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Abstract. We show that every Borel graph G of subexponential growth has a Borel proper
edge-coloring with ∆pGq ` 1 colors. We deduce this from a stronger result, namely that an n-vertex
(finite) graph G of subexponential growth can be properly edge-colored using ∆pGq ` 1 colors by
an Oplog˚ nq-round deterministic distributed algorithm in the LOCAL model, where the implied
constants in the Op¨q notation are determined by a bound on the growth rate of G.

1. Introduction

In this note we study a classical concept in graph theory—namely proper edge-colorings—from the
perspective of descriptive set theory. This line of inquiry forms part of the active and growing field
of descriptive combinatorics, which was created in the seminal work of Kechris, Solecki, and
Todorcevic [KST99]. For surveys of this area, see [KM20] by Kechris and Marks and [Pik21] by
Pikhurko. We use standard terminology from graph theory [Die17; BM08] and from descriptive set
theory [Kec95; Tse16]. A graph G consists of a vertex set V pGq and an edge set EpGq Ď rV pGqs2,
where for a set X, we write rXs2 to denote the set of all 2-element subsets of X. We shall mostly
be concerned with infinite (in fact, uncountable) graphs in this paper. However, all graphs we shall
work with will have finite maximum degree, i.e., there will be a uniform finite upper bound on the
number of neighbors of every vertex. As usual, N is the set of all non-negative integers and each
q P N is identified with the q-element set q < ti P N : i ă qu.

Definition 1.1 (Edge-colorings and chromatic index). Let G be a graph and let q P N. A proper

q-edge-coloring of G is a function ϕ : EpGq Ñ q such that ϕpeq ‰ ϕpe1q whenever e, e1 P EpGq
are distinct edges that share an endpoint. The chromatic index of G, denoted by χ1pGq, is the
minimum q P N such that G has a proper q-edge-coloring (if no such q P N exists, we set χ1pGq :< 8).

If G is a graph of finite maximum degree ∆, then χ1pGq ě ∆, since all edges incident to a vertex
of degree ∆ must be colored differently. Vizing famously proved an upper bound on χ1pGq that is
only 1 larger than this trivial lower bound:

Theorem 1.2 (Vizing [Viz64]). If G is a graph of finite maximum degree ∆, then χ1pGq ď ∆ ` 1.

See [Sti+12, §A.1] for an English translation of Vizing’s original paper and [BM08, §17.2; Die17,
§5.3] for modern textbook presentations.

We are interested in edge-colorings of Borel graphs:

Definition 1.3 (Borel graphs and their edge-colorings). A graph G is Borel if V pGq is a standard
Borel space and EpGq is a Borel subset of rV pGqs2. The Borel chromatic index χ1

B
pGq of G

is the smallest q P N such that G has a Borel proper q-edge-coloring ϕ : EpGq Ñ q, meaning that
ϕ´1piq is a Borel subset of EpGq for all 0 ď i ă q. If no such q P N exists, we set χ1

B
pGq :< 8.
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The best general upper bound on χ1
B

pGq in terms of the maximum degree of G is 2∆ ´ 1:

Theorem 1.4 (Kechris–Solecki–Todorcevic [KST99, p. 15], Marks [Mar16, Theorem 1.4]). Fix an

integer ∆ P N.

(i) Every Borel graph G of maximum degree ∆ satisfies χ1
B

pGq ď 2∆ ´ 1.

(ii) On the other hand, there exists a Borel graph G of maximum degree ∆ with χ1
B

pGq < 2∆ ´ 1.

