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Abstract—This perspective paper delves into the concept of
foundation intelligence that shapes the future of smart infrastruc-
ture services as the transportation sector transitions into the era
of Transportation 5.0. First, the discussion focuses on a suite of
emerging technologies essential for foundation intelligence. These
technologies encompass digital twinning, parallel intelligence, large
vision-language models, traffic simulation and transportation sys-
tems modeling, vehicle-to-everything (V2X) connectivity, and de-
centralized/distributed systems. Next, the paper introduces the
present landscape of Transportation 5.0 applications as illuminated
by the foundational intelligence, and casts a vision towards the
future including cooperative driving automation, smart intersec-
tion/infrastructure, parallel traffic management, virtual drivers,
and mobility systems planning and operations, laying out prospects
that are poised to redefine the mobility ecosystem. Last, through a
comprehensive outlook, this paper aspires to offer a guiding frame-
work for the intelligent evolution in data generation and model
calibration, digital twinning and simulation, scenario development
and experimentation, feedback loop for management and control,
and continuous learning and adaptation, fostering safety, efficiency,
reliability, and sustainability in the future smart transportation
infrastructure.

Index Terms—Foundation intelligence, foundation models,
smart infrastructure, transportation 5.0.
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N THE ever-evolving landscape of transportation, we now
I stand at the brink of a revolutionary era, commonly referred
to as Transportation 5.0 [1], [2], [3], [4], [5], [6]. This new
phase signifies a leap forward, delving into an integrated system
where advanced technologies play a pivotal role [7], [8]. At
the core of this transformative wave is what we term smart
infrastructure services [9].

Smart infrastructure services refer to the enhanced capabil-
ities of transportation infrastructure systems when equipped
with cutting-edge technologies for sensing, decision-making,
and control. These services are not just improvements. They
are transformative elements that redefine how infrastructure
interacts, responds and evolves. The infrastructure becomes
smart via leveraging technologies such as Artificial Intelligence
(AID) [10], [11], the Internet of Things (IoT) [12], [13], [14],
digital twins, metaverses, distributed autonomous operations
(DAO) [15], and parallel computing. This foundation intelli-
gence allows it to provide real-time, or near real-time, responses
and decision-making, predictive maintenance, and adaptive so-
lutions, ensuring efficiency, safety, equity, and sustainability.
In the context of smart infrastructure services of this paper,
Foundation Intelligence refers to the core Al-driven principles
and technologies forming the base layer of smart infrastruc-
ture systems. This includes using fundamental intelligence con-
cepts such as cognitive processes and decision-making, applied
through advanced Al and data analytics. It encompasses the
integration of digital twinning, parallel intelligence, large Al
models, and distributed systems to create dynamic, predic-
tive transportation infrastructure. Foundation Intelligence thus
forms the critical groundwork, enabling the development of
responsive, efficient, and future-focused smart transportation
systems.

Particularly, smart infrastructure services go beyond tradi-
tional infrastructure by actively interacting with humans par-
ticularly vulnerable road users (VRU) consisting of pedestri-
ans, cyclists, and wheelchairs, vehicles, roads, and the en-
vironment. These interactions will provide a foundation to
achieve better safety, efficiency, and sustainability for the trans-
portation system. We compiled an example list of potential
smart infrastructure services, which encompass interactions
from the perspectives of humans, vehicles, roads, and the
environment.
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* Human Interactions. Personalized Travel Recommenda-
tions: Smart infrastructure can interact with individuals
through personal devices such as mobile apps or other
communication systems to provide personalized travel
recommendations, suggesting efficient routes, modes of
transportation, and timing based on individual preferences
and real-time traffic conditions [16]. VRU Safety Alerts: For
VRUs, smart infrastructure is capable of offering safety
alerts and notifications through personal devices such
as wearable devices. For instance, it can warn pedestrians
about approaching vehicles or guide them to crosswalks
with the best visibility [17], [18]. Accessible Infrastructure:
Smart infrastructure can provide accessibility services for
people with disabilities, such as audible traffic signals, tac-
tile crosswalk indicators, and real-time information about
accessible routes, ensuring inclusivity for all. Health and
Wellness Support: By collecting data on air quality, noise
levels, and traffic congestion, smart infrastructure can pro-
vide health-related recommendations to individuals, sug-
gesting alternative routes or modes of transportation to
minimize exposure to environmental hazards.

