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Semiparametric Estimation of the Shape of the
Limiting Bivariate Point Cloud

Reetam Majumder∗,†, Benjamin A. Shaby‡, Brian J. Reich§, and Daniel S. Cooley‡

Abstract. We propose a model to flexibly estimate joint tail properties by ex-
ploiting the convergence of an appropriately scaled point cloud onto a compact
limit set. Characteristics of the shape of the limit set correspond to key tail depen-
dence properties. We directly model the shape of the limit set using Bézier splines,
which allow flexible and parsimonious specification of shapes in two dimensions.
We fit the Bézier splines to data in pseudo-polar coordinates using Markov chain
Monte Carlo sampling, utilizing a limiting approximation to the conditional likeli-
hood of the radii given angles. We propose a novel prior on the shape of the limit
set via constraints on the paramters of the Bézier splines. A direct advantage
of our Bayesian approach is that the support of this prior guarantees that each
posterior sample is a valid limit set boundary, allowing direct posterior analysis
of any quantity derived from the shape of the curve. Furthermore, we obtain in-
terpretable inference on the asymptotic dependence class by using mixture priors
with point masses on the corner of the unit box. Finally, we apply our model to
bivariate datasets of extremes of variables related to fire risk and air pollution.

Keywords: Bayesian inference, Bézier curves, extreme values, Gauge functions,
limit set.

1 Introduction
Multivariate tail risk calculations require knowledge of the strength of dependence in
the joint tail of the relevant distribution. Here, we propose a model to flexibly esti-
mate joint tail characteristics in a way that coherently links several existing measures
of tail dependence. To do this, we describe tail dependence of a multivariate distribution
through its associated gauge function (Balkema et al., 2010; Balkema and Nolde, 2010;
Nolde, 2014). The homogeneity property of the gauge function allows us to recover the
entire gauge function from its unit level set, which bounds the support of the appro-
priately scaled data points in the limit (Nolde and Wadsworth, 2022; Wadsworth and
Campbell, 2024). We represent the unit level set of the gauge function using a semi-
parametric model specified within a Bayesian framework wherein required constraints
on such functions are automatically satisfied. We obtain a posterior sample of gauge
functions, and our prior specification ensures that each member of the sample is a valid
gauge function not requiring any post hoc adjustments such as re-scaling or truncation.

Efforts to exploit the limit set representation of multivariate extreme values (Davis
et al., 1988; Kinoshita and Resnick, 1991; Balkema et al., 2010; Balkema and Nolde,

∗Southeast Climate Adaptation Science Center, North Carolina State University
†Department of Mathematical Sciences, University of Arkansas
‡Department of Statistics, Colorado State University
§Department of Statistics, North Carolina State University

© 2025 International Society for Bayesian Analysis https://doi.org/10.1214/25-BA1514

https://bayesian.org/resources/bayesian-analysis/
https://doi.org/10.1214/25-BA1514


2

2010) have appeared only recently. Wadsworth and Campbell (2024) decompose the
data into pseudo-polar coordinates and use a limiting argument to approximate the dis-
tribution of the radii with a truncated gamma distribution whose parameters depend
on the gauge function. They first transform the data to unit exponential margins, and
assuming a parametric form for the gauge function, perform maximum likelihood esti-
mation with the truncated gamma likelihood. They extend this approach using mixtures
of parametric forms, but need to perform post-hoc re-scaling of the mixtures to satisfy
the required properties of valid gauge functions.

In contrast to Wadsworth and Campbell (2024), whose primary focus is estimating
probabilities of sets in the joint tail region, Simpson and Tawn (2022) focus on infer-
ence for the limit set boundary itself, taking a flexible semiparametric approach. They
estimate the sample limit set by approximating the limiting upper endpoint of the dis-
tribution of radii with an estimated high quantile, as a function of the angle. To do
this, they fit a generalized Pareto distribution, whose scale parameter varies by angle,
to the large radii. The radii are calculated by decomposing the bivariate data points
transformed to unit exponential margins with a rank transformation. As the result is
not a valid limit set, they perform a subsequent scaling and truncation procedure based
on a Hill estimator (Hill, 1975) to force their estimate to satisfy the required conditions.

Like Simpson and Tawn (2022), our focus is flexible estimation of the limit set bound-
ary, though our methodology is quite different. Here, we directly model the boundary of
the limiting scaled point cloud, which is prescribed by the unit level set of the gauge func-
tion, as a Bézier spline. Bézier splines are constituted of Bézier curves, with points on
the curve that can be represented as Bernstein polynomials (for reviews, see Hazewinkel,
2012; Farouki, 2012). Similar semiparametric approaches have been used previously in
multivariate extremes to characterize the Pickands dependence function for extremal
dependence (Marcon et al., 2014, 2017; Vettori et al., 2018), the angular density in
the context of multivariate regular variation (Hanson et al., 2017), and the angular
dependence function (Murphy-Barltrop et al., 2024), which we will explore below as a
direct byproduct of the gauge function. Bézier splines are convenient here because they
allow parsimonious specification of shapes in R

2 which are defined by a small number
of control points. Placing appropriate constraints on the control points can ensure that
the resultant shapes satisfy the conditions required of limit set boundaries. To estimate
the parameters of the Bézier spline, we use the result from Wadsworth and Campbell
(2024) which says that, given a gauge function evaluated at the data points, the dis-
tribution of the large radial components decays like a gamma distribution whose rate
parameter depends on the gauge function. We then use standard Markov chain Monte
Carlo (MCMC) machinery to sample from the posterior distribution.

In this work, we place prior constraints on parameters of the Bézier splines that
define the limit set boundary, which induces a prior on the shape of the limit set. This
work is thus far unique in that the support of this prior guarantees that every element of
the posterior satisfies the challenging restrictions on the shape of the limit set (Nolde,
2014). Our approach has several advantages. First, since we model the shape of the
limiting point cloud in a way that automatically results in a valid limit set, we can
use standard MCMC methods to obtain valid posterior inference. Second, our model
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allows the boundary of the limit set to exactly touch the corners of the unit box; this in
particular gives a clean interpretation of the distinction between asymptotic indepen-
dence (AI) and asymptotic dependence (AD) classes, since this distinction essentially
corresponds to whether or not the boundary touches the upper right corner. Third, our
approach produces a posterior sample of valid limit set curves which yields a realistic
picture of the state of knowledge about the joint tail region given the data. Bayesian
hypothesis testing can then be used to study the properties of the limit set. In addi-
tion, we also note that our work builds on a growing literature on Bayesian approaches
to multivariate extreme value analysis (e.g. Boldi and Davison, 2007; Sabourin et al.,
2013; Sabourin and Naveau, 2014; de Carvalho et al., 2022; Padoan and Rizzelli, 2022,
to name a few).

