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ABSTRACT: Cleavable side chain based conjugated polymers (CSCPs) represent a unique approach to offering solution
processability with added benefits via the elimination of insulating side chains. This work highlights an optimally designed
polythiophene-carboxylic acid based CSCP, POET-T2-COOH, which achieves a conductivity exceeding 350 S/cm in molecularly
doped and side chain cleaved films, 100—100,000 times higher than three other structurally isomeric CSCPs. The high conductivity
of POET-T2-COOH is accomplished via a new “cleavage with doping” methodology, synergistically combining a strong acid and a
primary dopant. This hybrid method achieves the greatest conductivity in all isomeric CSCPs over conventional doping or cleavage
techniques. The doped and side chain cleaved POET-T2-COOH displays a stable conductivity in inert atmospheres and a high work

function of 5.3 eV, opening up new applications.

olecular doping is crucial to increasing charge carrier

density (n) and providing tunable conductivity (o) to
conjugated polymers (CPs)."” Although recent works have
made breakthroughs in the methodology to dope highly
crystalline or polar side chain bearing polymers,”™ "~ new
strategies to achieve a high yet stable conductivity of doped
CPs have stagnated in comparison. Here we utilize cleavable
side chain based conjugated polymers (CSCPs) for molecular
doping and achieve a 6-order magnitude range in conductivity
depending on isomeric structure; further, we discover a new
“cleavage with doping” methodology that is superior to other
common doping methods. Intuitively, CSCPs are advanta-
geous because they eliminate the insulating side chains in
processed CP films. The resulting shorter lamellar spacing can
induce less backbone disorder and shorter m—n stacking,
beneficial for higher carrier mobility (u) ;1971 the concomitant
volume reduction also leads to higher n.'*'* Furthermore, the
elimination of soft alkyl chains increases the glass transition of
the CP, and remnant carboxylic acids can mitigate destructive
oxidation of polymers,">~"? improving the stability of
processed CP film.

We employed the tertiary ester—thiophene motif because it
can eliminate side chains and leave behind the carboxylic acid
via two different approaches (Scheme S2): (i) direct cleavage
between 150 and 220 °C in neat films'®*® or (ii) acid-induced
cleavage at room temperature by soaking films in strong acid
(aqueous pK, < —10) solutions,” evidenced by Fourier
transform infrared (FT-IR) spectroscopy (Figure S9).

Previous works on CPs have shown that additional
thiophene units'>"? and regioregularity”™** can maximize
the carrier mobility (u); we thus synthesized four isomeric
CSCPs, all containing 50 mol % of tertiary ester—thiophene
units and S0 mol % of thiophene units, to explore the
relationships between structural design and conductive
property (Scheme 1 and Scheme S1). These polymers include
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regiorandom P3MOCT,* regioregular RP-TS0,"° and two
new CSCPs named PIET-T2 and POET-T2. The latter two
incorporate a twisted inward facing biester thiophene motif
(IET) and a planar outward motif (OET), respectively. These
orientations (twisted vs planar) have been determined
previously in sin%Ie crystal analysis of similar linear—ester
thiophene dimers.”> >

We anticipated that the planar OET motif in POET-T2
would minimize the steric hindrance from tertiary carbon in
polymer backbones and significantly increase the aggregation
behavior; by contrast, the twisted IET motif in PIET-T2 would
induce less aggregation. Indeed, POET-T?2 is the only polymer
that displayed significant temperature-dependent aggregation
in its chlorobenzene solution and vibrational peaks in thin film
before side chain cleavage (UV/vis spectra, Figures S11 and
S13), whereas PIET-T2 shows almost no difference in its
absorption profile between solution and thin film.

