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Abstract

We develop simple and general techniques to obtain faster (near-linear time) static approxi-
mation algorithms, as well as efficient dynamic data structures, for four fundamental geometric
optimization problems: minimum piercing set (MPS), maximum independent set (MIS), minimum
vertex cover (MVC), and maximum-cardinality matching (MCM). Highlights of our results in-
clude the following:

• For n axis-aligned boxes in any constant dimension d, we give an O(log logn)-approximation
algorithm for MPS that runs in O(n1+δ) time for an arbitrarily small constant δ > 0. This
significantly improves the previous O(log logn)-approximation algorithm by Agarwal,
Har-Peled, Raychaudhury, and Sintos (SODA 2024), which ran in O(nd/2 polylogn) time.

• Furthermore, we show that our algorithm can be made fully dynamic with O(nδ) amor-
tized update time. Previously, Agarwal et al. (SODA 2024) obtained dynamic results only
in R

2 and achieved only O(√npolylogn) amortized expected update time.

• For n axis-aligned rectangles in R
2, we give an O(1)-approximation algorithm for MIS

that runs in O(n1+δ) time. Our result significantly improves the running time of the cele-
brated algorithm by Mitchell (FOCS 2021) (which was about O(n21)), and answers one of
his open questions. Our algorithm can also be made fully dynamic with O(nδ) amortized
update time.

• For n (unweighted or weighted) fat objects in any constant dimension, we give a dy-
namic O(1)-approximation algorithm for MIS with O(nδ) amortized update time. Pre-
viously, Bhore, Nöllenburg, Tóth, and Wulms (SoCG 2024) obtained efficient dynamic
O(1)-approximation algorithms only for disks in R

2 and only in the unweighted setting.

• For n axis-aligned rectangles in R
2, we give a dynamic (3

2
+ ε)-approximation algorithm

for MVC with O(polylogn) amortized update time for any constant ε > 0. Our static
result improves the running time of Bar-Yehuda, Hermelin, and Rawitz (2011). For disks
in R

2 or hypercubes in any constant dimension, we give the first fully dynamic (1 + ε)-
approximation algorithm for MVC with O(polylogn) amortized update time.

• For (monochromatic or bichromatic) disks in R
2 or hypercubes in any constant dimen-

sion, we give the first fully dynamic (1 + ε)-approximation algorithm for MCM with
O(polylogn) amortized update time.
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1 Introduction

In this work, we study geometric versions of four fundamental optimization problems: minimum
piercing set (MPS), maximum independent set (MIS), minimum vertex cover (MVC), and maximum-
cardinality matching (MCM). The first three problems are NP-hard for most types of geometric
objects, and polynomial-time approximation algorithms for these problems have been extensively
studied in the computational geometry literature. Recently, researchers have started exploring
techniques to improve the running time of such approximation algorithms, e.g., for geometric
set cover [AP20, CHQ20, CH20], MPS [AHRS24], and MCM [HY22]. Given the advent of large-
scale datasets in today’s world, algorithms with near-linear running time are especially desirable.
Furthermore, many real-world problems require efficient processing of geometric data which un-
dergo updates. This has also prompted researchers to explore efficient dynamic approximation
algorithms for these problems [HNW20, ACS+22, CH21, CHSX22, AHRS24, BNTW24]. (Note that
the existence of efficient static algorithms with subquadratic running time is a prerequisite to the
existence of efficient dynamic algorithms with sublinear update time.) In this paper, we continue
investigating these two research directions.

Minimum piercing set (MPS). Given a set S of n geometric objects in R
d, a subset P ⊂ Rd is a

piercing set of S if every object of S contains at least one point of P . The minimum piercing set (MPS)
problem asks for a piercing set P of the smallest size. The problem has numerous applications,
in facility location, wireless sensor networks, etc. [SW96, HRS02, BKS00, KNS03]. The problem
may be viewed as a “continuous” version of geometric hitting set (where P is constrained to be a
subset of a given discrete point set rather than R

d), and geometric hitting set in turn corresponds
to geometric set cover in the dual range space. In particular, by the standard greedy algorithm for
set cover, one can compute an O(logn)-approximation to the minimum piercing set in polynomial
time for any family of piercing set with constant description complexity (since it suffices to work
with a discrete set of O(nd) candidate points).