It has been a matter of interest to discover whether in some special cases the bound on χ1
B

pGq
given by Theorem 1.4 can be lowered, ideally all the way down to Vizing’s bound ∆ ` 1. For
example, Grebík [Gre23] recently showed that the Borel chromatic index of any Borel graph can be
reduced to ∆ ` 1 by throwing away a set of vertices of measure 0 (this result builds on the earlier
breakthrough work of Grebík and Pikhurko [GP20]). In a similar vein, Qian and Weilacher [QW22]
showed that the bound can be reduced to ∆ ` 2 after removing a meager set of vertices (in the sense
of Baire category). Alternatively, instead of discarding a small set of vertices, one may try to prove
stronger upper bounds on χ1

B
pGq under extra assumptions on the structure of G; see, e.g., [BW23;

QW22; Wei21] for some instances of this approach. Our main result is of this type: we establish the
bound χ1

B
pGq ď ∆ ` 1 for Borel graphs G of subexponential growth.

Given a graphG, a vertex v, and an integerR P N, we write NR
G rvs for the closed R-neighborhood

of v, i.e., the set of all vertices reachable from v by a path of at most R edges.

Definition 1.5 (Subexponential growth). A function f : N Ñ N is subexponential if

@ε ą 0, DRpεq P N such that @R ě Rpεq, fpRq ă exppεRq. (1.1)

A function f : N Ñ N bounds the growth of a graph G if

@v P V pGq, @R P N, |NR
G rvs| ď fpRq.

A graph is of subexponential growth if its growth is bounded by a subexponential function.

The main result of this paper is as follows:

Theorem 1.6 (Borel Vizing’s theorem for subexponential growth graphs). If G is a Borel

graph of subexponential growth and of finite maximum degree ∆, then χ1
B

pGq ď ∆ ` 1.

Theorem 1.6 contributes to the growing body of research showing that various combinatorial
problems can be solved in a Borel way on graphs of subexponential growth; see, e.g., [CT21; Csó+22;
Tho22].

We deduce Theorem 1.6 from a related result in distributed computing—an area of computer
science concerned with problems that can be solved efficiently by a decentralized network of processors.
The connection between descriptive combinatorics and distributed computing has been discovered
by the first named author [Ber23a] and is actively studied by both descriptive set-theorists and
computer scientists [Ber23b; Bra+22; GR23; Wei22]. It is now understood that efficient distributed
algorithms can often be used in a “black box” manner to derive results in descriptive combinatorics
[Ber23a], and sometimes one can also go in the opposite direction [Ber23b; Bra+22; GR23].

The relevant model of distributed computation, introduced by Linial in [Lin92], is called LOCAL.
For an introduction to this subject, see the book [BE13] by Barenboim and Elkin. In this model an
n-vertex (finite) graph G abstracts a communication network where each vertex plays the role of
a processor and edges represent communication links. The computation proceeds in synchronous
rounds. During each round, the vertices first perform some local computations and then simul-
taneously broadcast messages to their neighbors. There are no restrictions on the complexity of
the local computations or on the length of the messages. After a certain number of rounds, each
vertex must output its part of the global solution (for instance, its own color or, in the context of
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edge-coloring, the colors of the edges incident to it). The efficiency of such an algorithm is measured
by the number of communication rounds required, as a function of n.

An important feature of the LOCAL model is that every vertex of G is executing the same
algorithm. Therefore, to make this model nontrivial, the vertices must be given a way of breaking
symmetry. In the deterministic variant of the model, this is achieved by assigning a unique
identifier IDpvq P t1, . . . , nu to each vertex v P V pGq.1 The identifier assigned to a vertex v is treated
as part of v’s input; that is, v “knows” its own identifier and can communicate this information
to its neighbors. When we say that a deterministic LOCAL algorithm solves a problem Π on a
given class G of finite graphs, we mean that its output on any graph from G is a valid solution to Π,
regardless of the way the identifiers are assigned. The word “deterministic” distinguishes this model
from the randomized version, where the vertices are allowed to generate sequences of random bits.
In this paper we shall only be concerned with deterministic algorithms.

An important observation is that if u and v are two vertices whose graph distance in G is greater
than T , then no information from u can reach v in fewer than T communication rounds (this explains
the name “LOCAL”). Conversely, every T -round LOCAL algorithm can be transformed into one in
which every vertex first collects all the data present in its closed T -neighborhood and then makes a
decision, based on this information alone, about its part of the output (see [BE13, §4.1.2]).

