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Abstract—This perspective paper delves into the concept of
foundation intelligence that shapes the future of smart infrastruc-
ture services as the transportation sector transitions into the era
of Transportation 5.0. First, the discussion focuses on a suite of
emerging technologies essential for foundation intelligence. These
technologies encompass digital twinning, parallel intelligence, large
vision-language models, traffic simulation and transportation sys-
tems modeling, vehicle-to-everything (V2X) connectivity, and de-
centralized/distributed systems. Next, the paper introduces the
present landscape of Transportation 5.0 applications as illuminated
by the foundational intelligence, and casts a vision towards the
future including cooperative driving automation, smart intersec-
tion/infrastructure, parallel traffic management, virtual drivers,
and mobility systems planning and operations, laying out prospects
that are poised to redefine the mobility ecosystem. Last, through a
comprehensive outlook, this paper aspires to offer a guiding frame-
work for the intelligent evolution in data generation and model
calibration, digital twinning and simulation, scenario development
and experimentation, feedback loop for management and control,
and continuous learning and adaptation, fostering safety, efficiency,
reliability, and sustainability in the future smart transportation
infrastructure.
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I
N THE ever-evolving landscape of transportation, we now

stand at the brink of a revolutionary era, commonly referred

to as Transportation 5.0 [1], [2], [3], [4], [5], [6]. This new

phase signifies a leap forward, delving into an integrated system

where advanced technologies play a pivotal role [7], [8]. At

the core of this transformative wave is what we term smart

infrastructure services [9].

Smart infrastructure services refer to the enhanced capabil-

ities of transportation infrastructure systems when equipped

with cutting-edge technologies for sensing, decision-making,

and control. These services are not just improvements. They

are transformative elements that redefine how infrastructure

interacts, responds and evolves. The infrastructure becomes

smart via leveraging technologies such as Artificial Intelligence

(AI) [10], [11], the Internet of Things (IoT) [12], [13], [14],

digital twins, metaverses, distributed autonomous operations

(DAO) [15], and parallel computing. This foundation intelli-

gence allows it to provide real-time, or near real-time, responses

and decision-making, predictive maintenance, and adaptive so-

lutions, ensuring efficiency, safety, equity, and sustainability.

In the context of smart infrastructure services of this paper,

Foundation Intelligence refers to the core AI-driven principles

and technologies forming the base layer of smart infrastruc-

ture systems. This includes using fundamental intelligence con-

cepts such as cognitive processes and decision-making, applied

through advanced AI and data analytics. It encompasses the

integration of digital twinning, parallel intelligence, large AI

models, and distributed systems to create dynamic, predic-

tive transportation infrastructure. Foundation Intelligence thus

forms the critical groundwork, enabling the development of

responsive, efficient, and future-focused smart transportation

systems.

Particularly, smart infrastructure services go beyond tradi-

tional infrastructure by actively interacting with humans par-

ticularly vulnerable road users (VRU) consisting of pedestri-

ans, cyclists, and wheelchairs, vehicles, roads, and the en-

vironment. These interactions will provide a foundation to

achieve better safety, efficiency, and sustainability for the trans-

portation system. We compiled an example list of potential

smart infrastructure services, which encompass interactions

from the perspectives of humans, vehicles, roads, and the

environment.
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� Human Interactions. Personalized Travel Recommenda-

tions: Smart infrastructure can interact with individuals

through personal devices such as mobile apps or other

communication systems to provide personalized travel

recommendations, suggesting efficient routes, modes of

transportation, and timing based on individual preferences

and real-time traffic conditions [16]. VRU Safety Alerts: For

VRUs, smart infrastructure is capable of offering safety

alerts and notifications through personal devices such

as wearable devices. For instance, it can warn pedestrians

about approaching vehicles or guide them to crosswalks

with the best visibility [17], [18]. Accessible Infrastructure:

Smart infrastructure can provide accessibility services for

people with disabilities, such as audible traffic signals, tac-

tile crosswalk indicators, and real-time information about

accessible routes, ensuring inclusivity for all. Health and

Wellness Support: By collecting data on air quality, noise

levels, and traffic congestion, smart infrastructure can pro-

vide health-related recommendations to individuals, sug-

gesting alternative routes or modes of transportation to

minimize exposure to environmental hazards.
� Vehicle Interactions. Smart Sensing and Real-Time Infor-

mation: By installing sensors like cameras, LiDARs and

radars, the infrastructure can detect and track diverse road

users. This data is sent to vehicles and VRUs, enhanc-

ing their awareness and decision-making. Infrastructure-

Controlled Vehicle Trajectories: When automated vehicles

approach intersections, the infrastructure can take over

navigation. This allows for optimized trajectories, either

in a centralized or decentralized manner, maximizing in-

tersection capacity and reducing emissions [19]. Traffic

Management During Special Events or Extreme Weather:

With a comprehensive understanding of traffic patterns and

conditions, smart infrastructure can develop strategies for

effective traffic management, ensuring smooth flow and

safety [20]. Emergency Response Coordination: In case of

incidents or emergencies, smart infrastructure can coordi-

nate with response teams, providing them with real-time

information and the best routes, thus reducing response

times.
� Road Interactions. Automated Road Maintenance: Smart

infrastructure can monitor road conditions in real-time,

identifying potholes, cracks, or signs of wear. Automated

maintenance systems can then be activated to repair or

maintain the road surface, improving safety and reducing

maintenance costs. Traffic Flow Optimization: By analyz-

ing traffic patterns and road conditions, smart infrastructure

can optimize traffic signal timings, lane management, and

speed limits to maximize traffic flow and minimize conges-

tion [21]. Dynamic Lane Allocation: Smart infrastructure

can dynamically allocate lanes based on traffic demand. For

instance, during rush hours, extra lanes can be designated

for high-occupancy vehicles or buses, while the number

of lanes available for private vehicles can be adjusted

accordingly [22].
� Environment Interactions. Environmental Monitoring

and Response: Smart infrastructure can include sensors to

monitor air quality, temperature, humidity, and noise levels.

This data can be used to assess the environmental impact

of transportation activities and trigger alerts or interven-

tions when pollution levels exceed acceptable thresholds.

Energy Management and Optimization: Through smart

lighting and energy-efficient designs, infrastructure can re-

duce energy consumption and contribute to sustainability.

Ecosystem Protection: In environmentally sensitive areas,

the smart infrastructure can detect wildlife crossings and

migratory patterns, triggering traffic management mea-

sures like temporary road closures or reduced speed limits

to protect wildlife and their habitats.

These service examples represent the diverse capabilities of

smart infrastructure in creating a more responsive, efficient, and

user-friendly transportation system. As we delve deeper into

this discussion, it’s crucial to understand the breadth and depth

of smart infrastructure services in the context of Transportation

5.0 [1]. Their role is not just functional; it’s transformative,

paving the way for a future where transportation systems are not

just conduits but intelligent partners in our daily lives. As part

of the specialized research initiative: Scenarios Engineering

for Smart Mobility (SE4SM) in [9], this perspective paper

discusses the foundation intelligence that enables these smart

infrastructure services.

I. FOUNDATION INTELLIGENCE OF SMART INFRASTRUCTURE

SERVICES

The foundation intelligence of smart infrastructure services

in Transportation 5.0 is a rich tapestry of enabling foundation

technologies [23]. The core technologies of the foundation in-

telligence for smart infrastructure services are discussed in this

section.

Digital Twinning and Parallel Intelligence: The integration

of physical and virtual worlds through digital twins creates a

dynamic and interactive environment. This integration is not

just about replicating physical entities in a virtual space (like

a regular simulation development) but involves a synergistic

relationship where each realm enhances the other. In the physical

world, real-world data and experiences are captured and fed

into the virtual environment. This can include traffic patterns,

environmental conditions, and infrastructure usage. In the virtual

world, this data is processed, analyzed, and used to simulate

different scenarios and outcomes. These simulations can test

the efficiency of vehicle decisions, traffic management systems,

the impact of new infrastructure, or emergency response

strategies. The knowledge created in the virtual world by

running various scenarios is able to inform decisions in the

physical world. For example, in traffic management, a digital

twin of a city’s road network could simulate traffic flow

under various conditions. By analyzing these simulations, city

planners will create a knowledge base or playbook that can be

used to derive the best management strategies under diverse

real-time conditions. [24], [25]. However, in this regard, high

computational demands, data privacy concerns, and integration

complexity with existing systems are the main challenges. To

tackle these problems, potential solutions can be developing
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Fig. 1. High definition map structure.

more efficient algorithms, enforcing strict data privacy proto-

cols, and designing modular systems for easier integration [26].