e Vehicle Interactions. Smart Sensing and Real-Time Infor-
mation: By installing sensors like cameras, LiDARs and
radars, the infrastructure can detect and track diverse road
users. This data is sent to vehicles and VRUs, enhanc-
ing their awareness and decision-making. Infrastructure-
Controlled Vehicle Trajectories: When automated vehicles
approach intersections, the infrastructure can take over
navigation. This allows for optimized trajectories, either
in a centralized or decentralized manner, maximizing in-
tersection capacity and reducing emissions [19]. Traffic
Management During Special Events or Extreme Weather:
With a comprehensive understanding of traffic patterns and
conditions, smart infrastructure can develop strategies for
effective traffic management, ensuring smooth flow and
safety [20]. Emergency Response Coordination: In case of
incidents or emergencies, smart infrastructure can coordi-
nate with response teams, providing them with real-time
information and the best routes, thus reducing response
times.

* Road Interactions. Automated Road Maintenance: Smart
infrastructure can monitor road conditions in real-time,
identifying potholes, cracks, or signs of wear. Automated
maintenance systems can then be activated to repair or
maintain the road surface, improving safety and reducing
maintenance costs. Traffic Flow Optimization: By analyz-
ing traffic patterns and road conditions, smart infrastructure
can optimize traffic signal timings, lane management, and
speed limits to maximize traffic flow and minimize conges-
tion [21]. Dynamic Lane Allocation: Smart infrastructure
can dynamically allocate lanes based on traffic demand. For
instance, during rush hours, extra lanes can be designated
for high-occupancy vehicles or buses, while the number
of lanes available for private vehicles can be adjusted
accordingly [22].

e Environment Interactions. Environmental Monitoring
and Response: Smart infrastructure can include sensors to
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monitor air quality, temperature, humidity, and noise levels.
This data can be used to assess the environmental impact
of transportation activities and trigger alerts or interven-
tions when pollution levels exceed acceptable thresholds.
Energy Management and Optimization: Through smart
lighting and energy-efficient designs, infrastructure can re-
duce energy consumption and contribute to sustainability.
Ecosystem Protection: In environmentally sensitive areas,
the smart infrastructure can detect wildlife crossings and
migratory patterns, triggering traffic management mea-
sures like temporary road closures or reduced speed limits
to protect wildlife and their habitats.

These service examples represent the diverse capabilities of
smart infrastructure in creating a more responsive, efficient, and
user-friendly transportation system. As we delve deeper into
this discussion, it’s crucial to understand the breadth and depth
of smart infrastructure services in the context of Transportation
5.0 [1]. Their role is not just functional; it’s transformative,
paving the way for a future where transportation systems are not
just conduits but intelligent partners in our daily lives. As part
of the specialized research initiative: Scenarios Engineering
for Smart Mobility (SE4SM) in [9], this perspective paper
discusses the foundation intelligence that enables these smart
infrastructure services.

I. FOUNDATION INTELLIGENCE OF SMART INFRASTRUCTURE
SERVICES

The foundation intelligence of smart infrastructure services
in Transportation 5.0 is a rich tapestry of enabling foundation
technologies [23]. The core technologies of the foundation in-
telligence for smart infrastructure services are discussed in this
section.

