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Abstract

We revisit a standard polygon containment problem: given a convex k-gon P and a convex n-gon ()
in the plane, find a placement of P inside () under translation and rotation (if it exists), or more generally,
find the largest copy of P inside () under translation, rotation, and scaling.

Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and Agarwal, Amenta, and Sharir
(1998) all required Q(n?) time, even in the simplest & = 3 case. We present a significantly faster new
algorithm for & = 3 achieving O(n polylog n) running time. Moreover, we extend the result for general
k, achieving O (k©(1/)n1+2) running time for any £ > 0.

Along the way, we also prove a new O(k°M)n polylogn) bound on the number of similar copies
of P inside () that have 4 vertices of P in contact with the boundary of ) (assuming general position
input), disproving a conjecture by Agarwal, Amenta, and Sharir (1998).

1 Introduction

Polygon containment problems have been studied since the early years of computational geometry [1, 2, 6,
9,12, 13, 14, 16, 17, 20, 22, 24, 25, 26, 27, 30]. In this paper, we focus on two of the most fundamental
versions of the problem for convex polygons:

Problem 1. Given a convex k-gon P and a convex n-gon Q in R?, (i) find a congruent copy of P inside Q
(if it exists); or more generally, (ii) find the largest similar copy of P inside Q).

In a congruent copy, we allow translation and rotation; in a similar copy, we allow translation, rotation,
and scaling. Rotation is what makes the problem challenging, as the corresponding problem without rotation
can be solved in linear time by a simple reduction to linear programming in 3 variables [30].

There were 3 key prior papers on this problem:

1. In 1983, Chazelle [12] initiated the study of polygon containment problems and presented an O(kn?)-
time algorithm specifically for Problem 1(i). In particular, an entire section of his paper was devoted
to an O(n?)-time algorithm just for the k& = 3 (triangle) case.
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2. Sharir and Toledo [30] (preliminary version in SoCG’91) applied parametric search [23] to reduce
various versions of “extremal” polygon containment problems (about finding largest copies) to their
corresponding decision problems. In particular, they described an O(n? log? n)-time algorithm for
Problem 1(ii) in the k£ = 3 case.

3. In 1998, Agarwal, Amenta, and Sharir [1] studied Problem 1(ii) and obtained an O(lm2 log n)-time
algorithm. Their approach is to explore the entire solution space. More precisely, consider a standard
4-parameter representation of similarity transformations [7]: given (s,t,u,v) € R4, let Pstuv
R? — R2 be the similarity transformation (x,%) + (sz — ty + u,tx + sy + v), which has scaling
factor v/s2 + ¢2. The region

P ={(s,t,u,v) €ER*: @s;..(p) € Q for all vertexes p of P}

describes all feasible solutions and is an intersection of O(kn) halfspaces in R* (since @5 41, (p) is a
linear function in the 4 variables s, t, u, v for any fixed point p). The problem is to find a point in P
maximizing the convex function s24-¢? (the optimum must be located at a vertex). By standard results,
a 4-polytope with O(kn) facets has O(k?n?) combinatorial complexity (and can be constructed in
O(k*n?) time) [28]. Agarwal, Amenta, and Sharir improved the combinatorial bound to O(kn?) for
this particular polytope P, enabling them to derive an algorithm with a similar time bound.

Notice that all these previous algorithms have 2(n?) time complexity, even in the triangle (k = 3) case.
(Other quadratic algorithms for £ = 3 have been found, e.g., mostly recently by Lee, Eom, and Ahn [22].)
To explain why, Chazelle [12] mentioned that there are input convex polygons () for which the number
of different “stable solutions” is Q(n2) (Other authors made similar observations [22].) More generally,
Agarwal, Amenta, and Sharir [1] exhibited a construction of input convex polygons P and () for which the
polytope P has complexity Q(kn?), matching their combinatorial upper bound.

Although such combinatorial lower bound results do not technically rule out the possibility of faster
algorithms that find an optimal solution without generating the entire solution space, they indicate that
quadratic complexity is a natural barrier. In general, no techniques are known to maximize a convex function
in an intersection of halfspaces in constant dimensions with worst-case time better than constructing the
entire halfspace intersection.

What motivates us to revisit this topic is the similarity of the £ = 3 problem to the well-known 3SUM
problem (in the sense that the main case of the triangle problem is about finding a triple of vertices/edges of
@ in contact with the triangle P). Our initial thought is to apply the exciting recent advances for 3SUM and
related problems [5, 8, 11, 18, 19] to design decision trees with subquadratic height. This would potentially
lead to slightly subquadratic algorithms with running time of the form n?/ polylog n.

Although we believe this line of attack can indeed be applied to Problem 1 in the k¥ = 3 case, the
improvement in the time complexity would be tiny, and generalization to £ > 3 is unclear. Furthermore,
the usage of such heavy machinery might seem premature and unjustified since the ¥ = 3 problem has not
been shown to be 3SUM-hard. Barequet and Har-Peled [9] proved that Problem 1(i) for convex polygons is
3SUM-hard when k£ = n and so has a near-quadratic conditional lower bound, but for k& = n, the current
upper bound is cubic. More recently, Kiinnemann and Nusser [20] have obtained conditional lower bounds
for a number of other polygon containment problems, but not in the convex cases.

New results. In this paper, we not only truly break the quadratic barrier but also discover a near-linear,
O(npolylog n)-time algorithm for Problem 1(ii) in the & = 3 case! This represents a substantial im-
provement over the previous algorithms from multiple decades earlier, and directly addresses an open prob-
lem posed by Agarwal, Amenta, and Sharir [1] asking for an algorithm faster than ©(kn?) time. (We



cannot think of too many classical 2D problems in computational geometry of comparable stature where
quadratic/superquadratic time complexity is reduced to near-linear in a single swoop after a long gap. The
closest analog is perhaps Sharir’s breakthrough O(n polylogn)-time algorithm for the 2D Euclidean 2-
center problem [29] that improved a string of previous O(n? polylog n)-time algorithms.)

Furthermore, we generalize our approach and obtain an O(n!*¢)-time algorithm for Problem 1(ii) for
any constant k > 3, where € > 0 is an arbitrarily small constant. For non-constant k£ < n, the time bound
is O(ko(l/s)n”s) for any choice of (possibly non-constant) € > 0. (By choosing ¢ = /log k/logn, the
bound can be rewritten as n20(vV1egklogn) ) This beats the previous O (kn?) bound for all k < n® for some
concrete constant o > 0.

New approach. Although Problem 1(ii) reduces to Problem 1(i) by parametric search [23, 30] (if one
does not mind extra logarithmic factors), we actually find it more convenient to solve Problem 1(ii) directly
(i.e., find the largest copy). The optimal solution must belong to one of the following cases, as observed in
previous works (by simple direct arguments, or by recalling that the optimum corresponds to a vertex of the
4-polytope P):

« 2-Contact (i.e., 2-Anchor) Case: 2 distinct vertices of P are in contact with 9@, both of which are
at 2 vertices of (). These 2 vertices of P are called the 2 “anchor” vertices.

