
Convex Polygon Containment:

Improving Quadratic to Near Linear Time

Timothy M. Chan* Isaac M. Hair†

March 21, 2024

Abstract

We revisit a standard polygon containment problem: given a convex k-gon P and a convex n-gon Q
in the plane, find a placement of P inside Q under translation and rotation (if it exists), or more generally,

find the largest copy of P inside Q under translation, rotation, and scaling.

Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and Agarwal, Amenta, and Sharir

(1998) all required Ω(n2) time, even in the simplest k = 3 case. We present a significantly faster new

algorithm for k = 3 achieving O(n polylog n) running time. Moreover, we extend the result for general

k, achieving O(kO(1/ε)n1+ε) running time for any ε > 0.

Along the way, we also prove a new O(kO(1)n polylog n) bound on the number of similar copies

of P inside Q that have 4 vertices of P in contact with the boundary of Q (assuming general position

input), disproving a conjecture by Agarwal, Amenta, and Sharir (1998).

1 Introduction

Polygon containment problems have been studied since the early years of computational geometry [1, 2, 6,

9, 12, 13, 14, 16, 17, 20, 22, 24, 25, 26, 27, 30]. In this paper, we focus on two of the most fundamental

versions of the problem for convex polygons:

Problem 1. Given a convex k-gon P and a convex n-gon Q in R
2, (i) find a congruent copy of P inside Q

(if it exists); or more generally, (ii) find the largest similar copy of P inside Q.

In a congruent copy, we allow translation and rotation; in a similar copy, we allow translation, rotation,

and scaling. Rotation is what makes the problem challenging, as the corresponding problem without rotation

can be solved in linear time by a simple reduction to linear programming in 3 variables [30].

There were 3 key prior papers on this problem:

1. In 1983, Chazelle [12] initiated the study of polygon containment problems and presented an O(kn2)-
time algorithm specifically for Problem 1(i). In particular, an entire section of his paper was devoted

to an O(n2)-time algorithm just for the k = 3 (triangle) case.

*Department of Computer Science, University of Illinois at Urbana-Champaign (tmc@illinois.edu). Work supported in part by

NSF Grant CCF-2224271.
†Department of Computer Science, University of California, Santa Barbara (hair@ucsb.edu).

1

a
rX

iv
:2

4
0
3
.1

3
2
9
2
v
1

[c

s.
C

G
]

 2
0
 M

a
r

2
0
2
4

2. Sharir and Toledo [30] (preliminary version in SoCG’91) applied parametric search [23] to reduce

various versions of “extremal” polygon containment problems (about finding largest copies) to their

corresponding decision problems. In particular, they described an O(n2 log2 n)-time algorithm for

Problem 1(ii) in the k = 3 case.

3. In 1998, Agarwal, Amenta, and Sharir [1] studied Problem 1(ii) and obtained an O(kn2 log n)-time

algorithm. Their approach is to explore the entire solution space. More precisely, consider a standard

4-parameter representation of similarity transformations [7]: given (s, t, u, v) ∈ R
4, let φs,t,u,v :

R
2 → R

2 be the similarity transformation (x, y) 7→ (sx − ty + u, tx + sy + v), which has scaling

factor
√
s2 + t2. The region

P = {(s, t, u, v) ∈ R
4 : φs,t,u,v(p) ∈ Q for all vertexes p of P}

describes all feasible solutions and is an intersection of O(kn) halfspaces in R
4 (since φs,t,u,v(p) is a

linear function in the 4 variables s, t, u, v for any fixed point p). The problem is to find a point in P
maximizing the convex function s2+t2 (the optimum must be located at a vertex). By standard results,

a 4-polytope with O(kn) facets has O(k2n2) combinatorial complexity (and can be constructed in

O(k2n2) time) [28]. Agarwal, Amenta, and Sharir improved the combinatorial bound to O(kn2) for

this particular polytope P , enabling them to derive an algorithm with a similar time bound.

Notice that all these previous algorithms have Ω(n2) time complexity, even in the triangle (k = 3) case.

(Other quadratic algorithms for k = 3 have been found, e.g., mostly recently by Lee, Eom, and Ahn [22].)

To explain why, Chazelle [12] mentioned that there are input convex polygons Q for which the number

of different “stable solutions” is Ω(n2). (Other authors made similar observations [22].) More generally,

Agarwal, Amenta, and Sharir [1] exhibited a construction of input convex polygons P and Q for which the

polytope P has complexity Ω(kn2), matching their combinatorial upper bound.

Although such combinatorial lower bound results do not technically rule out the possibility of faster

algorithms that find an optimal solution without generating the entire solution space, they indicate that

quadratic complexity is a natural barrier. In general, no techniques are known to maximize a convex function

in an intersection of halfspaces in constant dimensions with worst-case time better than constructing the

entire halfspace intersection.

What motivates us to revisit this topic is the similarity of the k = 3 problem to the well-known 3SUM

problem (in the sense that the main case of the triangle problem is about finding a triple of vertices/edges of

Q in contact with the triangle P). Our initial thought is to apply the exciting recent advances for 3SUM and

related problems [5, 8, 11, 18, 19] to design decision trees with subquadratic height. This would potentially

lead to slightly subquadratic algorithms with running time of the form n2/ polylog n.

Although we believe this line of attack can indeed be applied to Problem 1 in the k = 3 case, the

improvement in the time complexity would be tiny, and generalization to k > 3 is unclear. Furthermore,

the usage of such heavy machinery might seem premature and unjustified since the k = 3 problem has not

been shown to be 3SUM-hard. Barequet and Har-Peled [9] proved that Problem 1(i) for convex polygons is

3SUM-hard when k = n and so has a near-quadratic conditional lower bound, but for k = n, the current

upper bound is cubic. More recently, Künnemann and Nusser [20] have obtained conditional lower bounds

for a number of other polygon containment problems, but not in the convex cases.

New results. In this paper, we not only truly break the quadratic barrier but also discover a near-linear,

O(n polylog n)-time algorithm for Problem 1(ii) in the k = 3 case! This represents a substantial im-

provement over the previous algorithms from multiple decades earlier, and directly addresses an open prob-

lem posed by Agarwal, Amenta, and Sharir [1] asking for an algorithm faster than Θ(kn2) time. (We

2

cannot think of too many classical 2D problems in computational geometry of comparable stature where

quadratic/superquadratic time complexity is reduced to near-linear in a single swoop after a long gap. The

closest analog is perhaps Sharir’s breakthrough O(n polylog n)-time algorithm for the 2D Euclidean 2-

center problem [29] that improved a string of previous O(n2 polylog n)-time algorithms.)

