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Abstract

We present the first fully dynamic connectivity data structures for geometric intersection graphs

achieving constant query time and sublinear amortized update time for many classes of geometric

objects in 2D. Our data structures can answer connectivity queries between two objects, as well

as “global” connectivity queries (e.g., deciding whether the entire graph is connected). Previously,

the data structure by Afshani and Chan (ESA’06) achieved such bounds only in the special case

of axis-aligned line segments or rectangles but did not work for arbitrary line segments or disks,

whereas the data structures by Chan, Pătraşcu, and Roditty (FOCS’08) worked for more general

classes of geometric objects but required nΩ(1) query time and could not handle global connectivity

queries.

Specifically, we obtain new data structures with O(1) query time and amortized update time near

n4/5, n7/8, and n20/21 for axis-aligned line segments, disks, and arbitrary line segments respectively.

Besides greatly reducing the query time, our data structures also improve the previous update times

for axis-aligned line segments by Afshani and Chan (from near n10/11 to n4/5) and for disks by

Chan, Pătraşcu, and Roditty (from near n20/21 to n7/8).
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1 Introduction

Dynamic graph connectivity—maintaining an undirected graph under edge insertions and

deletions to answer connectivity queries—is a popular topic in data structure design and

dynamic graph algorithms [17, 18, 29, 12, 19]. At STOC’02, Chan [7] initiated the study of

dynamic connectivity in geometric settings:

Maintain a set of n geometric objects, subject to insertions and deletions of objects,

so that we can quickly determine whether two query objects are connected in the

intersection graph.

The challenge here is that a single insertion/deletion of an object may change Ω(n) edges in

the intersection graph in the worst case, and so we can’t afford to maintain the intersection

graph explicitly.

Previous work by Chan. Chan [7] obtained the first fully dynamic data structure with

sublinear (O(n0.94)) amortized update time and sublinear (Õ(m1/3))1 query time for axis-

aligned line segments or rectangles in 2D or axis-aligned boxes in any constant dimension.

1 Throughout the paper, the Õ notation hides logO(1) n factors, and the O∗ notation hides nε factors for
an arbitrarily small constant ε > 0.
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The exponent (0.94) arose from matrix multiplication. The heart of his solution was a data

structure for an extension of dynamic graph connectivity with vertex (re)insertions and

deletions, called dynamic subgraph connectivity—maintaining a (sparse) graph with m edges

and a subset A of “active” vertices under (re)insertions and deletions in A, so that we can

quickly determine whether two vertices are connected in the subgraph induced by A. As

Chan observed, the geometric problem in the case of axis-aligned boxes can be reduced

to dynamic subgraph connectivity (ignoring polylogarithmic factors), by using so-called

“biclique covers” (which are related to range searching or intersection searching).

For more general classes of geometric objects such as arbitrary line segments, biclique

covers have superlinear complexity, so Chan’s reduction was not sufficient to yield sublinear

update time, unfortunately.

Previous work by Chan, Pătraşcu, and Roditty. A subsequent paper by Chan, Pătraşcu,

and Roditty [10] (FOCS’08) rectified the problem: They first obtained a better data structure

for dynamic subgraph connectivity, avoiding fast matrix multiplication, and then incorporated

range searching techniques into their data structure in a more efficient way, thereby obtaining

data structures for dynamic geometric connectivity with sublinear amortized update time for

virtually all families of objects with constant description complexity. For example, for axis-

aligned line segments or rectangles in 2D and axis-aligned boxes in any constant dimension,

the amortized update time is Õ(n2/3) and query time is Õ(n1/3); for arbitrary line segments

in 2D, the amortized update time is O∗(n9/10) and query time is Õ(n1/5); for disks in 2D,

the amortized update time is O∗(n20/21) and query time is O∗(n1/7).

Recently, Jin and Xu [20] proved an Ω(m2/3−ε) conditional lower bound on the amortized

update time for the dynamic subgraph connectivity problem for any data structure with

O(m1−ε) query time,2 assuming the “Combinatorial 4-Clique Hypothesis”, if we restrict

ourselves to “combinatorial” algorithms that do not use algebraic techniques for fast matrix

multiplication. Chan [7] observed that dynamic subgraph connectivity with m edges can

be reduced back to dynamic geometric connectivity for O(m) axis-aligned line segments or

boxes in 3D (roughly speaking, because in 3D, axis-aligned segments or boxes can “simulate”

arbitrary graphs), and so Jin and Xu’s proof implies conditional optimality of Chan, Pătraşcu,

and Roditty’s Õ(n2/3) update bound for axis-aligned boxes in dimension 3 and above, at

least with respect to combinatorial algorithms.

However, one major drawback in Chan, Pătraşcu, and Roditty’s data structures is that

the query times are super-polylogarithmic (unlike known static data structures). One can

envision applications where queries occur much more frequently than updates. Although

trade-offs with smaller query time and larger update time are possible with Chan, Pătraşcu,

and Roditty’s data structures, they do not achieve sublinear update time in the regime of

constant or polylogarithmic query time.

In some ways, their data structures encode connectivity information only “implicitly”.