» 3-Contact (i.e., 1-Anchor) Case: 3 distinct vertices of P are in contact with 0(Q), one at a vertex of
and the other two on edges of Q. The vertex of P placed at a vertex of () is referred to as the “anchor”
vertex.

» 4-Contact (i.e., No-Anchor) Case: 4 distinct vertices of P are in contact with 0@, all on edges of ().

For k = 3, the main case is the 3-contact case, since it turns out that the 2-contact case can be solved
in a similar way (and the 4-contact case, of course, does not arise). The overall strategy is to divide into
sub-problems involving different “arcs” (i.e., contiguous pieces) of Q). Our key observation is that under
certain conditions about the slopes/angles of the input arcs, all 3-contact feasible solutions may be covered
by just a linear number of pairs of sub-edges, due to monotonicity arguments—this is despite the fact that the
total number of 3-contact solutions may be quadratic. In such scenarios, we can search for the best solution
by using standard geometric data structuring techniques (concerning intersections of ellipses, as it turns
out). A simple binary divide-and-conquer reduces to instances where such conditions are met, resulting in
an O(n polylog n)-time algorithm.

For k > 3, extending the 3-contact algorithm requires more technical effort (and a slightly increased
running time), but what appears even more challenging is the 4-contact case. The lack of anchor vertices
seems to make everything more complicated (including the needed geometric data structures). However,
with a different strategy, we show surprisingly that the 4-contact case is easier in the sense that the total
number of 4-contact feasible solutions is actually near-linear in n, namely, O(k*n polylogn) (assuming
general position input). Thus, we can afford to enumerate them all! We prove this combinatorial bound by
running our £ = 3 algorithm on different triples of vertices of P and then piecing information together via
further interesting monotonicity arguments.

To see how counterintuitive our near-linear combinatorial bound for 4-contact solutions is, recall that
Agarwal, Amenta, and Sharir [1] proved an Q(kn?) lower bound on the size of the solution space. They
noted that their construction only lower-bounded the number of 3-contact solutions, and at the end of their
paper, they asked for another construction with Q(kn?) 4-contact solutions. Our proof answers their question
in the negative.
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Figure 1: The construction from Lemma 1. Each dashed triangle is a similar copy of Apipops, and the
purple arc is f,, (I's). (We draw I'y and I's instead of ﬁ and ﬁ for visual clarity.)

Preliminaries. The angle of a line p1p3, denoted Op.po» refers to the angle measured counterclockwise
(ccw) from the z-axis to p1p5. (Note that 6,,,, € [0,7) and 6,,,, = 0,,p,.) Anarc T of a convex polygon
Q refers to a contiguous portion of the boundary () whose supporting lines have angles in an interval of
length < 7/3. Let A(T") (the angle range of T') denote the interval containing the angles of all supporting
lines of I'. We allow A(T") to wrap around (mod 7), so [a, b] indicates [a, ) U [0, 0] if @ > b. We assume
that no polygons contain parallel adjacent edges, as any such edges can be merged.

We assume that all polygon boundaries and their edges/arcs are oriented in ccw order. For each edge e
of @, let ¢’ denote its extension as an oriented line (with @ on its “left” side). For an arc I, let ? denote
an extension of I where the first and last edge are extended to rays (again oriented with () on its “left” side).
We use O notation to hide polylog n factors.

2 3-Contact (1-Anchor) Case

In this section, we solve the 3-contact case, where there is 1 anchor vertex p; of P. We will first present
an algorithm for £ = 3 (when P is a triangle), and then we discuss how to generalize it for £ > 3. We
will divide into sub-problems operating on different arcs. For k = 3, the goal is to find a placement where
the anchor p; is at a vertex on an arc I';, and the two other vertices p» and p3 of P are on edges of arcs 'y
and I's.

2.1 An Easy “Disjoint” Case for &k = 3

We begin with an easy lemma to handle the case when the angle ranges for I's and I'3, after suitable rotational
shifts, are disjoint.

Lemma 1. Let Apipaps be a triangle. Let I'1, 2, I's be arcs of a convex n-gon Q, such that

* A(T'2) + 0p,ps and A(T'3) + 6y, p, are disjoint (mod ).
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Figure 2: (Left) Monotonically increasing pairing. (Right) Monotonically decreasing pairing.

In O(|T'1|) time, we can compute, for each vertex vy of 'y, a point X (v1) on T'y and a sub-arc I(vy) of Ta,
satisfying the following property:'

For every similarity transformation ¢ that has p(p1) being a vertex vy of I'1 and p(p2) on T's,
we have: (i) p(ps) is on s iff o(p2) = X (v1), and (ii) ©(ps3) is left ofﬁ),> iff o(p2) is on I(v1).

Proof. Let f,,(¢) be the point ¢(p2) for the unique similarity transformation ¢ with ¢(p;) = v; and
©(p3) = C. In other words, f,, is a similarity transformation that keeps v fixed and sends p3 to po, i.e., we
rotate around v; by an angle 6, ,, — 0, p; +{0, £7}, and scale by factor ||p1 —p2||/||p1 —ps3 || Thus, f,, (I's)
is a similar copy of I's. The supporting lines for f,, (I's) have angles in A(I's) + 6p,p, — Op,ps + {0, £7},

which by the assumption is disjoint from A(I's) (mod 7). Thus,? f,, (I'3) and I'y intersect once, at a unique
point v, which we define as X (v;), and which can be computed by binary search (see Figure 1). We can
define I(v1) to be a prefix or suffix of I'y delimited by X (v1). O

Thus, to solve the 3-contact problem for £ = 3, we can just examine the unique similarity transformation
¢ with ¢(p1) = v1 and p(p2) = X (v1) for each vertex vy of I'y, in near-linear total time (assuming the
disjointness condition is met). It suffices to consider only this single similarity transformation for each
v1 € I'1, since this is the only possible 3-contact placement.

2.2 A “Double-Disjoint” Case for k = 3

Next, we address a different case where the angle ranges for I'; and I'y are disjoint and the angle ranges for
I'y and I's are disjoint, after appropriate rotational shifts. The following lemma reveals a crucial monotonic-
ity phenomenon that we will repeatedly exploit.

To state the lemma, we first introduce some definitions: For two arcs I'; and I's, a pairing M between 'y
and I'y refers to a subdivision of the (straight) edges of I'; and I's into sub-edges, together with a bijective
mapping between the sub-edges of I'; and the sub-edges of I's. For a sub-edge e; of I'1, we use M (e1) to
denote e;1’s corresponding sub-edge in I'y; similarly, for a sub-edge e of 'y, we use M (e3) to denote eo’s
corresponding sub-edge in I';. We say that the pairing M is monotonically increasing (resp. decreasing) if
M (eq) always advances in ccw (resp. cw) order in I's as e; advances in ccw order in I'; (see Figure 2).

