarithm of n, i.e., the number of times the
logarithm function must be applied to n before the result becomes at most 1. This is an extremely
slow-growing function, asymptotically much smaller than logn or any finite iterate of logn. Our
second main result is that in O(log® n) rounds, it is possible to find a proper (A+1)-edge-coloring of an
n-vertex graph G with maximum degree A when G belongs to a class of graphs with subexponential
growth. More precisely, given A € N and a function f: N — N, we let Ga s be the class of all finite
graphs G of maximum degree at most A and growth bounded by f.

Theorem 1.8 (LOCAL algorithm for Vizing’s theorem on subexponential growth graphs). Fix
a subexponential function f: N — N and A € N. There is a deterministic LOCAL algorithm
that, given an n-vertex graph G € Ga y, finds a proper (A + 1)-edge-coloring of G in at most
Cylog* n rounds, where C'y > 0 depends only on the function f.

Theorem 1.6 is an immediate consequence of Theorem 1.8, thanks to [Ber23a, Theorem 2.10)
(in fact, Theorem 1.8 is stronger than what is needed, since, by [Ber23a, Theorem 2.15], having a
randomized LOCAL algorithm with the parameters stated in Theorem 1.8 would already suffice to
deduce Theorem 1.6). We explain the details of the derivation of Theorem 1.6 from Theorem 1.8 in §2.
The proof of Theorem 1.8 is presented in §3. The main tool we rely on is a recent result of Christiansen
[Chr23, Theorem 3] on small augmenting subgraphs for proper partial (A + 1)-edge-colorings.

1Sometimes the range of the identifiers is taken to be {1,...,n°} for some constant ¢ > 1, but this does not affect
the model significantly.



2. FrRoM THEOREM 1.8 TO THEOREM 1.6

As mentioned in the introduction, to derive Theorem 1.6 from Theorem 1.8, we invoke [Ber23a,
Theorem 2.10]. Roughly speaking, [Ber23a, Theorem 2.10] says that if a Borel graph G can be
“approximated” by finite graphs from a certain class G, then any locally checkable labeling problem
that can be solved by an efficient deterministic LOCAL algorithm on the graphs in G admits a Borel
solution on G. The precise statement of [Ber23a, Theorem 2.10] is somewhat technical, but since we
do not need it in full generality, we shall only state the special case for edge-colorings.

Theorem 2.1 (AB [Ber23a, Theorem 2.10]). Fix ¢ € N and a class of finite graphs G. Suppose that
there exists a deterministic LOCAL algorithm that, given an n-vertex graph H € G, finds a proper
q-edge-coloring of H in o(logn) rounds.? If G is a Borel graph of finite maximum degree A all of
whose finite induced subgraphs are in G, then xg5(G) < q.

The actual statement of [Ber23a, Theorem 2.10] is numerically explicit (i.e., it does not use the
asymptotic notation o(-)) and does not require all finite induced subgraphs of G to be in G, but
the simplified formulation given above will be sufficient for our purposes. See [Ber23a, §2.B.1] for
further discussion.

Assume Theorem 1.8 and let G be a Borel graph of subexponential growth and of finite maximum
degree A. Let f: N — N be a subexponential function that bounds the growth of G. Theorem 1.8
yields a constant C'y > 0 and a deterministic LOCAL algorithm for (A + 1)-edge-coloring n-vertex
graphs in G ¢ in Cflog* n = o(logn) rounds. Since all finite induced subgraphs of G belong to
Gy a, we have x5(G) < A + 1 by Theorem 2.1. This finishes the proof of Theorem 1.6.

3. PROOF OF THEOREM 1.8

Definition 3.1 (Augmenting subgraphs for partial colorings). Let G be a graph of finite maximum
degree A and let p: E(G) --+ (A + 1) be a proper partial (A + 1)-edge-coloring with domain
dom(y) < E(G). A subgraph H < G is e-augmenting for an uncolored edge e € E(G)\dom(yp) if
e € E(H) and there is a proper coloring ¢’: dom(¢) U {e} — (A + 1) that agrees with ¢ on the
edges in F(G)\E(H); in other words, by modifying the colors of the edges of H, it is possible to add
e to the set of colored edges. We refer to such a modification operation as augmenting ¢ using H.

Note that every inclusion-minimal e-augmenting subgraph is connected. We will use the following
recent result of Christiansen:

Theorem 3.2 (Christiansen [Chr23, Theorem 3]). There is a constant C = 1 such that if G is an
n-vertex graph of maximum degree A and ¢ is a proper partial (A + 1)-edge-coloring of G, then for
each uncolored edge e, there is an e-augmenting subgraph with at most CA"logn edges.

We remark that the bound CA”logn in Theorem 3.2 is best possible as far as the dependence on
n is concerned, since Chang, He, Li, Pettie, and Uitto [Cha-18] showed that, in general, given an
uncolored edge e, there may not exist an e-augmenting subgraph of diameter less than Q(A log(n/A)).
Christiansen’s work followed a sequence of earlier, weaker bounds: O(n) by Vizing [Viz64] (see
also [Bol79, p. 94; RD92; MG9I2]), poly(A)4/n by Grebik and Pikhurko [GP20] (this bound is not
explicitly stated in [GP20]; see [Ber22, §3] for a sketch of the derivation of the poly(A)+/n bound
using the Grebik-Pikhurko approach), and poly(A)log?n by the first named author [Ber22]. In
[BD23], the authors gave an alternative proof of the bound poly(A)logn and an efficient algorithm
to find a small augmenting subgraph.