Thus, another drawback is that they cannot handle “global” connectivity queries, e.g., deciding

whether the entire intersection graph is connected, or counting the number of connected

components. Abboud and Vassilevska Williams [1] proved an Ω(m1−ε) conditional lower

bound on the query/update time for global connectivity queries for the dynamic subgraph

connectivity problem, assuming the Strong Exponential-Time Hypothesis. So, sublinear query

and update time are conditionally not possible for global connectivity queries for axis-aligned

segments and boxes in dimension 3 and above. Still, a fundamental question remains as to

2 Throughout the paper, ε denotes an arbitrarily small positive constant.
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whether sublinear update time bound is achievable for global connectivity queries for various

types of geometric objects in 2D (which is where the most natural geometric applications

occur).

Previous work by Afshani and Chan. A different (earlier) data structure by Afshani and

Chan [2] (ESA’06) addressed some of these drawbacks. Specifically, they obtained O(1) query

time and Õ(n10/11) update time in the case of axis-aligned line segments or rectangles in

2D. Unfortunately, they were unable to extend their method to other types of objects in 2D,

such as arbitrary line segments or disks.

Other related work. Better data structures are known for some easier special cases; for

example, a recent SoCG’22 paper by Kaplan et al. [21] gave polylogarithmic results for unit

disks, or disks with small maximum-to-minimum-radius ratio, or for arbitrary disks in the

incremental (insertion-only) or decremental (deletion-only) case (see also Kaplan et al.’s

SOSA’24 paper [22]). However, these results are not applicable to arbitrary disks in the fully

dynamic setting.

New results. We obtain new data structures for dynamic geometric connectivity for different

types of objects in 2D, as summarized in Table 1.3

Qualitatively, we obtain the first data structures with constant query time and sublinear

amortized update time for arbitrary line segments in 2D as well as disks in 2D, and the first

data structures that can handle global connectivity queries for such objects. The line segment

case is especially general (since it can handle arbitrary polylines of bounded complexity).

Our approach can in fact handle any family of semialgebraic curves with constant description

complexity in 2D, though the exponent in the update bound depends on the degree of the

curves.

Quantitatively, for the case of disks in 2D, our data structure not only greatly reduces the

query time of Chan, Pătraşcu, and Roditty’s method but does so without hurting the update

time—in fact, the update bound is improved (albeit slightly), from near n20/21 to n7/8. For

the special case of axis-aligned line segments in 2D, our data structure also improves the

update time of Afshani and Chan’s method, from near n10/11 to n4/5.

Techniques and new ideas. Our approach builds on Afshani and Chan’s method [2],

based on the key notion of equivalence classes of connected components. They proved

combinatorial bounds and described efficient algorithms for computing and maintaining such

classes. Although their combinatorial bounds actually hold for arbitrary geometric objects in

2D, their algorithms are specialized to axis-aligned objects in 2D. We describe a different way

to compute and maintain equivalence classes of components, based on a repeated splitting idea

which is simple in hindsight, but has somehow been overlooked by researchers for more than

a decade. This idea allows us to reduce equivalence-class data structures to colored variants

of range or intersection searching, which can be solved by known geometric data structuring

3 For the previous result on simplices in R
d, Chan, Pătraşcu, and Roditty [10] originally stated query time

O∗(n1/(2d+1)) and update time O∗(n1−1/d(2d+1)), but they mistakenly assumed bounds for simplex
range searching extend to simplex intersection searching. However, simplex intersection searching in

R
d does reduce to semialgebraic range searching in R

O(d2), so their framework implies the sublinear
bounds shown in the table.
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Type of objects Query time Update time (amort.) Ref.

Axis-aligned segments/boxes in R
d Õ(n1/3) Õ(n2/3)

Arbitrary line segments in R
2 O∗(n1/5) O∗(n9/10)

Disks in R
2 O∗(n1/7) O∗(n20/21)

[10]
Balls in R

d O∗(n
1

2d+3 ) O∗(n
1−

1
(d+1)(2d+3) )

Simplices in R
d O∗(n

1
Θ(d2) ) O∗(n

1−
1

Θ(d4) )

Axis-aligned segments/rectangles in R
2 O(1) Õ(n10/11) [2]

Axis-aligned segments in R
2 O(1) Õ(n4/5)

newArbitrary line segments in R
2 O(1) O∗(n20/21)

Disks in R
2 O(1) O∗(n7/8)

Table 1 Previous and new results on dynamic geometric connectivity.

techniques. This new idea allows us to obtain constant query time and sublinear amortized

update time for all the types of 2D geometric objects considered here; see Sections 4–5.

Of independent interest is also a new variant of Afshani and Chan’s combinatorial lemma,

which helps in reducing the update time further; see Section 3.

In Appendix 6, we obtain a still further improvement for the case of disks by incorporating

another new idea—namely, the usage of separators (specifically, Smith and Wormald’s

geometric separator theorem [30]). This is interesting, as separators have not been widely

used before in the context of dynamic geometric connectivity (they have been used in dynamic

subgraph connectivity for planar graphs [15] but not for more general classes of geometric

intersection graphs).