The rest of the paper is arranged as follows. Section 2 introduces the limiting scaled
point cloud and how it can be used to model the tail behavior of bivariate data. Section 3
develops the modeling of the limit set boundary using Bézier splines. Section 4 contains a
simulation study demonstrating our approach. Section 5 contains two applications—the
Santa Ana Winds dataset, and ozone concentration data for the contiguous US—where
we use Bézier splines to model the tail dependence in the data. Section 6 concludes.

2 The Limiting Scaled Point Cloud
Consider a collection of n independent random vectors in R

2
+, X1, . . . , Xn, each having

joint density fX , with standard exponential margins. At times, it will be convenient to
transform the components of X = (X1, X2)T into pseudo-polar coordinates (R, W ), as
R = X1 + X2, and W = X/R. Note that for W = (W1, W2), W2 = 1 − W1.

Now define the scaled point cloud as the collection of points divided by log n,
{X1/ log n, . . . , Xn/ log n}. If we assume that limt→∞ − log fX(tx)/t = g(x), x ∈ R

2
+,

for some continuous function g, then the scaled point cloud converges onto a compact
limit set

G = {x ∈ R
2 : g(x) ≤ 1}

as n → ∞ (Davis et al., 1988; Kinoshita and Resnick, 1991; Balkema and Nolde, 2010;
Nolde, 2014; Nolde and Wadsworth, 2022). The function g is called the gauge function
associated with the density fX . Denote the boundary of G as ∂G.

Every gauge function g is homogeneous of order one, with g(cx) = cg(x) for any
c > 0 (Nolde, 2014). We will exploit this property by modeling the limit set boundary ∂G
directly and using its associated gauge function, induced by homogeneity, for estimation
(see Section 3.2). Any valid limit set G must satisfy the following constraints on its
shape:

1. G is star-shaped, meaning that for any t ∈ (0, 1), if x is in G, then tx is also in G.

2. The supremum of the boundary ∂G is 1 in each component direction. That is, ∂G
touches, but does not cross, the upper and right-hand sides of the unit box.
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Figure 1: Schematic of η. The blue curve is the unit level set of gauge function g(x),
which forms the limit set boundary ∂G, and the proportional distance to the red point
from the origin is the tail dependence coefficient η. While the red point is always on
the diagonal, the intersection of the shaded red region and the blue curve does not
necessarily occur on the diagonal.

We seek a flexible way of representing the boundary ∂G of the limit set G that
satisfies conditions 1 and 2 and can be estimated from iid samples of the random
vector X. The shape of the limit set contains useful information about the extremal
dependence of the distribution of the data. Nolde (2014) linked particular features of
the shape of G with various indices of joint tail dependence in the literature. The
residual tail dependence coefficient (Ledford and Tawn, 1996), the angular dependence
function (Wadsworth and Tawn, 2013), components of the conditional extremes model
(Heffernan and Tawn, 2004), and the index τ1(δ) (Simpson et al., 2020) all have direct
connections to the shape of G. Our primary focus is on the residual tail dependence
coefficient, η ∈ (0, 1], which is defined by assuming that, for X in exponential margins,
its survivor function satisfies

P (X1 > x, X2 > x) = L(ex)e−x/η

as x → ∞, for some function L that is slowly varying at infinity (Ledford and Tawn,
1996). Then the coefficient η describes the strength of dependence in the joint tail,
with η ∈ (1/2, 1) indicating positive tail dependence but AI, and η = 1 indicating
AD, assuming L(x) ↛ 0. The dependence class (AI vs. AD) is defined by the limiting
conditional probability χ ∈ [0, 1], where

χ := lim
x→∞

P (X1 > x, X2 > x)
P (X1 > x) ,

with χ = 0 characterizing AI, and χ > 0 characterizing AD.
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Figure 2: Examples of Bézier curves of orders 1, 2, and 3. The red control points (end
points) p0 and pm always lie on the curve, while the blue control points usually do not.

The residual tail dependence coefficient, η, can be calculated (Nolde, 2014; Nolde
and Wadsworth, 2022) from shape of the limit set as

η = min{r : r × [1, ∞]2 ∩ G = ∅}.

This is illustrated schematically in Figure 1, where one can think of sliding the shaded
box down the ray with slope 1 until it first touches the boundary ∂G. The radius
corresponding to this first point of intersection is η. Assuming as above that L(x) ↛ 0,
when X is asymptotically dependent, η = 1, so ∂G necessarily touches the upper right-
hand corner of the unit box. Conversely, when X is asymptotically independent, η < 1,
so ∂G does not touch the upper right-hand corner, and is referred to as blunt.

3 Modeling the Shape Using Bézier Splines
3.1 A Bézier Spline Representation of the Limit Set Boundary

Bézier curves (e.g. Hazewinkel, 2012; Farouki, 2012) are a class of parametric functions
that can be used as building blocks to represent complex shapes. Bézier curves are
defined by a set of control points p0 to pm, where m is the order of the curve. Figure 2
plots examples of Bézier curves of orders 1–3. The end points (red) define the beginning
and end of the curve; intermediate control points (blue) of each curve control its shape
but generally do not lie on the curve. A quadratic Bézier curve, for example, traces the
path:

B(t) = (1 − t)[(1 − t)p0 + tp1] + t[(1 − t)p1 + tp2],

for 0 ≤ t ≤ 1. Rearranging this equation simplifies it to:

B(t) = (1 − t)2p0 + 2t(1 − t)p1 + t2p2.