Large AI Foundation Models: The advent of extensive AI

models, such as language, vision, and integrated vision-language

models (LLM, LVM, VLM), has revolutionized data processing

and interpretation. These models provide deep insights and

predictive capabilities, essential for smart infrastructure [27].

Notably, these AI models can access and learn knowledge of all

aspects of transportation, such as traveler choices and activity

patterns, driving behavior, interaction patterns between VRUs

and vehicles, and optimal traffic control strategies for each traffic

pattern. For instance, in traffic management, a VLM can analyze

real-time traffic camera footage alongside social media posts or

news reports about traffic conditions. This integrated analysis

can identify and predict traffic congestion or incidents more

accurately, facilitating quicker response and management. Ad-

ditionally, VLMs can interpret complex scenarios by combining

visual data with linguistic context, enhancing decision-making

processes in dynamic environments like urban traffic systems.

It is worth mentioning that the utilization of Large Foundation

Models in AI poses challenges related to ethical considerations,

the potential for biases in AI models, and the significant data

requirements for training. To mitigate these challenges, it is

crucial to implement ethical AI guidelines, conduct regular bias

audits, and leverage diverse data sources to ensure fairness and

reliability in AI systems.

Advanced Digital World Modeling: Digital World Modeling

is crucial for autonomous driving and smart infrastructure

management, necessitating high-definition (HD) maps for

accurate operation and safety. Traditional map-making methods,

which include collecting sensor data using specialized vehicles

equipped with LiDAR, cameras, radar, inertial measurement

units, and global navigation satellite systems, are often costly

and difficult to scale [28]. These maps typically comprise

different forms such as vector maps for semantic information

detailing the traffic rule and road structure and point cloud

maps for geometric details shown in Fig. 1. In autonomous

driving, detailed mapping is essential for localization and object

detection and tracking, while in smart infrastructure, it plays

a pivotal role in creating digital twins, testing, and identifying

and monitoring vulnerable road users. However, the static

nature of these maps (road structure layer and 3D geometry

layer) and the labor-intensive process for annotation and road

structure correction of their creation pose scalability challenges.

In addition, to improve the presentation of the environmental

texture within higher resolution, emerging neural rendering

approaches like Neural Radiance Fields (NeRF) offer a

promising solution [29]. NeRF enables the efficient and

scalable creation of high-fidelity 3D models by interpreting

light and color in a scene, resulting in lifelike renderings. This

approach has been demonstrated effectively in projects like

StreetSurf, which achieved nuanced reconstruction of street

scenes, and MARS, which utilized NeRF for developing an

autonomous driving simulation engine [30]. These applications

underscore NeRF’s capacity for rendering complex urban

landscapes with high fidelity, an essential feature for detailed

mapping in autonomous driving and smart infrastructure

applications. However, NeRF faces challenges in processing

speed and computational computation load especially when

dealing with large-scale urban environments. In addition, on

the scale of transportation systems and networks, virtual world

models necessitate various dynamic information layers, such as

traffic, road, and environmental conditions. These layers ideally

should encompass both current and future predictive data. To

achieve the dynamic update of HD maps, specialized HD map

companies such as NVIDIA leverage feet-sourced data which

represents the collective memory of numerous vehicles to

generate maps with dynamic and behavioral information about

the environment [28] and instant update when changes occur.

What’s more, challenges faced by these world models include

data variability, quality issues, and the need for real-time up-

dates. Unlike the rich environmental data in autonomous driving,

traffic, and travel data often lack spatial and temporal density. To

improve estimations and predictions, diverse data sources like

traffic detectors, travel surveys, trajectories, and social media

are utilized and NeRF has good potential to improve the HD

mapping by creating more dynamic, up-to-date maps. Emerging

solutions focus on integrating these varied data sources to more

accurately represent both current and future states of transporta-

tion networks, thereby enhancing decision-making and opera-

tional efficiency [31], [32].

Traffic Simulation and Transportation System Models: To

some extent, these models are foundation models for trans-

portation systems. Various macroscopic and microscopic traffic

models, such as Greenshelds [33], Newell [34], and Intelligent

Driver Model [35], as well as variations and commercial simu-

lators that integrate these models, are a unique contribution of

the conventional traffic modeling community here. These fine

models usually aim to describe traffic behavior in parsimonious

mathematical and logical forms and present themselves as very

neat tools in any modern vehicular and traffic models. These

traffic simulation and transportation system models, historically

handcrafted, are also evolving. Data-driven approaches are re-

shaping these models, making them more dynamic and reflective

of real-world scenarios [36], [37]. For instance, smart infras-

tructure can learn usual driver behavior continuously such that

traffic and automated vehicle control can be more customized

to learned local driver behavior. However, maintaining the ac-

curacy and relevance of Traffic Simulation and Transportation
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System Models in the face of changing urban dynamics can

be challenging. Digital twinning and parallel computing can

help continuously enhance these models on the fly. Additionally,

issues related to scalability and data accuracy must be addressed.