2 Recap of Afshani and Chan’s Method

Before describing our new data structures, we first review Afshani and Chan’s previous

method for dynamic connectivity for axis-aligned segments/rectangles in 2D [2]. To illustrate

the overall ideas, for simplicity we will focus on the offline setting of the problem, where the

upcoming updates are known in advance (the online setting requires more work and slightly

worse update time), and we will focus on just the case of axis-aligned segments.

As often seen in previous works [6, 7], Afshani and Chan used the standard technique

of handling insertions lazily and rebuilding periodically. Each period phase consists of a

preprocessing step followed by q updates, so that the preprocessing cost can be amortized.

In the offline setting, we know which objects will be updated in each phase.

Let S be the objects that exist at the beginning of the phase and will not be deleted

during the phase, and let Q be the sequence of objects s1, . . . , sq that will be updated during

the phase. (Thus, S stays static during a phase, whereas Q is small.) Afshani and Chan

defined two connected components of S to be equivalent if they intersect the exact same

set of objects from Q. Clearly, for any s ∈ Q, if s intersects an arbitrary component from

a class L, then s intersects all components from L. More importantly, using the fact that

distinct connected components never intersect each other and may be viewed as a collection

of disjoint “curves” or “strings” (not necessarily of constant complexity) when the objects

are in R
2, Afshani and Chan proved a polynomial upper bound on the number of equivalence

classes at any moment. The general combinatorial lemma is stated as follows.
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▶ Lemma 1 (Afshani and Chan’s combinatorial lemma [2]). Consider a set Q of q disjoint

regions with simple connected boundaries and a set C of disjoint curves in R
2. Then C

consists of at most O(q3) equivalence classes with respect to Q. (This bound is tight.)

To readers familiar with the notion of “VC dimension” or “shatter dimension” of set

systems [28], the above lemma is equivalent to the statement that the set system (Q, R) with

R = {{s ∈ Q : s ∩ c ≠ ∅} : c ∈ C} has shatter dimension at most 3. We stress that what

makes the lemma interesting is that the curves in C do not need to have constant complexity.

On the other hand, disjointness of the curves in C is crucial (otherwise, it is easy to find

counterexamples with exponentially many equivalence classes).

In the dynamic connectivity problem, the inserted segments are not disjoint. However,

the arrangement of Q can be broken down into O(q2) non-intersecting sub-segments. This

implies an O(q6) bound on the number of equivalence classes.

Below, we sketch how equivalence classes can be used to obtain an offline dynamic

connectivity data structure for axis-aligned segments.

Preprocessing. At the beginning of a phase, the first task is to find the set of equivalence

classes among components of S with respect to Q. This step is nontrivial, but Afshani and

Chan showed how to compute these classes, or more precisely, the equivalences classes with

respect to the O(q2) non-intersecting sub-segments, in Õ(n) time in the case of axis-aligned

segments (we will say more about this later).

Throughout the phase, we maintain a proxy graph H, such that the connected components

of the geometric objects roughly correspond to the connected components of H. The graph

H is defined as follows:

For each equivalence class L, there is a class vertex corresponding to L.

For each inserted segment s ∈ Q, there is an insertion vertex corresponding to s.

The edges of H indicate which pairs of objects intersect.

The graph H has O(q6) vertices and O(q7) edges, and can be stored in a dynamic graph

connectivity structure supporting edge updates in Õ(1) time [18, 19].

Offline updates. Updates of objects are done only to Q and not to S. Whenever an object

s is inserted to Q, we create a vertex for s in H. For each class L, we decide whether s

intersects all components of L by picking an arbitrary component from L, and then query an

orthogonal intersection searching structure [14]. Each insertion/deletion in Q causes Õ(q6)

edge updates in H.

The preprocessing step takes Õ(n) time, while each update takes Õ(q6) time. Choosing

q = n1/7, we achieve Õ(n6/7) amortized update time.

Query. Given two query objects u, v, there are now two cases to consider.

If both u, v ∈ S, then let cu, cv be the components containing u, v. If cu = cv, then u

and v are connected. If cu ≠ cv and either cu or cv belongs to an equivalence class that

corresponds to an isolated vertex in H, then u and v are not connected.

Otherwise, u and v are connected if and only if their corresponding vertices in H are

connected (if u ∈ S, then its corresponding vertex is the class containing cu).

Thus, queries between two objects can be handled in O(1) time. We can also handle global

connectivity queries: the overall number of connected components is equal to the number of

components in H (which can be maintained by a dynamic graph connectivity structure [29])

plus the number of components in isolated vertices of H (which is straightforward to maintain).
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the curves in Cπ,π′ that intersect r′′ form a union of O(1) contiguous subsequences in the

sorted sequence. Taking all the O(q) delimiters together, we get a partition of Cπ,π′ into

O(q) blocks such that two curves in the same block are in the same equivalence class. Hence,

the number of equivalence classes in Cπ,π′ is O(q).

As there are O(q2) choices of (π, π′), the total number of equivalence classes is at most

O(q3). ◀

Note that the lemma holds also when C is a set of disjoint connected regions (since

regions may be “simulated” by strings [26]).

4 Solving the Key Subproblem: Computing Equivalence Classes

As illustrated by Afshani and Chan’s method, dynamic connectivity—at least in the offline

settings—reduces to the following key subproblem.