Digital Twinning and Parallel Intelligence: The integration
of physical and virtual worlds through digital twins creates a
dynamic and interactive environment. This integration is not
just about replicating physical entities in a virtual space (like
a regular simulation development) but involves a synergistic
relationship where each realm enhances the other. In the physical
world, real-world data and experiences are captured and fed
into the virtual environment. This can include traffic patterns,
environmental conditions, and infrastructure usage. In the virtual
world, this data is processed, analyzed, and used to simulate
different scenarios and outcomes. These simulations can test
the efficiency of vehicle decisions, traffic management systems,
the impact of new infrastructure, or emergency response
strategies. The knowledge created in the virtual world by
running various scenarios is able to inform decisions in the
physical world. For example, in traffic management, a digital
twin of a city’s road network could simulate traffic flow
under various conditions. By analyzing these simulations, city
planners will create a knowledge base or playbook that can be
used to derive the best management strategies under diverse
real-time conditions. [24], [25]. However, in this regard, high
computational demands, data privacy concerns, and integration
complexity with existing systems are the main challenges. To
tackle these problems, potential solutions can be developing
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Fig. 1. High definition map structure.

more efficient algorithms, enforcing strict data privacy proto-
cols, and designing modular systems for easier integration [26].

Large Al Foundation Models: The advent of extensive Al
models, such as language, vision, and integrated vision-language
models (LLM, LVM, VLM), has revolutionized data processing
and interpretation. These models provide deep insights and
predictive capabilities, essential for smart infrastructure [27].
Notably, these Al models can access and learn knowledge of all
aspects of transportation, such as traveler choices and activity
patterns, driving behavior, interaction patterns between VRUs
and vehicles, and optimal traffic control strategies for each traffic
pattern. For instance, in traffic management, a VLM can analyze
real-time traffic camera footage alongside social media posts or
news reports about traffic conditions. This integrated analysis
can identify and predict traffic congestion or incidents more
accurately, facilitating quicker response and management. Ad-
ditionally, VLMs can interpret complex scenarios by combining
visual data with linguistic context, enhancing decision-making
processes in dynamic environments like urban traffic systems.
It is worth mentioning that the utilization of Large Foundation
Models in Al poses challenges related to ethical considerations,
the potential for biases in Al models, and the significant data
requirements for training. To mitigate these challenges, it is
crucial to implement ethical Al guidelines, conduct regular bias
audits, and leverage diverse data sources to ensure fairness and
reliability in Al systems.

Advanced Digital World Modeling: Digital World Modeling
is crucial for autonomous driving and smart infrastructure
management, necessitating high-definition (HD) maps for
accurate operation and safety. Traditional map-making methods,
which include collecting sensor data using specialized vehicles
equipped with LiDAR, cameras, radar, inertial measurement
units, and global navigation satellite systems, are often costly
and difficult to scale [28]. These maps typically comprise
different forms such as vector maps for semantic information
detailing the traffic rule and road structure and point cloud
maps for geometric details shown in Fig. 1. In autonomous
driving, detailed mapping is essential for localization and object
detection and tracking, while in smart infrastructure, it plays
a pivotal role in creating digital twins, testing, and identifying
and monitoring vulnerable road users. However, the static
nature of these maps (road structure layer and 3D geometry

41

layer) and the labor-intensive process for annotation and road
structure correction of their creation pose scalability challenges.
In addition, to improve the presentation of the environmental
texture within higher resolution, emerging neural rendering
approaches like Neural Radiance Fields (NeRF) offer a
promising solution [29]. NeRF enables the efficient and
scalable creation of high-fidelity 3D models by interpreting
light and color in a scene, resulting in lifelike renderings. This
approach has been demonstrated effectively in projects like
StreetSurf, which achieved nuanced reconstruction of street
scenes, and MARS, which utilized NeRF for developing an
autonomous driving simulation engine [30]. These applications
underscore NeRF’s capacity for rendering complex urban
landscapes with high fidelity, an essential feature for detailed
mapping in autonomous driving and smart infrastructure
applications. However, NeRF faces challenges in processing
speed and computational computation load especially when
dealing with large-scale urban environments. In addition, on
the scale of transportation systems and networks, virtual world
models necessitate various dynamic information layers, such as
traffic, road, and environmental conditions. These layers ideally
should encompass both current and future predictive data. To
achieve the dynamic update of HD maps, specialized HD map
companies such as NVIDIA leverage feet-sourced data which
represents the collective memory of numerous vehicles to
generate maps with dynamic and behavioral information about
the environment [28] and instant update when changes occur.