A useful property is that if the three points are co-linear, then a quadratic Bézier
curve simplifies to a linear Bézier curve. Several Bézier curves can in turn be linked
together at the end points to form a Bézier spline. The end points of each Bézier curve
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within the spline now function as knots for the spline. Splines comprised of quadratic
Bézier curves are particularly useful since analytical solutions for quadratic equations
are straightforward to obtain, and therefore represent a flexible yet parsimonious way
to approximate the shapes of limit set boundaries. In particular, increasing the order to
cubic splines would make it difficult to constrain the shapes to the unit box, and would
prevent the shapes from having the sharp corners required to represent asymptotically
dependent limit set boundaries.

Because they are parsimoniously parameterized and straightforward to constrain,
quadratic Bézier splines are convenient for modeling the boundary ∂G of the limit
set G. We specify ∂G as a Bézier spline comprised of three quadratic Bézier curves
gB = {B1(t), B2(t), B3(t)}, where B1(t) := B(t; p0, p1, p2), B2(t) := B(t; p2, p3, p4),
and B3(t) := B(t; p4, p5, p6), for pi ∈ R

2, i = 0, 1, . . . , 6. The three curves trace the
paths:

B1(t) = (1 − t)2p0 + 2t(1 − t)p1 + t2p2,

B2(t) = (1 − t)2p2 + 2t(1 − t)p3 + t2p4,

B3(t) = (1 − t)2p4 + 2t(1 − t)p5 + t2p6,

for 0 ≤ t ≤ 1. We denote the point pi := (pi,1, pi,2), 0 ≤ pi,1, pi,2 ≤ 1, and place two
sets of constraints on the curves in order to elicit valid gauge functions which satisfy
conditions 1 and 2. The first set of constraints ensure that the Bézier spline touches all
four edges of the unit square:

p0,1 = p6,2 = 0,

p2,2 = p4,1 = 1.

The second set of constraints are sufficient conditions to ensure that the star-shaped
property holds for the spline:

p1,1 ≤ p2,1,

m(0, p1) ≥ m(0, p2),
m(0, p4) ≥ m(0, p5),

p4,2 ≥ p5,2,

p3,1 = p3,2,

p3,1 ≥ max(p2,1, p4,2)

where m(p, p′) denotes the slope of the line connecting the points p and p′, and
0 = (0, 0) is the origin. The final condition ensures that if p2,1 or p4,2 are 1, p3,1 is
also 1. Thus, we arrive at a model for the limit set boundary ∂G, indexed by the 9
univariate parameters θg = (p0,2, p1,1, p1,2, p2,1, p3,1, p4,2, p5,1, p5,2, p6,1)T. In practice,
these constraints are enforced within a Metropolis sampler. If a candidate MCMC sam-
ple for one of the parameters does not satisfy the constraints, the sampler rejects it
automatically.
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Figure 3: Examples of unit level sets of gauge functions that can be expressed using
Bézier splines comprised of 3 quadratic Bézier curves. The red points are the end points
of each curve, while the blue points are intermediate points controlling the shapes of
the curves.

Figure 3 plots Bézier splines under these constraints, each representing a gauge
function with different dependence properties. Top row plots correspond to AI scenar-
ios, whereas plots in the bottom row correspond to AD scenarios. The four red control
points are the knots of the spline. The three blue control points affect the shape, and the
spline passes through them only if they are co-linear with the preceding and proceeding
control points. In the general case, there are 9 coordinates, each admitting a uniform
support, which need to be estimated to fully specify a valid gauge function. Richer mod-
els can be achieved using more control points; however, it would come with increased
computational cost and additional constraints to ensure that conditions 1 and 2 hold.
The quadratic Bézier spline with 4 knots therefore constitutes a parsimonious represen-
tation for ∂G which is still flexible enough to capture multiple dependence regimes and
mimic most of the common parametric models.

3.2 Statistical Inference For the Limit Set Boundary

With a model defined for the limit set boundary ∂G, we turn to the question of how
to estimate the shape from iid copies of the random vector X in standard exponential
margins. After transforming X to pseudo-polar coordinates (R, W ), a convenient form
(Wadsworth and Campbell, 2024) for the conditional density of a large radius R, given
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the angle W , is

fR | W (r | w) ∝ rd−1 exp{−rg(w)[1 + o(1)]}, r → ∞,

where d is the dimension of X (we have only considered d = 2 here). For likelihood-
based inference, Wadsworth and Campbell (2024) show that the o(1) term can be moved
outside the exponent in most cases and therefore ignored; they consequently consider the
approximation adequate for radii larger than a threshold r0(w). This yields a truncated
gamma likelihood:

R | W = w, R > r0(w), θg ∼ truncGamma
(
α, gθg (w)

)
. (1)

For most common bivariate copulas, α = 2. However, the quality of the approximation
tends to vary (for further details, see Wadsworth and Campbell, 2024), and α is usually
treated as a parameter to be estimated. Thus, given a gauge function gθg an approximate
likelihood for the large radii given the angles is

L(θg, α; (r1, w1), . . . , (rn0 , wn0)) =
n0∏

i=1

gθg (w)α

Γ(α)
rα−1

i exp{−rigθg (wi)}
1 − F (r0(wi); α, gθg (wi))

, (2)

where n0 is the number of points exceeding the threshold r0(w), and F ( · ; α, gθg (wi)) is
the CDF of a gamma distribution with shape parameter α and rate parameter gθg (wi).