▶ Subproblem 3 (Equivalence class computation). Given a set S of n geometric objects

and a set Q of q geometric objects in R
2, compute the equivalence classes among connected

components of S with respect to Q faster than O(qn) time (ideally, in Õ(n) time when q is

not too large).

For axis-aligned line segments, Afshani and Chan solved Subproblem 3 roughly as follows.

We first form a grid by drawing the grid lines at the endpoints of the segments of Q. The

grid lines then divide the segments of Q into O(q2) non-intersecting sub-segments. We will

actually compute equivalence classes with respect to these O(q2) sub-segments instead of Q

(this is sufficient for the application to dynamic connectivity). The sub-segments within each

row (or column) are linearly ordered. Since any axis-aligned segment u lies in exactly one row

or column, the set of sub-segments intersecting u can be represented as an integer interval,

which can be computed in Õ(1) time using binary search. For each connected component c of

S, the class that c belongs to can be represented as the union of the intervals for all segments

of c. Thus, the representations of all components can be found in Õ(n) time. Crucially, two

components have the same representation if and only if they belong to the same equivalence

class. With some careful analysis, Afshani and Chan showed that the representations can be

sorted in Õ(n) time, allowing us to then compute all equivalence classes by a linear scan in

Õ(n) total time.

However, as one can see, the above ad hoc, grid-based approach does not work when the

objects are not axis-aligned (it fails even for line segments with three possible slopes).

In this section, we propose a more general approach to solving Subproblem 3 that can

handle most types of objects in 2D, including disks and arbitrary line segments. Our

approach does not require subdividing Q into nonintersecting pieces first, so we can exploit

our new improved combinatorial lemma to get better results even for axis-aligned segments.

Furthermore, the incremental manner in which we compute the equivalence classes will help

in handling online updates more efficiently in our dynamic connectivity data structures.

4.1 New Idea: Repeated Class Splitting

Our central idea is simple: we will compute the equivalence classes incrementally by inserting

objects of Q one at a time. (This is fundamentally different from Afshani and Chan’s

approach, which scans through elements of S instead.) Initially, no object has been inserted,

so all components of S belong to the same class. Whenever an object s is inserted, we

examine each class L that existed before the insertion. If s intersects some but not all
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components in L, then L must be split into two “child classes”—one whose components

intersect s, and one whose components don’t. This way, we can maintain the equivalence

classes by repeatedly splitting existing classes as objects are being inserted. (A similar idea

was used by Chan [8] to solve a completely different problem.)

Class splitting data structure. To split a class into two child classes, we design a class

splitting data structure D(L), such that for any object s that splits L into child classes L1, L2,

we can efficiently produce data structures D(L1) and D(L2). An ostensible obstacle is that

when forming D(L1) and D(L2), it seems that we can’t avoid spending time at least O(1)

time per object in L. If so, computing the classes may take Ω(n) time per insertion.

To get around this obstacle, we use an amortization trick, namely, a reverse version of

the standard “weighted union heuristic”: instead of building both D(L1) and D(L2) from

scratch, we do so only for the child class with smaller total size. Specifically, if L2 has

smaller total size than L1, then we build D(L2) from scratch, while D(L1) is obtained by

deleting everything associated with L2 from D(L). Intuitively, we “displace” L2 from L

without necessarily examining objects from L1. We claim that the sum of the number of

displaced objects over all updates in the phase is O(n log n). One proof is via a potential

function argument: defining Φ =
∑

class L |L| log |L| (where |L| :=
∑

component c∈L |c|), it is

not difficult to see that a split with y displacements decreases Φ by at least Ω(y) (because of

the inequality (x + y) log(x + y) − x log x − y log y ≥ y log(x/y + 1) ≥ y when x ≥ y), and

the claim follows. (An alternative, simple proof is to argue that each object can be displaced

at most O(log n) times, since each time this happens, the size of the class containing the

object is reduced by at least a factor of 2.)

Reduction to component (non-)intersection reporting. The key part of the class splitting

operation is building a data structure D(L) that can report the smaller child class L′ in time

linear in the total size of L′, but sublinear in the total size of L. It suffices for the data

structure to handle the following two types of queries:

1. Report all connected components in L that intersect s.

2. Report all connected components in L that do not intersect s.

By running the two query-answering algorithms concurrently and stopping when either of

them terminates, we can report L′ within the desired time bound. We need the data structure

to support deletions of components, so that we can subsequently delete each component in

L′ from L.

The component intersection reporting problem we face can be viewed as a colored

intersection reporting problem, where the objective is to preprocess a set of colored objects,

so that one can efficiently report all colors intersected by a query object. Similarly, we need to

solve the corresponding colored non-intersection reporting problem. (See [16] for background

on colored range searching.)

In the next three subsections, we apply known geometric data structuring techniques (some

of which are inspired by colored range searching), to solve this component (non-)intersection

reporting problem for axis-aligned line segments, disks, and arbitrary line segments.

