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Abstract

Polynomial partitioning techniques have recently led to improved geometric data structures for a

variety of fundamental problems related to semialgebraic range searching and intersection searching

in 3D and higher dimensions (e.g., see [Agarwal, Aronov, Ezra, and Zahl, SoCG 2019; Ezra and

Sharir, SoCG 2021; Agarwal, Aronov, Ezra, Katz, and Sharir, SoCG 2022]). They have also led

to improved algorithms for offline versions of semialgebraic range searching in 2D, via lens-cutting

[Sharir and Zahl (2017)]. In this paper, we show that these techniques can yield new data structures

for a number of other 2D problems even for online queries:

1. Semialgebraic range stabbing. We present a data structure for n semialgebraic ranges in 2D of

constant description complexity with O(n3/2+ε) preprocessing time and space, so that we can

count the number of ranges containing a query point in O(n1/4+ε) time, for an arbitrarily small

constant ε > 0. (The query time bound is likely close to tight for this space bound.)

2. Ray shooting amid algebraic arcs. We present a data structure for n algebraic arcs in 2D of

constant description complexity with O(n3/2+ε) preprocessing time and space, so that we can

find the first arc hit by a query (straight-line) ray in O(n1/4+ε) time. (The query bound is again

likely close to tight for this space bound, and they improve a result by Ezra and Sharir with

near n3/2 space and near
√

n query time.)

3. Intersection counting amid algebraic arcs. We present a data structure for n algebraic arcs in

2D of constant description complexity with O(n3/2+ε) preprocessing time and space, so that we

can count the number of intersection points with a query algebraic arc of constant description

complexity in O(n1/2+ε) time. In particular, this implies an O(n3/2+ε)-time algorithm for

counting intersections between two sets of n algebraic arcs in 2D. (This generalizes a classical

O(n3/2+ε)-time algorithm for circular arcs by Agarwal and Sharir from SoCG 1991.)
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1 Introduction

The polynomial partitioning technique [40, 39] has led to a series of breakthroughs of many

long-standing classic problems in computational geometry e.g., range searching [12, 46, 8],

range stabbing [8], intersection searching [35, 36, 6], etc, and simplification and generalization
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of many existing techniques and tools [42]. Comparing to rather simple geometric objects

formed by halfspaces or hyperplanes that have been studied extensively in the early days

of computational geometry, polynomial partitioning enables us to attain similar results for

semialgebraic sets (a set obtained by union, intersection, and complement from a set of

a collection of polynomial inequalities where the number of polynomials, the number of

indeterminates, and the degree of polynomials are constant). Almost all of these breakthrough

results are for problems in three or higher dimensions. We complement these breakthroughs

with some new results for fundamental problems involving algebraic curves in the plane.

1.1 Problems studied and related results

We consider the following three problems in this paper.

Semialgebraic range stabbing. In this problem we are given a collection of semialgebraic

sets of constant complexity in R
2 as the input, and we want to preprocess them in a data

structure so that we can quickly count or report the inputs intersected or “stabbed” by a

query point (this is called a “range stabbing query”, also known as a “point enclosure query”).

Generalizing counting, we can also consider the semigroup model, where every semialgebraic

set is given a value in a semigroup, and we wish to apply the semigroup operation on the

values of all sets stabbed. Semialgebraic range stabbing and its “dual” problem, semialgebraic

range searching, are among the most classical problems in computational geometry. The two

problems are relatively well-understood for linear ranges after a decade of study by pioneers

in the fields in late 80s and early 90s. We refer the readers to a survey of this topic [4]. The

tools and results developed for the problems have also become textbook results [33].

However, when considering general polynomial inequalities, the problem is more difficult.

Before the invention of polynomial partitioning [40, 39], there was a lack of suitable tools and

few tight results were known [11]. It was only very recently [12, 46, 8], that via polynomial

partitioning, efficient data structures for the two problems were found for data structures

with small (near-linear) space, and data structures with very fast (polylogarithmic) query

time. By interpolating the two extreme solutions, we obtain space-time trade-offs. However,

somewhat mysteriously, even if the extreme cases are almost tight, it is unknown whether

the trade-off is close to optimal. For example, even for the planar annulus stabbing, there

is a clear gap between the current upper bound1 of S(n) = O∗(n2/Q(n)3/2) and the lower

bound of S(n) = Ω∗(n3/2/Q(n)3/4) [2] or S(n) = Ω̃(n2/Q(n)2) [1], where S(n) and Q(n)

denote space and query time respectively.

We mention that sometimes it is possible to solve certain range searching problems

involving algebraic arcs more efficiently. For example, Agarwal and Sharir [15] gave improved

algorithms for counting containment pairs between points and circular disks in R
2, which can

be viewed as an off-line version of either circular range searching or range stabbing. To get

this improvement, they used a key technique known as “lens cutting” to cut planar curves

into pseudo-segments. This allows us to use some of the classic tools developed for linear

objects which are usually more efficient than their polynomial counterparts. However, to

define the dual of pseudo-line or pseudo-segment arrangements, we need to know all the input

and query objects in advance; that is the main reason why previous applications are restricted

1 In this paper, we use the notation O∗(·) or Ω∗(·) to hide factors of nε where ε > 0 is an arbitrary small

constant. We use the notation Õ(·) or Ω̃(·) to hide factors polylogarithmic in n.
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to offline settings. There were attempts to apply this technique to online problems [38] but

to our knowledge they have not been generally successful.