Furthermore, we generalize our approach and obtain an O(n1+ε)-time algorithm for Problem 1(ii) for

any constant k > 3, where ε > 0 is an arbitrarily small constant. For non-constant k ≤ n, the time bound

is O(kO(1/ε)n1+ε) for any choice of (possibly non-constant) ε > 0. (By choosing ε =
√

log k/ log n, the

bound can be rewritten as n2O(
√
log k logn).) This beats the previous O(kn2) bound for all k < nα for some

concrete constant α > 0.

New approach. Although Problem 1(ii) reduces to Problem 1(i) by parametric search [23, 30] (if one

does not mind extra logarithmic factors), we actually find it more convenient to solve Problem 1(ii) directly

(i.e., find the largest copy). The optimal solution must belong to one of the following cases, as observed in

previous works (by simple direct arguments, or by recalling that the optimum corresponds to a vertex of the

4-polytope P):

• 2-Contact (i.e., 2-Anchor) Case: 2 distinct vertices of P are in contact with ∂Q, both of which are

at 2 vertices of Q. These 2 vertices of P are called the 2 “anchor” vertices.

• 3-Contact (i.e., 1-Anchor) Case: 3 distinct vertices of P are in contact with ∂Q, one at a vertex of Q
and the other two on edges of Q. The vertex of P placed at a vertex of Q is referred to as the “anchor”

vertex.

• 4-Contact (i.e., No-Anchor) Case: 4 distinct vertices of P are in contact with ∂Q, all on edges of Q.

For k = 3, the main case is the 3-contact case, since it turns out that the 2-contact case can be solved

in a similar way (and the 4-contact case, of course, does not arise). The overall strategy is to divide into

sub-problems involving different “arcs” (i.e., contiguous pieces) of ∂Q. Our key observation is that under

certain conditions about the slopes/angles of the input arcs, all 3-contact feasible solutions may be covered

by just a linear number of pairs of sub-edges, due to monotonicity arguments—this is despite the fact that the

total number of 3-contact solutions may be quadratic. In such scenarios, we can search for the best solution

by using standard geometric data structuring techniques (concerning intersections of ellipses, as it turns

out). A simple binary divide-and-conquer reduces to instances where such conditions are met, resulting in

an O(n polylog n)-time algorithm.

For k > 3, extending the 3-contact algorithm requires more technical effort (and a slightly increased

running time), but what appears even more challenging is the 4-contact case. The lack of anchor vertices

seems to make everything more complicated (including the needed geometric data structures). However,

with a different strategy, we show surprisingly that the 4-contact case is easier in the sense that the total

number of 4-contact feasible solutions is actually near-linear in n, namely, O(k4n polylog n) (assuming

general position input). Thus, we can afford to enumerate them all! We prove this combinatorial bound by

running our k = 3 algorithm on different triples of vertices of P and then piecing information together via

further interesting monotonicity arguments.

To see how counterintuitive our near-linear combinatorial bound for 4-contact solutions is, recall that

Agarwal, Amenta, and Sharir [1] proved an Ω(kn2) lower bound on the size of the solution space. They

noted that their construction only lower-bounded the number of 3-contact solutions, and at the end of their

paper, they asked for another construction with Ω(kn2) 4-contact solutions. Our proof answers their question

in the negative.

3

Lemma 2. (Pairing Lemma) Let△p1p2p3 be a triangle. Let Γ1,Γ2,Γ3 be arcs of a convex n-gon Q, such

that

1. Λ(Γ1) + θp2p3 and Λ(Γ2) + θp1p3 are disjoint (mod π), and

2. Λ(Γ1) + θp2p3 and Λ(Γ3) + θp1p2 are disjoint (mod π).

In Õ(n) time, we can compute a (monotonically increasing or decreasing) pairing M between Γ2 and Γ3

with O(n) sub-edges, satisfying the following property:

For every similarity transformation φ that has φ(p1) on Γ1 and φ(p2) on a sub-edge e2 of Γ2,

we have: (i) φ(p3) is on Γ3 iff φ(p3) is on M(e2); and (ii) φ(p3) is left of
←→
Γ3 iff φ(p3) is left of←−−→

M(e2).

Proof. We match a point µ on
←→
Γ2 with a point ν on

←→
Γ3 iff there exists a similarity transformation φ with

φ(p2) = µ, φ(p1) on
←→
Γ1 , and φ(p3) = ν.

Observe that a point µ on
←→
Γ2 matches a unique point ν on

←→
Γ3 . To see this, let fµ(ζ) be the point

φ(p3) for the unique similarity transformation φ with φ(p2) = µ and φ(p1) = ζ. In other words, fµ is

the similarity transformation that keeps µ fixed and sends p1 to p3, i.e., we rotate around µ by an angle

θp2p3 − θp2p1 + {0,±π}, and scale by factor ∥p3 − p2∥/∥p1 − p2∥. Thus, fµ(Γ1) is a similar copy of Γ1.

The supporting lines for fµ(Γ1) have angles in Λ(Γ1) + θp2p3 − θp2p1 + {0,±π}, which by assumption 2

is disjoint from Λ(Γ3) (mod π). Thus, fµ(
←→
Γ1) and

←→
Γ3 intersect once, namely, at the unique point ν. A

symmetric argument (swapping subscripts 2 and 3) shows that a point ν on
←→
Γ3 matches a unique point µ on←→

Γ2 , this time, by assumption 1.

Consequently,3 as µ moves along
←→
Γ2 , its matching point ν moves monotonically along

←→
Γ3 . We break

an edge at the points µ on Γ2 that match the vertices of
←→
Γ3 , which can be found by n binary searches.

Similarly, we break an edge at the points ν on Γ3 that match the vertices of
←→
Γ3 , which can be found by

n binary searches. As a result, all points µ on a common sub-edge e2 of
←→
Γ2 are matched with points on a

common sub-edge of
←→
Γ3 , which we define as M(e2). For all these points µ, we have fµ(

←→
Γ1) intersecting this

sub-edge M(e2) of
←→
Γ3 . Also, for all ζ ∈ Γ1, fµ(ζ) is left of

←→
Γ3 iff fµ(ζ) is left of

←−−→
M(e2) (see Figure 3).