'We allow X (v1) to be undefined and I (v;) to be empty.
“This is analogous to the fact that if f and g are functions over R where the ranges of their derivatives f’ and ¢’ are contained
in two disjoint closed intervals, then f and g intersect once.



Lemma 2. (Pairing Lemma) Let Ap1paops be a triangle. Let I'1,'s, '3 be arcs of a convex n-gon Q, such
that

1. A(T'y) + 0pyp, and A(T'2) + O,y are disjoint (mod ), and

2P3

2. AM(I'y) + Opypy and A(I'3) + 0y, 4, are disjoint (mod ).

In 6(n) time, we can compute a (monotonically increasing or decreasing) pairing M between I's and '3
with O(n) sub-edges, satisfying the following property:

For every similarity transformation o that has p(p1) on I'1 and p(p2) on a sub-edge es of T's,

we have: (i) p(p3) is on T's iff o(p3) is on M (e2); and (ii) o (p3) is left of s iff p(p3) is left of
M(eg .

Proof. We match a point u on E) with a point v on ﬁ iff there exists a similarity transformation ¢ with
¢(p2) = p, p(p1) on I'1, and wge)) =v.

Observe that a point ¢ on Iy matches a unique point v on ﬁ To see this, let f,(¢) be the point
¢(p3) for the unique similarity transformation ¢ with ¢(p2) = p and ¢(p1) = (. In other words, f,, is
the similarity transformation that keeps p fixed and sends p; to ps, i.e., we rotate around p by an angle
Opaps — Opop, + {0, £}, and scale by factor ||p3 — pol|/||p1 — p2|. Thus, f,,(I'1) is a similar copy of I'y.
The supporting lines for f,,(I'1) have angles in A(I'1) + 0p,p; — Opop, + {0, £7}, which by assumption 2
is disjoint from A(I'3) (mod 7). Thus, f,(I'1) and ﬁ; intersect once, namely, at the unique point v. A
symmetric argument (swapping subscripts 2 and 3) shows that a point v on ﬁ) matches a unique point p on

2, this time, by assumption 1.

Consequently,® as ; moves along ?), its matching point ¥ moves monotonically along ﬁ We break
an edge at the points p on I'y that match the vertices of I'3, which can be found by n binary searches.
Similarly, we break an edge at the points v on I's that match the vertices of '3, which can be found by
n binary searches. As a result, all points & on a common sub-edge es of ﬁ are matched with points on a
common sub-edge of I'3, which we define as M (e2). For all these points 1, we have f,(I'1 ) intersecting this

sub-edge M (ez) of E) Also, forall ¢ € T'y, f,,(C) is left of ﬁ) iff f,,(C) is left of M(eﬂ (see Figure 3). [J

In the above, we did not claim a monotone pairing between I'y and I';, nor between I'; and I's. Oth-
erwise, we would get a linear upper bound on the number of 3-contact solutions in this case, which by our
subsequent divide-and-conquer algorithm would yield an O(nlogn) bound on the number of 3-contact so-
lutions in general for k£ = 3, contradicting the known quadratic lower bound [1, 22]! This contradiction does
not arise since in the worst case, each matched pair from I'; and I's could admit legal 3-contact placements
with every vertex of I';.

With the Pairing Lemma at hand, we can efficiently solve the problem when the two disjointness condi-
tions are met. Specifically, we set up a range searching sub-problem between the O(n) pairs of sub-edges
in 'y and I'3 (the “data set”), and the O(n) vertices of I'; (the “query points”). This range searching sub-
problem turns out to be near-linear-time solvable:

Lemma 3. Let Apipops be a triangle. Let I'1, T2, I's be arcs of a convex n-gon Q, such that

1. A(T1) + Op,p, and A(T'2) + 0y, p, are disjoint (mod =), and

3This is analogous to the fact that a continuous bijective function over R must be monotone.
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Figure 3: An example of a pairing. Each dashed triangle is a similar copy of Ap1paps.

2. A(T'y) + Opypy and A(I'3) + 6y, 4, are disjoint (mod ).

In 5(71) time, we can find a similarity transformation p, maximizing the scaling factor, such that p(p1) is a
vertex of T'1, p(p2) is on T'a, and p(p3) is on T's.

Proof. Given (s,t,u,v) € R}, let @s 44 : R? — R? be the similarity transformation (x,y) — (sz — ty +
u, tx + sy + v) (which has scaling factor v/s2 + ¢2).
Apply Lemma 2 to get a pairing M between I's and I's. For each sub-edge e2 of I'2, define

Ple2) = {(s,t,u,v) ER*: g4 u0(p2)ison ey, and g y0(p3) is on M(e)}
Rpy(e2) = {@stuv(pr) : (s,t,u,v) € Pleg) and s + 12 > p?}.

Observe that P(ey) is a 2-dimensional convex polygon in R* with O(1) edges (since s tuw(p2) and
s tuw(p3) are linear in the variables s,¢,u, v, and the 2 point-on-line-segment conditions yield 2 lin-
ear equality constraints and 4 linear inequality constraints in these 4 variables). Furthermore, R,(e2)
is a region in R? which is the intersection of a convex O(1)-gon with the exterior of an ellipse (since
(s,t,u,v) = ©stu0(p1) is a linear projection from R* to R?, and the projection of a 2-dimensional slice
of the cylinder {(s,t,u,v) : 82 +t? = p?} gives an ellipse).

The decision problem (deciding whether the maximum scaling factor is at least a given value p) reduces
to finding a pair of vertex v; of I'; and sub-edge e of I'y, such that v; € Rp(eg). To this end, we will build
a data structure to store the O(n) regions R,(e2) over all ez so that we can quickly decide whether the query
point vy stabs (i.e., is contained in) some region R,(e2).

We use standard techniques in geometric data structures. First, we consider the range stabbing problem
for exteriors of ellipses: build a data structure for a set of O(n) ellipses in R?, so that we can quickly decide
whether a query point stabs the exterior of some ellipse, i.e., whether a query point is outside the intersection
of the interiors of the ellipses. The intersection of the interiors of O(n) ellipses (which is a single cell in
the arrangement) has almost linear combinatorial complexity by standard results on Davenport-Schinzel
sequences [4], and can be constructed in Oin) time, e.g., by divide-and-conquer. Thus, this problem can be
solved with O(n) preprocessing time and O(1) query time.

Next, we consider range stabbing for our regions R,(e2). As each region is the intersection of a convex



O(1)-gon with the exterior of an ellipse, we can use standard multi-level data structuring techniques* to
handle the extra O(1) halfplane constraints. Generally, halfplane range searching cannot be solved with
near-linear preprocessing time and polylogarithmic query time. But in our application, all query points vy
lie on a convex chain I';. The constraint that such a query point vy lies inside a halfplane is equivalent to
the condition that v; lies inside one of O(1) 1D intervals, assuming that the vertices of I'; are stored in a
sorted array. We can therefore use 1D range trees [3, 21, 28] to handle the halfplane constraints, with only
a logarithmic factor increase in the preprocessing and query time.