Attention needs to be paid to solutions involving incorporating

real-time data feeds to keep models up-to-date, adopting scalable

cloud-based solutions for improved performance, and utilizing

high-quality data sources for accuracy.

Connectivity Technologies: The fourth critical technology

is connectivity, particularly wireless communication. V2X

(vehicle-to-everything) technologies, encompassing vehicle-to-

everything communications like V2V (vehicle-to-vehicle), V2I

(vehicle-to-infrastructure), V2P (vehicle-to-presestrian/VRU),

and V2Cloud (vehicle-to-cloud), are pivotal. They enable a

plethora of connectivity-driven applications, enhancing the re-

sponsiveness and interactivity of transportation systems [38].

However, implementing V2X communication isn’t without chal-

lenges. Issues like network delays, system compatibility, and

cybersecurity threats need addressing. To tackle these problems,

it’s crucial to invest in superior network infrastructure and estab-

lish universal communication standards. It is equally important

to bolster cybersecurity to protect these interconnected systems.

Decentralized Systems: Lastly, Decentralization technolo-

gies, particularly blockchain and smart contracts, are rapidly

emerging as transformative forces. They enable distributed con-

trol and management across various entities such as vehicles,

pedestrians, and infrastructure components. This shift towards

decentralization not only enhances operational efficiency but

also significantly improves cybersecurity, thereby fortifying the

entire intelligent infrastructure ecosystem. For instance, tradi-

tional centralized approaches to managing network traffic flow

and vehicle trajectories often face scalability issues and are

vulnerable to single-point failures. In contrast, decentralized

systems offer a more resilient and scalable solution, distributing

decision-making processes and data validation across multiple

nodes. This can be particularly effective in complex urban

environments where managing dynamic traffic patterns and

diverse transportation modes requires agility and robustness.

Additionally, in the realm of infrastructure services, ensuring

the authenticity and integrity of data is paramount. Decentralized

systems, through mechanisms like smart contracts, can provide

a novel means of verifying and certifying the validity of in-

formation exchanged within the network. Smart contracts can

automate compliance and enforcement of rules and policies,

thereby enhancing trust and transparency in the system. For

example, in toll collection or congestion pricing, smart contracts

can facilitate automatic, transparent, and tamper-proof transac-

tions. Moreover, decentralized systems can revolutionize areas

like parking management, where they can enable peer-to-peer

parking space sharing, optimized through real-time data and

automated payments. In public transit, blockchain can be used

to streamline fare collection, reducing fraud and improving

the efficiency of revenue management. However, implementing

these decentralized systems is not without challenges. Issues

such as ensuring interoperability between diverse technologies,

managing the energy consumption of blockchain operations,

and establishing regulatory frameworks that address privacy

and data ownership concerns are critical hurdles that need to

be addressed.

Together, these technologies form the backbone of foundation

intelligence in Transportation 5.0. They are not just individual

pieces but interconnected elements that collectively drive the

evolution and efficiency of smart infrastructure services. Fig. 2

shows an integrated diagram of infrastructure intelligence of

a parallel nature between the physical and artificial systems.

The physical systems include not only the transportation infras-

tructure (such as roadways, sensors, and traffic signal heads)

but also the humans (travelers and drivers) that are heteroge-

neous and exhibit different behaviors. The artificial systems

are digital twins of the real world. Offline data from the real

world can be used initially to develop the digital replica and

future streaming data can be used continuously fine-tuning the

digital replica. The artificial systems can include how vehicles

interact with each other, how travelers make decisions, and how

sensors can capture the surrounding environment under different

conditions.