In the above, we did not claim a monotone pairing between Γ2 and Γ1, nor between Γ1 and Γ3. Oth-

erwise, we would get a linear upper bound on the number of 3-contact solutions in this case, which by our

subsequent divide-and-conquer algorithm would yield an O(n log n) bound on the number of 3-contact so-

lutions in general for k = 3, contradicting the known quadratic lower bound [1, 22]! This contradiction does

not arise since in the worst case, each matched pair from Γ2 and Γ3 could admit legal 3-contact placements

with every vertex of Γ1.

With the Pairing Lemma at hand, we can efficiently solve the problem when the two disjointness condi-

tions are met. Specifically, we set up a range searching sub-problem between the O(n) pairs of sub-edges

in Γ2 and Γ3 (the “data set”), and the O(n) vertices of Γ1 (the “query points”). This range searching sub-

problem turns out to be near-linear-time solvable:

Lemma 3. Let△p1p2p3 be a triangle. Let Γ1,Γ2,Γ3 be arcs of a convex n-gon Q, such that

1. Λ(Γ1) + θp2p3 and Λ(Γ2) + θp1p3 are disjoint (mod π), and

3This is analogous to the fact that a continuous bijective function over R must be monotone.

6

O(1)-gon with the exterior of an ellipse, we can use standard multi-level data structuring techniques4 to

handle the extra O(1) halfplane constraints. Generally, halfplane range searching cannot be solved with

near-linear preprocessing time and polylogarithmic query time. But in our application, all query points v1
lie on a convex chain Γ1. The constraint that such a query point v1 lies inside a halfplane is equivalent to

the condition that v1 lies inside one of O(1) 1D intervals, assuming that the vertices of Γ1 are stored in a

sorted array. We can therefore use 1D range trees [3, 21, 28] to handle the halfplane constraints, with only

a logarithmic factor increase in the preprocessing and query time.

The optimization problem reduces to the decision problem by a standard application of parametric

search [23]. (The application requires a parallelization of the decision algorithm: the preprocessing part,

namely, the construction of the intersection of interiors of ellipses, is straightforwardly parallelizable by

divide-and-conquer; the O(n) queries can trivially be answered in parallel.) Parametric search increases

the running time by a polylogarithmic factor. Alternatively, we can apply Chan’s randomized optimization

technique [10], which avoids extra factors. (The application here is straightforward, since the problem can

be viewed as a generalized “closest-pair-type” problem [10] between two sets of objects.)

2.3 Simple Divide-and-Conquer Algorithm for k = 3

We now have all the ingredients needed to put together a simple recursive algorithm to solve the k = 3
problem in the 3-contact case:

Theorem 4. Given a triangle P and a convex n-gon Q, in Õ(n) time, we can find the largest similar copy

of P contained in Q that has 1 vertex of P at a vertex of Q and the 2 other vertices of P on edges of Q.

Proof. Let P = △p1p2p3. Arbitrarily divide ∂Q into O(1) arcs, and let Γ1,Γ2,Γ3 be 3 such arcs (allowing

duplicates). We will try all O(1) choices of Γ1,Γ2,Γ3.

Let S be an interval. Let Γ1(S) (resp. Γ2(S) and Γ3(S)) be the sub-arc of Γ1 (resp. Γ2 and Γ3) consisting

of all edges whose supporting lines have angles in S−θp2p3 (resp. S−θp1p3 and S−θp1p2) (mod π). We will

recursively solve the following problem: find a similarity transformation φ, maximizing the scaling factor,

such that φ(p1) is a vertex v1 of Γ1(S), φ(p2) is on Γ2(S), and φ(p3) is on Γ3(S).
As a first step, we remove edges not participating in Γ1(S),Γ2(S),Γ3(S), so that the number of edges

in Q is reduced to m(S) := |Γ1(S)| + |Γ2(S)| + |Γ3(S)|. Partition S into sub-intervals S− and S+ (as

shown in Figure 4) so that m(S−),m(S+) = m(S)/2±O(1). We try various possibilities and take the best

solution found:

• Case 1: φ(p1) is on Γ1(S
−), φ(p2) is on Γ2(S

−), and φ(p3) is on Γ3(S
−). We can recursively solve

the problem for S−.

• Case 2: φ(p1) is on Γ1(S
+), φ(p2) is on Γ2(S

+), and φ(p3) is on Γ3(S
+). We can recursively solve

the problem for S+.

• Case 3: φ(p1) is on Γ1(S
−), φ(p2) is on Γ2(S

+), and φ(p3) is on Γ3(S
+). Since Λ(Γ1(S

−)) +
θp2p3 ⊆ S− and Λ(Γ2(S

+)) + θp1p3 ⊆ S+ are disjoint (mod π), and Λ(Γ1(S
−)) + θp2p3 ⊆ S− and

Λ(Γ3(S
+)) + θp1p2 ⊆ S+ are disjoint (mod π), we can solve this sub-problem by Lemmas 2–3 in

Õ(m(S)) time.

4Multi-level data structures are for solving range-searching-related problems, where in a query, we seek an object satisfying a

conjunction of multiple (O(1)) constraints. The idea is to take a tree structure for solving the problem with one constraint, and have

each node of the tree recursively store structures for solving the problem with the remaining constraints. See a general survey on

range searching [3] for more details.

8

Proof. We generalize the proof of Lemma 3. For each i ∈ {3, . . . , k}, we apply Lemma 1 to△p1p2pi,Γ1,Γ2,Γi,

to obtain a pairing Mi between Γ2 and Γi. We then overlay the O(k) subdivisions of Γ2. In doing so, the

mapping Mi from sub-edges of Γ2 to sub-edges of Γi may not be bijective, but this is fine. The number of

sub-edges is n′ = O(kn). We further subdivide Γ2 at the endpoints of the sub-arcs I(v1) for every vertex

v1 of Γ1. As a consequence, the following property holds:

For every similarity transformation φ that has φ(p1) being a vertex v1 of Γ1 and φ(p2) on

a sub-edge e2 of Γ2, we have: (i) φ(p3) is on Γ3 iff φ(p3) is on M3(e2), and (ii) for each

i ∈ {4, . . . , k}, φ(pi) is left of
←→
Γi iff φ(pi) is left of

←−−−→
Mi(e2).