4.2 Axis-Aligned Line Segments

▶ Lemma 4. Given a set of connected components formed by n axis-aligned segments in

R
2, there is a component (non-)intersection reporting data structure with Õ(n) preprocessing
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time and Õ(1 + k) query time, where k is the number of components reported. Furthermore,

we can support deletion of any component in Õ(1) amortized time, and insertion of any

component c in Õ(|c|) amortized time.

Proof. In the following, we assume that the inserted segment is vertical; the other case can

be handled symmetrically. For each component c, we compute the vertical decomposition Tc

of the horizontal segments of c. There are O(n) rectangular cells over all components. We

make the following observation.

▶ Observation 5. Let s be a vertical segment and p be its lower endpoint. For any component

c, let ∆ be the cell in Tc that contains p, and let u be the horizontal segment in c that bounds

∆ from above. Then s intersects a segment in c if and only if s intersects u.

By Observation 5, components that intersect s can be reported as follows:

1. Among the cells of Tc for all components c, find all cells that contain p.

2. Report, among the upper-bounding segments of these cells, the ones that intersect s.

Components that do not intersect s can be reported similarly, except in the second step

we instead report the segments that do not intersect s. We support the above reporting

query with a two-level data structure D.

The primary structure is an orthogonal rectangle stabbing structure with Õ(1) query time

and Õ(1) update time (e.g., [14], or by reduction to orthogonal range searching in R
4).

For each canonical subset B in the primary structure, we associate each cell ∆ ∈ B

with the segment that bounds ∆ from above. We keep two auxiliary structures on the

associated line segments. Given a vertical segment s, one auxiliary structure reports all

segments intersecting s, while the other reports all segments not intersecting s. Both

structures have Õ(1 + k) query time (where k is the output size) and Õ(1) update time

(as these subproblems also reduce to orthogonal range searching).

The preprocessing and query time bounds are clearly satisfied. Insertion/deletion of a

component c requires inserting/deleting all cells of Tc and takes Õ(|c|) time; we can charge

the cost of deletion to preprocessing or insertion. ◀

▶ Corollary 6. For n axis-aligned line segments in R
2, we can solve Subproblem 3 in Õ(n+q4)

time. Furthermore, each insertion to Q takes Õ(q3 + n/q) amortized time. We can also

support deletion of a component in Õ(1) amortized time and insertion of a component c in

Õ(|c|) amortized time, if we are given c’s class.

Proof. We store each equivalence class in the data structure from the preceding lemma.

For i = 1, . . . , q, let Li,1, . . . , Li,O(q3) be the existing classes before the i-th insertion. Let

ni,1, . . . , ni,O(q3) be the sizes of the classes. Whenever a class Li,j is split, let mi,j be the

total size of the displaced child class. As noted, the total number of displacements is
∑

i,j mi,j = Õ(n), when there are no insertions of components; in general, it is Õ(n + Σ),

where Σ is the sum of the sizes of the components inserted (because insertion of a component

c increases the potential Φ by Õ(|c|)). Thus, the total running time for class splitting

operations over all insertions to Q is at most

Õ





q
∑

i=1

O(q3)
∑

j=1

(1 + mi,j)



 = Õ
(

q4 + n + Σ
)

.

This amortizes to Õ(q3 + n/q) time per insertion to Q, with the Σ term charged to insertions

of components. ◀
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4.3 Disks

▶ Lemma 7. Given a set of connected components formed by n disks in R
2, there is a

component (non-)intersection reporting data structure with O∗(n) preprocessing time and

O∗(n4/5 + k) query time, where k is the number of components reported. Furthermore, we

can support deletion of a component in O∗(1) amortized time and insertion of a component c

in O∗(|c|) amortized time.

The proof follows the same argument as for axis-aligned segments, except we use different

data structures than orthogonal range searching for the primary and auxiliary structures.

Proof. The component (non-)intersection searching structure for disks is similar to the

one for axis-aligned segments. However, for each component c, instead of using vertical

decomposition, we compute an additively weighted Voronoi diagram [25] with the disk centers

as the sites and the radii as the weights. Let Vc be a decomposition of the diagram into cells

of constant complexity, e.g., by radially decomposing each Voronoi cell with its site as the

origin. Then Vc satisfies the same key property as the vertical decomposition in the case of

axis-aligned segments.

▶ Observation 8. Let s be a disk and p be its center. For any component c, let ∆ be the cell

in Vc that contains p, and let u be the disk associated with ∆. Then s intersects a disk in c

if and only if s intersects u.

By Observation 8, components that intersect s can be reported as follows:

1. Among the cells of Vc for all components c, find all cells that contain p.

2. Report, among the disks associated with these cells, the ones that intersect s.

Components that do not intersect s can be reported similarly, except in the second step

we instead report the disks that do not intersect s. Again, we support the above reporting

query with a two-level data structure D.

For the primary structure, observe that edges of additively weighted Voronoi diagrams in

R
2 are hyperbolas, which have equations of the form c1x2 + c2y2 + c3xy + c4x + c5y = 1

and can be “linearized” via the mapping (x, y) 7→ (x2, y2, xy, x, y). Thus, stabbing queries

on the cells of the Vc’s reduce to simplex-stabbing queries in R
5. We can handle such

queries using (a multi-level version of) Matoušek’s partition tree [27] in R
5, which has

O∗(n) preprocessing time and O∗(1) update time, such that given any query point p, we

can in O∗(n4/5) time find O∗(n4/5) canonical subsets of the simplices containing p.