The lower part of Fig. 2 shows three key components that run

parallel in both physical and artificial systems. The Scenarios

Engineering in the middle of Fig. 2 as an integrated reflection of

the scenarios and activities within a certain temporal and spatial

range, where all actionable artificial systems are encouraged to

complete the design, certification, and verification [23]. These

diverse scenarios can vary from multi-modality sensing, free-

way, and smart intersection for the artificial system life cycle

to determine suitable models after system testing. Specifically,

in artificial systems, experiments, and corresponding evalua-

tions will be performed under diverse scenarios (via scenario

engineering [23]) and this will form the foundation knowledge

for the artificial systems, which can be transferred and applied

in physical systems. Continuous learning and adaptation will

ensure the trustworthy calibration and certification of the arti-

ficial systems [23]. It is also worth mentioning that the smart

infrastructure services will work in the decentralized system

framework in the smart infrastructure to achieve efficient and

reliable performance.

II. TRANSPORTATION 5.0 APPLICATIONS WITH FOUNDATION

INTELLIGENCE IN SMART INFRASTRUCTURE SERVICES

Over the years, the authors have been dedicated to prototyp-

ing such parallel intelligence for transportation 5.0 at various

scales. This section introduces multiple representative system

prototypes.

A. Cooperative Driving Automation and Smart Intersection

As shown in Fig. 2, smart infrastructure services consist of

major components including management and control, exper-

iments and evaluation, and learning and training. Among the

technologies, the UCLA Mobility Lab pioneers in cooperative

driving automation (CDA) and smart infrastructure with tremen-

dous experience [2], [9]. Specifically, OpenCDA-ROS [9], build-

ing on the strengths of an open-source framework OpenCDA [2]

and the Robot Operating System (ROS) has been introduced
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Fig. 2. Foundation intelligence for smart infrastructure services in transportation 5.0.

Fig. 3. UCLA smart intersection pipeline.

to seamlessly synthesize ROS’s real-world deployment capa-

bilities with OpenCDA’s [2] mature CDA research framework

and simulation-based evaluation to fill the gaps aforementioned.

OpenCDA-ROS leverages the advantages of both ROS and

OpenCDA to boost the prototyping and deployment of critical

CDA features in both simulation and the real world, particularly

for cooperative perception, mapping and digital twinning, coop-

erative decision-making and motion planning, and smart infras-

tructure services. By offering seamless integration of simulation

and real-world CDA, OpenCDA-ROS contributes significantly

to foundation intelligence for smart infrastructure services.

As an instantiation of the smart infrastructure services via the

application of OpenCDA-ROS, the UCLA Mobility Lab has de-

veloped a CPSS (cyber-physical social system), in other words, a

safety-orientated smart intersection safety system by leveraging

the advanced sensors, C-V2X (cellular V2X) communication

technology, and state-of-the-art deep learning approaches. The

framework shows an all-weather multi-modality smart intersec-

tion system in Fig. 3. It follows a widely used and validated

software pipeline for automated driving which includes sensing,

cooperative perception, decision-making, and actuation. The

combination of cameras, radars, and LiDARs is used to im-

plement the multi-modality sensor-fusion-based environmental

perception using advanced deep learning artificial intelligence

algorithms in particular for the VRU detection, tracking, and

future trajectories prediction under diverse weather and visibility

conditions with the incorporation of weather adaptation meth-

ods. Then, based on the VRU and vehicle-predicted trajectories,

the potential conflict or collision will be evaluated based on

machine learning algorithms. Depending on different levels of

severity, the warning system will send the corresponding alert

through multi-modal approaches including haptic, visual, audio,

and V2X communications to allow both the connected or non-

connected VRUs and vehicles to perceive the potential conflict in

a redundant manner. To ensure the holistic work reliably, a health

monitoring system is developed to monitor the hardware and

software running in the edge computing system. The digital twin

of smart intersections also plays a critical role in making such

functions possible, by collecting offline simulation data of a large

number of scenarios perception and decision-making and then

corresponding training the corresponding modules throughout

the pipeline. Online performance evaluations are also being

performed in the digital twins to continuously enhance the model

performance at the deployed location to better adapt to local con-

ditions. Through the smart infrastructure services by this CPSS,

traffic efficiency and safety can be regulated and bolstered.

B. Cooperative Traffic Control and Management

The connected automated vehicles (CAV) technology offers

new opportunities for smart intersection management. In the

smart intersection system in Fig. 3, cooperative perception can

be achieved for comprehensive environment understanding,

and individual trajectories of CAVs can be precisely controlled.
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Fig. 4. Vehicle-edge-cloud digital twin platform (adapted from [40]).

Ideally, once CAVs enter a certain proximity of the intersection

(best control range, e.g., 250 meters), the intersection can

take over or intervene with the vehicle trajectory control, in a

decentralized/distributed manner, for traffic flow optimization.