For each sub-edge e2 of Γ2, define

P(e2) = {(s, t, u, v) ∈ R
4 : φs,t,u,v(p2) is on e2, and φs,t,u,v(p3) is on M3(e2), and

φs,t,u,v(pi) is left of
←−−−→
Mi(e2) for all i ∈ {4, . . . , k}}

Rρ(e2) = {φs,t,u,v(p1) : (s, t, u, v) ∈ P(e2) and s2 + t2 ≥ ρ2}.

Similar to before, P(e2) is a 2-dimensional polygon in R
4, with O(k) edges, and Rρ(e2) is a region in R

2

which is the intersection of a convex O(k)-gon with the exterior of an ellipse.

The decision problem reduces to finding a pair of vertex v1 of Γ1 and sub-edge e2 of Γ2, such that

v1 ∈ Rρ(e2) and e2 is in I(v1). To this end, we will build a data structure to store the O(n′) regions Rρ(e2)
over all e2 so that, given a query point v1 and a query sub-arc I , we can quickly decide whether the query

point v1 stabs some region Rρ(e2) with e2 in the query sub-arc I .

Each such region can be decomposed into O(k) sub-regions, where each sub-region is the intersection

of the exterior of an ellipse with O(1) halfplanes (the preprocessing time is increased by an O(k) factor). As

before, we can use ellipse range stabbing combined with multi-level data structuring techniques (1D range

tree). The constraint that e2 is in the query sub-arc I (which can be represented as a 1D interval) can again

be handled by multi-leveling, with another level of 1D range trees. The preprocessing time is Õ(kn′) and

the query time is Õ(1). The optimization problem reduces to the decision problem by standard parametric

search (or randomized search) as before.

We now give a slightly more intricate divide-and-conquer algorithm for general k:

Theorem 6. Given a k-gon P and a convex n-gon Q (where k ≤ n), we can find the largest similar copy

of P contained in Q that has 1 vertex of P at a vertex of Q and the 2 other vertices of P on 2 edges of Q, in

O(kO(1/ε)n1+ε) time for any ε > 0.

Proof. Suppose the vertices of P are p1, . . . , pk (not necessarily in sorted order). Divide ∂Q into O(1) arcs,

and let Γ1,Γ2,Γ3 be 3 such arcs (allowing duplicates). We will try all choices for p1, p2, p3 and Γ1,Γ2,Γ3;

this increases the final running time by a factor of O(k3).
Let Γ4, . . . ,Γk be arcs of ∂Q, so that a similarity transformation φ has φ(P) inside Q iff φ(pi) is left

of
←→
Γi for all i ∈ {1, . . . k}. This is w.l.o.g. since we can just make O(1) copies of p4, . . . , pk and associate

each copy with an arc of ∂Q, while increasing k by a constant factor. Note that duplicate arcs are allowed,

and some of these arcs may even be the same as Γ1, Γ2, or Γ3.

We will describe a recursive algorithm, where the input consists of k arcs ⟨Γ1, . . . ,Γk⟩ together with a

sub-arc I(v1) ⊆ Γ2 for every vertex v1 of Γ1. (For the initial problem, I(v1) will be all of Γ2 for all v1.) Our

algorithm will find a similarity transformation φ, maximizing the scaling factor, such that φ(p1) is a vertex

v1 of Γ1, φ(p2) is on I(v1), φ(p3) is on Γ3, and for all i ∈ {4, . . . , k}, φ(pi) is left of
←→
Γi .

10

recursive calls for this case is O(kr). The time to produce the sub-problems is subsumed by the time

bound in Case 1.

We take the best solution found in all cases. Letting m̂ = |Γ1|+m(Γ2), we obtain the following recurrence

for the running time:

T (m̂) ≤ O(kr)T (m̂/r +O(k)) + Õ(k2r2(m̂/r + k)).

As base case, if m̂ ≤ kr, we use the naive bound T (m̂) = O(k2m̂2) by constructing the space of all

feasible placements [1]. The recurrence solves to T (m̂) ≤ O(k)logr m̂ · (kr)O(1)m̂. Choosing r = m̂ε

yields T (m̂) ≤ kO(1/ε)m̂1+O(ε). (We can adjust ε by a constant factor.)

Note that our earlier divide-and-conquer approach in Theorem 4 (which yielded a slightly better

O(n polylog n) running time) does not work here. This is because we need to ensure disjointness conditions

for multiple triangles △p1p2pi with different rotational shifts, meaning that we cannot use one common

interval S to represent the k arcs in a sub-problem.

It is not difficult to modify the algorithm to solve the 2-contact (2-anchor) case, as shown in Appendix A.

Extension to the 4-contact case is more challenging, however. Without an anchor vertex, Lemma 1 is

no longer applicable, so we cannot clip arcs as in Theorem 6’s proof. With some care, we could still use

the Pairing Lemma to solve the problem, but we would need to pair some arcs Γi with Γ2 and some arcs Γi

with another arc such as Γ1. As a result, the range searching sub-problems become more complex, and the

running time would be much larger (though subquadratic). In the next section, we suggest a better, more

elegant way to solve the 4-contact case in near-linear time, without needing range searching at all!

3 4-Contact (No-Anchor) Case

To solve the 4-contact case, we will actually show that the number of solutions (not necessarily optimal nor

locally optimal) is actually near-linear in n, assuming general position input.5 This allows us to focus on

the problem of enumerating all 4-contact placements (as we can check their feasibility rapidly). For the

enumeration problem, we can immediately reduce the general k case to the k = 4 case.

3.1 Covering All 3-Contact Solutions by Pairs and Triples for k = 3

To solve the enumeration problem for k = 4, we will actually revisit the k = 3 case. Although the number

of 3-contact solutions may be quadratic in the worst case, we observe that our divide-and-conquer algorithm

from Theorem 4 can generate a near-linear number of pairs that “cover” all 3-contact solutions. To be

precise, we make the following definitions: We say that (q1, q2, q3) is covered by a list L of triples of edges

if q1 is on e1, q2 is on e2, and q3 is on e3 for some (e1, e2, e3) ∈ L. We say that (q1, q2) is covered by a

pairing M of sub-edges if q1 is on e1 and q2 is on M(e1) for some sub-edge e1.