Ray shooting amid algebraic arcs. We consider the problem of ray shooting where we

are given a collection of algebraic arcs (of constant complexity) in R
2 as the input, and we

want to build a structure such that for any query (straight-line) ray, we can find the first arc

intersecting it or assert that no such arc exists. Ray shooting is another classic problem in

computational geometry with many applications in other fields such as computer graphics

and robotics. Early study of ray shooting mostly centered around special cases, e.g., the

input consists of line segments [3, 10], circular arcs [16], or disjoint arcs [16]. Specifically,

for ray shooting queries amid line segments, it is possible to obtain a trade-off of S(n) =

O∗(n2/Q(n)2), which has been conjectured to be close to be optimal. For general algebraic

curve inputs, it is possible to build an O∗(n2) space data structure with O(log n) query time

in time O∗(n2) [43]. Combining the standard linear-space O(n1−1/β)-query time structure,

we can interpolate and get a space-time trade-off curve of S(n) = O∗(n2/Q(n)β/(β−1)), where

β is the number of parameters needed to define any polynomial in the semialgebraic sets (for

bivariate polynomials of degree deg, we have β ≤
(

deg+2
2

)
− 1, but in general β is often much

smaller). Very recently, Ezra and Sharir [35] showed how to answer ray shooting queries for

algebraic curves of constant complexity in R
2 with O∗(n3/2) space and O∗(n1/2) query time,

where the exponent is independent of β. Note that this gives better O∗(n3/2)-space data

structures for all β > 3.

Intersection counting amid algebraic arcs. Finally, we consider intersection counting amid

algebraic arcs in R
2—more precisely, computing the sum of the number of intersections

between pairs of algebraic arcs. We show new results for both online and offline versions of the

problem. For the online version where we want to build data structures to count intersections

with a query object, it is known that when the query object is a line segment, a structure

of space-time trade-off of S(n) = O∗(n2/Q(n)3/2) (resp. S(n) = O∗(n2/Q(n)β/(β−1))) is

possible for circular arcs (resp. general algebraic arcs) [43] in the plane. To the best of our

knowledge, the more general problem of algebraic arc-arc intersection counting has not been

studied for offline intersection counting where we are given a collection of algebraic arcs and

want to count the number of intersections points. When the input consists of circular arcs,

there is an O∗(n3/2)-time algorithm for the problem [14]. For more general arcs, it is unclear

if any subquadratic algorithm with exponent independent of β exists.

1.2 New results

We present improved results for these three basic problems in 2D computational geometry.

Semialgebraic range stabbing. We give a data structure with O∗(n3/2) preprocessing time

and space and O∗(n1/4) query time for semialgebraic range stabbing in R
2. (This holds

for counting as well as the semigroup model; for reporting, we add an O(k) term to the

query time where k is the output size.) Interestingly, the exponents here are independent

of the number β of parameters needed to define the algebraic curves (similar phenomena

have recently been seen for certain problems in 3 and higher dimensions [35, 36]). The result

matches known offline results (namely, a batch of queries with n5/4 ranges on n points take

O∗(n3/2) total time [14, 8]). By interpolating with existing results, we also automatically

get an improved trade-off curve for the (online) problem. In particular, when the query time

is at most n1/4, we obtain a space-time trade-off of S(n)Q(n)2 = O∗(n2). See Figure 1 for
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n points in R
2 can be solved in time O∗(m

2β

5β−4 n
5β−6

5β−4 +m2/3n2/3 +m+n). Furthermore, they

show how to compute a biclique partition of the incidence graph between the semialgebraic

sets and the points. We remark that the trade-offs we get for online semialgebraic range

stabbing (in Appendix A) directly imply both of their results.

2 Semialgebraic Range Stabbing

Let Γ be a set of n semialgebraic ranges in R
2 where the boundary of each range consists of

O(1) algebraic arcs of degree at most deg = O(1). In this section, we present data structures

to count or report the ranges stabbed by a query point.

2.1 Preliminaries

We begin by reviewing known techniques for handling stabbing problems. One approach is

by using (1/r)-cuttings [32, 29, 27].

▶ Lemma 1 ((1/r)-Cutting Lemma). Given n x-monotone algebraic arcs of constant degree

in R
2 and a parameter r ≤ n, there exists a decomposition of the plane into O(r2) disjoint

pseudo-trapezoid cells such that each cell is crossed by at most n/r arcs.

The cells, the list of arcs crossing each cell, and the number of arcs completely below each

cell, can all be computed in O(nr) time.

Another method is based on the simplicial partition theorem:

▶ Theorem 2 (Matoušek’s Partition Theorem [45]). Let P be a set of n points in R
d. Then

for any r ≤ n, we can partition P into r disjoint simplicial cells such that each cell contains

O(n/r) points and any hyperplane crosses at most O(r1−1/d) cells. This partition can be

computed in O(n) when r is a constant.

To get a linear-space data structure, one approach is to lift the input curves to a halfspace in

dimension L =
(

deg+2
2

)
− 1, and then apply the partition theorem recursively with constant r

in the dual to get a data structure with O∗(n) space and preprocessing time and O∗(n1−1/L)

query time (the extra O∗(1) factors can be lowered or removed [23]). The query time

bound can be improved to O∗(n1−1/β) (recall that β is the number of parameters needed to

specify the curves), by using an analog of the partition theorem for semialgebraic ranges for

β ≤ 4 [11, 43], or by using the polynomial partitioning method [12, 46].

Still better results are possible if we have more guarantees about the behavior of the arcs

of Γ. The key case we will consider is when the arcs form a set of pseudo-lines (x-monotone

curves, from x = −∞ to x = ∞, that pairwise intersect at most once), or pseudo-segments

(x-monotone arcs that pairwise intersect at most once).

It turns out that the general case can be reduced to the pseudo-line or pseudo-segment

case by a technique known as lens cutting, first proposed by Tamaki and Tokuyama [50]

and further developed by others [13, 21, 44]. We use the following theorem of Sharir and

Zahl [48] for cutting algebraic curves into pseudo-segments. The algorithmic version is due

to Agarwal, Aronov, Ezra, and Zahl [8].

▶ Theorem 3 (Lens cutting for algebraic curves). Given a collection Γ of n curves generated

from constant-degree bivariate polynomials where no pair of polynomials shares a common
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factor, we can cut Γ into a collection of O∗(n3/2) subarcs such that each pair of arcs intersect

at most once.3 Furthermore, this can be computed in O∗(n3/2) time.

Sharir and Zahl’s theorem is striking in that it gives the first subquadratic bound for

general algebraic arcs (previous results were for pseudo-parabolas [44] or graphs of univariate

polynomials [21]), and at the same time, achieves an exponent (3/2) completely independent

of the degree of the arcs! By lens cutting, we can thus turn our attention to solving the

stabbing problem for ranges defined by pseudo-lines or pseudo-segments.