The study of LOCAL algorithms for edge-coloring has a long history. We direct the reader to
[Cha+18; Gha+18] for thorough surveys and [BD23; Dav23] for more recent developments. The
case of particular interest to us is when the maximum degree ∆ is treated as a fixed parameter.
Similar to the situation with Borel edge-colorings, 2∆ ´ 1 is an important threshold:

Theorem 1.7 (Panconesi–Rizzi [PR01; BE13, Theorem 8.5], Chang–He–Li–Pettie–Uitto [Cha+18]).
Fix and integer ∆ P N.

(i) There is a deterministic LOCAL algorithm that finds a proper p2∆ ´ 1q-edge-coloring of an

n-vertex graph of maximum degree ∆ in Op∆ ` log˚ nq rounds.

(ii) On the other hand, every deterministic LOCAL algorithm for p2∆ ´ 2q-edge-coloring n-vertex

graphs of maximum degree ∆ requires at least Ωplogn{ log ∆q rounds.

In the above statement, log˚ n is the iterated logarithm of n, i.e., the number of times the
logarithm function must be applied to n before the result becomes at most 1. This is an extremely
slow-growing function, asymptotically much smaller than logn or any finite iterate of logn. Our
second main result is that in Oplog˚ nq rounds, it is possible to find a proper p∆`1q-edge-coloring of an
n-vertex graph G with maximum degree ∆ when G belongs to a class of graphs with subexponential
growth. More precisely, given ∆ P N and a function f : N Ñ N, we let G∆,f be the class of all finite
graphs G of maximum degree at most ∆ and growth bounded by f .

Theorem 1.8 (LOCAL algorithm for Vizing’s theorem on subexponential growth graphs). Fix

a subexponential function f : N Ñ N and ∆ P N. There is a deterministic LOCAL algorithm

that, given an n-vertex graph G P G∆,f , finds a proper p∆ ` 1q-edge-coloring of G in at most

Cf log˚ n rounds, where Cf ą 0 depends only on the function f .

Theorem 1.6 is an immediate consequence of Theorem 1.8, thanks to [Ber23a, Theorem 2.10]
(in fact, Theorem 1.8 is stronger than what is needed, since, by [Ber23a, Theorem 2.15], having a
randomized LOCAL algorithm with the parameters stated in Theorem 1.8 would already suffice to
deduce Theorem 1.6). We explain the details of the derivation of Theorem 1.6 from Theorem 1.8 in §2.
The proof of Theorem 1.8 is presented in §3. The main tool we rely on is a recent result of Christiansen
[Chr23, Theorem 3] on small augmenting subgraphs for proper partial p∆ ` 1q-edge-colorings.

1Sometimes the range of the identifiers is taken to be t1, . . . , ncu for some constant c ě 1, but this does not affect
the model significantly.
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2. From Theorem 1.8 to Theorem 1.6

As mentioned in the introduction, to derive Theorem 1.6 from Theorem 1.8, we invoke [Ber23a,
Theorem 2.10]. Roughly speaking, [Ber23a, Theorem 2.10] says that if a Borel graph G can be
“approximated” by finite graphs from a certain class G, then any locally checkable labeling problem
that can be solved by an efficient deterministic LOCAL algorithm on the graphs in G admits a Borel
solution on G. The precise statement of [Ber23a, Theorem 2.10] is somewhat technical, but since we
do not need it in full generality, we shall only state the special case for edge-colorings.

Theorem 2.1 (AB [Ber23a, Theorem 2.10]). Fix q P N and a class of finite graphs G. Suppose that

there exists a deterministic LOCAL algorithm that, given an n-vertex graph H P G, finds a proper

q-edge-coloring of H in oplognq rounds.2 If G is a Borel graph of finite maximum degree ∆ all of

whose finite induced subgraphs are in G, then χ1
B

pGq ď q.