The difference in positioning of 50 mol % of tertiary ester—
thiophene units in these polymers has a strong impact on their
energy levels (Figure 1), measured by cyclic voltammetry
(CV) (Figure S12). Since all four are structural isomers, the
primary influence on the energy levels comes from the
planarity of the backbone (i.e., effective conjugation length)
and related aggregation behavior. The twisted PIET-T2
possesses the lowest HOMO level at —5.9 eV, and the planar
POET-T2 in turn possesses the highest HOMO of —5.5 eV
(similar to that of P3HT). The highest HOMO level of POET-
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Scheme 1. Isomeric CSCP Structures
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Figure 1. HOMO energy levels for polymers vs the FATCNQ LUMO
energy level (all estimated by CV).

T2 also positions it as the best candidate for efficient doping
with F4TCNQ_based on energetic alignment, followed by
P3MOCT and RP-T50.

While the thermal cleavage of side chains is well
documented,'®*® the acid-triggered cleavage was carried out
by dipping the polymer thin film into a moisture exposed triflic
acid (TfOH, pK, = 0.7)*’ solution (22.6 mM, 2 L TfOH in 1
mL acetonitrile) to cleave side chains and form the “CP-
COOH” polymer. After acid-triggered cleavage, PIET-T2-
COOH shows an increased HOMO level (—=5.9 eV — —5.7
eV), likely attributed to a more planar backbone; the other
three polymers show very little change in their HOMO levels
postcleavage (Figure 1).

We next investigated strategies to combine doping with two
different strategies of side chain cleavage. There are two
prevailing approaches to incorporate F4TCNQ as the dopant
into polymer films: blending dopant into CP solutions then
casting film (“blend doping”; 10 wt % of FATCNQ in here) or
dipping films into a solution of dopant (“dip doping”; 3.6 mM
of FATCNQ or 1 mg/mL in acetonitrile). The screened
combinations of doping and cleavage methods on the RP-T50
polymer are displayed in Figure 2.
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Figure 2. Conductivity vs different cleavage and doping method
combinations. All Dip conditions indicate dipping in a solution of 3.6
mM F4TCNQ_in acetonitrile for 30 min; 200 °C denotes annealing at
200 °C for 30 min; and TfOH indicates dipping in a solution of 22.6
mM TfOH in acetonitrile for 30 min. 1, 2, indicate the sequence of
methods. @65 °C indicates a doping solution at 65 °C for 30 min.

The red shaded region summarizes the key results
representative of the F4TCNQ_doping of uncleaved RP-TS0.
The minor doping effect, evidenced by the low o, is attributed
to the low g of the polymer and low n from poor energy
alignment between the polymer and the dopant. Thermolysis
at 200 °C (yellow region) results in dedoping of polymer films
as FATCNQ sublimes (Figure S10). Although RP-T50-COOH
achieves 10°x higher u than the uncleaved RT-T50,"
subsequent dipping of cleaved films in F4TCNQ results in
worse or similar conductivity to the uncleaved polymer, as the
dopant is unable to swell into the densified film (green region).

Compared with thermal cleavage, acid-triggered cleavage
shows a dramatic difference in conductivity (blue region),
depending upon the doping method. First, films sub}'ected to
TfOH show acidic protonation-induced doping;*>*" yet the
achieved conductivity is much lower than those of films doped
by FATCNQ first prior to acid-triggered cleavage, which can be
ascribed to F4TCNQ’s higher electron affinity and faster
integer charge transfer mechanism for doping,32 However,
subjecting neat polymer films to a mixed FATCNQ+TfOH
solution caused the conductivity to increase by 10° to 8.5 S/
cm. We attribute this dramatic increase in part to simultaneous
swelling of dopants into polymers during the cleavage process,
which can trap dopants after cleaving side chains. By contrast,
sequential doping and cleavage would lose dopants by inversed
diffusion into the TfOH solution. Interestingly, the UV/vis
spectrum of these films (Figure Sl4c) shows no FATCNQ
radical anion (F4TCNQ®) peaks, which infers an ion
exchange of the primary FATCNQ®™ counterion with triflate
(TfO™). This ion exchange was also supported by FT-IR
(Figure S23) where the doped films (via mixed FATCNQ
+TfOH) show the absence of FATCNQ or FATCNQ®~ but
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Figure 3. (a) Conductivity of different polymers under different dip doping conditions. (b) Carrier concentration and mobility from the Hall

measurement of CSCPs. (c) Carrier concentration and mobility from Hall measurement of POET-T2 vs doping condition.