We begin with a variant of the Pairing Lemma that guarantees monotonically increasing pairings, which

will be crucial later:

Lemma 7. (Modified Pairing Lemma) Let△p1p2p3 be a triangle. Let Γ1,Γ2,Γ3 be arcs of a convex n-gon

Q, such that

5In degenerate scenarios, e.g., when P and Q are squares, there could technically be an infinite number of 4-contact placements;

in such cases, we may apply small perturbations, or instead count the number of distinct quadruples of edges of Q corresponding

to such placements.

12

1. Λ(Γ1) + θp2p3 and Λ(Γ2) + θp1p3 are disjoint (mod π), and

2. Λ(Γ1) + θp2p3 and Λ(Γ3) + θp1p2 are disjoint (mod π).

In Õ(n) time, we can compute a monotonically increasing pairing M between Γ2 and Γ3 with O(n) sub-

edges, or a list L of O(n) triples of edges, satisfying the following property:

For every similarity transformation φ that has φ(p1) on Γ1 and φ(p2) on Γ2 and φ(p3) on Γ3,

we have (φ(p2), φ(p3)) covered by M or (φ(p1), φ(p2), φ(p3)) covered by L.

Before proving Lemma 7, we first analyze an easy special case:

Lemma 8. Let△p1p2p3 be a triangle. Let Γ1,Γ2,Γ3 be arcs of a convex n-gon Q, such that

1. Λ(Γ1) + θp2p3 and Λ(Γ2) + θp1p3 are disjoint (mod π),

2. Λ(Γ1) + θp2p3 and Λ(Γ3) + θp1p2 are disjoint (mod π),

3. Λ(Γ2) + θp1p3 and Λ(Γ3) + θp1p2 are disjoint (mod π).

In Õ(n) time, we can compute a list L of O(n) triples of edges, satisfying the following property:

For every similarity transformation φ that has φ(p1) on Γ1, φ(p2) on Γ2, and φ(p3) on Γ3, we

have (φ(p1), φ(p2), φ(p3)) covered by L.

Proof. We apply Lemma 2 twice, to obtain a pairing M12 between Γ1 and Γ2 and a pairing M23 between

Γ2 and Γ3. We overlay the 2 subdivisions along Γ2. We can then append the triples (M12(e2), e2,M23(e2))
over all sub-edges e2 of Γ2 to L.

To prove Lemma 7, we show that any monotonically decreasing pairing actually implies a division of

the arcs into sub-problems that can be processed using Lemma 8:

Proof. We apply Lemma 2 to obtain a pairing M , which already satisfies the lemma if M is monotonically

increasing. We now describe how to convert M to a list L of triples if it is monotonically decreasing.

Let Γ−
2 (t) (resp. Γ+

2 (t)) be the sub-arc of Γ2 consisting of all edges whose supporting lines’ angles are

in the interval (t − θp1p3 − π/2, t − θp1p3] (mod π) (resp. [t − θp1p3 , t − θp1p3 + π/2] (mod π)). Γ−
2 (t)

and Γ+
2 (t) may share at most one edge. The intervals allow wrap-around, so (a, b] indicates (a, π) ∪ [0, b]

if a > b. Let Γ−
3 (t) and Γ+

3 (t) be defined similarly. Let q2(t) denote the dividing point (or shared edge)

between Γ−
2 (t) and Γ+

2 (t), and let q3(t) denote the dividing point (or shared edge) between Γ−
3 (t) and

Γ+
3 (t). As t increases, both q2(t) and q3(t) are monotonically increasing, i.e., move in ccw order. Since M

is monotonically decreasing, we can find (via binary search) a value of t such that a sub-edge incident to

(or contained within) q2(t) is paired with a sub-edge incident to (or contained within) q3(t). Let us fix this

value of t.
As long as at least one of q2(t) or q3(t) is not an edge, we have that Λ(Γ−

2 (t)) + θp1p3 and Λ(Γ+
3 (t)) +

θp1p2 are disjoint (mod π). In this case, we can apply Lemma 8 to (Γ1,Γ
−
2 (t),Γ

+
3 (t)) to get O(n) triples.

Similarly, we can apply Lemma 8 to (Γ1,Γ
+
2 (t),Γ

−
3 (t)) to get O(n) triples. On the other hand, in M , there

are no pairs of sub-edges in Γ−
2 (t) with sub-edges in Γ−

3 (t), nor pairs of sub-edge in Γ+
2 (t) with sub-edges

in Γ+
3 (t).
If q2(t) and q3(t) are both edges, then there exists exactly one sub-edge e2 of q2(t) paired with a sub-

edge e3 of q3(t). We enumerate all O(n) triples of the form (e1, q2(t), q3(t)) and append these to L. Then,

13

we apply Lemma 8 to (Γ1,Γ
−
2 (t) \ e2,Γ+

3 (t) \ e3) and (Γ1,Γ
+
2 (t) \ e2,Γ−

3 (t) \ e3) as before. Note that one

or more of Γ−
2 (t) \ e2, Γ+

2 (t) \ e2, Γ−
3 (t) \ e3, or Γ+

3 (t) \ e3 might consist of two contiguous pieces instead

of one; this can be handled by applying Lemma 8 to all O(1) combinations of contiguous pieces.

By adapting our k = 3 algorithm, we can cover all 3-contact solutions by O(log n) monotonically

increasing pairings, together with an extra set of O(n log n) triples:

Theorem 9. Let △p1p2p3 be a triangle. Let Γ1,Γ2,Γ3 be arcs of a convex n-gon Q. In Õ(n) time, we

can compute a collection M of O(log n) monotonically increasing pairings between Γ1 and Γ2, between

Γ2 and Γ3, and between Γ1 and Γ3, each with O(n) sub-edges, and a list L of O(n log n) triples of edges,

satisfying the following property:

For every similarity transformation φ that has φ(p1) on Γ1 and φ(p2) on Γ2 and φ(p3) on Γ3,

we have (φ(p1), φ(p2)) or (φ(p2), φ(p3)) or (φ(p1), φ(p3)) covered by some pairing inM, or

(φ(p1), φ(p2), φ(p3)) covered by L.