2.2 Counting pseudo-lines below a query point

We present our main new data structure for pseudo-lines below:

▶ Theorem 4. Given a set Γ of n pseudo-lines 4 in R
2, there is a data structure for counting

the number of pseudo-lines below a query point with O∗(n) preprocessing time and space and

O∗(
√

n) query time.

One approach to proving this theorem is via “spanning trees with low crossing number” [51,

52]. Chazelle and Welzl [30] actually showed that such spanning trees can yield range searching

data structures in a general bounded-VC-dimension setting; our problem fits their framework,

and so we can immediately obtain a data structure with O(poly(n)) preprocessing time, Õ(n)

space, and Õ(
√

n) query time for our problem. We won’t discuss this any further as it will

be subsumed by our new approach which has much better preprocessing time and also has

the advantage of supporting multi-level data structures (needed in our applications later).

Instead, our approach is based on dualizing Matoušek’s partition theorem. Recall that

a standard way to solve the problem of counting lines (not pseudo-lines) below a query

point is to apply point/line duality to reduce the problem to counting points above a query

line (i.e., halfplane range searching), which can then be solved using Matoušek’s partition

tree. Agarwal and Sharir [15] showed that there exists a similar duality between points and

pseudo-lines. However, this duality transform is only applicable when we know all the query

points in advance—we can’t dualize a new query point without potentially changing the

entire transform. Nonetheless, we have found a way to overcome this issue.

We say that a point p crosses S if there is at least one pseudo-line in S above p, and at

least one pseudo-line in S below p. It turns out the right way to reformulate Matoušek’s

partition theorem in the dual is the following, whose proof requires several delicate steps:

▶ Theorem 5. Given a set Γ of n pseudo-lines in R
2 and a parameter r ≤ n, there exists

a partition of Γ into r disjoint subsets Γ1, . . . , Γr each of size Θ(n/r), such that any point

crosses at most O(
√

r) of these subsets. Furthermore, this partition can be computed in

O(nrO(1)) time.

Proof. We start with a version of Matoušek’s partition theorem, which follows directly from

his original proof [45] (see also the generalization in [11, Lemma 5.2]):

(I) Given a set P of n points in R
2, a set Q of t “test” pseudo-lines, and a parameter r ≤ n,

there exists a partition of P into r disjoint subsets P1, . . . , Pr each of size Θ(n/r), together

3 If a pair of arcs γ1 and γ2 intersect more than once, the part of the two arcs between two consecutive
intersections is sometimes referred to as a lens. Hence, the problem of cutting curves into pseudo-segments
is also called lens cutting.

4 We only assume that primitive operations such as deciding whether a point is above a pseudo-line, and
computing the intersection of two pseudo-lines, can be done in constant time.



T. Chan, P. Cheng, and D. Zheng 7

with r (pseudo-trapezoidal) cells ∆1, . . . , ∆r with Pi ⊂ ∆i, such that any pseudo-line in

Q intersects at most O(
√

r + log t) of the cells.

Next, we state a version that does not involve the cells ∆i (this will be crucial, as it

would be difficult to dualize ∆i). Say that a pseudo-line γ crosses a point set P if γ is above

at least one point of P and below at least one point of P .

(II) Given a set P of n points in R
2, a set Q of t “test” pseudo-lines, and a parameter r ≤ n,

there exists a partition of P into r disjoint subsets P1, . . . , Pr each of size Θ(n/r), such

that any pseudo-line in Q crosses at most O(
√

r + log t) of the subsets.

Observe that (II) follows from (I), since Pi ⊂ ∆i implies that any pseudo-line crossing Pi

must intersect ∆i.

Now, we apply the point/pseudo-line duality transform by Agarwal and Sharir [15], which

turns (II) into the following statement:

(III) Given a set Γ of n pseudo-lines, a set M of t “test” points, and a parameter r ≤ n,

there exists a partition of Γ into r disjoint subsets Γ1, . . . , Γr each of size Θ(n/r), such

that any point in M crosses at most O(
√

r + log t) of the subsets.

The construction time for the partition in (I), and thus (II), is naively bounded by

O(n(rt)O(1)) from Matoušek’s work [45]. Unfortunately, the construction time for (III) is

larger, since Agarwal and Sharir’s duality transform requires O((nt)O(1)) time to compute [15]

(they obtained faster algorithms only under certain restricted settings).

We describe a way to speed up the construction for (III). Say that two pseudo-lines γ

and γ′ are equivalent with respect to M if the subset of points of M below γ is identical

to the subset of points of M below γ′. The problem of computing the equivalence classes

of pseudo-lines with respect to a point set has luckily already been addressed in a paper

by Chan [24, Sections 2.1–2.2] (which studied a seemingly unrelated problem: selection in

totally monotone matrices). Chan observed that the number of equivalence classes is O(t2)

(this follows either by using Agarwal and Sharir’s duality transform to reduce to counting

cells in the dual arrangement, or by direct VC dimension arguments), and he presented

a simple deterministic Õ(n + t3)-time algorithm and a simple randomized Õ(n + t2)-time

algorithm (by incrementally adding points of M one by one and splitting equivalence classes

using dynamic data structures for lower/upper envelopes of pseudo-lines).

Afterwards, we can replace each pseudo-line with a representative member of its equiva-

lence class. As a result, we get a multi-set Γ′ of size n that has only O(t2) distinct pseudo-lines.

We apply Agarwal and Sharir’s duality transform to Γ′ and M , which now takes only tO(1)

time. We obtain a partition satisfying (III) for Γ′, which is automatically a partition satisfying

(III) for Γ by the definition of equivalence. The overall construction time is O(n(rt)O(1)).

Finally, we construct an appropriate (small) test set M to establish our theorem. The

idea is similar in spirit to Matoušek’s “test set lemma” [45] (though his lemma is not directly

applicable here). We first compute a (1/(cr))-cutting of Γ with O(r2) cells in O(nrO(1)) time

for a sufficiently large constant c; each cell is a pseudo-trapezoid, with two vertical sides and

the upper/lower sides being sub-segments of the given pseudo-lines. We just define M to be

the set of all vertices of these cells, with t = |M | = O(r2), and construct the partition in

(III) for this test set M in O(n(rt)O(1)) = O(nrO(1)) time.