To calculate the gauge function at each data point, as required in the likelihood (2),
we exploit the homogeneity property of g. This gives us that the value of the gauge
function evaluated at a point x is the distance from the origin to x, relative to the
distance from the origin of the intersection of the ray connecting x with the origin and
the boundary ∂G. In the schematic in Figure 4, the intersection with ∂G is denoted as
x∂G, so that

gθG
(x) = ‖x‖

‖x∂G‖ . (3)

We also need to select a threshold r0(w), as a function of angle. Wadsworth and
Campbell (2024) and Simpson and Tawn (2022) both chose thresholds as functions of
the angle, first as empirical quantiles of moving windows of angle and then using smooth
semi parametric quantile regression. We employ a much simpler approach, and choose a
high quantile in each threshold marginal component. We have found that this very basic
strategy results in estimation performance at least comparably as good as more compli-
cated alternatives. In addition, choosing marginal thresholds has two key advantages.
First, it is simple to implement and requires no intricate tuning. Second, it permits, in
principle, transformation to standard exponential margins within a hierarchical model,
whereas thresholds that depend jointly on both components do not. With this in mind,
we choose a value τ ∈ (0, 1), and then set each marginal threshold at the τ th marginal
empirical quantile qτ,X1 for X1 and qτ,X2 for X2. In pseudo-polar coordinates, this gives
a radial threshold of

r0(w) =

⎧⎪⎪⎨
⎪⎪⎩

qτ,X2
1−w , w ∈

[
0,

qτ,X1
qτ,X1 +qτ,X2

]

qτ,X1
w , w ∈

(
qτ,X1

qτ,X1 +qτ,X2
, 1

]
.
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Figure 4: Schematic of how to calculate gθG
at a data point (x), given a boundary curve

∂G. The value of the gauge function is the distance from the origin to x, relative to the
distance from the origin of the intersection of the ray connecting x with the origin and
the boundary ∂G.

While our simple strategy for threshold construction could potentially fail in patholog-
ical cases where it spuriously ignores important observations, we have not encountered
such cases. A sensitivity study comparing the effect of the choice of threshold on esti-
mation of η is provided in the Supplementary Material (Majumder et al., 2024a, Section
A).

3.3 Prior Distributions For Control Points

Our model for the limit set boundary ∂G is indexed by 9 univariate parameters, viz.
θg = (p0,2, p1,1, p1,2, p2,1, p3,1, p4,2, p5,1, p5,2, p6,1)T. To inform prior selection for these
control points, we examine the boundary ∂G of four parametric copula models, and
learn the conditions on the control points which allow the Bézier curve to mimic their
shapes. The four copulas that we consider are the Gaussian, inverted logistic, logistic,
and asymmetric logistic. The first two are asymptotically independent, while the final
two are asymptotically dependent; analytical expressions of dependence measures for
these models are provided in Table 1, replicated from Simpson and Tawn (2022). Since
the limit set boundary ∂G can take on a variety of shapes, including the AD case where
it touches the upper right-hand corner of the unit box (see e.g., Nolde and Wadsworth,
2022, Figure 2), we let the coordinates of the control points (i.e., the members of θg)
vary in [0, 1] (subject to the constraints presented in Section 3.1) for flexibility. This
permits the possibility of them being exactly equal to 0 or 1 to accommodate AD as
seen in the logistic and asymmetric logistic copulas and the very weak dependence as
seen in the inverted logistic copula. We now outline the support for the distributions
of the control points which will allow the Bézier splines to mimic our four copulas of
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interest, and then specify priors for all parameters to be used in the remainder of this
study.

The limit set boundary for an asymptotically dependent copula is obtained whenever
p2,1 = 1 or p4,1 = 1; additionally, the logistic copula is implied by p2 = p3 = p4 =
(1, 1) (Figure 3, bottom-right). This is equivalent to collapsing the second curve of the
Bézier spline to a single point, and can be incorporated into our model by having a
semi-continuous prior distribution for p2,1, p3,1, and p4,2 with support over (0,1] which
includes a point mass at 1. Similarly, collapsing the second curve and having a semi-
continuous prior on p0,2 and p6,1 can incorporate an approximation of the limit set
boundary for an asymmetric logistic copula. The theoretical shape of an asymmetric
logistic copula is represented using a red line in Figure 5b (bottom right panel), while
Bézier spline approximations can be seen in the form of the blue line in the same figure,
as well as in Figure 3 (bottom left panel). In both cases, the Bézier splines approximate
the sharp angles in the interior using smooth quadratic curves. Finally, approximating
the limit set boundary for an inverted logistic copula using a Bézier spline would require
the first and third curves to collapse onto the x1 = 0 and x2 = 0 lines respectively
(Figure 3, top-right). To accommodate this case, we set semi-continuous priors with
point masses at 0 for p1,1, p2,1, p4,2, and p5,2. To flexibly accommodate the wide range
of limit set boundary shapes possible within our framework, we set priors as follows:

α ∼ LogNormal(1, 1),

p0,2, p1,2, p5,1, p6,1
iid∼ Uniform(0, 1).

The LogNormal prior on α has its density concentrated near α = 2. The remaining
control points have priors that are the mixture of a standard Uniform distribution and
at least one point mass (to allow important geometric features of ∂G with positive
probability). They have the following forms:

p1,1
iid∼ 0.1 · I(p1,1 = 0) + 0.9 · Uniform(0, 1),

p2,1
iid∼ 0.1 · I(p2,1 = 0) + 0.8 · Uniform(0, 1) + 0.1 · I(p2,1 = 1),

p3,1 | p2,1, p4,2 ∼ 0.6 · Uniform(0, 1) + 0.4 · I(max(p2,1, p4,2) = 1).

The points p5,2 and p4,2 are distributed identically to p1,1 and p2,1, respectively. The
point mass probabilities were chosen on the basis of a sensitivity study whose aim was
to have good discrimination between the asymptotically dependent and asymptotically
independent cases based on posterior probabilities of η = 1, while also simultaneously
being able to provide unbiased, consistent estimates of η when η < 1. In particular, the
prior on p3,1 ensures that it is 1 only if AD is implied by either p2,1 or p4,2. These prior
assumptions can accommodate the logistic, inverted logistic, and asymmetric logistic
copulas, as well as intermediate forms such as the Gaussian copula which do not require
point masses.

3.4 Additional Bivariate Extremal Dependence Measures
Alongside the tail dependence coefficient η (Ledford and Tawn, 1996) discussed in Sec-
tion 2, we consider two additional indices of tail dependence which can be derived from
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the gauge function. The first of these is the angular dependence function λ(ω) which
considers different scalings for the two components of X. In particular, Wadsworth and
Tawn (2013) considered asymptotic probabilities of the following form:

P (X1 > ωx, X2 > (1 − ω)x) = Lω(ex)e−xλ(ω),

for some function Lω that is slowly varying at infinity, ω ∈ [0, 1], and λ(ω) ∈ (0, 1]
when X1 and X2 have positive dependence. The function λ(ω) therefore captures both
extremal dependence regimes, with AD implying the pointwise lower bound of λ(ω).
Evaluation of λ(ω) for rays ω near 0 and 1 corresponds to regions where one variable is
larger than the other. In particular, λ(ω) is a generalization of η, with η = 1/{2λ(1/2)}.
Murphy-Barltrop et al. (2024) found that global estimators (such as the Simpson-Tawn
estimator) which simultaneously estimate λ(ω) for all values of ω tend to provide better
estimates compared to pointwise estimators (such as the Hill estimator). The Bézier
spline estimator is also a global estimator of λ(ω), and examining the estimation of
λ(ω) is therefore a useful measure to compare it with the Simpson-Tawn estimator.