Proof. We modify the divide-and-conquer algorithm in the proof of Theorem 4. Let S be an interval. Define

Γ1(S),Γ2(S),Γ3(S) as before. We will recursively solve the problem for Γ1(S),Γ2(S),Γ3(S).
As a first step, we remove edges not participating in Γ1(S),Γ2(S),Γ3(S), so that the number of edges

in Q reduced to m(S) := |Γ1(S)|+ |Γ2(S)|+ |Γ3(S)|. Divide S into two disjoint sub-intervals S− and S+

so that m(S−),m(S+) = m(S)/2±O(1). We consider various possibilities:

• Case 1: φ(p1) is on Γ1(S
−), φ(p2) is on Γ2(S

−), and φ(p3) is on Γ3(S
−). We can recursively solve

the problem for S−.

• Case 2: φ(p1) is on Γ1(S
+), φ(p2) is on Γ2(S

+), and φ(p3) is on Γ3(S
+). We can recursively solve

the problem for S+.

• Case 3: φ(p1) is on Γ1(S
−), φ(p2) is on Γ2(S

+), and φ(p3) is on Γ3(S
+). Since Λ(Γ1(S

−)) +
θp2p3 ⊆ S− and Λ(Γ2(S

+)) + θp1p3 ⊆ S+ are disjoint, and Λ(Γ1(S
−)) + θp2p3 ⊆ S− and

Λ(Γ3(S
+)) + θp1p2 ⊆ S+ are disjoint (mod π), we can solve the problem by Lemma 7 in Õ(m(S))

time.

All remaining cases are symmetric to Case 3. (The previous Case 4 is now symmetric to Case 3, since p1 is

no longer treated as a special anchor vertex.)

A pairing between Γ1(S
−) and Γ2(S

−) and a pairing between Γ1(S
+) and Γ2(S

+) produced by the

recursive calls in Cases 1 and 2 can be joined into one pairing while remaining monotonically increasing,

since Γ1(S
−) precedes Γ1(S

+) and Γ2(S
−) precedes Γ2(S

+) in ccw order. We can join the pairings for

Γ2,Γ3 and Γ1,Γ3 similarly. (And we can trivially union the lists of triples together.)

This yields a total of O(log n) pairings each with O(n) sub-edges, plus an extra list of O(n log n)
triples.

3.2 Enumerating All 4-Contact Solutions for k = 4

To solve the enumeration problem for k = 4, we claim that we do not need any further ingredients! We

can just run our k = 3 algorithm for each of the 4 triangles from the input 4-gon and then piece the outputs

together in a careful way.

14

Lemma 10. Let p1p2p3p4 be a 4-gon and Q be a convex n-gon in general position. Given 3 edges e1, e2, e3
of Q, there are only O(1) similarity transformations φ with φ(p1) on e1, φ(p2) on e2, φ(p3) on e3, and

φ(p4) on ∂Q, and they can be computed in O(log n) time.

Proof. Let φs,t,u,v be as before. Define

L = {(s, t, u, v) ∈ R
4 : φs,t,u,v(p1) is on e1, φs,t,u,v(p2) is on e2, and φs,t,u,v(p3) is on e3}.

Then L is a line segment in R
4 (since there are 3 linear equality constraints and 6 inequality constraints in

the variables s, t, u, v). Thus, L′ = {φs,t,u,v(p4) : (s, t, u, v) ∈ L} is a line segment in R
2. The edges we

want correspond to intersections of L′ with ∂Q. There are at most 2 such intersections, and they can be

found via binary search [28].

Theorem 11. Let P be a 4-gon with vertices p1, p2, p3, p4 and Q be a convex n-gon in general position.

There are at most O(n log2 n) similarity transformations φ such that φ(p1), φ(p2), φ(p3), φ(p4) are on ∂Q,

and they can be enumerated in Õ(n) time.

Proof. Divide ∂Q into O(1) arcs, and let Γ1, . . . ,Γ4 be 4 such arcs of Q. (We will try all O(1) choices for

Γ1, . . . ,Γ4.) We apply Theorem 9 to the 4 triangles △p1p2p3, △p1p2p4, △p1p3p4, and △p2p3p4, to get a

combined collectionM of O(log n) monotonically increasing pairings and a combined list L of triples.

We consider various possibilities (we will try them all and return the union of the outputs). If (φ(p1), φ(p2),
φ(p3)), (φ(p1), φ(p2), φ(p4)), (φ(p1), φ(p3), φ(p4)), or (φ(p2), φ(p3), φ(p4)) is covered by L, we can ex-

amine each of the O(n log n) triples in L, and use Lemma 10 to generate O(1) transformations φ per triple,

in Õ(n) time.

Otherwise, define a small graph Gφ with vertices {1, 2, 3, 4}, where ij is an edge iff (φ(pi), φ(pj)) is

covered by a pairing inM. We know that each of triple of vertices contains an edge in Gφ. It is easy to see

(from a short case analysis) that Gφ must have ≥ 2 edges.

• Case 1: Gφ contains 2 adjacent edges, w.l.o.g., 12 and 23. Then (φ(p1), φ(p2)) is covered by a pairing

M12 ∈ M between Γ1 and Γ2, and (φ(p2), φ(p3)) is covered by a pairing M23 ∈ M between Γ2

and Γ3. We overlay the 2 subdivisions along Γ2. We examine the triple (M12(e2), e2,M23(e2)) for

each sub-edge e2 of Γ2, and use Lemma 10 to generate O(1) transformations φ per triple, in Õ(n)
time. The total number of resulting triples over all O(log2 n) choices of M12 and M23 is O(n log2 n),
giving O(n log2 n) transformations.

• Case 2: Gφ contains 2 independent edges, w.l.o.g., 12 and 34. Then (φ(p1), φ(p2)) is covered by a

pairing M12 ∈M between Γ1 and Γ2, and (φ(p3), φ(p4)) is covered by a pairing M34 ∈M between

Γ3 and Γ4.

For 2 sub-edges e and e′, define the angle interval Θ(e, e′) = {θqq′ : q ∈ e, q′ ∈ e′}. It suffices to

enumerate quadruples (e1,M12(e1), e3,M34(e3)) over all sub-edges e1 of Γ1 and all sub-edges e3 of

Γ3, under the restriction that Θ(e1,M12(e1))− θp1p2 intersects Θ(e3,M34(e3))− θp3p4 (mod π). See

Figure 6 for an example quadruple.