The optimization problem reduces to the decision problem by a standard application of parametric
search [23]. (The application requires a parallelization of the decision algorithm: the preprocessing part,
namely, the construction of the intersection of interiors of ellipses, is straightforwardly parallelizable by
divide-and-conquer; the O(n) queries can trivially be answered in parallel.) Parametric search increases
the running time by a polylogarithmic factor. Alternatively, we can apply Chan’s randomized optimization
technique [10], which avoids extra factors. (The application here is straightforward, since the problem can
be viewed as a generalized “closest-pair-type” problem [10] between two sets of objects.) O

2.3 Simple Divide-and-Conquer Algorithm for £ = 3

We now have all the ingredients needed to put together a simple recursive algorithm to solve the k = 3
problem in the 3-contact case:

Theorem 4. Given a triangle P and a convex n-gon @, in 6(71) time, we can find the largest similar copy
of P contained in Q) that has 1 vertex of P at a vertex of () and the 2 other vertices of P on edges of Q.

Proof. Let P = Ap1paps. Arbitrarily divide 0@ into O(1) arcs, and let 'y, 'y, I's be 3 such arcs (allowing
duplicates). We will try all O(1) choices of I';, ', I's.

Let S be an interval. Let I'1 (.S) (resp. ['2(S) and I'3(.S)) be the sub-arc of 'y (resp. I'; and I'3) consisting
of all edges whose supporting lines have angles in S’ —0,,,, (resp. S —0p,,, and S —0,,,,) (mod 7). We will
recursively solve the following problem: find a similarity transformation ¢, maximizing the scaling factor,
such that ¢(py) is a vertex vy of I'1(S), p(p2) is on I'2(.S), and ¢(p3) is on I'3(.S).

As a first step, we remove edges not participating in I'1 (S), I'2(S), I'3(S), so that the number of edges
in Q is reduced to m(S) := |T'1(S)| + [T'2(S)| + |T'3(S)|. Partition S into sub-intervals S~ and S™ (as
shown in Figure 4) so that m(S~), m(S™) = m(S)/2+O(1). We try various possibilities and take the best
solution found:

e Case 1: ¢(p1)isonT'1(S7), ¢(p2) ison 'y(S™), and p(p3) is on I'3(S™). We can recursively solve
the problem for S—.

o Case 2: p(p1)isonT1(ST), p(p2) is on T'y(ST), and ¢(ps3) is on T'5(ST). We can recursively solve
the problem for S™.

e Case 3: o(p1) is on T'1(S7), ¢(p2) is on T'y(S™), and ¢(ps) is on I'3(ST). Since A(T1(S7)) +
Opyps © S~ and A(T'2(ST)) + 6p,p, € ST are disjoint (mod 7), and A(T'1(S7)) + Opyps € S~ and
A(T3(ST)) + 6p,p, C ST are disjoint (mod 7), we can solve this sub-problem by Lemmas 2-3 in

O(m(S)) time.

“Multi-level data structures are for solving range-searching-related problems, where in a query, we seek an object satisfying a
conjunction of multiple (O(1)) constraints. The idea is to take a tree structure for solving the problem with one constraint, and have
each node of the tree recursively store structures for solving the problem with the remaining constraints. See a general survey on
range searching [3] for more details.



Figure 4: Partitioning each I';(S) into T';(S*) and T';(S™), for i € {1,2, 3}.

e Case 4: o(p1) is on I'1(S7), p(p2) is on T'2(S7), and ¢(p3) is on ['3(ST). Since A(T'2(S7)) +
Opips © S~ and A(T'3(S™)) + 6,,p, € ST are disjoint (mod ), we can solve this sub-problem
by Lemma 1 in O(m(S)) time. Namely, for each vertex vy of I';(S™), we just check the unique
similarity transformation ¢ with p(p1) = vy and ¢(p2) = X (v1).

All remaining cases are symmetric to Cases 3 and 4 (swapping subscripts 2 and 3 and/or S~ and S™).
Letting m = m/(S), we obtain the following recurrence for the running time:

T(m) < 2T(m/2+ O(1)) 4+ O(m).
The recurrence solves to T'(m) = O(m). O

It is not difficult to modify the algorithm to also solve the 2-contact (2-anchor) case, as shown in Ap-
pendix A. This gives a complete O(n) time algorithm for & = 3.

2.4 Generalizing to & > 3

With further effort, we can also solve the problem for general % in the 3-contact case. Say p; is the anchor
vertex, and ps and p3 are the other two vertices of P in contact with ). The idea is to just apply the Pairing
Lemma to the triangles Ap1pop; for all other vertices p; of P, assuming appropriate disjointness conditions.
We need to extend the problem to equip each vertex v; of 'y with a sub-arc I(v1) of I'y which restricts
the placement of p. The resulting range searching sub-problems can be solved in a manner similar to the
triangle case, which we show in the following extension of Lemma 3:

Lemma 5. Let P be a k-gon with vertices p1, . . ., py (not necessarily in sorted order). Let I'y,... T} be
arcs of a convex n-gon Q, such that

1. foreachi € {3,...,k}, A(T'1) + 0p,p, and A(T'2) + 6y, p, are disjoint (mod ), and

2. foreachi e {3,...,k}, A(T'1) + Opop, and A(L';) + 0, p, are disjoint (mod ).

For each vertex v1 of I'1, we are given a sub-arc 1(v1) of I'a. In 6(1{:271) time, we can find a similarity
transformation , maximizing the scaling factor, such that 90(%) is avertex vy of T'1, p(p2) ison I(vy) C Ty,

©(p3) ison T's, and for each i € {4, ..., k}, p(pi) is left of

7.



Proof. We generalize the proof of Lemma 3. Foreachi € {3,...,k}, weapply Lemma 1 to Apipap;, I'1, T, T,
to obtain a pairing M; between I's and T';. We then overlay the O(k) subdivisions of I's. In doing so, the
mapping M; from sub-edges of I's to sub-edges of I'; may not be bijective, but this is fine. The number of
sub-edges is n’ = O(kn). We further subdivide I'; at the endpoints of the sub-arcs I(v1) for every vertex

v1 of I'1. As a consequence, the following property holds:

For every similarity transformation ¢ that has ¢(p;) being a vertex v1 of I'; and ¢(p2) on
a sub-edge ey of I'y, we have: (i) p(ps) is on I's iff p(ps3) is on Mj3(ez), and (ii) for each
ie{4,...,k}, p(p;) is left of ﬁ iff (p;) is left of M;(e2).