We also investigate the dependence measure τ1(δ) (Simpson et al., 2020), given by:

P (X1 > x, X2 ≤ δx) = Lδ(ex)e−x/τ1(δ),

for some function Lδ that is slowly varying at infinity, with δ ∈ [0, 1]. τ1(δ) is mono-
tonically increasing in δ, with τ1(1) = 1. This dependence measure characterizes the
probability of X1 being large while X2 is of a smaller order. Specifically, if there exists
a δ∗ < 1 such that τ1(δ∗) = 1, it implies that X1 can be large while X2 is small (with
δ determining just how small). If no such δ∗ exists, then X1 can be large only if X2 is
also large. We can define τ2(δ) analogously, and both τ1(δ), τ2(δ) ∈ (0, 1].

Table 1 provides the analytical expressions for these measures for the four copulas
that we consider in our study. Like with η, these dependence measures can be exactly
deduced from limit set boundaries, and hence from gauge functions. Since the Bézier
splines are quadratic polynomials, we can easily calculate τ1(δ) and λ(ω) for any esti-
mated limit set boundary simply by finding the intersections of polynomials and lines,
which have closed-form solutions. While we do not present results for τ2(δ) in our study,
it can be calculated in the same manner as τ1(δ). We refer the reader to Simpson and
Tawn (2022) for a detailed discussion on how each of these measures can be obtained
from gauge functions in more general settings.

4 Simulation Study
4.1 Study Setup
We demonstrate the appropriateness of using Bézier splines to model the limit set
boundary corresponding to the gauge function by means of a simulation study comparing
its performance with the Simpson-Tawn estimator (Simpson and Tawn, 2022).

We consider four bivariate copulas to generate data with exponential marginal dis-
tributions: the Gaussian, the logistic, the inverted logistic, and the asymmetric logistic.
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Copula g(x) = g(x1, x2)

Gaussian {x1 + x2 − 2ρ(x1x2)1/2}/(1 − ρ2)

Logistic γ−1 max(x1, x2) + (1 − γ−1) min(x1, x2)

Inv-Logistic (x1/γ
1 + x

1/γ
2 )γ

Asy-Logistic min
(
x1 + x2, γ−1 max(x1, x2) + (1 − γ−1) min(x1, x2)

)
(a) Gauge function g for the four bivariate copulas.

Copula η λ(ω) τ1(δ) = τ2(δ)

Gaussian (1 + ρ)/2
{

max(ω, 1 − ω), if tω ≤ ρ2

1−2ρ
√

ω(1−ω)
1−ρ2 , if tω ≥ ρ2

{
1, if δ ≥ ρ2

1−ρ2

1+δ−2ρ
√

δ
, if δ ≤ ρ2

Logistic 1 max(ω, 1 − ω) (γ−1 + 1 − γ−1δ)−1

Inv-Logistic 2−γ {ω1/γ + (1 − ω)1/γ}γ 1

Asy-Logistic 1 max(ω, 1 − ω) 1

(b) Dependence measures for the four bivariate copulas. Here, tω = min(ω, 1−ω)/ max(ω, 1−ω).

Table 1: Gauge function g, and a summary of dependence measures for the four bivariate
copulas used in our study. Table has been reproduced from Simpson and Tawn (2022).

The Gaussian copula is parameterized by its correlation ρ ∈ [0, 1), while the depen-
dence parameter for the remaining three copulas is γ ∈ (0, 1). Table 1 lists the gauge
functions associated with each copula, as well as the set of corresponding extremal
dependence coefficients {η, λ(ω), τ1(δ)}. Further details for these four copulas can be
found in Simpson and Tawn (2022). For each copula, we consider five parameter settings:
ρ, γ = {0.3, 0.4, 0.5, 0.6, 0.7}. Smaller values of γ correspond to stronger tail dependence,
whereas larger values of ρ lead to stronger tail dependence.

For each copula and parameter combination, we generate 100 datasets of n = 5, 000
data points each. The data are converted to pseudo-polar coordinates (R, W ), and
the n0 points that are above the τ = 0.75 quantile marginal threshold for at least
one variable are used to model the gauge function for each dataset. The n0 radii are
assumed to approximately distributed according to a truncated gamma distribution
with a common shape parameter α and a rate parameter equal to an appropriate gauge
function evaluated at the data point. We use Metropolis updates for all parameters and
run 11,000 MCMC iterations for each dataset, discarding the first 1,000 as burn-in. All
Metropolis updates are tuned to give an acceptance probability of 0.4, and posterior
convergence is diagnosed based on the visual inspection of trace plots. We compare our
estimated limit set boundaries with the Simpson-Tawn estimator in terms of how well
they estimate the set of dependence coefficients outlined in Table 1. The Simpson-Tawn
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estimator for the datasets was evaluated using the default settings recommended by the
authors in Simpson and Tawn (2022). We use the root mean square error (RMSE) to
compare estimates of the scalar η, and the root mean integrated square error (RMISE)
to compare estimates of the functions λ(ω) and τ1(δ). The methodology is implemented
in R (R Core Team, 2023); the code is available on GitHub through the BezELS package
(Majumder et al., 2024b).