For each canonical subset B in the primary structure, let SB be the set of disks associated

with the simplices in B. We keep two auxiliary structures on the associated disks.

Given an input disk s, one auxiliary structure reports all disks that intersect s, while

the other reports all disks that do not intersect s. Both structures reduce to repeated

nearest/farthest neighbor queries for points with additive weights in R
2. We can use

results by Agarwal, Efrat, and Sharir [3] to answer queries in O∗(1 + k) time with O∗(1)

update time (or alternatively, Kaplan et al.’s data structure [23] with slightly better,

polylogarithmic bounds).

The two-level data structure clearly satisfies the desired time bounds. ◀

▶ Corollary 9. For n disks in R
2, we can solve Subproblem 3 in O∗(n + q8/5n4/5) time.

Furthermore, each insertion to Q takes amortized O∗(q3/5n4/5 + n/q) time. We can also

support deletion of a component in amortized O∗(1) time and insertion of a component c in

amortized O∗(|c|) time, if we are given c’s class.
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Proof. We define ni,j and mi,j for i = 1, . . . , q and j = 1, . . . , O(q3), as well as Σ, in the

same way as we did for axis-aligned segments. Using the same analysis, the total running

time for class splitting operations over all insertions to Q is at most

O∗





q
∑

i=1

O(q3)
∑

j=1

(

n
4/5
i,j + mi,j

)



 ,

which, by Hölder’s inequality, is bounded by O∗(q · (q3/5n4/5) + n + Σ). This amortizes to

O∗(q3/5n4/5 + n/q) time per insertion to Q. ◀

4.4 Arbitrary Line Segments

The component intersection reporting problem becomes tougher for the case of arbitrary

line segments. Although we are unable to get near-linear preprocessing time, we can obtain

the following preprocessing/query-time trade-off. The idea uses cuttings and is inspired by

a known idea for a different colored range searching problem (namely, “range mode”, i.e.,

finding the most frequent color in a range) [9].

▶ Lemma 10. Given a set of connected components formed by n line segments in R
2 and a

parameter r, there is a component (non-)intersection reporting data structure with O∗(nr4)

preprocessing time and O∗(1 + n/r + k) query time, where k is the number of components

reported. Furthermore, we can support deletion of a component in O∗(r4) amortized time

and insertion of a component c in O∗(|c|r4) amortized time.

Proof. A line segment in R
2 can be represented by 4 real values (the coordinates of its two

endpoints) and so can be viewed as a point in R
4. For each input line segment s, the set

of all line segments intersecting s then corresponds a semialgebraic set in R
4 with constant

description complexity. Let S be the collection of these n semialgebraic sets.

Now, compute a (1/r)-cutting Γ of S, consisting of O∗(r4) cells (due to known combina-

torial bounds on vertical decompositions) [24], in O∗(nr4) time.

For each cell ∆ ∈ Γ, we store the conflict list of ∆, consisting of all semialgebraic sets

s ∈ S with boundaries crossing ∆; by definition of cuttings, each conflict list has size O(n/r).

For each component c with no semialgebraic set in the conflict list of ∆, we store c in a list

A(∆) if at least one semialgebraic set from c completely contains ∆, or store c in another

list B(∆) otherwise. To allow for efficient update, for each component c, we keep track of all

semialgebraic sets from c that contains ∆.

For each semialgebraic set s ∈ S and each cell ∆ ∈ Γ, we can decide in O(1) time which

list s should be stored in. Thus, the data structure has O∗(nr4) preprocessing time. For the

same reason, deletion of a semialgebraic set can be handled in O∗(r4) time.

To handle a query for a line segment represented as a point p ∈ R
4, we first locate the

cell ∆ ∈ Γ containing p. To report all components stabbed (resp. not stabbed) by p, we

linearly search the conflict list, and then report the components stored in the list A(∆) (resp.

B(∆)). The reporting takes O∗(1 + n/r + k) time, where k is the output size.

Insertions of components can be handled by the logarithmic method [4]. ◀

▶ Corollary 11. For n line segments in R
2 and a parameter r, we can solve Subproblem 3 in

O∗(r4n + qn/r + q4) time. Furthermore, each insertion to Q takes amortized O∗(n/r + q3 +

r4n/q) time. We can also support deletion of a component in O∗(r4) time and insertion of a

component c in amortized O∗(|c|r4) time, if we are given c’s class.
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Proof. We define ni,j and mi,j for i = 1, . . . , q and j = 1, . . . , O(q3), as well as Σ, in the

same way as we did for axis-aligned segments and disks. Using the same analysis, the total

running time for class splitting over all insertions to Q is at most

O∗





q
∑

i=1

O(q3)
∑

j=1

(

1 +
ni,j

r
+ mi,jr4

)



 = O∗
(qn

r
+ q4 + r4(n + Σ)

)

,

This amortizes to O∗(n/r + q3 + r4n/q) per insertion to Q. ◀

5 Dynamic Connectivity

Now, we apply the equivalence-class data structures developed in Section 4 to design dynamic

connectivity structures for axis-aligned line segments, disks, and arbitrary line segments in

R
2. We follow the basic approach from Section 2 but describe how to handle general online

updates.