Consider an arbitrary point q ∈ R
2. Let ∆ be the pseudo-trapezoid cell containing q,

with top-left vertex vT L, bottom-left vertex vBL, top-right vertex vT R, and bottom-right

vertex vBR. Consider one subset Γi. Suppose that none of vT L, vBL, vT R, vBR crosses Γi.

We prove that q cannot cross Γi:
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Case 1: all pseudo-lines in Γi are between vT L and vBL. Then all pseudo-lines in Γi

intersect ∆, and so |Γi| ≤ n/(cr), which is a contradiction if we choose c large enough

(compared to the hidden constant in the Θ(n/r) bound).

Case 2: all pseudo-lines in Γi are above vT L. If all pseudo-lines in Γi are also below vT R,

then all pseudo-lines in Γi intersect ∆ and we again get a contradiction as in Case 1.

Thus, we may assume that all pseudo-lines in Γi are above both vT L and vT R. But then

all pseudo-lines in Γi are completely above ∆ (since no pseudo-line can intersect the

upper side twice), and so q cannot cross Γi.

Case 3: all pseudo-lines in Γi are below vBL. Similar to Case 2.

We conclude that the subsets Γi crossed by q must be crossed by one of the test points

vT L, vBL, vT R, vBR, and so there are at most O(4 · (
√

r + log t)) = O(
√

r) such subsets. ◀

Proof of Theorem 4. We construct a partition for Γ by Theorem 5. For each subset Γi, we

store its upper and lower envelopes (which, for pseudo-lines, have O(n) complexity and can

be constructed in O(n log n) time, e.g., by a variant of Graham’s scan [33]). We recursively

build the data structure for each Γi.

Given a query point q, we examine each subset Γi. If q is below the lower envelope of Γi

(which we can check by binary search in Õ(1) time), we ignore Γi. If q is above the upper

envelope of Γi, we add |Γi| to the current count. Otherwise, q crosses Γi, and we recursively

query Γi.

Let P (n) and Q(n) be the preprocessing time and query time of the data structure (space

is bounded by the preprocessing time). They satisfy the following recurrence relations:

P (n) = O(r) · P (n/r) + Õ(rO(1)n)

Q(n) = O(
√

r) · Q(n/r) + Õ(r).

Setting r to be a large enough constant, we obtain P (n) = O∗(n) and Q(n) = O∗(
√

n). ◀

By using a segment tree [33], we can easily extend Theorem 4 to handle pseudo-segments:

▶ Corollary 6. Given a set Γ of n pseudo-segments in R
2, there is a data structure for

counting the number of pseudo-segments below a query point with O∗(n) preprocessing time

and space and O∗(
√

n) query time.

2.3 Semialgebraic range stabbing counting

▶ Definition 7. For an integer j ≥ 0 we say that Γ is a set of (j, algebraic)-ranges if each

range is being bounded above/below by j different x-monotone algebraic curves and at most

two vertical sides. We say that Γ is a set of (j, pseudoseg)-ranges if furthermore, these j

curves are pseudo-segments.

For any set of n semialgebraic ranges, we can decompose each range vertically with O(1) cuts

so that we get a set of O(n) many (2, algebraic)-ranges. For counting, it suffices to look at

a set of (1, algebraic)-ranges with only lower bounding arcs, since we can use subtraction 5

to express a range bounded from above and below by the difference of two ranges bounded

from below.

5 In the more general semigroup model, subtraction would not be allowed. See Section 2.4 for how to
directly handle (2, algebraic) ranges.
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We reduce (1, algebraic)-range stabbing to (1, pseudoseg)-range stabbing by lens

cutting. Naively replacing n by O∗(n3/2) would yield terrible space and query bounds.

Past applications of lens cutting [13, 17, 21] first derived intersection-sensitive results for

pseudo-segments, and noticed that the lens-cutting operation does not increase the number of

intersections. Below, we describe a direct reduction bypassing intersection-sensitive bounds:

▶ Theorem 8. There is a data structure for range stabbing counting on n semialgebraic

ranges of constant complexity in R
2 with O∗(n3/2) preprocessing time and space and O∗(n1/4)

query time.

Proof. Let Γ be a set of n lower arcs (extended with upward vertical rays at their endpoints)

of the input ranges. Compute a set of µ cut points that turn their lower arcs into pseudo-

segments. We have µ = O∗(n3/2) by Theorem 3. Compute a (1/r)-cutting Ξ of Γ with

O(r2) cells by Lemma 1. Add extra vertical cuts to ensure that each cell contains at most

µ/r2 cut points; the number of cells remains O(r2). For each cell ∆ ∈ Ξ, let Γ∆ be the arcs

in Γ intersecting ∆ (we know |Γ∆| ≤ n/r); build the data structure in Corollary 6 for the

O(n/r+µ/r2) pseudo-segments along the arcs in Γ∆ inside ∆. Let c∆ be the number of arcs in

Γ completely below ∆. The preprocessing time/space is O∗(nr+r2·(n/r+µ/r2)) = O∗(nr+µ).

To answer a query for a point q, we find the cell ∆ containing q in Õ(1) time by point

location [33], query the data structure for the pseudo-segments inside ∆, and add c∆ to the

current count. The query time O∗(1 +
√

n/r + µ/r2). Setting r = ⌈µ/n⌉ gives preprocessing

time/space O∗(n + µ) and query time O∗(n/
√

µ). ◀

By standard techniques, we can use this to obtain improvement on the entire trade-off

curve between space and query time. For completeness, we include a proof in Appendix A.

For semialgebraic stabbing reporting, we can no longer use subtraction and need to consider

(2, algebraic)-ranges. Instead we can use multi-level data structures. This procedure is not

straightforward, as we do not have a smooth tradeoff curve. Details will be given in the next

subsection.