For each sub-edge es of I', define

Ples) = {(s,t,u,v) € R*: Vs tuw(P2) 18 on ez, and Qg ¢ 4, »(p3) is on Mz(ez), and

Vs tuw (i) 1s left of M;(es ) foralli € {4,...,k}}
Ry(e2) = {@staun(P1) : (s,t,u,0) € P(ez) and s* + > > p?}.

Similar to before, P(e2) is a 2-dimensional polygon in R%, with O(k) edges, and R,(e2) is a region in R?
which is the intersection of a convex O(k)-gon with the exterior of an ellipse.

The decision problem reduces to finding a pair of vertex v; of I'; and sub-edge e; of I'9, such that
v1 € Ry(e2) and ey is in I(v1). To this end, we will build a data structure to store the O(n') regions R,(e2)
over all e so that, given a query point v; and a query sub-arc I, we can quickly decide whether the query
point v; stabs some region R,(e2) with es in the query sub-arc 1.

Each such region can be decomposed into O(k) sub-regions, where each sub-region is the intersection
of the exterior of an ellipse with O(1) halfplanes (the preprocessing time is increased by an O(k) factor). As
before, we can use ellipse range stabbing combined with multi-level data structuring techniques (1D range
tree). The constraint that e is in the query sub-arc I (which can be represented as a 1D interval) can again
be handled by multi-leveling, with another level of 1D range trees. The preprocessing time is O(kn') and
the query time is O(1). The optimization problem reduces to the decision problem by standard parametric
search (or randomized search) as before. O]

We now give a slightly more intricate divide-and-conquer algorithm for general k:

Theorem 6. Given a k-gon P and a convex n-gon Q) (where k < n), we can find the largest similar copy
of P contained in Q that has 1 vertex of P at a vertex of Q) and the 2 other vertices of P on 2 edges of Q), in
O (KO )n1+e) time for any € > 0.

Proof. Suppose the vertices of P are py, . . ., pr (not necessarily in sorted order). Divide 9@ into O(1) arcs,
and let I'1,I's, I's be 3 such arcs (allowing duplicates). We will try all choices for p1, p2, p3 and I'1, ', I's;
this increases the final running time by a factor of O(k?).

Let I'4, ...,y be arcs of J(), so that a similarity transformation ¢ has ¢(P) inside Q iff ¢ (p;) is left
of ﬁ foralli € {1,...k}. This is w.l.o.g. since we can just make O(1) copies of py, .. ., pr and associate
each copy with an arc of 0(Q), while increasing k by a constant factor. Note that duplicate arcs are allowed,
and some of these arcs may even be the same as I'y, I'g, or I's.

We will describe a recursive algorithm, where the input consists of k arcs (I'y, ..., ;) together with a
sub-arc I(v1) C I'y for every vertex vy of I';. (For the initial problem, I (v;) will be all of I'y for all v;.) Our
algorithm will find a similarity transformation ¢, maximizing the scaling factor, such that p(p;) is a vertex

v of T'y, @(p2) ison I(v1), p(p3) isonT's, and for all i € {4,...,k}, ¢(p;) is left of ﬁ
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(T'3\clipz(T's,72)) "
clipz(I'3,72)

\(F3\Clip3(r3,72))_

X(v)
Y2

X'(v)

/p

1
Vl

Figure 5: Example where both sub-arcs constituting I's \ clip5(I'3, v2) (denoted (I's \ clip3(I's,72))* and
(I'3\ clip3(I's, y2)) 7)) have a similarity transformation that places p; at a vertex v; of I'1, p2 on 2, and p3 on
I's \ clip3(T's,72). X (v1) and X~ (vq) can be found rapidly via Lemma 1 since (A(T's \ clip5(T's, 72)) +
Op1ps) N (A(72) + Opyps) = 0 (mod 7). Dashed triangles are similar to Ap;paps.

To this end, let clip,(I';, I'2) be the sub-arc of I'; consisting of all edges of I'; whose supporting lines
have angles in A(I'2) + 0,,p, — Op,p, (mod 7). Let m(I'y) = Zf:?) |clip, (L', I'2)| 4+ |2|. Partition I'y
into 7 sub-arcs such that each sub-arc «y; has [I';|/r & O(1) edges. Partition I's into 7 sub-arcs such that
each sub-arc 75 has m(v2) = m(T's)/r &+ O(k). (This is possible because for a single edge e2 of 72,
m(e2) < O(k).)

By Lemma 1, we first enumerate all similarity transformations ¢ with ¢(p;1) on a vertex of 'y, ¢(p2)
on some sub-arc 72, and ¢ (p3) on each of the O(1) contiguous pieces of I's \ clip;(I'3, 72); the disjointness
condition in Lemma 1 is satisfied by our definition of clip; (see Figure 5). This gives O(|I'1|) transformations
to check per 2, which requires O(|T'1| - k) time over all v, (checking the feasibility of one transformation
takes O(k log n) time, since we can tell whether any given point is inside ) via binary search [28]).

It remains to search for transformations ¢ such that ¢(p;) is on a vertex of some sub-arc -1, ¢(p2) is on
some sub-arc 72, and ¢(ps3) is on clips(I's, 72). There are two possibilities:

e Case 1: Foreachi € {3,...,k}, A(m1) + Op,p;, and A(v2) + 60,,p, are disjoint (mod 7). For each
i €{3,...,k}, we apply Lemma 1 to (71, 72,7’) for each of the O(1) contiguous pieces 7' of T'; \
clip;(T;, v2). For each vertex vy of 71, let I’(v1) be the intersection of all sub-arcs I (v; ) produced dur-
ing these applications of Lemma 1. We now use Lemma 5 on (1, ¥z, clip5(I's, ¥2), . . . , clip, (I'x, 72))-
The sub-arc we pass to Lemma 5 for each vertex vy of 1 is I(v1) N I'(v1). The total time for all in-
stances of this case is O(r2 - k2(|T'; | /r +m(L2) /7 + k)) (since we can operate on a truncated version
of ) consisting of just the arcs/sub-arcs specified).

 Case 2: For some i € {3,...,k}, A(y1) + Op,p, and A(y2) + 6,,p, intersect (mod 7). Here, we
recursively solve the problem for (71, vz, clips(I's, ¥2), ..., clip,(I'x,v2)). The sub-arc we pass to
the recursive call for each vertex vy of vy is I(v1) NI'(v1), where I’ (vy) is defined as in Case 1. There
are O(r) pairs (7y1,72) satisfying this condition per 4, since when we overlay two subdivisions of R
into O(r) intervals, the number of intersecting pairs of intervals is O(r). Thus, the total number of
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recursive calls for this case is O(kr). The time to produce the sub-problems is subsumed by the time
bound in Case 1.

We take the best solution found in all cases. Letting m = |I'1| + m(I'2), we obtain the following recurrence
for the running time:

T(m) < O(kr)T(/r + O(k)) + O(k*r2(in/r + k).