5.1 Axis-Aligned Line Segments

For axis-aligned segments, we maintain the following data structures during a phase:

The equivalence-class data structure.

A decremental data structure for explicitly maintaining the connected components of

S, along with their sizes. This structure has Õ(n) preprocessing time and Õ(n) total

update time over the entire phase. We achieve this by reducing to decremental graph

connectivity under edge deletions [31] (using the biclique cover technique from Chan [7]).

For each component c, an orthogonal intersection searching structure with Õ(1) query

and update time (e.g., [14]).

Throughout the phase, we maintain a proxy graph H in the same way as in Afshani and

Chan’s method, as described in Section 2. Because updates are online, we need to handle

not only insertions and deletions in Q but also deletions in S.

Insertion/deletion in Q. Insertions in Q can be done as before, since the equivalence-class

structure already supports insertions to Q. By Corollary 6, the amortized cost of equivalence

class maintenance per insertion to Q is Õ(q3 + n/q). The number of edge changes in the

proxy graph H is O(q4); we can afford to reconstruct the connectivity structure of H in

O(q4) time.

For deletions in Q, we don’t even need to update the equivalence-class data structure.

Deletion in S. Suppose that a segment s ∈ S is deleted in the i-th update. Let c be the

component that contains s. The deletion of s may divide c into smaller sub-components

c1, . . . , cz, listed in order of decreasing size. Let mi = |c2|+· · ·+|cz|. Since |c2|, . . . , |cz| ≤ |c|/2,

the sum
∑

i mi over the entire phase is Õ(n).

First, we update the decremental connectivity structure; this takes Õ(n) time over

the entire phase. We then report the disks of c2, . . . , cz, delete them from the orthogonal

intersection searching structure for c, and then rebuild the structure for each of c2, . . . , cz.

This takes Õ(mi) time. We make c1 a singleton class, if it isn’t already. We delete c1 from
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the equivalence-class structure.4 We create at most q singleton classes this way, which is

negligible.

Next, we compute the classes among c2, . . . , cz with respect to Q by “replaying” the

insertions in Q from scratch. This takes Õ(q4 + mi) time. For each class L′ found this way,

we find the existing class L that is equivalent to L′ (this takes Õ(q4) total time, by viewing

each class as a q-bit vector and sorting O(q3) such vectors). If such a class L exists, then we

insert the components in L′ to the equivalence-class structure. This takes Õ(mi) amortized

time. Thus, the total time for handling deletions is bounded by Õ(q5 + n), which amortizes

to Õ(q4 + n/q). This is the overall amortized update time. Choosing q = n1/5, we achieve

update time Õ(n4/5).

▶ Theorem 12. For n axis-aligned line segments in R
2, there is a dynamic connectivity data

structure with O(1) query time and Õ(n4/5) amortized update time.

5.2 Disks

The dynamic data structure for disks is similar to the case of axis-aligned segments, except

we use a different decremental connectivity structure and a different intersection searching

structure.

For decremental connectivity, we use the data structure by Kaplan et al. [21], which

achieves Õ(n) preprocessing time and Õ(n) total update time over the entire phase.

For intersection searching, we use the data structure by Kaplan et al. [23], which achieves

Õ(1) query and update time.

Update time. The update algorithm is identical to the case of axis-aligned segments.

By Corollary 9, the amortized cost of equivalence class maintenance per insertion to Q is

O∗(q3/5n4/5 + n/q). For deletion, we define mi for i = 1, . . . , q in the same way as we did

for axis-aligned segments. Using the same analysis, the total cost over all deletions in S is

bounded by

O∗

(

q
∑

i=1

(

q8/5m
4/5
i + mi

)

+ n

)

= O∗
(

q9/5n4/5 + n
)

,

which amortizes to O∗(q4/5n4/5 + n/q) per deletion. This is the overall amortized update

time. Choosing q = n1/9, we achieve update time O∗(n8/9).

▶ Theorem 13. For n disks in R
2, there is a dynamic connectivity data structure with O(1)

query time and O∗(n8/9) amortized update time.

5.3 Arbitrary Line Segments

For the case of arbitrary line segments the idea is again similar to the case of axis-aligned

segments, but because the time bound for Subproblem 3 is superlinear and dependent on the

parameter r even when q is small, the settings of parameters are more delicate. There is also

a new issue: we don’t have a decremental connectivity structure for arbitrary line segments

4 All we want is that if two components are in the same class, they intersect the same elements of Q; we
don’t need the converse. This explains why it is fine to handle some classes such as c1 separately, and
why we can ignore deletions in Q in the equivalence-class structure.
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with both near-linear preprocessing time and near-linear total update time (the best static

algorithm requires O(n4/3) time [11]).

Fortunately, we observe that in the preprocessing step between every two update phases,

no more than q new segments are added to the decremental connectivity structure. Thus,

the decremental connectivity structure does not necessarily need O∗(n) preprocessing time.

Instead, it only needs to support batch insertion of at most q segments in near-linear time.