In one of our earlier studies, the real-time learning and control

framework in [39] for signalized intersection management

includes both signal optimization and CAV trajectory

control. The cooperative perception, prediction, planning, and

optimization components are integrated aiming at improving

efficiency mixed connected automated traffic in terms of traffic

throughput and delay. The long short term memory (LSTM)

networks can implicitly learn traffic patterns and driver behavior

and then estimate and predict the microscopic traffic conditions

that are only partially observable. Deep reinforcement learning

(DRL) is applied to solve signal optimization problems by

learning from the dynamic interactions between vehicles and

the traffic environment in the offline simulation of the artificial

world under different scenarios (e.g., traffic conditions,

vehicle arrival patterns, CAV penetration rates). Through the

framework, the vehicular trajectories of CAVs can be controlled

to maximize the utilization of green time and reduce the

start-up lost time by using a highly efficient trajectory planning

algorithm. The CAV platooning operation, in coordination with

traffic signals, has been deployed such that CAVs can pass the

intersection efficiently. The framework prototype of integration

of the CAVs and their trajectories management through the

smart infrastructure services as indicated in the Foundation

Intelligence Technologies in Transportation 5.0 section.

C. Human Driver Digital Twin

Central to this system is the development of Driver Digital

Twins (DDTs) [40] and Vehicle Digital Twins (VDTs) [41], dig-

ital replicas that learn from and continuously synchronize with

their physical counterparts. These digital twins form the base of

a CPSS, enhancing the interaction between traffic dynamics and

driver-vehicle relationships.

Leveraging the Vehicle-Edge-Cloud (VEC) platform, as

shown in Fig. 4, the synergistic integration of DDTs and VDTs

becomes a reality within the framework. The cloud component,

with its formidable computational capabilities and expansive

data storage, enables the realization of DDTs for every driver,

providing a backbone for sophisticated, personalized driver

models. Concurrently, the edge component is integral to guar-

anteeing real-time, low-latency communication and the prompt

execution of algorithms essential for the optimal performance

of VDTs. This synergy has been validated in the field [40],

[42], showing accurate driver prediction, significant safety

improvements, such as reduced speed variance, and advancing

environmental sustainability by decreasing fuel consumption

and emissions. DDTs play a pivotal role as the nexus between

individual drivers and the broader smart infrastructure, offering

a deep understanding of driver behaviors through advanced

machine learning algorithms. This is particularly crucial for

complex maneuvers, such as car-following and lane-changing

behaviors, where DDTs significantly improve predictive accu-

racy and safety. By integrating DDTs within smart infrastructure

services, we enable a tailored approach to mixed traffic environ-

ments where human-driven vehicles (HDVs) and CAVs coexist.

The predictive power of DDT allows CAV to interpret and adapt

to not only the maneuvers of HDVs but also the preferences

of its own driver/passengers in real time. The introduction

of DDTs offers an unprecedented degree of personalization,

heralding a shift toward an adaptive, user-focused transportation

paradigm that underscores the core values of safety, comfort,

and trust, thus fostering a cooperative and synchronized traffic

ecosystem.

Parallelly, VDTs augment this intelligent infrastructure

by facilitating cooperative vehicle operations. Leveraging

vehicle-to-everything (V2X) communication, VDTs enable a

seamless exchange of real-time data, crucial for orchestrating

synchronized vehicular interactions during complex driving

scenarios such as ramp merging. The flexibility afforded by

the cloud-based system enhances the scalability of vehicle
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Fig. 5. Mobility analytics and decision science (MADS) framework.

communication, transcending the traditional constraints of

onboard computational power.

By emphasizing the integration of digital twins into the smart

infrastructure framework, we underscore our commitment to a

future where technology not only complements but enhances

human decision-making. This approach ensures that each jour-

ney is not only safer and more efficient but also more attuned

to the needs and behaviors of individual drivers, encapsulating

the very essence of a human-centric intelligent transportation

system.