For unit squares/hypercubes, unit disks/balls, or more generally, near-equal-sized fat objects
in R

d for any constant d, there are simple O(n)-time O(1)-approximation algorithms, whereas the
well-known shifted grid strategy of Hochbaum and Maass [HM85] gives a PTAS, computing a

(1+ε)-approximation in nO(1/εd) time. For fat objects of arbitrary sizes, a simple greedy algorithm
yields an O(1)-approximation; the running time is naively quadratic, but can be improved to
O(npolylogn) in the case of fat objects in R

2 by using range-searching data structures [EKNS00].
Chan [Cha03] gave a separator-based PTAS for arbitrary fat objects (in particular, arbitrary hy-

percubes and balls), running in nO(1/εd) time (see also [CM05] for another PTAS for the case of
unit-height rectangles in R

2).
For arbitrary boxes1 in R

d (which may not be fat), the current best polynomial-time approx-
imation algorithm achieves approximation ratio2 O(log logOPT). The approach is to solve the
standard linear program (LP) relaxation for piercing/hitting set (either exactly, or approximately
by a multiplicative weight update method [BG95]), and then round the LP solution via ε-nets—the
log log approximation ratio comes from combinatorial bounds by Aronov, Ezra, and Sharir [AES10]
on ε-nets for d ∈ {2,3} and by Ezra [Ezr10] on weak ε-nets for d ≥ 4.

All these methods have high polynomial running time, prompting the following questions:

1Throughout this paper, all rectangles, boxes, squares, and hypercubes are axis-aligned by default.
2Throughout this paper, OPT denotes the optimal value to an optimization problem.

3



Do there exist near-linear-time sublogarithmic-approximation algorithms for MPS for various families of
geometric objects? Do there exist similar dynamic algorithms with sublinear update time?

In SODA 2024, Agarwal, Har-Peled, Raychaudhury, and Sintos [AHRS24] presented a faster
randomized O(log logOPT)-approximation algorithm with expected running time3 Õ(nd/2) for
boxes in R

d. Moreover, they showed the expected running time can be improved to near-linear
but only when OPT is smaller than n1/(d−1). Furthermore, they studied the problem in the dynamic
setting. For rectangles in R

2 they obtained Õ(√n) amortized expected time per insertion/deletion.
There has been no other prior work on dynamic MPS (ignoring the easy case of near-equal-sized
fat objects, where a straightforward grid strategy yields O(1)-approximation in O(1) update time).

Our contributions to MPS.

• For boxes in R
d for any constant d, we present an O(log logOPT)-approximation algorithm

running in O(n1+δ) time (Theorem 2.2) for an arbitrarily small constant δ > 0. The running
time is a dramatic improvement over Agarwal et al.’s previous Õ(nd/2) bound [AHRS24] for
all d ≥ 3.

• Furthermore, our O(log logOPT)-approximation algorithm for boxes can be made dynamic
with O(nδ) amortized update time (Theorem 2.2) for any d ≥ 2. This is a significant improve-
ment over Agarwal et al.’s previous Õ(√n) bound, which addressed only the R

2 case.

• For fat objects in R
d for any constant d (assuming constant description complexity), we

present an O(1)-approximation algorithm running in O(n1+δ) time (Theorem 2.11). Recall
that a near-linear-time implementation of the O(1)-approximation greedy algorithm [EKNS00]
was known only in R

2; the exponent in the previous time bound converges to 2 as d increases,
due to the use of range searching.

• Furthermore, our O(1)-approximation algorithm for fat objects can be made dynamic with
O(nδ) amortized update time (Theorem 2.11) for any constant d. No previous dynamic algo-
rithms for fat objects were known even for the case of disks in R

2 (Agarwal et al. [AHRS24]
did consider the case of squares in R

2 but obtained a weaker Õ(n1/3) update time bound).

Maximum independent set (MIS). Given a set S of objects in R
d, the geometric MIS problem

is to choose a maximum-cardinality subset I ⊆ S of independent (i.e., pairwise-disjoint) objects.
The problem is among the most popular geometric optimization problems studied. It is related to
MPS: the size of the MIS is always at most the size of the MPS; in fact, a standard LP for MIS is
dually equivalent to the standard LP for MPS.

For near-equal-sized fat objects for any constant d, Hochbaum and Maass’s shifted grid method
yields a PTAS [HM85]. For fat objects of arbitrary sizes, a simple greedy algorithm yields an O(1)-
approximation [EKNS00], but several PTASs with running time nO(1/εd) or nO(1/εd−1) have been
found, e.g., via shifted quadtrees, geometric separators, or local search [EJS05, Cha03, CH12].