2.4 Semialgebraic stabbing reporting

In this subsection, we show how to adapt our data structure for semialgebraic stabbing

counting to solve the reporting version of the problem. As noted, it suffices to consider

(2, algebraic)-ranges. The idea is to use multi-level data structuring techniques.

First, we adapt Theorem 4/Corollary 6 to handle (2, pseudoseg)-ranges. This part is

straightforward.

▶ Lemma 9. There is a data structure for the semialgebraic stabbing reporting problem for

n (2, pseudoseg)-ranges with O∗(n) preprocessing time and space, and O∗(
√

n + k) query

time, where k is the number of reported ranges.

Proof. By segment trees [33], we may assume that all the pseudo-segments are pseudo-lines.

Let Γ− denote the set of lower arcs of the ranges in Γ. We construct a partition for Γ− by

Theorem 5. For each subset Γi, we store its upper and lower envelopes. We recursively build

the data structure for the ranges corresponding to each Γi, and also build a data structure

for the (1, pseudoseg)-ranges with upper arcs corresponding to the lower arcs in Γi.

Given a query point q, we examine each subset Γi. If q is below the lower envelope of

Γi (which we can check by binary search in Õ(1) time), we ignore Γi. If q is above the

upper envelope of Γi, we query the (1, pseudoseg)-ranges corresponding to Γi. Otherwise,

q crosses Γi, and we recursively query Γi.
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We can do the same to reduce the case of (1, pseudoseg)-ranges to the trivial case of

(0, pseudoseg)-ranges.

For j ∈ {0, 1, 2}, let Pj(n) be the preprocessing time of the data structure, and let Qj(n)

be the query time (ignoring the O(k) term for the cost of reporting). They satisfy the

following recurrence relations:

Pj(n) = O(r) · Pj(n/r) + O(r) · Pj−1(n) + Õ(rO(1)n)

Qj(n) = O(
√

r) · Qj(n/r) + O(r) · Qj−1(n) + Õ(r).

Setting r to be an arbitrarily large constant, we obtain Pj(n) = O∗(n) and Qj(n) =

O∗(
√

n). ◀

Now, we adapt Theorem 8. This part is more delicate and requires a careful analysis:

we don’t know in general how to support multi-leveling in the structure from Theorem 8

without losing efficiency, but in this application, we exploit the fact that we can map the cut

points on the upper arcs to the lower arcs.

▶ Theorem 10. There is a data structure for semialgebraic stabbing reporting problem

for n ranges of constant complexity in R
2 with O∗(n3/2) preprocessing time and space and

O∗(n1/4 + k) query time, where k is the number of reported ranges.

Proof. Let t be a fixed parameter. Let Γ be a set of n (2, algebraic)-ranges, together with

a set of µ cut points that turn both the upper algebraic arcs into pseudo-segments and the

lower algebraic arcs into pseudo-segments. In what follows, we assume that for each range,

its upper arc and lower arc are cut at the same x-values, so that the pseudo-segments on the

two arcs are matched up in their x-ranges (this requires initially doubling the number of cut

points). Initially, µ = O∗(n3/2) by Theorem 3. Let Γ− denote the set of lower arcs (extended

with upward vertical rays at the endpoints) of the ranges in Γ. Compute a (1/r)-cutting Ξ−

of Γ− with O(r2) cells for a sufficiently large constant r. Add extra vertical cuts to ensure

that each cell contains at most µ/r2 cut points on the lower arcs; the number of cells remains

O(r2). For each cell ∆ ∈ Ξ+, let Γ∆ be the ranges in Γ whose lower arcs intersect ∆ (we

know |Γ∆| ≤ n/r), and let Γ′

∆ be the ranges in Γ whose lower arcs are completely below ∆.

For each ∆, we recursively build a data structure for Γ∆, and also build a data structure for

the (1, algebraic)-ranges with upper arcs corresponding to the ranges in Γ′

∆. To answer

a query for a point q, we find the cell ∆ containing q, and recursively query Γ∆, and also

query the (1, algebraic)-ranges corresponding to Γ′

∆.

When n = Θ(t2), we stop the recursion, and solve the problem directly by dividing into

⌈µ/n⌉ slabs with O(n) cut points each, viewing the input in each slab as O(n) (2, pseudoseg)-

ranges, and applying our data structure for pseudo-segments (Lemma 9) with O∗(⌈µ/n⌉·n) =

O∗(n + µ) total space and preprocessing time and O∗(
√

n) = O∗(t) query time.

We can do the same to reduce the case of (1, algebraic)-ranges to the trivial case of

(0, algebraic)-ranges.

For j ∈ {0, 1, 2}, let Pj(n, µ) be the preprocessing time of our data structure for

(j, algebraic)-ranges, and let Qj(n, µ) be the query time (ignoring the +k term for the cost

of reporting). We obtain the recurrences:

Pj(n, µ) =

{
O(r2) · Pj(n/r, µ/r2) + O(r2) · Sj−1(n, µ) + O∗(r2(n + µ)) if n = Ω(t2)

O∗(n + µ) if n = Θ(t2),

Qj(n, µ) =

{
Qj(n/r, µ/r2) + Qj−1(n, µ) + O(r2) if n = Ω(t2)

O∗(t) if n = Θ(t2),
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multi-level data structures). The final condition (iv) corresponds to a stabbing problem in

the tangent space. If we let y = f(x) be the equation defining the arc γ for an algebraic

function f , and let y = mx+b be the equation defining the line ℓ, this problem in the tangent

space is equivalent to the condition that the point (px, m) lies above the curve:

∂γ = {
(

x, df
dx (x)

)
: x1 ≤ x ≤ x2}.

This is an algebraic curve of degree at most O(deg2) [19].

Thus the whole problem is somewhat similar to a (3, algebraic)-range stabbing problem

(albeit over 3 different spaces). However, as discussed in Section 2.4, we can’t directly

construct a multi-level data structure for semialgebraic range stabbing because the trade-off

curve is not smooth. Fortunately, even though the three conditions involve different query

points in the original space, the dual space, and the tangent space, all three conditions are

related to a single curve γ. This means that we can apply the lens cutting algorithm of

Theorem 3 in the three respective spaces, and map all cut points back to the curve γ in the

original space. This can be summed up in the following lemma.