What’s more, challenges faced by these world models include
data variability, quality issues, and the need for real-time up-
dates. Unlike the rich environmental data in autonomous driving,
traffic, and travel data often lack spatial and temporal density. To
improve estimations and predictions, diverse data sources like
traffic detectors, travel surveys, trajectories, and social media
are utilized and NeRF has good potential to improve the HD
mapping by creating more dynamic, up-to-date maps. Emerging
solutions focus on integrating these varied data sources to more
accurately represent both current and future states of transporta-
tion networks, thereby enhancing decision-making and opera-
tional efficiency [31], [32].

Traffic Simulation and Transportation System Models: To
some extent, these models are foundation models for trans-
portation systems. Various macroscopic and microscopic traffic
models, such as Greenshelds [33], Newell [34], and Intelligent
Driver Model [35], as well as variations and commercial simu-
lators that integrate these models, are a unique contribution of
the conventional traffic modeling community here. These fine
models usually aim to describe traffic behavior in parsimonious
mathematical and logical forms and present themselves as very
neat tools in any modern vehicular and traffic models. These
traffic simulation and transportation system models, historically
handcrafted, are also evolving. Data-driven approaches are re-
shaping these models, making them more dynamic and reflective
of real-world scenarios [36], [37]. For instance, smart infras-
tructure can learn usual driver behavior continuously such that
traffic and automated vehicle control can be more customized
to learned local driver behavior. However, maintaining the ac-
curacy and relevance of Traffic Simulation and Transportation
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System Models in the face of changing urban dynamics can
be challenging. Digital twinning and parallel computing can
help continuously enhance these models on the fly. Additionally,
issues related to scalability and data accuracy must be addressed.
Attention needs to be paid to solutions involving incorporating
real-time data feeds to keep models up-to-date, adopting scalable
cloud-based solutions for improved performance, and utilizing
high-quality data sources for accuracy.

Connectivity Technologies: The fourth critical technology
is connectivity, particularly wireless communication. V2X
(vehicle-to-everything) technologies, encompassing vehicle-to-
everything communications like V2V (vehicle-to-vehicle), V2I
(vehicle-to-infrastructure), V2P (vehicle-to-presestrian/VRU),
and V2Cloud (vehicle-to-cloud), are pivotal. They enable a
plethora of connectivity-driven applications, enhancing the re-
sponsiveness and interactivity of transportation systems [38].
However, implementing V2X communication isn’t without chal-
lenges. Issues like network delays, system compatibility, and
cybersecurity threats need addressing. To tackle these problems,
it’s crucial to invest in superior network infrastructure and estab-
lish universal communication standards. It is equally important
to bolster cybersecurity to protect these interconnected systems.