The case of arbitrary rectangles in R
2 has especially garnered considerable attention. A (logn)-

approximation O(n logn)-time algorithm via straightforward binary divide-and-conquer has long

3Throughout this paper, the Õ notation hides polylogarithmic factors in n.
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been known [AvKS98] (see also [KMP98, Nie00]); by increasing the branching factor, the approxi-
mation ratio can be lowered to ε logn with running time nO(1/ε) [Cha04, BDMR01]. The first sub-
stantial progress was made by Chalermsook and Chuzhoy [CC09] in SODA 2009, who obtained
an O(log logn)-approximation polynomial-time algorithm for rectangles, by rounding the LP solu-
tion using an intricate analysis. In a different direction, Adamaszek and Wiese [AHW19] in SODA
2014 obtained a quasi-PTAS, i.e., a (1 + ε)-approximation algorithm running in npolylogn time, by
using separators and dynamic programming; their approach works more generally for polygons,
in particular, arbitrary line segments (see also [FP11, CPW24] for other related results). For rectan-
gles, Chuzhoy and Ene [CE16] improved this to a “quasi-quasi-PTAS”, running in npolyloglogn time,
with a more complicated algorithm. In a remarkable breakthrough, Mitchell [Mit22] obtained the
first polynomial-time O(1)-approximation algorithm for rectangles, by proving a variant of a com-
binatorial conjecture of Pach and Tardos [PT00] and applying straightforward dynamic program-
ming; the approximation ratio was 10 in the original paper, but was subsequently lowered to 2+ ε
by Gálvez, Khan, Mari, Mömke, Pittu, and Wiese [GKM+22, GKM+21].

The running time of Mitchell’s algorithm is high: the original paper stated a (loose) upper
bound of O(n21), and although the exponent is likely improvable somewhat with more effort, it is
not clear how to get a more practical polynomial bound. For example, even if the original version
of Pach and Tardos’s conjecture were proven, the dynamic program would still require at least
n4 table entries. (The running time of Gálvez et al.’s algorithm is even higher.) At the end of his
paper, Mitchell [Mit22] specifically asked the following question:

“Can the running time of a constant-factor approximation algorithm be improved significantly?”

The dynamic version of geometric MIS was first studied by Henzinger, Neumann, and Wiese
[HNW20], who gave dynamic O(1)-approximation algorithms for squares/hypercubes with amor-
tized polylogarithmic update time (see also [BCIK21]). For arbitrary boxes, Henzinger et al.’s
algorithm requires approximation ratio O(logd−1 n). Cardinal, Iacono, and Koumoutsos [CIK21]
designed dynamic algorithms for fat objects with sublinear worst-case update time, using range
searching data structures, but the exponent in the update bound converges to 1 as d increases
(even for squares or disks in R

2, their update bound is large, near Õ(n3/4)). Very recently, Bhore,
Nöllenburg, Tóth, and Wulms [BNTW24] showed that for disks in R

2, an O(1)-approximation can
be maintained in expected polylogarithmic update time. Their algorithm for disks used certain
dynamic data structures for range/intersection searching (requiring generalizations of dynamic
3-dimensional convex hulls [Cha10, Cha20a, KMR+20]); even if it could be extended to balls and
fat objects in higher dimensions, the exponent would also converge to 1 for larger d (since convex
hulls have much larger combinatorial complexity as dimension exceeds 3).

Do there exist dynamic O(1)-approximation algorithms with sublinear update time for rectangles in R
2,

or with (say) O(n0.1) update time for fat objects in R
d for d ≥ 3?

Our contributions to MIS.

• For rectangles in R
2, we present an O(1)-approximation algorithm running in O(n1+δ) time

(Theorem 3.2) for an arbitrarily small constant δ > 0. The running time is a dramatic im-
provement over Mitchell’s previous algorithm [Mit22].
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• Furthermore, our O(1)-approximation algorithms for rectangles can be made dynamic with
O(nδ) amortized update time (Theorem 3.2). In contrast, Henzinger et al.’s previous dy-
namic algorithm [HNW20] had O(logn) approximation ratio.

• For fat objects in R
d for any constant d (assuming constant description complexity), we

present an O(1)-approximation algorithm running in O(n1+δ) time (Theorem 3.6).

• Furthermore, our O(1)-approximation algorithm for fat objects can be made dynamic with
O(nδ) amortized update time (Theorem 3.6). The update time is a significant improvement
over Cardinal et al.’s [CIK21]. Surprisingly, range searching structures are not needed.