As base case, if m < kr, we use the naive bound T'(m) = O(k*m?) by constructing the space of all
feasible placements [1]. The recurrence solves to T'(m) < O(k)'°&-™ . (kr)Mm. Choosing 7 = m®
yields T'(m) < k9(/9)m1+0(e) (We can adjust e by a constant factor.) O

Note that our earlier divide-and-conquer approach in Theorem 4 (which yielded a slightly better
O(n polylog n) running time) does not work here. This is because we need to ensure disjointness conditions
for multiple triangles Apip2p; with different rotational shifts, meaning that we cannot use one common
interval S to represent the k arcs in a sub-problem.

It is not difficult to modify the algorithm to solve the 2-contact (2-anchor) case, as shown in Appendix A.

Extension to the 4-contact case is more challenging, however. Without an anchor vertex, Lemma 1 is
no longer applicable, so we cannot clip arcs as in Theorem 6’s proof. With some care, we could still use
the Pairing Lemma to solve the problem, but we would need to pair some arcs I'; with I's and some arcs I';
with another arc such as I';. As a result, the range searching sub-problems become more complex, and the
running time would be much larger (though subquadratic). In the next section, we suggest a better, more
elegant way to solve the 4-contact case in near-linear time, without needing range searching at all!

3 4-Contact (No-Anchor) Case

To solve the 4-contact case, we will actually show that the number of solutions (not necessarily optimal nor
locally optimal) is actually near-linear in n, assuming general position input.> This allows us to focus on
the problem of enumerating all 4-contact placements (as we can check their feasibility rapidly). For the
enumeration problem, we can immediately reduce the general k case to the k = 4 case.

3.1 Covering All 3-Contact Solutions by Pairs and Triples for £ = 3

To solve the enumeration problem for k = 4, we will actually revisit the £ = 3 case. Although the number
of 3-contact solutions may be quadratic in the worst case, we observe that our divide-and-conquer algorithm
from Theorem 4 can generate a near-linear number of pairs that “cover” all 3-contact solutions. To be
precise, we make the following definitions: We say that (g1, g2, g3) is covered by a list L of triples of edges
if ¢1 is on ey, g2 is on ey, and g3 is on e3 for some (e1,e2,e3) € L. We say that (q1,g2) is covered by a
pairing M of sub-edges if ¢ is on e; and ¢ is on M (e;) for some sub-edge e;.

We begin with a variant of the Pairing Lemma that guarantees monotonically increasing pairings, which
will be crucial later:

Lemma 7. (Modified Pairing Lemma) Let Apipaps be a triangle. Let I'1,'s, '3 be arcs of a convex n-gon
Q, such that

3In degenerate scenarios, e.g., when P and Q) are squares, there could technically be an infinite number of 4-contact placements;
in such cases, we may apply small perturbations, or instead count the number of distinct quadruples of edges of () corresponding
to such placements.
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1. A(T'1) + 0pyp, and A(T'2) + 0y, p, are disjoint (mod ), and

2. AT1) + Opypy and A(T'3) + 0y, p, are disjoint (mod ).

In 6(n) time, we can compute a monotonically increasing pairing M between 'y and T's with O(n) sub-
edges, or a list L of O(n) triples of edges, satisfying the following property:

For every similarity transformation o that has ¢(p1) on T'y and p(p2) on T's and p(ps3) on T's,
we have (p(p2), p(p3)) covered by M or (p(p1), p(p2), p(p3)) covered by L.

Before proving Lemma 7, we first analyze an easy special case:

Lemma 8. Let Apipops be a triangle. Let I'1, s, I's be arcs of a convex n-gon Q, such that

1. A(T'y) + 0pyp, and A(T'2) + 6y, are disjoint (mod ),
2. A(T'1) + 6pypy and A(T'3) + 6, p, are disjoint (mod ),
3. M) + 6p,py and A(I'3) + 0, p, are disjoint (mod ).

In O(n) time, we can compute a list L of O(n) triples of edges, satisfying the following property:

For every similarity transformation o that has ¢(p1) on T'1, ¢(p2) on T's, and p(ps) on I's, we
have (p(p1), ¢(p2), ¢(p3)) covered by L.

Proof. We apply Lemma 2 twice, to obtain a pairing M2 between I'; and I's and a pairing Mo3 between
I’y and I's. We overlay the 2 subdivisions along I's. We can then append the triples (Mj2(e2), €2, Mas(e2))
over all sub-edges e3 of I's to L. O

To prove Lemma 7, we show that any monotonically decreasing pairing actually implies a division of
the arcs into sub-problems that can be processed using Lemma 8:

Proof. We apply Lemma 2 to obtain a pairing M, which already satisfies the lemma if M is monotonically
increasing. We now describe how to convert M to a list L of triples if it is monotonically decreasing.

Let I, (¢) (resp. I'y (t)) be the sub-arc of I'y consisting of all edges whose supporting lines’ angles are
in the interval (t — 6p,p, — 7/2, t — 0p,p,] (mod 7) (resp. [t — Op,ps,t — Op ps + 7/2] (mod 7). T'5 (1)
and T'J (t) may share at most one edge. The intervals allow wrap-around, so (a, b] indicates (a, ) U [0, ]
if @ > b. Let I'; (t) and I'J (¢) be defined similarly. Let go(t) denote the dividing point (or shared edge)
between I'; (t) and 'y (t), and let g3(t) denote the dividing point (or shared edge) between I'; () and
'3 (t). As t increases, both g2(t) and g3(t) are monotonically increasing, i.e., move in ccw order. Since M
is monotonically decreasing, we can find (via binary search) a value of ¢ such that a sub-edge incident to
(or contained within) g (%) is paired with a sub-edge incident to (or contained within) g3(¢). Let us fix this
value of £.

As long as at least one of g2 (t) or g3() is not an edge, we have that A(T'; (¢)) + 6,5 and A(T'5 (2)) +
Op,p, are disjoint (mod ). In this case, we can apply Lemma 8 to (I'1, T (¢),I'3 (¢)) to get O(n) triples.
Similarly, we can apply Lemma 8 to (I'1, '3 (¢), 5 (¢)) to get O(n) triples. On the other hand, in M, there
are no pairs of sub-edges in I'; (¢) with sub-edges in I'; (t), nor pairs of sub-edge in I'j (¢) with sub-edges
in Ty (¢).