Decentralized Systems: Lastly, Decentralization technolo-
gies, particularly blockchain and smart contracts, are rapidly
emerging as transformative forces. They enable distributed con-
trol and management across various entities such as vehicles,
pedestrians, and infrastructure components. This shift towards
decentralization not only enhances operational efficiency but
also significantly improves cybersecurity, thereby fortifying the
entire intelligent infrastructure ecosystem. For instance, tradi-
tional centralized approaches to managing network traffic flow
and vehicle trajectories often face scalability issues and are
vulnerable to single-point failures. In contrast, decentralized
systems offer a more resilient and scalable solution, distributing
decision-making processes and data validation across multiple
nodes. This can be particularly effective in complex urban
environments where managing dynamic traffic patterns and
diverse transportation modes requires agility and robustness.
Additionally, in the realm of infrastructure services, ensuring
the authenticity and integrity of data is paramount. Decentralized
systems, through mechanisms like smart contracts, can provide
a novel means of verifying and certifying the validity of in-
formation exchanged within the network. Smart contracts can
automate compliance and enforcement of rules and policies,
thereby enhancing trust and transparency in the system. For
example, in toll collection or congestion pricing, smart contracts
can facilitate automatic, transparent, and tamper-proof transac-
tions. Moreover, decentralized systems can revolutionize areas
like parking management, where they can enable peer-to-peer
parking space sharing, optimized through real-time data and
automated payments. In public transit, blockchain can be used
to streamline fare collection, reducing fraud and improving
the efficiency of revenue management. However, implementing
these decentralized systems is not without challenges. Issues
such as ensuring interoperability between diverse technologies,
managing the energy consumption of blockchain operations,
and establishing regulatory frameworks that address privacy
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and data ownership concerns are critical hurdles that need to
be addressed.

Together, these technologies form the backbone of foundation
intelligence in Transportation 5.0. They are not just individual
pieces but interconnected elements that collectively drive the
evolution and efficiency of smart infrastructure services. Fig. 2
shows an integrated diagram of infrastructure intelligence of
a parallel nature between the physical and artificial systems.
The physical systems include not only the transportation infras-
tructure (such as roadways, sensors, and traffic signal heads)
but also the humans (travelers and drivers) that are heteroge-
neous and exhibit different behaviors. The artificial systems
are digital twins of the real world. Offline data from the real
world can be used initially to develop the digital replica and
future streaming data can be used continuously fine-tuning the
digital replica. The artificial systems can include how vehicles
interact with each other, how travelers make decisions, and how
sensors can capture the surrounding environment under different
conditions.

The lower part of Fig. 2 shows three key components that run
parallel in both physical and artificial systems. The Scenarios
Engineering in the middle of Fig. 2 as an integrated reflection of
the scenarios and activities within a certain temporal and spatial
range, where all actionable artificial systems are encouraged to
complete the design, certification, and verification [23]. These
diverse scenarios can vary from multi-modality sensing, free-
way, and smart intersection for the artificial system life cycle
to determine suitable models after system testing. Specifically,
in artificial systems, experiments, and corresponding evalua-
tions will be performed under diverse scenarios (via scenario
engineering [23]) and this will form the foundation knowledge
for the artificial systems, which can be transferred and applied
in physical systems. Continuous learning and adaptation will
ensure the trustworthy calibration and certification of the arti-
ficial systems [23]. It is also worth mentioning that the smart
infrastructure services will work in the decentralized system
framework in the smart infrastructure to achieve efficient and
reliable performance.

II. TRANSPORTATION 5.0 APPLICATIONS WITH FOUNDATION
INTELLIGENCE IN SMART INFRASTRUCTURE SERVICES

Over the years, the authors have been dedicated to prototyp-
ing such parallel intelligence for transportation 5.0 at various
scales. This section introduces multiple representative system
prototypes.

A. Cooperative Driving Automation and Smart Intersection

As shown in Fig. 2, smart infrastructure services consist of
major components including management and control, exper-
iments and evaluation, and learning and training. Among the
technologies, the UCLA Mobility Lab pioneers in cooperative
driving automation (CDA) and smart infrastructure with tremen-
dous experience [2], [9]. Specifically, OpenCDA-ROS [9], build-
ing on the strengths of an open-source framework OpenCDA [2]
and the Robot Operating System (ROS) has been introduced
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Fig. 3. UCLA smart intersection pipeline.

to seamlessly synthesize ROS’s real-world deployment capa-
bilities with OpenCDA’s [2] mature CDA research framework
and simulation-based evaluation to fill the gaps aforementioned.
OpenCDA-ROS leverages the advantages of both ROS and
OpenCDA to boost the prototyping and deployment of critical
CDA features in both simulation and the real world, particularly
for cooperative perception, mapping and digital twinning, coop-
erative decision-making and motion planning, and smart infras-
tructure services. By offering seamless integration of simulation
and real-world CDA, OpenCDA-ROS contributes significantly
to foundation intelligence for smart infrastructure services.