The actual statement of [Ber23a, Theorem 2.10] is numerically explicit (i.e., it does not use the
asymptotic notation op¨q) and does not require all finite induced subgraphs of G to be in G, but
the simplified formulation given above will be sufficient for our purposes. See [Ber23a, §2.B.1] for
further discussion.

Assume Theorem 1.8 and let G be a Borel graph of subexponential growth and of finite maximum
degree ∆. Let f : N Ñ N be a subexponential function that bounds the growth of G. Theorem 1.8
yields a constant Cf ą 0 and a deterministic LOCAL algorithm for p∆ ` 1q-edge-coloring n-vertex
graphs in G∆,f in Cf log˚ n < oplognq rounds. Since all finite induced subgraphs of G belong to
Gf,∆, we have χ1

B
pGq ď ∆ ` 1 by Theorem 2.1. This finishes the proof of Theorem 1.6.

3. Proof of Theorem 1.8

Definition 3.1 (Augmenting subgraphs for partial colorings). Let G be a graph of finite maximum
degree ∆ and let ϕ : EpGq 99K p∆ ` 1q be a proper partial p∆ ` 1q-edge-coloring with domain
dompϕq Ă EpGq. A subgraph H Ď G is e-augmenting for an uncolored edge e P EpGqzdompϕq if
e P EpHq and there is a proper coloring ϕ1 : dompϕq Y teu Ñ p∆ ` 1q that agrees with ϕ on the
edges in EpGqzEpHq; in other words, by modifying the colors of the edges of H, it is possible to add
e to the set of colored edges. We refer to such a modification operation as augmenting ϕ using H.

Note that every inclusion-minimal e-augmenting subgraph is connected. We will use the following
recent result of Christiansen:

Theorem 3.2 (Christiansen [Chr23, Theorem 3]). There is a constant C ě 1 such that if G is an

n-vertex graph of maximum degree ∆ and ϕ is a proper partial p∆ ` 1q-edge-coloring of G, then for

each uncolored edge e, there is an e-augmenting subgraph with at most C∆7 logn edges.

We remark that the bound C∆7 logn in Theorem 3.2 is best possible as far as the dependence on
n is concerned, since Chang, He, Li, Pettie, and Uitto [Cha+18] showed that, in general, given an
uncolored edge e, there may not exist an e-augmenting subgraph of diameter less than Ωp∆ logpn{∆qq.
Christiansen’s work followed a sequence of earlier, weaker bounds: Opnq by Vizing [Viz64] (see
also [Bol79, p. 94; RD92; MG92]), polyp∆q?

n by Grebík and Pikhurko [GP20] (this bound is not
explicitly stated in [GP20]; see [Ber22, §3] for a sketch of the derivation of the polyp∆q?

n bound
using the Grebík–Pikhurko approach), and polyp∆q log2 n by the first named author [Ber22]. In
[BD23], the authors gave an alternative proof of the bound polyp∆q logn and an efficient algorithm
to find a small augmenting subgraph.

Now we are ready to start the proof of Theorem 1.8. For the remainder of this section, fix a
subexponential function f : N Ñ N, integers ∆, n P N, and an n-vertex graph G P Gf,∆. Since the
maximum degree of G cannot exceed fp1q, we may assume that ∆ ď fp1q. We may also assume
that ∆ ě 3, since otherwise we are done by Theorem 1.7(i).

2The implicit constants in the op¨q notation may depend on q and the class G.
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Define ε :< 1{p3Cfp1q7q and R :< maxtRpεq, rε´1s, 3u, where C is the constant from Theorem 3.2
and Rpεq is given by (1.1). The key observation is that in G, we can find augmenting subgraphs
whose number of edges is independent of n:

Lemma 3.3. Let ϕ be a proper partial p∆ ` 1q-edge-coloring of G. Then for each uncolored edge

e < xy, there exists an e-augmenting subgraph with at most R edges.