If g2(t) and g3(t) are both edges, then there exists exactly one sub-edge es of ¢o(t) paired with a sub-
edge e3 of ¢3(t). We enumerate all O(n) triples of the form (e1, g2(t), ¢3(¢)) and append these to L. Then,
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we apply Lemma 8 to (I'1,T5 () \ e2, T'5 (¢) \ e3) and (T'1,T'5 (¢) \ e2, 5 (¢) \ e3) as before. Note that one
ormore of I'; () \ e2, I'3 (£) \ €2, T'5 () \ es, or I'3 (¢) \ e3 might consist of two contiguous pieces instead
of one; this can be handled by applying Lemma 8 to all O(1) combinations of contiguous pieces. O

By adapting our & = 3 algorithm, we can cover all 3-contact solutions by O(logn) monotonically
increasing pairings, together with an extra set of O(nlogn) triples:

Theorem 9. Let Apipaps be a triangle. Let I'1,1's, '3 be arcs of a convex n-gon Q. In 6(71) time, we
can compute a collection M of O(logn) monotonically increasing pairings between 'y and T, between
Iy and T's, and between Iy and I's, each with O(n) sub-edges, and a list L of O(nlogn) triples of edges,
satisfying the following property:

For every similarity transformation ¢ that has ¢(p1) on I'y and p(p2) on T's and p(ps3) on T's,
we have (p(p1), ¢ (p2)) or (¢(p2), ¢(p3)) or (#(p1), ¢(p3)) covered by some pairing in M, or
(#(p1); #(p2); p(p3)) covered by L.

Proof. We modify the divide-and-conquer algorithm in the proof of Theorem 4. Let S be an interval. Define
I'1(5),T2(S),'3(.S) as before. We will recursively solve the problem for I' (S), I'2(.S), I'3(S).

As a first step, we remove edges not participating in I'1(S), I'2(S), I's(.S), so that the number of edges
in Q reduced to m(S) := |['1(S)| + |T'2(S)| + |T'3(.9)|. Divide S into two disjoint sub-intervals S~ and S™
so that m(S~), m(S™) = m(S)/2 £ O(1). We consider various possibilities:

» Case 1: ¢(p1)isonI'1(S7), p(p2) ison I'a(S7), and ¢(ps3) is on I'3(.S™). We can recursively solve
the problem for S—.

o Case 2: ¢(p1)ison T (ST), p(p2) is on T'y(ST), and ¢(ps3) is on T'5(ST). We can recursively solve
the problem for S.

e Case 3: ¢(p1) ison I'1(S7), ¢(p2) is on T'(ST), and ¢(p3) is on I'3(ST). Since A(T'1(S7)) +
Opops € S and A(T2(ST)) + Op,p, € ST are disjoint, and A(T1(S7)) + p,p, € S~ and
A(T3(ST)) + Op,p, € ST are disjoint (mod 7), we can solve the problem by Lemma 7 in O(m(S))
time.

All remaining cases are symmetric to Case 3. (The previous Case 4 is now symmetric to Case 3, since p; is
no longer treated as a special anchor vertex.)

A pairing between I'1(S™) and T'5(S™) and a pairing between I'1(ST) and I'y(S™) produced by the
recursive calls in Cases 1 and 2 can be joined into one pairing while remaining monotonically increasing,
since 'y (S™) precedes I'1(S™) and I'y(S™) precedes I'2(S™) in ccw order. We can join the pairings for
Iy, '3 and I', I'3 similarly. (And we can trivially union the lists of triples together.)

This yields a total of O(logn) pairings each with O(n) sub-edges, plus an extra list of O(nlogn)
triples. O

3.2 Enumerating All 4-Contact Solutions for k£ = 4

To solve the enumeration problem for £ = 4, we claim that we do not need any further ingredients! We
can just run our k£ = 3 algorithm for each of the 4 triangles from the input 4-gon and then piece the outputs
together in a careful way.
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Lemma 10. Let p1popspy be a 4-gon and Q) be a convex n-gon in general position. Given 3 edges eq, €3, e3
of Q, there are only O(1) similarity transformations @ with ¢(p1) on e1, ©(p2) on e, p(p3) on es, and
©(pa) on 0Q), and they can be computed in O(logn) time.

Proof. Let s ¢4, be as before. Define

L=A{(s,t,u,v) € R* : Os.tuv(P1) 18 0N €1, Ps ¢ yv(p2) is ON €2, and g ¢ 4 (p3) is on ez }.

Then L is a line segment in R* (since there are 3 linear equality constraints and 6 inequality constraints in
the variables s,t,u,v). Thus, £’ = {¢stuw(pa) : (5,t,u,v) € L} is a line segment in R?. The edges we
want correspond to intersections of £ with Q. There are at most 2 such intersections, and they can be
found via binary search [28]. O]

Theorem 11. Let P be a 4-gon with vertices p1,p2, p3, p4 and Q) be a convex n-gon in general position.
There are at most O(n log?® n) similarity transformations ¢ such that (p1), ¢(p2), ¢(p3), p(pa) are on 9Q,
and they can be enumerated in O(n) time.

Proof. Divide 0Q) into O(1) arcs, and let I', ..., 'y be 4 such arcs of Q). (We will try all O(1) choices for
I'y,...,T4.) We apply Theorem 9 to the 4 triangles Apipaps, Ap1papa, Ap1psps, and Apapspy, to get a
combined collection M of O(logn) monotonically increasing pairings and a combined list L of triples.

We consider various possibilities (we will try them all and return the union of the outputs). If (¢(p1), ¢(p2),
©(p3)), (o(p1), e(p2), 9(p4)) (0(p1), @(p3), p(pa)), or ((p2), v(p3), ¢ (pa)) is covered by L, we can ex-
amine each of the O(n logn) triples in L, and use Lemma 10 to generate O(1) transformations ¢ per triple,
in O(n) time.

Otherwise, define a small graph G, with vertices {1,2, 3,4}, where ij is an edge iff (¢(p;), ¢(p;)) is
covered by a pairing in M. We know that each of triple of vertices contains an edge in G,. It is easy to see
(from a short case analysis) that G, must have > 2 edges.

* Case 1: G, contains 2 adjacent edges, w.1.0.g., 12 and 23. Then (¢(p1), ¢ (p2)) is covered by a pairing
Mis € M between I'y and I'g, and (o(p2), ¢(ps3)) is covered by a pairing Mg € M between I'y
and I's. We overlay the 2 subdivisions along I's. We examine the triple (Mi2(e2), €2, Maz(e2)) for
each sub-edge ey of I'y, and use Lemma 10 to generate O(1) transformations ¢ per triple, in 6(n)
time. The total number of resulting triples over all O(log? n) choices of Mo and Mag is O(n log? n),

giving O(nlog? n) transformations.

* Case 2: G, contains 2 independent edges, w.l.o.g., 12 and 34. Then (¢(p1), p(p2)) is covered by a
pairing M2 € M between I'1 and I'y, and (p(ps), ¢(p4)) is covered by a pairing Ms4 € M between
Fg and F4.

For 2 sub-edges e and ¢/, define the angle interval O(e,e’) = {6,y : ¢ € €, ¢’ € €'}. It suffices to
enumerate quadruples (e1, Mi2(e1), e3, M34(e3)) over all sub-edges e of 'y and all sub-edges e3 of
I'3, under the restriction that ©(ey, Mi2(e1)) — 6, p, intersects O (es, M34(e3)) — Opyp, (mod 7). See
Figure 6 for an example quadruple.