As an instantiation of the smart infrastructure services via the
application of OpenCDA-ROS, the UCLA Mobility Lab has de-
veloped a CPSS (cyber-physical social system), in other words, a
safety-orientated smart intersection safety system by leveraging
the advanced sensors, C-V2X (cellular V2X) communication
technology, and state-of-the-art deep learning approaches. The
framework shows an all-weather multi-modality smart intersec-
tion system in Fig. 3. It follows a widely used and validated

Foundation intelligence for smart infrastructure services in transportation 5.0.

software pipeline for automated driving which includes sensing,
cooperative perception, decision-making, and actuation. The
combination of cameras, radars, and LiDARS is used to im-
plement the multi-modality sensor-fusion-based environmental
perception using advanced deep learning artificial intelligence
algorithms in particular for the VRU detection, tracking, and
future trajectories prediction under diverse weather and visibility
conditions with the incorporation of weather adaptation meth-
ods. Then, based on the VRU and vehicle-predicted trajectories,
the potential conflict or collision will be evaluated based on
machine learning algorithms. Depending on different levels of
severity, the warning system will send the corresponding alert
through multi-modal approaches including haptic, visual, audio,
and V2X communications to allow both the connected or non-
connected VRUs and vehicles to perceive the potential conflictin
aredundant manner. To ensure the holistic work reliably, a health
monitoring system is developed to monitor the hardware and
software running in the edge computing system. The digital twin
of smart intersections also plays a critical role in making such
functions possible, by collecting offline simulation data of alarge
number of scenarios perception and decision-making and then
corresponding training the corresponding modules throughout
the pipeline. Online performance evaluations are also being
performed in the digital twins to continuously enhance the model
performance at the deployed location to better adapt to local con-
ditions. Through the smart infrastructure services by this CPSS,
traffic efficiency and safety can be regulated and bolstered.

B. Cooperative Traffic Control and Management

The connected automated vehicles (CAV) technology offers
new opportunities for smart intersection management. In the
smart intersection system in Fig. 3, cooperative perception can
be achieved for comprehensive environment understanding,
and individual trajectories of CAVs can be precisely controlled.
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Ideally, once CAVs enter a certain proximity of the intersection
(best control range, e.g., 250 meters), the intersection can
take over or intervene with the vehicle trajectory control, in a
decentralized/distributed manner, for traffic flow optimization.
In one of our earlier studies, the real-time learning and control
framework in [39] for signalized intersection management
includes both signal optimization and CAV trajectory
control. The cooperative perception, prediction, planning, and
optimization components are integrated aiming at improving
efficiency mixed connected automated traffic in terms of traffic
throughput and delay. The long short term memory (LSTM)
networks can implicitly learn traffic patterns and driver behavior
and then estimate and predict the microscopic traffic conditions
that are only partially observable. Deep reinforcement learning
(DRL) is applied to solve signal optimization problems by
learning from the dynamic interactions between vehicles and
the traffic environment in the offline simulation of the artificial
world under different scenarios (e.g., traffic conditions,
vehicle arrival patterns, CAV penetration rates). Through the
framework, the vehicular trajectories of CAVs can be controlled
to maximize the utilization of green time and reduce the
start-up lost time by using a highly efficient trajectory planning
algorithm. The CAV platooning operation, in coordination with
traffic signals, has been deployed such that CAVs can pass the
intersection efficiently. The framework prototype of integration
of the CAVs and their trajectories management through the
smart infrastructure services as indicated in the Foundation
Intelligence Technologies in Transportation 5.0 section.