D. Mobility Systems Planning and Operations

In light of this transformation to Transportation 5.0, it is

imperative to develop transportation system models that can

effectively capture the intricate dynamics of transportation sys-

tems. These models play a pivotal role in supporting decision-

making processes within the context of smart mobility systems

planning and operations. Leveraging computational simulation,

human decision science, advanced transportation modeling, and

state-of-the-art machine learning/deep learning approaches, the

UCLA Mobility Lab has introduced a comprehensive research

framework known as Mobility Analytics and Decision Science

(MADS), as depicted in Fig. 5. The MADS framework com-

prises several key components. At its foundation lies a data layer

responsible for collecting and integrating data sourced from the

physical transportation system. Processed or synthetic data is

then channeled to the digital twin of the transportation system,

which serves as the core element of the framework. Note that

this application is distinct from the previous three real-time ones,

since in this case the physical and artificial worlds may interact

in a less frequent manner; however, we name it “near real-time”,

meaning that the digital artificial systems will need new data for

updates to stay consistent with the real world while the frequency

of updates is determined by actual decision-making needs. For

example, the update frequency might be 15 mins, 1 h, and 1 a for

traffic management, emergency evacuation, and transportation

planning.

The digital twin encompasses two critical modules: a hu-

man behavior module and a virtual environment module. These

modules work in harmony to simulate the dynamic interactions

between the human element and the virtual environment, repli-

cating real-world scenarios faithfully. The system dynamics gen-

erated within the digital twin extend their utility to the analytics

layer, enabling multifaceted analytics. The analytics layer, in

turn, provides valuable insights that inform decision-making

across a spectrum of areas, including travel demand manage-

ment, built environment planning, new mobility regulation, and

enhancing the resilience of transportation systems.

Furthermore, the digital twin serves as a virtual testbed, al-

lowing decision-makers to rigorously evaluate proposed policies

and strategies. This iterative adjusting process leads to well-

informed decisions that are highly tailored to the evolving needs

of transportation systems. It’s worth noting that the versatility

of the MADS framework extends beyond the domain of trans-

portation systems. It can be seamlessly integrated with land use

and urban planning models, energy system models, and envi-

ronmental models, enabling holistic, system-level analyses that

prove invaluable for cities seeking to navigate the complexities

of urban development.

III. FUTURE PROSPECTS

Envisioning the road ahead, Transportation 5.0 is anchored

by Foundation Intelligence for infrastructure services. This vi-

sion encapsulates a future where physical systems and artificial

systems are not just coexisting but are interwoven in a way

that enhances and augments each other. The integration of

real-world smart infrastructure with advanced AI and digital

counterparts will become more seamless. This synergy will

lead to smarter, more responsive, and adaptive transportation

systems. The fusion of physical and digital realms will enable

transportation systems to not just react to situations but to

predict and proactively manage them, significantly improving

efficiency and safety. This approach paves the way for more

sustainable and resilient transportation infrastructure, capable
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of adapting to changing environmental and societal needs. As

the boundary between physical and artificial systems blurs, the

interaction between humans and these systems will become

more intuitive and natural, enhancing user experiences. Such

Intelligence in transportation will have far-reaching impacts, in-

fluencing urban planning, environmental sustainability, and even

social equity. This process unfolds in several interconnected

stages:

Data Generation and Calibration: Physical systems, encom-

passing vehicles, traffic networks, and human behavior, gen-

erate vast amounts of data. The data is crucial in calibrating

artificial or digital systems, ensuring they accurately replicate

real-world conditions and behaviors. Also, highly authentic

artificial systems will generate a huge amount of synthetic data

under different scenarios. These true “Big Data” can be applied

to guide physical system operations and planning.

Digital Twinning and Simulation: The digital realm comes to

life through simulations that mirror the physical world. These

simulations aren’t confined to vehicular movements alone but

extend to encompass broader transportation systems, network

dynamics, and even human decision-making processes related

to travel and activities.

Scenario Development and Experimentation: In the digital

space, countless scenarios are continuously executed, exploring

a wide array of possibilities. This requires robust scenarios engi-

neering, utilizing various methods to conceive and test different

scenarios. Through these experiments, digital systems generate

valuable insights and knowledge.

Feedback Loop for Management and Control: The knowledge

derived from digital experiments informs the management and

control of physical systems. Decisions in the real world are

guided by the intelligence and insights gained from their digital

counterparts.

Continuous Learning and Adaptation: The loop doesn’t end

here. As real-world data flows back into the system and even

data from simulations are considered, artificial systems undergo

continuous learning and training, evolving and adapting over

time.

This cycle of Foundation Intelligence fosters a transportation

ecosystem that’s not just reactive but predictive and proactive,

continuously learning and adapting. It represents a future where

the seamless integration of physical and digital leads to smarter,

more efficient, and human-centric transportation systems.
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