4.2 Parameter Estimates

Each panel in Figure 5 plots the limit set boundaries elicited by the estimated Bézier
splines based on the posterior distribution from a single dataset with the dependence
parameter set to 0.5. Plots in Figure 5a display the dependence modeling in pseudo-
polar coordinates. The dashed grey line corresponds to the threshold r0(w) for angles w.
Each estimated limit set boundary is represented as a functional boxplot (Hyndman and
Shang, 2010; Sun and Genton, 2011), a visual representation of functional data analo-
gous to a classical boxplot. Each functional quantile depicted in the figure is a function
contained in the sample; in this case, the sample consists of limit set boundaries based
on Bézier splines, in pseudo-polar coordinates, drawn from the posterior. The curves
are ordered according to a notion of modified band depth (López-Pintado and Romo,
2009). The median is shown in dark blue, and the limit set boundary corresponding
to the data-generating model is shown in red. The envelope represents the 50% cen-
tral region, analogous to the box of a classical boxplot. The outer light blue lines of the
functional boxplot correspond to the whiskers of a classical boxplot. Finally, the vertical
lines indicate the maximum envelope of the functions except outliers. Plots in Figure 5b
display the dependence models in Euclidean coordinates, with the median Bézier spline
in dark blue and the limit set boundary corresponding to the data-generating model in
red. They are overlaid on Bézier splines evaluated from 500 draws from the posterior
distribution, plotted in gray. The boxplots on the top and right margins correspond to
the posterior distributions of p2,1 and p4,2 respectively, which serve as a visual indicator
of asymptotic dependence in the data. Specifically, if the median of either boxplot is 1,
the posterior median of η is 1. The Bézier splines are able to adequately represent the
geometric form of all four copulas.

Figure 6 shows boxplots of the posterior median of η for the four copulas based on
the Bézier spline (blue) and Simpson-Tawn estimators (green). Analytical values of η
obtained using expressions in Table 1 are shown as red dots in each plot, and the cov-
erage of equi-tailed 95% intervals are noted in plain text below each boxplot. Coverage
for the Simpson-Tawn estimator is based on 100 bootstrapped samples from each of the
100 datasets. We plot the median instead of the mean for the Bézier spline estimates
since the posterior distributions are often highly asymmetric due to point-mass prior
distributions. The Bézier spline estimator has low bias and nominal coverage for esti-
mates of η. The Simpson-Tawn estimator has nominal or near-nominal coverage in most
cases except for the asymmetric logistic copula when the dependence parameter γ is 0.5
or higher. It also has noticeably higher bias than the Bézier spline estimator for both
asymptotically dependent copulas, and shows a sharp decline in coverage as the strength
of dependence drops for the asymmetric logistic copula. We evaluate λ(ω) and τ1(δ)
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Figure 5: Limit set boundaries based on Bézier splines (blue) and corresponding func-
tions for the data-generating model (red) in pseudo-polar and Euclidean space for the
Gaussian, logistic, inverted logistic, and asymmetric logistic copulas with dependence
parameters set to 0.5.
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Figure 6: Sampling distribution of the posterior medians of η based on the Bézier spline
estimate (blue) for the four copulas, alongside estimates using the Simpson-Tawn esti-
mator (green). The red dots indicate the true values, and coverage of equi-tailed 95%
intervals are noted below each boxplot.

based on the Bézier spline and Simpson-Tawn estimators for ω, δ = 0.01, 0.02, . . . , 0.99.
Figure 7a shows boxplots for the posterior medians of λ(0.40) based on the two estima-
tors, with the corresponding dependence parameter set to 0.5. Figure 7b similarly plots
the distribution of τ1(0.25) for the two estimators. Both estimators are better at esti-
mating λ(ω) than τ1(δ), and the Bézier spline estimator tends to have better coverage
than the Simpson-Tawn estimator.

Table 2 summarizes the RMSE ratio for estimates of η and RMISE ratios for esti-
mates of λ(ω) and τ1(δ) based on the Bézier spline and Simpson-Tawn estimators. Most
of the values are greater than 1, indicating that dependence measures based on Bézier
spline estimates of the gauge function have comparable or better RMSE/RMISE than
those based on the Simpson-Tawn estimator. However, for the inverted logistic copula,
the Simpson-Tawn estimator outperforms the Bézier spline estimator when estimating
of τ1(δ). Our experiments indicate that the error arises when the posterior p4,2 > δ; this
leads to τ1(δ) estimates to be less than 1, whereas the theoretical value for the inverted
logistic copula is 1 for all δ. Our approach, however, is still able to correctly estimate
τ(δ) = 1 in all the inverted logistic scenarios for all but extremely small values of δ.

Table 3 provides the number of datasets (out of 100) in each scenario where the
posterior median of η is estimated to be 1. The values in the parentheses are corre-
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Figure 7: Sampling distribution of the posterior medians of λ(0.40) and τ1(0.25) based
on the Bézier spline (blue) and Simpson-Tawn (green) estimators for four copulas, with
dependence parameters set to 0.5. The red lines indicate the true values, and coverage
of equi-tailed 95% intervals are noted below each boxplot.



R. Majumder, B. A. Shaby, B. J. Reich, and D. S. Cooley 17

Measure Copula Dependence parameter value
0.3 0.4 0.5 0.6 0.7

RMSE(η̃)
RMSE(η̂)

Gaussian 1.02 1.11 1.04 1.06 0.81
Logistic 1.38 0.81 1.36 1.17 1.07

Inv-Logistic 0.70 0.99 1.11 1.03 1.01
Asy-Logistic 2.39 2.01 2.23 2.37 2.39

RMISE(λ̃)
RMISE(λ̂)

Gaussian 1.19 1.18 1.05 0.94 0.75
Logistic 1.35 0.61 1.10 1.04 1.28

Inv-Logistic 0.82 1.10 1.20 1.10 1.04
Asy-Logistic 6.17 6.65 10.91 7.43 5.67

RMISE(τ̃)
RMISE(τ̂)

Gaussian 0.85 1.00 1.08 1.17 1.18
Logistic 1.00 0.95 0.89 0.83 1.00

Inv-Logistic 0.23 0.27 0.17 0.28 0.17
Asy-Logistic 2.38 2.96 1.77 1.72 1.23

Table 2: RMSE ratios for estimates of η and RMISE ratios for estimates of λ(ω) and τ1(δ)
based on the Bézier spline (η̂, λ̂, and τ̂) and Simpson-Tawn (η̃, λ̃, and τ̃) estimators over
simulated datasets for four copulas and five dependence levels.