C. Human Driver Digital Twin

Central to this system is the development of Driver Digital
Twins (DDTs) [40] and Vehicle Digital Twins (VDTs) [41], dig-
ital replicas that learn from and continuously synchronize with
their physical counterparts. These digital twins form the base of
a CPSS, enhancing the interaction between traffic dynamics and
driver-vehicle relationships.

Perception

© >
] =
Communication
& User Interface )
Connected and automated vehicles

Base Stations

Connected vehicles

Leveraging the Vehicle-Edge-Cloud (VEC) platform, as
shown in Fig. 4, the synergistic integration of DDTs and VDTs
becomes a reality within the framework. The cloud component,
with its formidable computational capabilities and expansive
data storage, enables the realization of DDTs for every driver,
providing a backbone for sophisticated, personalized driver
models. Concurrently, the edge component is integral to guar-
anteeing real-time, low-latency communication and the prompt
execution of algorithms essential for the optimal performance
of VDTs. This synergy has been validated in the field [40],
[42], showing accurate driver prediction, significant safety
improvements, such as reduced speed variance, and advancing
environmental sustainability by decreasing fuel consumption
and emissions. DDTs play a pivotal role as the nexus between
individual drivers and the broader smart infrastructure, offering
a deep understanding of driver behaviors through advanced
machine learning algorithms. This is particularly crucial for
complex maneuvers, such as car-following and lane-changing
behaviors, where DDTs significantly improve predictive accu-
racy and safety. By integrating DDT's within smart infrastructure
services, we enable a tailored approach to mixed traffic environ-
ments where human-driven vehicles (HDVs) and CAVs coexist.
The predictive power of DDT allows CAV to interpret and adapt
to not only the maneuvers of HDVs but also the preferences
of its own driver/passengers in real time. The introduction
of DDTs offers an unprecedented degree of personalization,
heralding a shift toward an adaptive, user-focused transportation
paradigm that underscores the core values of safety, comfort,
and trust, thus fostering a cooperative and synchronized traffic
ecosystem.

Parallelly, VDTs augment this intelligent infrastructure
by facilitating cooperative vehicle operations. Leveraging
vehicle-to-everything (V2X) communication, VDTs enable a
seamless exchange of real-time data, crucial for orchestrating
synchronized vehicular interactions during complex driving
scenarios such as ramp merging. The flexibility afforded by
the cloud-based system enhances the scalability of vehicle
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communication, transcending the traditional constraints of
onboard computational power.

By emphasizing the integration of digital twins into the smart
infrastructure framework, we underscore our commitment to a
future where technology not only complements but enhances
human decision-making. This approach ensures that each jour-
ney is not only safer and more efficient but also more attuned
to the needs and behaviors of individual drivers, encapsulating
the very essence of a human-centric intelligent transportation
system.

D. Mobility Systems Planning and Operations

In light of this transformation to Transportation 5.0, it is
imperative to develop transportation system models that can
effectively capture the intricate dynamics of transportation sys-
tems. These models play a pivotal role in supporting decision-
making processes within the context of smart mobility systems
planning and operations. Leveraging computational simulation,
human decision science, advanced transportation modeling, and
state-of-the-art machine learning/deep learning approaches, the
UCLA Mobility Lab has introduced a comprehensive research
framework known as Mobility Analytics and Decision Science
(MADS), as depicted in Fig. 5. The MADS framework com-
prises several key components. At its foundation lies a data layer
responsible for collecting and integrating data sourced from the
physical transportation system. Processed or synthetic data is
then channeled to the digital twin of the transportation system,
which serves as the core element of the framework. Note that
this application is distinct from the previous three real-time ones,
since in this case the physical and artificial worlds may interact
in a less frequent manner; however, we name it “near real-time”,
meaning that the digital artificial systems will need new data for
updates to stay consistent with the real world while the frequency
of updates is determined by actual decision-making needs. For
example, the update frequency might be 15 mins, 1 h, and 1 a for
traffic management, emergency evacuation, and transportation
planning.
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Mobility TDM Policy