Table 1. Comparison of Key Parameters of CSCPs with Different Dip Doping Methods

F4TCNQ+TfOH ¢ Hall 6" Hall mobility” Carrier density”
Polymer TfOH ¢ (S/cm) FATCNQ 6” (S/cm) (S/cm) (S/cm) (em? V71s7h) (em™)
PIET-T2 381 X107 +£7.6%x 107 281 X107 £50x 107 954 x10°+13x 107  25x107™* 43 x 1072 3.6 X 10'¢
P3MOCT 452X 107+ 6.6 X 107  7.06 X 107° + 1.0 X 10™°  2.47 + 0.40 2.6 x 10° 62 x 107! 2.6 X 10"
RP-TS0 692X 107°+ 66X 107 500X 10™° + 4.6 X 10°° 855 + 1.56 8.9 x 107! 6.5 % 107! 8.5 X 10'*
POET-T2 414X 107* + 64 X 107> 643X 107° £ 24 x 107*  3.53 X 10* + 2.35 X 10" 1.7 X 10? 7.9 x 107! 1.3 x 10*!

“Values determined by a two-point probe. “Values determined by Hall measurement after the FATCNQ+TfOH condition. Further discussion of 2-

point vs 4-point Hall measurement is in Notes S5 and $6.>°*°

the presence of TfO™. This ion exchange process could only
occur after the doping event (i.e., forming FATCNQ®") since
the NMR results (Figure S22) indicate that neutral FATCNQ
does not react with TfOH. Ion exchange has been
demonstrated to effectively increase dopant strength and
stability;>*** additionally, the hydronium adducts formed with
F4TCNQ _could also account for increased dopant strength.**

We next applied the conventional FATCNQ_ doping, TfOH
cleavage with in situ acid doping (“TfOH” in Figure 3a and
Table 1), and the optimized FATCNQ+TfOH combined
condition (which we coin as Acid Cleavage Triggered Via Ion
Exchange or ACTVIE) on three other isomeric CSCPs and
P3HT. Overall, the same trend prevails for each CP (including
P3HT) where F4ATCNQ doped films achieve a higher
conductivity than the TfOH treated films (Figure 3a).
However, no doping of PIET-T2 was observed under either
condition since its energetic offset with FATCNQ_ is the
highest.

ACTVIE doping exhibits an unambiguously large con-
ductivity increase for all CSCPs, with values ranging from
0.0095 S/cm for PIET-T2-COOH to 353 S/cm for POET-T2-
COOH. This large range of values reflects the critical
importance of optimized polymer structure on achievable
conductivity. ACTVIE doped PIET-T2-COOH possesses the
lowest u (almost 10X lower than P3MOCT-COOH) and
lowest carrier concentration by the Hall method (Figure 3b
and Table 1). Comparison of the regioregular RP-TS0-COOH
and the regiorandom P3MOCT-COOH reveals a minimal
effect of regioregularity on conductivity (¢), where a higher n
reflects the higher HOMO level of PSMOCT-COOH and the
regioregularity of RP-TS50-COOH likely accounts for its higher
p. Furthermore, the ACTVIE doping of P3HT did not result in
an increased conductivity over conventional F4ATCNQ doping,
although it does result in a greater photobleaching of its UV/
vis spectra (Figure S14e). This mismatch in bleaching and

conductivity could be indicative of destructive side reactions
on P3HT,” which is not expected for the CSCP-COOH:s with
oxidation tolerant carboxylates. Additionally, all CSCP-
COOHs show incomplete bleaching of their main absorption
peak and the rise of a red-shifted polaron/bipolaron band
(Figure S14), all without FATCNQ®™ absorbance, further
supporting the jon exchange and the exclusive high doping
efficiency of ACTVIE for CSCPs.