• Our approach extends to the weighted case (computing the maximum-weight independent
set for a given set of weighted objects). For weighted rectangles in R

2, our static and dynamic
algorithms have the same running time but with O(log logn) approximation ratio—this
matches the current best approximation ratio for polynomial-time algorithms due to Chaler-
msook and Walczak [CW21] (a generalization of the LP-rounding approach by Chalermsook
and Chuzhoy [CC09]). The previous dynamic algorithm for weighted rectangles was due to
Henzinger et al. [HNW20] and had O(logn) approximation ratio. For weighted fat objects
in R

d, we obtain the same result with O(1) approximation ratio. In contrast, Cardinal et al.’s
and Bhore et al.’s previous dynamic algorithms [CIK21, BNTW24] inherently do not work in
the weighted setting. We obtain the first efficient data structures for MIS for weighted disks
in R

2 and other types of weighted fat objects.

Minimum vertex cover (MVC). Given an undirected graph G = (V,E), a subset of vertices X ⊆
V is a vertex cover if each edge has at least one endpoint in X . The minimum vertex cover (MVC)
problem asks for a vertex cover with the minimum cardinality. In the geometric version of the
problem, we are given a set S of n geometric objects in R

d and want the MVC of the intersection
graph of S. In the exact setting, MVC is equivalent to MIS, as the complement of an MIS is an
MVC. However, from the approximation perspective, a sharp dichotomy exists between the two
problems; for instance, MIS on general graphs cannot be approximated with ratio n1−ε under
standard hypotheses [Zuc07], but there is a simple greedy 2-approximation algorithm for MVC:
namely, just take a maximal matching4 and output its vertices. MVC has not received as much
attention as MPS and MIS in the geometry literature, but is just as natural to study in geometric
settings: if we are given a set of geometric objects that are almost non-overlapping and we want
to remove the fewest number of objects to eliminate all the intersections, this is precisely the MVC
problem in the intersection graph.

Erlebach, Jansen, and Seidel [EJS05] gave the first PTAS for MVC for fat objects in R
d running in

nO(1/εd) time. For rectangles in the plane, Bar-Yehuda, Hermelin, and Rawitz [BHR11] obtained a
(3
2
+ ε)-approximation algorithm. Bar-Yehuda et al.’s work made use of Nemhauser and Trotter’s

standard LP-based kernelization for MVC [NTJ75], which allows us to approximate the MVC
by flipping to an MIS instance. Following the same kernelization approach, Har-Peled [Har23]
noted that the known quasi-PTAS for MIS for polygons [AHW19] and quasi-quasi-PTAS for MIS
for rectangles [CE16] imply a quasi-PTAS for MVC for polygons and quasi-quasi-PTAS for MVC
for rectangles. Recently, Lokshtanov, Panloan, Saurabh, Xue, and Zehavi [LPS+24] gave the first

4A matching in a graph G = (V,E) is a subset of edges M ⊆ E such that no two edges in M share a common endpoint.
A matching M is maximal if for every edge uv ∈ E ∖M , either u or v is matched in M .
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polynomial-time algorithm for strings (which include arbitrary line segments and polygons) that
achieves a constant approximation ratio strictly below 2, using the Nemhauser–Trotter kernel and
a number of new ideas.

We are interested in improving the running time of static algorithms as well as the dynamic
version of geometric MVC. Dynamic MVC is a well-studied problem in the dynamic graph algo-
rithms literature, under edge updates; e.g., see [OR10, BHI18, BK19]. However, these graph results
are not directly applicable to the geometric setting, since the insertion/deletion of a single object
may require as many as Ω(n) edge updates in the intersection graph in the worst case. There
has been no prior work on dynamic geometric MVC (ignoring the case of monochromatic, nearly-
equal-sized fat objects, where it is not difficult to adapt the standard shifted grid strategy [HM85]
to maintain a (1 + ε)-approximation with O(1) update time).

Do there exist near-linear-time better-than-2-approximation algorithms for MVC for various families of
geometric objects? Do there exist similar dynamic algorithms with sublinear update time?

Our contributions to MVC.

• For rectangles in R
2, we speed up Bar-Yehuda et al.’s (3

2
+ε)-approximation polynomial-time

algorithm [BHR11] to run in O(npolylogn) time, and at the same time obtain a dynamic
(3
2
+ ε)-approximation algorithm with O(polylogn) amortized update time (Corollary 4.6).