Energy
Environment

New Mobility
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System

Equity Resilience
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The digital twin encompasses two critical modules: a hu-
man behavior module and a virtual environment module. These
modules work in harmony to simulate the dynamic interactions
between the human element and the virtual environment, repli-
cating real-world scenarios faithfully. The system dynamics gen-
erated within the digital twin extend their utility to the analytics
layer, enabling multifaceted analytics. The analytics layer, in
turn, provides valuable insights that inform decision-making
across a spectrum of areas, including travel demand manage-
ment, built environment planning, new mobility regulation, and
enhancing the resilience of transportation systems.

Furthermore, the digital twin serves as a virtual testbed, al-
lowing decision-makers to rigorously evaluate proposed policies
and strategies. This iterative adjusting process leads to well-
informed decisions that are highly tailored to the evolving needs
of transportation systems. It’s worth noting that the versatility
of the MADS framework extends beyond the domain of trans-
portation systems. It can be seamlessly integrated with land use
and urban planning models, energy system models, and envi-
ronmental models, enabling holistic, system-level analyses that
prove invaluable for cities seeking to navigate the complexities
of urban development.

III. FUTURE PROSPECTS

Envisioning the road ahead, Transportation 5.0 is anchored
by Foundation Intelligence for infrastructure services. This vi-
sion encapsulates a future where physical systems and artificial
systems are not just coexisting but are interwoven in a way
that enhances and augments each other. The integration of
real-world smart infrastructure with advanced Al and digital
counterparts will become more seamless. This synergy will
lead to smarter, more responsive, and adaptive transportation
systems. The fusion of physical and digital realms will enable
transportation systems to not just react to situations but to
predict and proactively manage them, significantly improving
efficiency and safety. This approach paves the way for more
sustainable and resilient transportation infrastructure, capable
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of adapting to changing environmental and societal needs. As
the boundary between physical and artificial systems blurs, the
interaction between humans and these systems will become
more intuitive and natural, enhancing user experiences. Such
Intelligence in transportation will have far-reaching impacts, in-
fluencing urban planning, environmental sustainability, and even
social equity. This process unfolds in several interconnected
stages:

Data Generation and Calibration: Physical systems, encom-
passing vehicles, traffic networks, and human behavior, gen-
erate vast amounts of data. The data is crucial in calibrating
artificial or digital systems, ensuring they accurately replicate
real-world conditions and behaviors. Also, highly authentic
artificial systems will generate a huge amount of synthetic data
under different scenarios. These true “Big Data” can be applied
to guide physical system operations and planning.

Digital Twinning and Simulation: The digital realm comes to
life through simulations that mirror the physical world. These
simulations aren’t confined to vehicular movements alone but
extend to encompass broader transportation systems, network
dynamics, and even human decision-making processes related
to travel and activities.

Scenario Development and Experimentation: In the digital
space, countless scenarios are continuously executed, exploring
awide array of possibilities. This requires robust scenarios engi-
neering, utilizing various methods to conceive and test different
scenarios. Through these experiments, digital systems generate
valuable insights and knowledge.

Feedback Loop for Management and Control: The knowledge
derived from digital experiments informs the management and
control of physical systems. Decisions in the real world are
guided by the intelligence and insights gained from their digital
counterparts.

Continuous Learning and Adaptation: The loop doesn’t end
here. As real-world data flows back into the system and even
data from simulations are considered, artificial systems undergo
continuous learning and training, evolving and adapting over
time.

This cycle of Foundation Intelligence fosters a transportation
ecosystem that’s not just reactive but predictive and proactive,
continuously learning and adapting. It represents a future where
the seamless integration of physical and digital leads to smarter,
more efficient, and human-centric transportation systems.
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