Now we are ready to start the proof of Theorem 1.8. For the remainder of this section, fix a
subexponential function f: N — N, integers A, n € N, and an n-vertex graph GG € Gy a. Since the
maximum degree of G cannot exceed f(1), we may assume that A < f(1). We may also assume
that A > 3, since otherwise we are done by Theorem 1.7(7).

2The implicit constants in the o(-) notation may depend on ¢ and the class G.
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Define € := 1/(3C f(1)7) and R := max{R(¢), [e7!], 3}, where C is the constant from Theorem 3.2
and R(e) is given by (1.1). The key observation is that in G, we can find augmenting subgraphs
whose number of edges is independent of n:

Lemma 3.3. Let ¢ be a proper partial (A + 1)-edge-coloring of G. Then for each uncolored edge
e = xy, there exists an e-augmenting subgraph with at most R edges.

Proof. Let H := G[NE[z] u N£[y]]. By the definition of R, we have
[V(H)| < 2f(R) < 2exp(eR) < exp(2eR),

where in the last inequality we use that eR > 1. Consider the partial edge-coloring v := (| E(m) of
H. By Theorem 3.2, there is a subgraph H' of H such that H’ is e-augmenting for ¢ and
2R <

|E(H')| < CA"log|V(H)| < CAT2eR < 2C(f(1))"eR = 5 < k-1

We may choose H’ to be inclusion-minimal, hence connected, and then it follows that every vertex
of H' is reachable from x by a path of at most R — 1 edges. Let ¢’': dom(¢)) U {e} — (A + 1) be a
proper coloring obtained by augmenting ¢ using H’ and define ¢’: dom(¢) U {e} — (A + 1) by

.o fw(h) ifhe B(H);
¢'(h) = {SD(M if he E(G)\E(H).

We claim that ¢’ is proper. Otherwise, since both 1)’ and ¢ are proper and 1)’ agrees with ¢ on the
edges in E(H)\E(H’), there are vertices u, v, w € V(G) such that uv € E(H') and vw € E(G)\E(H).
This implies that v is reachable from = by a path of length at most R — 1, so both v and w belong
to NZ[z], and hence vw € E(H); a contradiction. Since ¢ and ¢’ only differ on the edges of H', it
follows that, viewed as a subgraph of G, H' is e-augmenting for ¢, and we are done. |

Recall that a proper g-vertex-coloring of a graph G is a mapping ¢: V(G) — ¢ such that
o(u) # @(v) for all uv € E(G). We shall use a classical result of Goldberg, Plotkin, and Shannon:

Theorem 3.4 (Goldberg—Plotkin-Shannon [GPS88; BE13, Corollary 3.15]). There exists a de-
terministic LOCAL algorithm that, given an n-vertex graph G of maximum degree A, computes a
proper (A + 1)-vertex-coloring of G' in O(A?%) + log* n rounds.

Now we describe our (A + 1)-edge-coloring algorithm. Consider the graph G* with vertex set
V(G*) = E(G) in which two distinct edges of G are adjacent if and only if they are joined by a
path of length at most 2R in G. A single communication round in the LOCAL model on G* can be
simulated by O(R) communication rounds in the LOCAL model on G. Hence, since A(G*) < (2A)2%,
we can use Theorem 3.4 to compute a (2A)%f-vertex-coloring 1 of G* in O(Rlog* n + R(2A)*F)
rounds. Set ¢ := (2A)2f and for each 0 < i < g, let

C; = {e€ E(G) : ¢(e) =1i}.

Next we iteratively compute a sequence of proper partial (A + 1)-edge-colorings ¢, ..., ¢4, where
each (; is defined on the edges in Cyu ... U C;_1, as follows. Start with g being the empty coloring.
Once ¢; has been computed, the endpoints of every edge e € C; survey their closed R-neighborhoods
and arbitrarily pick a connected e-augmenting subgraph H, with at most R edges. (Such H, exists
by Lemma 3.3.) Since the edges in C; are not adjacent in G*, the graphs H, for distinct e € C;
must be vertex-disjoint. Thus, we can augment the coloring ¢;_1 using all the graphs {H, : e € C;}
simultaneously without creating any conflicts and let ;.1 be the resulting coloring. Note that given
©i, we compute ¢;4+1 in at most O(R) rounds (since no communication at distances greater than R
is necessary). The final coloring ¢ := ¢, is the desired proper (A + 1)-edge-coloring of G. The total
number of rounds needed to compute it is

O(Rlog* n + R(2A)*E + Rq) = O(Rlog* n + R(2A)*F + R(2A)%1).
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Since A < f(1), this is at most Cylog* n for some constant Cy depending only on f, as desired.
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