Observe that because My is monotonically increasing, the angle intervals ©(eq, My2(eq)) are dis-
joint® and move monotonically as e; moves in ccw order. Similarly, because Ms4 is monotonically

%@ (e1, Mi2(e1)) and O(e}, Mi2(e})) may share a limit point if e; and €] are adjacent, but this does not affect the proof.
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Figure 6: An example quadruple from Case 2 in the proof of Theorem 11. The pairing M;2 is produced
using Apipop4 and the pairing Msy is produced using Apopspy.

increasing, the angle intervals ©(e3, M34(e3)) are disjoint and move monotonically as e3 moves in
ccw order. By overlaying the 2 sets of O(n) intervals {©(e;, Mi2(e1)) — 0p,p, : sub-edge e; of I'1}
and {O(es, M3z4(e3)) — Opsp, : sub-edge ez of '3}, we see that there are at most O(n) choices of
(e1,e3) such that ©(ey, Mia(e1)) — 0y, p, intersects O(e3, Mzs(es)) — bp,p, (mod ), and they can
be enumerated in O(n) time. The total number of quadruples over all O(log? ) choices of M3 and
M3y is O(nlog® n), giving O(nlog? n) transformations. -

Interestingly, Case 2 exploits a different phenomenon than in our earlier proofs: besides monotone
pairings of sub-edges, we have monotone “pairings of pairs” of sub-edges.

3.3 Generalizing to k& > 4
Finally, an algorithm for the 4-contact case for general £ immediately follows:

Corollary 12. Given a k-gon P and a convex n-gon Q in general position, there are at most O(k*n log? n)
similar copies of P contained in Q that have 4 different vertices of P on 4 edges of (), and they can be
enumerated in O(k°n) time.

Proof. For each of the O(k*) choices of vertices p1, p2, p3, p4 of P, we generate the O(n log? n) similarity
transformations from Theorem 11 and test the feasibility of each transformation in O(klogn) time via
binary searches [15]. O

4 Final Remarks

To keep the presentation cleaner, we have not spelled out the precise polylogarithmic factors in the time
bounds, nor the precise dependencies on k in the KO/ ©) factor, since we believe that extra effort can
help in optimizing those factors. Even without extra effort, if we use randomized search [10] in the proof
of Lemma 3, the number of logarithmic factors in our O(n polylogn)-time algorithm for & = 3 is only
about 3.

The main question we leave open is whether Problem 1 can be solved in O(kn'*¢) time for all constant
e > 0, which would be a strict improvement over the previous O(kn? ) bound for all . Similarly, could the
number of 4-contact placements of P within @) be upper-bounded by O(kn) instead of O(k*n)?
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A 2-Contact (2-Anchor) Case

We note that the ideas behind our algorithms in Section 2 for the 3-contact case can be adapted to handle
the 2-contact case as well. In what follows, suppose that the 2 anchor vertices are p; and po.

A.1 Algorithm for £ = 3

We modify the divide-and-conquer algorithm for £ = 3 in Theorem 4. The algorithm actually becomes
simpler, as we only need Lemma 1 but not Lemma 2, and the range searching sub-problems are simpler (no
need for ellipses or parametric search).

W.l.o.g., assume that the origin o is in the interior of ). For an arc I" of () which is delimited by points
u and v, let I'* denote the subpolygon bounded by I" and the two rays ot and 00.

Given an interval S, the algorithm will find a similarity transformation ¢, maximizing the scaling factor,
such that ¢(py) is a vertex v1 of I'; (5), w(p2) is a vertex vz of I'2(S), and (p3) is inside I'3(S)°.

As before, we partition S into S~ and S™. The cases are now as follows:

* Case 1: ¢(p1)isonT'1(S7), p(p2) is on I'2(S™), and p(p3) is inside I'3(S™)®. We can recursively
solve the problem for 5.

o Case 2: ¢o(p1)is on I'1(ST), o(p2) is on T'y(ST), and ¢(p3) is inside '3(ST)®. We can recursively
solve the problem for S.

* Case 3: ¢(p2) is on I'2(S™), and ¢(p3) is inside I'3(ST)®. Since A(T'2(S7)) + Op,p, € S~ and
A(T3(ST)) +6,,p, C ST are disjoint (mod ), we can use Lemma 1 to find a sub-arc I(v1) C I'y(.5)
for every vertex vy of I' (S), such that the condition that ¢(p3) is inside I's (.S *)* is equivalent to the

condition that ¢(pz) is on I(v1). (Technically, Lemma 1 works with I'3(S™) instead of T's(S™)®, but
we can just intersect the sub-arc I (v1) with 2 additional halfplanes that arise from the 2 rays bounding
3(S1)*)

The problem in this case now reduces to finding a vertex v, of I'1(.S) and a vertex vy of I'y(S™),
maximizing their Euclidean distance, such that ve is on I(vy). This further reduces to answering
farthest neighbor queries for a 2D point set with an additional 1D interval constraint. Farthest neighbor
queries in 2D can be answered 5(1) time after preprocessing in near-linear time (by point location in
the farthest-point Voronoi diagram [15, 28]). The additional 1D interval constraints can be handled by
multi-leveling with range trees [3, 21] as before, which increases time bounds by a logarithmic factor.

All remaining cases are symmetric to Case 3 (swapping subscripts 1 and 2 and/or S~ and S™). The recur-
rence for the running time remains the same.

Theorem 13. Given a triangle P and a convex n-gon Q, we can find the largest similar copy of P contained
in Q that has 2 vertices of P at 2 vertices of Q in O(n) time.
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A.2  Algorithm for £ > 3

We can also adapt the algorithm in Theorem 6 to handle the 2-contact case for general k. We use a variant of
Lemma 5 where ¢(p1) is a vertex v; of 'y, p(p2) is a vertex vg on I(v1) C T'g, and foreachi € {3,...,k},
©(pi) is left of ﬁ) The disjointness conditions for the arcs are the same. The proof is very similar to that of
Lemma 5; however, for each vertex vs on a sub-edge ey of I's, we redefine

Plea) = {(s,t,u,v) € RY: gt uv(p2) = va and @s ¢ 0 (p;) is left of M;(eq) for all
i€ {3,...,k}}
Rp(e2) = {@stuv(pr) : (s,t,u,v) € Pleg) and s + 12 > p*}.

Similar to before, P (v2) is a 2-dimensional polygon in R* with O(k) edges (since there are 2 linear equality
constraints and O(k) inequality constraints in 4 variables), and R,(v2) is a region in R? which is the inter-
section of a convex O(k)-gon and the exterior of an ellipse (actually, a circle in this case). We partition the
region into O(k) constant complexity regions as before.

The rest of the divide-and-conquer algorithm in Theorem 6 requires no major changes.

Theorem 14. Given a k-gon P and a convex n-gon Q) (where k < n), we can find the largest similar copy
of P contained in Q) that has 2 vertices of P at 2 vertices of Q) in O(ko(l/s)nHE) time for any € > Q.
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