Such a data structure has been given by Chan, Pătraşcu, and Roditty [10].

▶ Lemma 14 ([10]). Let S be a set of n line segments in R
2. There is a decremental

connectivity data structure with Õ(n) total deletion time over any sequence of deletions, and

supports batch insertion of any q line segments in Õ(n + q
√

n) time.

Since we will choose q ≪ √
n, the Õ(q

√
n) term is negligible.

Update time. The update algorithm is again identical to the case of axis-aligned segments.

By Corollary 11, the amortized cost of equivalence-class maintenance per insertion to Q is

Õ(n/r + q3 + r4n/q). For deletions in S, define mi for i = 1, . . . , q in the same way as we

did for disks. Then the total cost over all deletions is bounded by

O∗

(

q
∑

i=1

(qmi

r
+ q4 + r4mj

)

+ n

)

= O∗
(qn

r
+ q5 + r4n

)

,

which amortizes to O∗(n/r + q4 + r4n/q) per deletion. This is the dominating term in the

overall amortized update time. Choosing r = n1/21 and q = n5/21, the amortized update

time minimizes to O∗(n20/21).

▶ Theorem 15. For n arbitrary line segments in R
2, there is a dynamic connectivity data

structure with O(1) query time and O∗(n20/21) amortized update time.

We remark that the same approach also works more generally for fixed-degree algebraic

curves in 2D, with a larger exponent of the update bound depending on the degree (as the

dimension of the lifted space gets larger in the proof of Lemma 10).

6 Further Improvement for Disks Using Separators

In this section, we give a small improvement to our result for disks (from near n8/9 to

n7/8 update time), interestingly by using separators. Specifically, we will use the following

variant of Smith and Wormald’s geometric separator theorem. (The original version bounds

the number of disks intersecting ∂B by O(
√

n) but assumes the input disks are disjoint.

Our variant instead bounds the stabbing number but does not require disjointness.) For

completeness, we include a proof.

▶ Lemma 16 (Smith and Wormald’s separator lemma [30]). Given a set S of n disks in R
2,

there is an axis-parallel square B, such that the number of disks inside and the number of

disks outside are both at most 4n/5, and the set of all disks intersecting ∂B can be stabbed

by O(
√

n) points. Furthermore, B can be computed in Õ(n) time.

Proof. Compute smallest square B0 that contains at least n/5 of the disk centers; this takes

Õ(n) time [5]. Say B0 has center (x, y) and side length r. For t ∈ { 1
b , 2

b , . . . , b−1
b }, let Bt be

the square with center (x, y) and side length (1 + t)r. Since Bt can be covered by 4 squares

of side length < r, we know that Bt contains at most 4n/5 centers and at least n/5 centers.
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As a result, we obtain O(q3) classes, which are a refinement of the actual equivalence

classes with respect to Q. We can determine the actual equivalence classes by testing whether

each disk in Q intersects (a representative component of) each class intersects each disk, in

Õ(q · q3) total time.

Recursion. Suppose that R contains at least one special point. We apply Smith and

Wormald’s separator theorem to obtain a square B. We recursively solve the subproblem for

R ∩ B and the components completely inside R ∩ B, and the subproblem for R \ B and the

components completely inside R \ B. There are at most O(
√

n) components intersecting ∂B

(because disks stabbed by a common point are in a common component). We can determine

the actual equivalence classes for these “boundary components” by testing whether each disk

in Q intersects each boundary component, in Õ(q ·√n) time. We can combine the equivalence

classes of the two subproblems and the boundary components in Õ(q · q3) additional time.

Analysis. Note that because the recursion has logarithmic depth, each region R generated

is indeed an orthogonal polygon with Õ(1) complexity. Letting X be the number of special

points in R, we obtain the recurrence

T (n, X) ≤ max
n1+n2≤n, n1,n2≤4n/5,X1+X2≤X

((T (n1, X1) + T (n2, X2) + Õ(n + q4 + q
√

n)),

with the base case T (n, 0) = Õ(n + q4).

The recurrence solves to T (n, X) = Õ(n+q4X +q
√

nX). As the number of special points

is O(q2), we obtain a running time of Õ(n + q6 + q2
√

n). ◀

We can now use the new lemma to speed up our previous method for dynamic connectivity

for disks. We use the same equivalence-class data structure as before, but make only one

change: during a deletion in S, when we compute the equivalence classes among c2, . . . , cz,

we switch to the above lemma (since this step is a static problem).

Update time. The amortized cost per insertion to Q is the same as before, i.e., O∗(q3/5n4/5+

n/q). With the new static equivalence-class algorithm, the total cost over all deletions in S

is now bounded by

O∗

(

q
∑

i=1

(

q6 + q2√
mi + mi

)

+ n

)

= O∗
(

q7 + q5/2
√

n + n
)

,

which amortizes to O∗(q6 + q3/2
√

n + n/q) per deletion. The insertion cost now dominates.

Choosing q = n1/8, we achieve update time O∗(n7/8).

▶ Theorem 18. For n disks in R
2, there is a dynamic connectivity data structure with O(1)

query time and O∗(n7/8) amortized update time.
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