▶ Lemma 11. For any set of n algebraic arcs Γ of constant complexity in R
2, it can be

cut into a collection Γ′ of O∗(n3/2) subarcs, in O∗(n3/2) time, so that for any two subarcs

γ1, γ2 ∈ Γ′:

(a) the curves γ1 and γ2 intersects in at most once.

(b) the derivative curves ∂γ1 and ∂γ2 intersect at most once.

(c) the dual curves γ∗

1 and γ∗

2 intersect at most once.

Thus, by an analysis very similar to that in Section 2.4 (but with 3 levels instead of 2), we

can build a data structure for Case C with O∗(n1/4) query time and O∗(n3/2) preprocessing

time and space.

▶ Theorem 12. Given n algebraic arcs of constant complexity in R
2, there is a data structure

with O∗(n3/2) preprocessing time and space that can count intersections with a query line

segment in O∗(n1/4) time. Consequently, there is a data structure for ray shooting amid n

algebraic arcs of constant complexity in R
2 with the same bound.

4 Intersection Counting Amid Algebraic Arcs

Let Γ be a set of n algebraic arcs in R
2 of degree at most deg = O(1). In this section we

present algorithms and data structures for counting the number of intersections between the

arcs of Γ. By the “number of intersections”, we always mean the number of intersection

points (possibly with multiplicities if we have degeneracies/tangencies), and not the number

of intersecting pairs. We assume that no two algebraic arcs lie in the same algebraic variety

so that the number of intersections between two arcs is at most deg2 = O(1). W.l.o.g., we

assume that the arcs are x-monotone.

4.1 A first approach

To better appreciate our final algorithm, we first sketch a slower but still subquadratic

algorithm for the offline problem of counting intersections among n algebraic arcs in R
2, by

using the lens cutting routine of Theorem 3 as a black box as we did in earlier sections. Let

r be a parameter to be chosen later.



14 Semialgebraic Range Stabbing, Ray Shooting, & Intersection Counting in the Plane

1. Compute a (1/r)-cutting Ξ of Γ into O(r2) disjoint cells each intersecting n/r arcs.

2. Compute a set P of µ = O∗(n3/2) points to chop the arcs of Γ into pseudo-segments by

Theorem 3, in O∗(n3/2) time. Refine the cutting Ξ by adding vertical line segments so that

each cell of the cutting contains at most µ/r2 points of P ; the number of cells remain O(r2).

The number of pseudo-segments in each cell is bounded by the number of arcs intersecting

each cell and the number of points of P in the cell, which is m = O(n/r + µ/r2).

3. In each cell, use an O∗(m4/3)-time algorithm to count the number of intersections between

pseudo-segments (algorithms are known [45, 26] for counting intersections between line

segments in near m4/3 time, and they can be adapted to pseudo-segments as well, but we

will not elaborate as we will present a better algorithm shortly).

The total run time is thus O∗(r2 · (n/r + µ/r2)4/3). Choosing r = ⌈µ/n⌉ yields a time bound

of O∗(n + n2/3µ2/3) = O∗(n5/3).

(We note that the above method works also for the case of pseudo-parabolas that are

not necessarily algebraic arcs. Marcus and Tardos [44] proved that µ = O(n3/2 log n) cuts

suffices. However, the best algorithm for construct such cut points [41, 49] requires time

Õ(n
√

µ) = Õ(n7/4), and so the running time increases to Õ(n7/4).)

We will next show how to improve the running time for algebraic arcs to O∗(n3/2),

by opening the black box of Theorem 3 and directly modifying the algorithm for cutting

algebraic arcs into pseudo-segments. Remarkably, this algorithm naturally extends to a

data structure for counting the number of intersections between a query algebraic arc and

a set of n input algebraic arcs with O∗(n3/2) preprocessing time and space and O∗(n1/2)

query time. (In contrast, known methods for cutting pseudo-parabolas [44, 41, 49] require

all pseudo-parabolas to be given offline and cannot be adapted into such a data structure.)

4.2 Review of lens cutting

As a preliminary, we sketch the proof of Sharir and Zahl [48] for Theorem 3. The key idea is

to transform the 2D lens cutting problem into a 3D problem about eliminating depth cycles,

which was already solved before by Aronov and Sharir [18] using polynomial partitioning

techniques. Let Γ be a set of n algebraic x-monotone plane arcs each of degree at most

deg = O(1). For any arc γ ∈ Γ of the form {(x, f(x)) : x1 ≤ x ≤ x2} for some algebraic

function f and x1, x2 ∈ R, we lift γ to a new arc in 3D:

γ̂ = {
(

x, f(x), df
dx (x)

)
: x1 ≤ x ≤ x2}.

In other words, the xy-projection of γ̂ is γ, and the z-coordinate corresponds to the slope

of the curve. The arc γ̂ is algebraic, with degree at most deg2 (see Lemma 2.5 of [48] or

Proposition 1 of [34] for precise details). Let Γ̂ denote the set of these arcs in R
3.

To eliminate depth cycles in R
3, Aronov and Sharir [18] proceeded by computing a

polynomial partition of Γ̂, i.e., a polynomial P (x, y, z) whose zero set Z(P ) := {(x, y, z) ∈
R

3 : P (x, y, z) = 0} separates R
3 into cells such that not too many arcs of Γ̂ intersect each

cell. This was proved to exist by Guth [39] and the construction was made algorithmic

by Agarwal, Aronov, Ezra, and Zahl [8]. The theorem applies to general varieties in any

dimension, but we will present it specialized to curves in R
3.

▶ Theorem 13 (Polynomial partitioning of curves in R
3). Let Γ be a collection of n algebraic

arcs in R
3 each of which has degree at most deg = O(1). Then for any D ≥ 1 there is a

non-zero polynomial P of degree at most D such that R
3 \ Z(P ) contains O(D3) cells and

each cell crosses at most O(n/D2) arcs of Γ.
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The polynomial P and the semi-algebraic representation of every cell R3 \ Z(P ) can be

constructed in O(2poly(D)) randomized expected time. Furthermore this representation of the

cells has size O(poly(D)), and given any algebraic arc, we can output the cells of R3 \ Z(P )

that it crosses (or that it lies completely within Z(P )) in O(poly(D)) time. In particular, we

can compute the set of arcs intersecting every cell of R3 \ Z(P ) in O(n poly(D)) time.