Observe that because M12 is monotonically increasing, the angle intervals Θ(e1,M12(e1)) are dis-

joint6 and move monotonically as e1 moves in ccw order. Similarly, because M34 is monotonically

6Θ(e1,M12(e1)) and Θ(e′1,M12(e
′

1)) may share a limit point if e1 and e′1 are adjacent, but this does not affect the proof.

15

References

[1] Pankaj K. Agarwal, Nina Amenta, and Micha Sharir. Largest Placement of One Convex Polygon Inside

Another. Discret. Comput. Geom., 19(1):95–104, 1998. doi:10.1007/PL00009337.

[2] Pankaj K. Agarwal, Boris Aronov, and Micha Sharir. Motion Planning for a Convex Polygon

in a Polygonal Environment. Discret. Comput. Geom., 22(2):201–221, 1999. doi:10.1007/

PL00009455.

[3] Pankaj K. Agarwal and Jeff Erickson. Geometric Range Searching and Its Relatives. Contempo-

rary Mathematics, 223:1–56, 1999. URL: https://jeffe.cs.illinois.edu/pubs/pdf/

survey.pdf.

[4] Pankaj K. Agarwal and Micha Sharir. Davenport-Schinzel Sequences and Their Geometric Applica-

tions. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages

1–47. North Holland / Elsevier, 2000. doi:10.1016/B978-044482537-7/50002-4.

[5] Boris Aronov, Mark de Berg, Jean Cardinal, Esther Ezra, John Iacono, and Micha Sharir. Subquadratic

Algorithms for Some 3SUM-Hard Geometric Problems in the Algebraic Decision-Tree Model. Com-

put. Geom., 109:101945, 2023. doi:10.1016/J.COMGEO.2022.101945.

[6] Francis Avnaim and Jean-Daniel Boissonnat. Polygon Placement Under Translation and Rotation.

RAIRO Theor. Informatics Appl., 23(1):5–28, 1989. doi:10.1051/ITA/1989230100051.

[7] Henry Spalding Baird. Model-Based Image Matching Using Location. MIT Press, 1984.

[8] Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam Solomon.

Subquadratic Algorithms for Algebraic 3SUM. Discret. Comput. Geom., 61(4):698–734, 2019. Pre-

liminary version in SoCG 2017. doi:10.1007/S00454-018-0040-Y.

[9] Gill Barequet and Sariel Har-Peled. Polygon Containment and Translational Min-Hausdorff-Distance

Between Segment Sets are 3SUM-Hard. Int. J. Comput. Geom. Appl., 11(4):465–474, 2001. doi:

10.1142/S0218195901000596.

[10] Timothy M. Chan. Geometric Applications of a Randomized Optimization Technique. Discret.

Comput. Geom., 22(4):547–567, 1999. Preliminary version in SoCG 1998. doi:10.1007/

PL00009478.

[11] Timothy M. Chan. More Logarithmic-Factor Speedups for 3SUM, (median, +)-Convolution, and Some

Geometric 3SUM-Hard Problems. ACM Trans. Algorithms, 16(1):7:1–7:23, 2020. doi:10.1145/

3363541.

[12] Bernard Chazelle. The Polygon Containment Problem. Advances in Computing Re-

search, 1(1):1–33, 1983. URL: https://www.cs.princeton.edu/˜chazelle/pubs/

PolygContainmentProb.pdf.

[13] L. Paul Chew and Klara Kedem. A Convex Polygon Among Polygonal Obstacles: Placement and

High-Clearance Motion. Comput. Geom., 3:59–89, 1993. doi:10.1016/0925-7721(93)

90001-M.

17

[14] Karen L. Daniels and Victor Milenkovic. Multiple Translational Containment. Part I: An Approximate

Algorithm. Algorithmica, 19(1/2):148–182, 1997. doi:10.1007/PL00014415.

[15] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geome-

try: Algorithms and Applications. Springer, 3rd edition, 2008. URL: https://www.worldcat.

org/oclc/227584184.

[16] Matthew Dickerson and Daniel Scharstein. Optimal Placement of Convex Polygons to Maximize Point

Containment. In Proc. 7th ACM-SIAM Symposium on Discrete Algorithm (SODA), pages 114–121,

1996. URL: http://dl.acm.org/citation.cfm?id=313852.313899.

[17] Taekang Eom, Seungjun Lee, and Hee-Kap Ahn. Largest Similar Copies of Convex Polygons Amidst

Polygonal Obstacles. CoRR, abs/2012.06978, 2020. arXiv:2012.06978.

[18] Allan Grønlund and Seth Pettie. Threesomes, Degenerates, and Love Triangles. J. ACM, 65(4):22:1–

22:25, 2018. doi:10.1145/3185378.

[19] Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-Optimal Linear Decision Trees for k-SUM

and Related Problems. J. ACM, 66(3):16:1–16:18, 2019. doi:10.1145/3285953.

[20] Marvin Künnemann and André Nusser. Polygon Placement Revisited: (Degree of Freedom + 1)-SUM

Hardness and an Improvement via Offline Dynamic Rectangle Union. In Proc. ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 3181–3201, 2022. doi:10.1137/1.9781611977073.

124.

[21] D. T. Lee. Interval, Segment, Range, and Priority Search Trees. In Dinesh P. Mehta and Sartaj

Sahni, editors, Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004. doi:

10.1201/9781420035179.CH18.

[22] Seungjun Lee, Taekang Eom, and Hee-Kap Ahn. Largest Triangles in a Polygon. Comput. Geom.,

98:101792, 2021. doi:10.1016/J.COMGEO.2021.101792.

[23] Nimrod Megiddo. Applying Parallel Computation Algorithms in the Design of Serial Algorithms. J.

ACM, 30(4):852–865, 1983. doi:10.1145/2157.322410.

[24] Victor Milenkovic. Translational Polygon Containment and Minimal Enclosure Using Linear Pro-

gramming Based Restriction. In Proc. 28th ACM Symposium on Theory of Computing (STOC), pages

109–118, 1996. doi:10.1145/237814.237840.

[25] Victor Milenkovic. Multiple Translational Containment. Part II: Exact Algorithms. Algorithmica,

19(1/2):183–218, 1997. doi:10.1007/PL00014416.