POET-T2 doped through ACTVIE achieves the highest
conductivity reported for a polythiophene-carboxylic acid. This
is due primarily to the n which exceeds 10*' cm™ with an
estimated 0.9 carriers on every repeat unit (see Note S4).
Further Hall measurements of POET-T2 doped with different
methods (Figure 3c and Table S4) show that the ACTVIE
condition largely increased the n by over 10* higher than
TfOH or FATCNQ_ doping. Comparing TfOH or FATCNQ_
treated films also demonstrates the power of side chain
cleavage to increase y, with TfOH treated films achieving 30X
higher y (1.0 cm® V™' s7') than as-cast films doped with
F4TCNQ only (0.03 cm* V™! s7h).

We next employed X-ray photoelectron spectroscopy (XPS)
to estimate the doping level, defined as the number of polarons
per thiophene ring. Specifically, the ratio of the sulfur in
polaron to the sulfur in undoped polymer (Figure S17) can
estimate the doping level, % e.g, 33.6% in the case of
ACTVIE doped POET-T2-COOH, much larger than
F4TCNQ (11.8%) or TfOH (6.78%). This trend aligns well
with the measured conductivity and carrier density. From
elemental analysis counts of N 1s to F 1s (Figure S18), we also
estimated that the counterion is 90% TfO~ (Note S1). Further,
time-of-flight secondary ion mass spectroscopy (ToF-SIMS)
measurement (Figure S19) shows that ACTVIE allows
dopants to diffuse throughout the entire depth of the polymer
thin film.
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Figure 4. (a) UPS spectra at the Fermi edge and (b) cutoff edge for POET-T2 (or COOH) films after applying different doping methods. Stability
measurement for conductivity in an inert glovebox at (c) 25 and (d) 100 °C for ACTVIE doped POET-T2-COOH, F4ATCNQ doped PBTTT, and
ion exchanged (IE) doped POET-T2 using FATCNQ and BMP*TFSI".

To highlight the versatility and unique ability of ACTVIE
doping of CSCPs, different acid/dopant combinations were
tested on POET-T2 (Figures S15 and S16 and Table SS.)
Notably, we found that trifluoromethanesulfonimide (pK, =
0.3 in acetonitrile)”” could effectively replace TfOH in
ACTVIE doping; further, ACTVIE doping achieved higher
conductivity than FeCl; and conventional ion exchange
doping.

We also applied ultraviolet photoelectron spectroscopy
(UPS) to investigate the change of the Fermi level and work
function of doped POET-T2 films. As shown in Figure 4a, 4b,
and Table S6, ACTVIE doped POET-T2-COOH exhibits the
Fermi level at almost the same energy as its HOMO level,
indicative of a metal-like band structure. A work function of
5.32 eV was calculated, noticeably deeper than PEDOT:PSS at
5.0 eV, which could provide a better Ohmic contact in
optoelectronics.”’ Unlike conventionally doped alkylated
polymers (e.g, PBTTT doped with FATCNQ), ACTVIE
doped POET-T2-COOH possesses excellent solvent resistance
(Figure S20) where no decrease in conductivity occurs after
soaking films in chloroform, and the stability is much improved
with complete retention of conductivity for 50 days in an inert
atmosphere (Figure 4c).*” Additionally, ACTVIE doped
POET-T2-COOH showed greater stability than ion exchange
doped POET-T2 at 100 °C (Figure 4d), attributed to the
cleaved polymer’s enhanced thermomechanical proper-
ties 184344

In summary, we discovered a highly eflicient doping method,
ACTVIE, that is generally applicable to CSCPs, with one
doped polymer achieving conductivities exceeding 350 S/cm
and much improved stability. With further optimization in the
molecular structure of CSCPs and doping conditions, the
ACTVIE method will continue to offer novel conducting
polymers for tailored applications.
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