We proceed next by cutting each curve of Γ̂ at its intersection points with the zero

set Z(P ) of a partitioning polynomial P of degree D. We further cut each curve at its

intersection points with another surface Zbad which is the vertical cylinder passing through

all points with vertical tangency at Z(P ) (this is also a zero set of a polynomial, of degree

O(D2)). For any point z, let h(z) denote the number of times a vertical downward ray

emanating from z intersects Z(P ). Then points z in the same cell of R3 \ (Z(P ) ∪ Zbad) have

the same h(z) value, by our definition of Zbad.

The key observation is that two curves γ1, γ2 ∈ Γ in 2D intersect twice if and only if their

corresponding curves γ̂1, γ̂2 ∈ Γ̂ in 3D form a length-2 depth cycle in the z-direction, i.e.,

there are four points (x, y, z1), (x′, y′, z′

1) ∈ γ̂1, and (x, y, z2), (x′, y′, z′

2) ∈ γ̂2 where z1 > z2

and z′

1 < z′

2, or vice versa. (This is because in 2D, at two consecutive intersection points

between γ1 and γ2, the slope of γ1 is larger than the slope of γ2 at one point, and vice versa

at the other point.)

Recall that we have cut the arcs at intersections with Z(P ) as well as Zbad. Suppose

a subarc of γ̂1 is contained in a cell ∆ of R
3 \ Z(P ), and suppose a subarc of γ̂2 is not

contained in the same cell ∆. We observe that the two subarcs cannot form a length-2 depth

cycle. This is because otherwise, h(z1) > h(z2) and h(z′

1) < h(z′

2), or vice versa, which is a

contradiction.

Thus, it suffices to eliminate length-2 depth cycles for pairs of arcs contained in the same

cell ∆ of R3 \ Z(P ); this can be handled by recursion in each cell. Arcs contained in Z(P ) or

Zbad can be handled naively as there can only be O(D2) such arcs. The run time and number

of cuts satisfy a recurrence of the form T (n) = O(D3) · T (n/D2) + O(n poly(D) + 2poly(D)).

By choosing D to be a sufficiently large constant, this recurrence solves to T (n) = O∗(n3/2),

thereby proving Theorem 3.

4.3 An improved data structure for counting intersections

In this section we directly adapt the approach in Section 4.2 to design a new data structure

for counting intersections between a query algebraic arc γ and a set of n input algebraic arcs

Γ in R
2.

First we consider an easier special case, where we are guaranteed that the query arc γ

intersects each curve of Γ at most once. This special case will be useful later. We prove the

following lemma by standard reductions to semialgebraic range searching and range stabbing

(the bounds below may not be tight, but will be good enough):

▶ Lemma 14. Given a set Γ of n algebraic arcs of constant complexity in R
2, there is a

data structure with O∗(n3/2) preprocessing time and space that can count intersections with

a query algebraic arc γ in O∗(
√

n) time if the query arc is guaranteed to intersect each arc

of Γ at most once.

Proof. We can process the arcs with a segment-tree like approach similar to what we did

previously for ray shooting. As we recurse with our query arc γq, we it suffices to consider

the following two types of intersections: (i) long-short intersections, where the query arc

spans the entire slab but the input arcs may not, and (ii) short-long intersections, where the

input arcs span the entire slab but the query may not.
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For intersections of type (i), the problem reduces to counting the number of input arcs

that have one end point above γq and the other below γq. This can be done using a two-level

version of the data structure of Agarwal and Matoušek for semialgebraic range searching

[11], with Õ(n) preprocessing time/space and O∗(
√

n) time.

For intersections of type (ii), the problem reduces to counting the number of input arcs

that lie above one endpoint of γq and below the other endpoint of γq. This problem can

be solved with a two-level data structure for range stabbing, with Õ(n2) preprocessing

time/space and Õ(1) query time by using cutting trees. Conveniently, it works out that

by splitting the input to
√

n groups of size
√

n, the preprocessing time/space reduces to

Õ(
√

n · (
√

n)2) = Õ(n3/2), while the query time increases to Õ(
√

n). ◀

We begin by considering Γ̂, the lifted version of each arc in R
3, and taking a polynomial

partition P of the curves of Γ̂ with degree D, which we will choose to be a sufficiently large

constant. Let Γbad denote the set of bad arcs that, when lifted to R
3, are contained in

Z(P ) or Zbad as defined in Section 4.2; there are at most O(D2) bad arcs. For each cell

∆ ∈ R
3 \ Z(P ), let Γ̂(∆) denote the set of all maximal subarcs of all γ̂ ∈ Γ̂ \ Γ̂bad that are

contained in ∆. Furthermore, let Γ̂′(∆) denote the set of subarcs of the arcs in Γ̂(∆) after

cutting each arc at its intersections with Zbad. Let Γ(∆) denote the xy-projections of the

arcs of Γ̂(∆), and define Γ′(∆) similarly. We recursively build our data structure for each

Γ(∆). In addition, we preprocess each Γ′(∆) in the data structure D(∆) from Lemma 14.

Given a query arc γq, we first cut γ̂q into subarcs at intersections with Z(P ) ∪ Zbad; there

are O(D2) such subarcs. We cut γq at the corresponding points. Our query algorithm is as

follows:

1. For each cell ∆ ∈ R
3 \ Z(P ) crossed by γq: we count the intersections of γq with Γ(∆) by

recursion. There are O(D) recursive calls, since γq can cross Z(P ) at most O(D) times.

2. For each cell ∆ ∈ R
3 \ Z(P ) not crossed by γq, and for each subarc γ′

q of γq: we know

that γ̂′

q is not contained in ∆. As we have observed in Section 4.2, in this case, γ̂′

q cannot

form length-2 depth cycles with the subarcs in Γ̂′(∆), and thus γ′

q cannot form lenses

with the subarcs in Γ′(∆), i.e., γ̂′

q can intersect each arc of Γ′(∆) at most once. Using the

data structure D(∆) from Lemma 14, we can count the intersections of γ′

q with Γ′(∆).