Dependence parameter value
0.3 0.4 0.5 0.6 0.7

Gaussian 00 (00) 00 (00) 00 (00) 00 (00) 06 (00)
Logistic 98 (91) 93 (79) 96 (77) 91 (74) 82 (63)

Inv-Logistic 02 (00) 00 (00) 00 (00) 00 (00) 00 (00)
Asy-Logistic 96 (30) 80 (25) 82 (22) 83 (14) 84 (00)

Table 3: Number of datasets (out of 100) where the posterior median of η is 1 for each
scenario. Values in parenthesis correspond to the Simpson-Tawn estimator.

sponding point estimates of η based on the Simpson-Tawn estimator. For the Bézier
spline estimators, the values were always estimated to be near 0 for the asymptotically
independent copulas, and always high for the asymptotically dependent copulas. While
there were some cases where the Bézier spline estimates the posterior of η as 1 when the
dependence is high in an asymptotically independent copula, both methods are good at
estimating AI correctly. On the other hand, the Simpson-Tawn estimates show a decline
in their ability to estimate the correct value of η = 1 for the asymptotically dependent
copulas when dependence is low. This is especially noticeable for the asymmetric logis-
tic copula, and has been documented by Simpson and Tawn (2022) as well. The Bézier
spline estimator is much better at predicting AD correctly across all scenarios. We con-
clude that the Bézier splines are adept at representing limit set boundaries associated
with common parametric copula models, and are also flexible enough to represent a
wider variety of edge cases. In all cases, the true value of η was well-estimated from the
posterior distribution, and the model is particularly adept at identifying AD.
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4.3 Additional Simulation Studies

Two additional simulation studies are presented in the Supplementary Material (Ma-
jumder et al., 2024a). In both cases, the results are compared based on RMSE/RMISE
values of bivariate extremal dependence coefficients, as well as how often it estimates
η = 1. The first study considers how our relatively straightforward method of selecting
the quantile threshold affects the estimation process. This is carried out by comparing
it against an ‘oracle’ threshold which is an asymptotic approximation to the true condi-
tional quantile qτ (w) and requires knowledge of the true gauge function to compute. We
are unable to find any meaningful improvement in the estimates when we consider an
oracle threshold, which indicates that our choice of threshold is adequate for the scenar-
ios we have considered. The second study repeats the simulation study presented in this
section, but for a sample size n = 600. This is carried out to ensure that our approach
is still valid for small data sizes like the one that arises in our second application, pre-
sented in the following section. Our results indicate that despite slightly higher RMISE
values and slightly lower coverage, the Bézier splines can still capture the shape of the
true limit set boundary with low bias. Comparisons with the Simpson-Tawn estimator
provide results that are quite similar to the ones presented in this section.

5 Applications
5.1 Analysis of the Santa Ana Winds Data

We apply our method to the Santa Ana winds and dryness data (Cooley et al., 2019).
The Santa Ana winds are a multivariate meteorological regime that has been implicated
as a major driver of large wildfires in southern California (Billmire et al., 2014). Wild-
fires are related to several conditions like temperature, humidity, wind speed, and fuel
supply (Littell et al., 2018). Historically, the autumn months of September, October,
and November have had a higher number of wildfires compared to the winter months,
and are associated with warm temperatures, low humidity, and high winds. Cooley et al.
(2019) surmised that the data exhibits AD and used the framework of regular varia-
tion to estimate probabilities associated with two different risk regions. The regular
variation structure employed by them, however, cannot capture the nuance of AI. Our
analysis could produce more accurate estimates of the probabilities of joint tail events
that require extrapolation beyond the range of the data. In particular, if the data were
asymptotically independent, an assumption of AD would overestimate the probability
of such jointly extreme events under the approach used by Cooley et al. (2019).

We consider daily dryness (%) and wind speed (m/s) data collected at the March Air
Reserve Base station in Riverside County from the HadISD dataset (Dunn et al., 2012).
The dryness is defined in this case as the 100− RH, where RH is the relative humidity
measured as a percentage. The bivariate time series represents a measure of the daily
risk of fire. The station’s variables have appeared to be associated with known Santa
Ana events. The data consists of 3,902 days for the months of September–November
from 1972–2015; we assume temporal stationarity and independence as in Cooley et al.
(2019). Figure 8 plots the data both in its original scale as well as the rank transformed



R. Majumder, B. A. Shaby, B. J. Reich, and D. S. Cooley 19

Figure 8: Santa Ana wind speeds and dryness measured at the March Air Force Base
station. Data above the 0.75 marginal quantile threshold are in red.

scale. The data shows tail dependence, noticeable in the rank transformed data with
a cluster of values in the upper right corner. Our goal is to study the tail dependence
between the two variables by estimating a gauge function for the data after a further
transformation to unit exponential margins.

We analyze this data at a threshold of τ = 0.75, providing us with 1,529 points that
are above the threshold in at least one margin. The conditional distribution of the radii
are assumed to be a truncated gamma distribution for this analysis. We run 2 MCMC
chains of 11,000 iterations each, discarding the first 1,000 from each chain as burn-in.
The priors and the remainder of the MCMC settings are identical to the simulation
study.

Figure 9 plots the estimated limit set boundaries, with the median curve plotted in
blue. The plot on the left is in pseudo-polar coordinates and depicts a functional boxplot
of the estimated limit set boundary, while the plot on the right is in Euclidean coordi-
nates. The posterior median of η is estimated to be 1, and P(η = 1 | X) = 0.60, suggest-
ing AD between wind speed and dryness. Figure 10 evaluates the goodness-of-fit for the
truncated gamma model in terms of PP plots as well as QQ plots, based on post burn-in
MCMC samples α∗ and θ∗

g from the posterior distribution of the parameters. The PP
plot for n0 observations with Ri > r0(wi) is the set of points [i/(n0 + 1), u(n0−i+1)],
where u(1) ≥ u(2) ≥ . . . ≥ u(n0) is the ordered sample of ui = F̂t

(
ri; wi, r0(wi)

)
, and F̂t

is the fitted CDF of the truncated gamma model with the likelihood function as in (2):

F̂t

(
r|w, r0(w)

)
:= Pr

(
R ≤ r|W = w, R > r0(w)

)
= 1 −

1 − F (r; α∗, gθ∗
g
(w))

1 − F (r0(w); α∗, gθ∗
g
(w)) .