[26] Victor Milenkovic. Rotational Polygon Containment and Minimum Enclosure Using Only Robust 2D

Constructions. Comput. Geom., 13(1):3–19, 1999. doi:10.1016/S0925-7721(99)00006-1.

[27] Joseph O’Rourke, Subhash Suri, and Csaba D Tóth. Polygons. In Handbook of Discrete and Compu-

tational Geometry, pages 787–810. CRC Press, 2017. URL: http://www.csun.edu/˜ctoth/

Handbook/chap30.pdf.

[28] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introduction. Texts and

Monographs in Computer Science. Springer, 1985. doi:10.1007/978-1-4612-1098-6.

18

[29] Micha Sharir. A Near-Linear Algorithm for the Planar 2-Center Problem. Discret. Comput. Geom.,

18(2):125–134, 1997. Preliminary version in SoCG 1996. doi:10.1007/PL00009311.

[30] Micha Sharir and Sivan Toledo. External Polygon Containment Problems. Computational Geom-

etry, 4(2):99–118, 1994. Preliminary version in SoCG 1991. doi:10.1016/0925-7721(94)

90011-6.

A 2-Contact (2-Anchor) Case

We note that the ideas behind our algorithms in Section 2 for the 3-contact case can be adapted to handle

the 2-contact case as well. In what follows, suppose that the 2 anchor vertices are p1 and p2.

A.1 Algorithm for k = 3

We modify the divide-and-conquer algorithm for k = 3 in Theorem 4. The algorithm actually becomes

simpler, as we only need Lemma 1 but not Lemma 2, and the range searching sub-problems are simpler (no

need for ellipses or parametric search).

W.l.o.g., assume that the origin o is in the interior of Q. For an arc Γ of Q which is delimited by points

u and v, let Γ• denote the subpolygon bounded by Γ and the two rays −→ou and −→ov.

Given an interval S, the algorithm will find a similarity transformation φ, maximizing the scaling factor,

such that φ(p1) is a vertex v1 of Γ1(S), φ(p2) is a vertex v2 of Γ2(S), and φ(p3) is inside Γ3(S)
•.

As before, we partition S into S− and S+. The cases are now as follows:

• Case 1: φ(p1) is on Γ1(S
−), φ(p2) is on Γ2(S

−), and φ(p3) is inside Γ3(S
−)•. We can recursively

solve the problem for S−.

• Case 2: φ(p1) is on Γ1(S
+), φ(p2) is on Γ2(S

+), and φ(p3) is inside Γ3(S
+)•. We can recursively

solve the problem for S+.

• Case 3: φ(p2) is on Γ2(S
−), and φ(p3) is inside Γ3(S

+)•. Since Λ(Γ2(S
−)) + θp1p3 ⊆ S− and

Λ(Γ3(S
+))+ θp1p2 ⊆ S+ are disjoint (mod π), we can use Lemma 1 to find a sub-arc I(v1) ⊆ Γ2(S)

for every vertex v1 of Γ1(S), such that the condition that φ(p3) is inside Γ3(S
+)• is equivalent to the

condition that φ(p2) is on I(v1). (Technically, Lemma 1 works with
←−−−→
Γ3(S

+) instead of Γ3(S
+)•, but

we can just intersect the sub-arc I(v1) with 2 additional halfplanes that arise from the 2 rays bounding

Γ3(S
+)•.)

The problem in this case now reduces to finding a vertex v1 of Γ1(S) and a vertex v2 of Γ2(S
−),

maximizing their Euclidean distance, such that v2 is on I(v1). This further reduces to answering

farthest neighbor queries for a 2D point set with an additional 1D interval constraint. Farthest neighbor

queries in 2D can be answered Õ(1) time after preprocessing in near-linear time (by point location in

the farthest-point Voronoi diagram [15, 28]). The additional 1D interval constraints can be handled by

multi-leveling with range trees [3, 21] as before, which increases time bounds by a logarithmic factor.

All remaining cases are symmetric to Case 3 (swapping subscripts 1 and 2 and/or S− and S+). The recur-

rence for the running time remains the same.

Theorem 13. Given a triangle P and a convex n-gon Q, we can find the largest similar copy of P contained

in Q that has 2 vertices of P at 2 vertices of Q in Õ(n) time.

19

A.2 Algorithm for k > 3

We can also adapt the algorithm in Theorem 6 to handle the 2-contact case for general k. We use a variant of

Lemma 5 where φ(p1) is a vertex v1 of Γ1, φ(p2) is a vertex v2 on I(v1) ⊆ Γ2, and for each i ∈ {3, . . . , k},
φ(pi) is left of

←→
Γk . The disjointness conditions for the arcs are the same. The proof is very similar to that of

Lemma 5; however, for each vertex v2 on a sub-edge e2 of Γ2, we redefine

P(e2) = {(s, t, u, v) ∈ R
4 : φs,t,u,v(p2) = v2 and φs,t,u,v(pi) is left of

←−−−→
Mi(e2) for all

i ∈ {3, . . . , k}}
Rρ(e2) = {φs,t,u,v(p1) : (s, t, u, v) ∈ P(e2) and s2 + t2 ≥ ρ2}.

Similar to before, P(v2) is a 2-dimensional polygon in R
4 with O(k) edges (since there are 2 linear equality

constraints and O(k) inequality constraints in 4 variables), and Rρ(v2) is a region in R
2 which is the inter-

section of a convex O(k)-gon and the exterior of an ellipse (actually, a circle in this case). We partition the

region into O(k) constant complexity regions as before.

The rest of the divide-and-conquer algorithm in Theorem 6 requires no major changes.

Theorem 14. Given a k-gon P and a convex n-gon Q (where k ≤ n), we can find the largest similar copy

of P contained in Q that has 2 vertices of P at 2 vertices of Q in O(kO(1/ε)n1+ε) time for any ε > 0.

20

	Introduction
	3-Contact (1-Anchor) Case
	An Easy ``Disjoint'' Case for k=3
	A ``Double-Disjoint'' Case for k=3
	Simple Divide-and-Conquer Algorithm for k=3
	Generalizing to k>3

	4-Contact (No-Anchor) Case
	Covering All 3-Contact Solutions by Pairs and Triples for k=3
	Enumerating All 4-Contact Solutions for k=4
	Generalizing to k>4

	Final Remarks
	2-Contact (2-Anchor) Case
	Algorithm for k=3
	Algorithm for k>3