Proof. Let H :< G
“

NR
G rxs YNR

G rys
‰

. By the definition of R, we have

|V pHq| ď 2fpRq ă 2 exppεRq ă expp2εRq,
where in the last inequality we use that εR ě 1. Consider the partial edge-coloring ψ :< ϕ|EpHq of

H. By Theorem 3.2, there is a subgraph H 1 of H such that H 1 is e-augmenting for ψ and

|EpH 1q| ď C∆7 log |V pHq| ď C∆7 2εR ď 2Cpfp1qq7 εR < 2R

3
ď R ´ 1.

We may choose H 1 to be inclusion-minimal, hence connected, and then it follows that every vertex
of H 1 is reachable from x by a path of at most R ´ 1 edges. Let ψ1 : dompψq Y teu Ñ p∆ ` 1q be a
proper coloring obtained by augmenting ψ using H 1 and define ϕ1 : dompϕq Y teu Ñ p∆ ` 1q by

ϕ1phq :<
#

ψ1phq if h P EpHq;
ϕphq if h P EpGqzEpHq.

We claim that ϕ1 is proper. Otherwise, since both ψ1 and ϕ are proper and ψ1 agrees with ϕ on the
edges in EpHqzEpH 1q, there are vertices u, v, w P V pGq such that uv P EpH 1q and vw P EpGqzEpHq.
This implies that v is reachable from x by a path of length at most R ´ 1, so both v and w belong
to NR

G rxs, and hence vw P EpHq; a contradiction. Since ϕ and ϕ1 only differ on the edges of H 1, it
follows that, viewed as a subgraph of G, H 1 is e-augmenting for ϕ, and we are done. ■

Recall that a proper q-vertex-coloring of a graph G is a mapping ϕ : V pGq Ñ q such that
ϕpuq ‰ ϕpvq for all uv P EpGq. We shall use a classical result of Goldberg, Plotkin, and Shannon:

Theorem 3.4 (Goldberg–Plotkin–Shannon [GPS88; BE13, Corollary 3.15]). There exists a de-

terministic LOCAL algorithm that, given an n-vertex graph G of maximum degree ∆, computes a

proper p∆ ` 1q-vertex-coloring of G in Op∆2q ` log˚ n rounds.

Now we describe our p∆ ` 1q-edge-coloring algorithm. Consider the graph G˚ with vertex set
V pG˚q :< EpGq in which two distinct edges of G are adjacent if and only if they are joined by a
path of length at most 2R in G. A single communication round in the LOCAL model on G˚ can be
simulated by OpRq communication rounds in the LOCAL model on G. Hence, since ∆pG˚q ă p2∆q2R,
we can use Theorem 3.4 to compute a p2∆q2R-vertex-coloring ψ of G˚ in OpR log˚ n `Rp2∆q4Rq
rounds. Set q :< p2∆q2R and for each 0 ď i ă q, let

Ci :< te P EpGq : ψpeq < iu.
Next we iteratively compute a sequence of proper partial p∆ ` 1q-edge-colorings ϕ0, . . . , ϕq, where
each ϕi is defined on the edges in C0 Y . . .YCi´1, as follows. Start with ϕ0 being the empty coloring.
Once ϕi has been computed, the endpoints of every edge e P Ci survey their closed R-neighborhoods
and arbitrarily pick a connected e-augmenting subgraph He with at most R edges. (Such He exists
by Lemma 3.3.) Since the edges in Ci are not adjacent in G˚, the graphs He for distinct e P Ci

must be vertex-disjoint. Thus, we can augment the coloring ϕi´1 using all the graphs tHe : e P Ciu
simultaneously without creating any conflicts and let ϕi`1 be the resulting coloring. Note that given
ϕi, we compute ϕi`1 in at most OpRq rounds (since no communication at distances greater than R
is necessary). The final coloring ϕ :< ϕq is the desired proper p∆ ` 1q-edge-coloring of G. The total
number of rounds needed to compute it is

OpR log˚ n`Rp2∆q4R `Rqq < OpR log˚ n`Rp2∆q4R `Rp2∆q2Rq.
5



Since ∆ ď fp1q, this is at most Cf log˚ n for some constant Cf depending only on f , as desired.
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