For the corresponding QQ plot, each point on the PP plot is transformed to unit ex-
ponential margins through an inverse CDF transformation. In both cases, the black
points are obtained from gamma parameters implied by the median curve of the limit
set boundary, while the gray lines correspond to n0 = 100 random draws from the
posterior. Both plots suggest that the model fits the data adequately.
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Figure 9: Limit set boundaries based on Bézier splines in pseudo-polar space (left) and
Euclidean space (right) for assessing tail dependence between Santa Ana wind speed
(X1) and dryness (X2). Median curves are plotted in dark blue.

Figure 10: PP plot (left) and exponential QQ plot (right) for the truncated gamma
model fitted to the Santa Ana winds and dryness data. The black points correspond to
the fit for the median Bézier spline. Gray lines are based on 100 random draws from
the posterior.

To test sensitivity to the threshold level, we repeated the experiment at additional
threshold levels of τ = 0.70, 0.80, and 0.90. In all 3 additional cases, P(η = 1 | X) >
0.50, with the smallest value (of 0.56) occurring for τ = 0.90 and the largest value (of
0.64) for τ = 0.70. Taken together, we conclude that dryness and wind speed for Santa
Ana are asymptotically dependent with high probability, consistent with the results of
Cooley et al. (2019).
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Figure 11: PP plot (left) and exponential QQ plot (right) for the truncated gamma
model fitted to the Ozone concentration data. The gray lines correspond to the fit for
the median Bézier splines at 100 random locations.

5.2 Analysis of Ozone Concentration Data
For our second study, we consider air pollution measurement data across the US from the
Community Multiscale Air Quality (CMAQ) model (Binkowski and Roselle, 2003; Wyat
Appel et al., 2007, 2008) as well as EPA Air Quality System (AQS) (US EPA, 2017) data
for the contiguous US. While CMAQ is a numerical model available across the entire
country at a 12km resolution, the AQS dataset consists of observations monitored at
1, 376 stations across the US. Among them, only 519 stations had over 600 observations,
which is what we use for this analysis. The full dataset has previously been used by
Gong et al. (2021) to develop a combined data product for 12 air pollutants. When
fusing data products, it is important to calibrate the model data to ground truth. In
our application, we will verify how strong the dependence is between the AQS and
CMAQ datasets for ozone, one of the 12 pollutants made available by both datasets.

Our data consists of daily ozone readings for the months of July–September from
2010–2014, resulting in a bivariate time series of CMAQ and AQS data for up to 610
days at each station. The sample correlations between the AQS and CMAQ data for
the 519 stations range from 0.29–0.86 with a median of 0.69, suggesting a high level
of agreement in the bulk of the distribution. To assess tail dependence, we fit a gauge
function with truncated gamma likelihood for data beyond the τ = 0.75 threshold,
independently at every station. We run 2 MCMC chains for 11,000 iterations each for
each station’s data, discarding the first 1,000 as burn-in.

The posterior median of η has an average value of 0.81 across the 519 locations, and
is 1 (asymptotically dependent) for 79 of those stations. This suggests that the CMAQ
data product can adequately represent the tail behavior of observational ambient ozone.
Figure 12 plots the posterior probability of AD based on the truncated gamma model.
While we are unable to discern any spatial pattern for high or low posterior values of
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Figure 12: Posterior median of η at 519 AQS monitoring stations in the US.

η from the map, we do note that several of the low values are in urban areas with high
population densities.

Finally, to study the sensitivity of our posterior to the threshold level τ , we repeated
our analysis at two additional values of τ = 0.70 and 0.80. Estimates from both these
cases were quite similar to the baseline case of τ = 0.75, with correlations > 0.90 for both
the posterior median of η and P(η = 1). There were 76 and 80 locations respectively
where the posterior median of η was 1, and 62 of those locations were shared with the
baseline case. Thus, our results are not very sensitive to the choice of threshold for small
data sizes.

6 Discussion
Key aspects of tail dependence in multivariate distributions can be described through
their corresponding gauge functions. In this study, we propose a semiparametric method
for estimating gauge functions by modeling their unit level sets as Bézier splines com-
prised of three quadratic Bézier curves. The splines can represent the gauge function
unit level sets, and hence limit set boundaries, of varying shapes, and are parsimo-
niously parameterized by a small number of control points. The quadratic specification
makes it straightforward to obtain analytical solutions for the shape of the limit set,
and constraints on the control points ensure that the resultant shapes are valid limit
set boundaries. Bayesian estimation of the Bézier splines requires only standard MCMC
techniques and allows important cases on the edge of the parameter space to be repre-
sented by employing mixture priors with point masses. We demonstrate the efficacy of
our model using numerical studies as well as two real data applications involving fire
weather in California, and ambient air pollution from ozone across the US.
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We have only considered bivariate random vectors here, but the modeling strategy
can scale to three dimensions by using Bézier surfaces, with the control points of con-
stituent Bézier curves set in R

3 instead of R2. It will, however, require more complicated
constraints to ensure that the star shaped property holds, and dimensions greater than
three appear to be infeasible. In addition, it appears possible to extend our modeling
framework to include negative dependence by transforming to Laplace margins rather
than exponential margins. This has been previously suggested (Simpson and Tawn, 2022;
Wadsworth and Campbell, 2024) and recently implemented in the context of radially
stable Pareto distributions (Papastathopoulos et al., 2023), and within a semiparamet-
ric angular-radial model (Mackay and Jonathan, 2023). Implementing our Bézier model
in Laplace margins (in two dimensions) would require somewhere between two to four
times the number of control points as we have now, specifying appropriate constraints
on their support, and more sophisticated sampling algorithms to ensure convergence.
Finally, while three Bézier curves are sufficient to ensure that the boundary of our es-
timated limit set in the two dimensional case exactly touches the corners of the unit
box, the curves themselves don’t necessarily need to be quadratic. It is possible to use a
nonparametric Bayesian framework to construct curves that have an arbitrary number
of intermediate control points (i.e., control points excluding the start and end points).
Though this would be computationally more expensive, the resulting Bézier spline is
likely to have broader support over the space of all limit set boundaries.
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