3. Finally, we naively count the intersections of γq with Γbad. This takes O(D2) time.

This way, every intersection point along γq is counted exactly once.

The query time satisfies the following recurrence:

Q(n) = O(D) · Q(n/D2) + O∗(DO(1)
√

n),

which solves to Q(n) = O∗(
√

n) by choosing an arbitrarily large constant D. The preprocess-

ing time (and thus space) satisfies the following recurrence:

P (n) = O(D3) · P (n/D2) + O∗(DO(1)n3/2 + 2poly(D)),

which solves to P (n) = O∗(n3/2).

▶ Theorem 15. Given n algebraic arcs of constant complexity in R
2, there is a data structure

with O∗(n3/2) preprocessing time and space that can count intersections with a query algebraic

arc γ in O∗(
√

n) time.

This immediately implies an offline algorithm for counting the number of intersections

among algebraic arcs.

▶ Corollary 16. There is an algorithm that counts the number of intersection points between

two sets of n algebraic arcs of constant complexity in R
2 in O∗(n3/2) time.
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5 Final Remarks

We believe that the relative simplicity of our algorithm for counting arc intersections in

Section 4 makes it a good example illustrating the power of the polynomial partitioning

techniques (and the 2D problem of counting arc intersections is in some sense even more

basic than the 3D problem of eliminating depth cycles or the 2D problem of cutting lenses).

One application is an O∗(n3/2)-time algorithm for verifying whether a set of algebraic

arcs in R
2 is a pseudo-line or pseudo-segment arrangement (or equivalently, detecting the

existence of a lens). We just check whether the total number of intersections is equal to the

number of odd-intersecting pairs, the latter of which can be computed using a variant of

Lemma 14.

Our algorithm for arc intersection counting can be modified to give a biclique cover [5, 37]

(but not a biclique partition) of the intersection graph of n algebraic arcs in R
2 with size

O∗(n3/2) in O∗(n3/2) time. Biclique covers are useful sparse representations of geometric

intersection graphs, and our results imply many algorithmic results for algebraic arcs that use

biclique covers (e.g., finding connected components in O∗(n3/2) time [22], finding single-source

shortest paths in an intersection graph in O∗(n3/2) time, finding maximum matching in a

bipartite intersection graph in O∗(n3/2) time,6 or finding triangles in an intersection graph

in subquadratic time [25]).

Currently, we do not know how to modify our algorithm for counting arc intersections to

count the number of intersecting pairs (except in the pseudo-parabola case). This is also a

weakness in some of the higher-dimensional results by Agarwal et al. [6].

In Section 2, we have shown how the lens cutting technique can be applied to obtain

data structures for online 2D semialgebraic range stabbing queries, but it remains open

whether the same is possible for online 2D semialgebraic range searching (when the query

semialgebraic ranges are not known in advance).

The lens cutting technique allows us to achieve the same bound for 2D semialgebraic

range stabbing as 2D simplex range stabbing for certain parts of the trade-off curve. An

intriguing question is whether the same is possible also in dimension 3 and higher, via some

generalization of lens cutting or some completely different technique.
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A Trade-Off Between Preprocessing and Query Time

We note a trade-off version of our result on semialgebraic range stabbing counting:

▶ Theorem 17. There is a data structure for the semialgebraic range stabbing counting

problem on n ranges of constant complexity in R
2 with O∗(m) space and handles queries in

time

Q(n) =

{
O∗(n/

√
m) if n3/2 ≤ m ≤ n2

O∗(n5/2−3/β/m3/2−2/β) if n ≤ m < n3/2

where β is the number of parameters needed to specify a curve. Furthermore, the data

structure can be constructed in randomized expected O∗(m) time.

Proof. Recall that for counting, it suffices to consider (1, algebraic)-ranges.

First we consider the case when n3/2 ≤ m ≤ n2. The proof of Theorem 8 already implies a

trade-off with preprocessing time/space O∗(nr+n3/2) and query time O∗(1+
√

n/r + n3/2/r2).

Setting r = m/n gives the desired O∗(m) preprocessing time/space bound and O∗(n/
√

m)

query time bound.

When n ≤ m < n3/2, we instead map the input curves to points in the dual space

R
β . For β ≤ 4, we can apply an analog of the partition theorem for semialgebraic ranges

by Agarwal and Matoušek [11, 43] to recursively split our instance into subproblems until

each subproblem contains at most b points for a parameter b. For general constant β, we

instead apply the polynomial partitioning method of Matoušek and Patáková [46]. When

a subproblem contains at most b points, we switch back to the primal and build the data

structure of Theorem 8 with O∗(b3/2) preprocessing time and O∗(b1/4) query time. Agarwal

et al. [7, Appendix A.1] provided details of the recursion and analysis based on the polynomial

partitioning method (and even more generally in the multi-level setting), which we will not

repeat here (since the only change is our new base case). Let P (nv, s) and Q(nv, s) denote

the expected preprocessing time and query time for a node of a partition tree with nv dual

points that lie on the zero set of dimension s. With our new bounds for the base case, their
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recurrences [7, Equations (24) and (25)] (in the single-level case) are changed to the following:

P (nv, s) ≤





O∗(nv) if s = 1

O(D) · P (nv/D, s) + P (nv, s − 1) + O(nv) if nv ≥ b

O∗(b3/2) if nv < b

Q(nv, s) ≤





O∗(1) if s = 1

O(D1−1/β) · Q(nv/D, s) + Q(nv, s − 1) if nv ≥ b

O∗(b1/4) if nv < b

It can be verified that P (n, β) = O∗((n/b) ·b3/2) and Q(n, β) = O∗((n/b)1−1/β ·b1/4). Setting

b = (m/n)2 gives the desired bounds. ◀

We remark that we can obtain a similar trade-off in the semi-group model, range reporting

(with an additional +k term), and ray shooting by using the appropriate multi-level versions

of polynomial partitioning as in [7, Appendix A.1].
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