• For disks in R
2 and fat boxes (e.g., hypercubes) in R

d for any constant d, we speed up the
previous PTAS [EJS05] to run in O(npolylogn) time (ignoring dependence on ε), and at the
same time obtain a dynamic (1 + ε)-approximation algorithm with O(polylogn) amortized
update time (Corollaries 4.5 and 4.7). The fact that the approximation ratio is 1+ ε is notable
and interesting: none of the known dynamic algorithms has approximation ratio 1 + ε for
the other geometric optimization problems such as MPS and MIS5, except in 1-dimensional
special cases for intervals [HNW20, BCIK21, CMR23].

• Similar results hold for bichromatic disks and fat boxes, for MVC in their bipartite intersec-
tion graph (Corollaries 4.8 and 4.9).

Our results on MVC can be generalized to other types of fat objects in R
d (e.g., balls in R

3)
but with a larger time bound, dependent on range searching (with exponent converging to 1 as d

increases). However, this is unavoidable for MVC (in contrast to our results on MIS): any dynamic
approximation algorithm for MVC needs to recognize whether the MVC size is zero, and so must
know whether the intersection graph is empty. Dynamic range emptiness (maintaining a dynamic
set of input points so that we can quickly decide whether a query object contains any input point)
can be reduced to this problem, by inserting all the input points, and repeatedly inserting a query
object and deleting it.

Maximum-cardinality matching (MCM). Another closely related classical optimization prob-
lem on graphs is maximum-cardinality matching (MCM), where the objective is to find a matching

5This is with good reason: for MIS, it is not possible to maintain a (1 + ε)-approximation in sublinear time for a

sufficiently small ε, even in the case of unit squares in R
2, since the static problem has a lower bound of nΩ(1/ε) under

ETH [Mar07].
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with the largest number of edges in a given undirected graph G. The problem is related to MVC:
the size of an MVC is always at least the size of an MCM; for bipartite graphs, they are well-
known to be equal. In fact, the standard LP for MVC is the dual to the LP for MCM. MCM is
polynomial-time solvable: the classical algorithm by Hopcroft and Karp [HK73] runs in O(m√n)
time for bipartite graphs with n vertices and m edges, and Vazirani’s algorithm [Vaz94] achieves
the same run time for general graphs. By recent breakthrough results [CKL+22], MCM can be
solved in m1+o(1) time for bipartite graphs. Earlier, Duan and Pettie [DP14] obtained O(m)-time
(1 + ε)-approximation algorithms for general graphs.

MCM on geometric intersection graphs has received some attention. Efrat, Itai, and Katz [EIK01]
showed how to compute the (exact) MCM in bipartite unit disk graphs in O(n3/2 logn) time.
Their algorithm works for other geometric objects; for example, it runs in O(n3/2 polylogn) time
for bipartite intersection graphs of arbitrary disks, by using known dynamic data structures for
disk intersection searching [KKK+22]. Cabello, Cheng, Cheong, and Knauer [CCCK24] improved
the time bound to O(n4/3+ε) for unit disks, and also gave further exact subquadratic-time algo-
rithms for other types of objects, using biclique covers in combination with the recent graph re-
sults [CKL+22]. See also [BCM23] for other special-case results. Recently, Har-Peled and Yang [HY22]
presented near-linear time (1+ε)-approximation algorithms for MCM in (bipartite or non-bipartite)
intersection graphs of arbitrary disks, among other things.

Dynamic MCM is a well-studied problem in the dynamic graph algorithms literature, under
edge updates; e.g., see [OR10, GP13, BS15, BS16, PS16, Sol16, BHI18, Beh23, BKSW23, ABR24].
However, these graph results are not directly applicable to the geometric setting, again since the
insertion/deletion of a single object may cause many edge updates. There has been no prior work
on dynamic geometric MCM (again ignoring the easier case of monochromatic, nearly-equal-sized
fat objects).

Do there exist dynamic (1+ ε)-approximation algorithm for MCM for various families of geometric objects
with sublinear update time?

Our contributions to MCM.

• For disks in R
2 and fat boxes (e.g., hypercubes) in R

d for any constant d, we obtain a dynamic
(1 + ε)-approximation algorithm with O(polylogn) amortized update time (Corollaries 5.3,
5.4, 6.4, and 6.5), in both the monochromatic and bichromatic (bipartite) cases. This can be
viewed as a dynamization of Har-Peled and Yang’s static algorithms [HY22].

Our techniques for MPS and MIS. A natural approach to get faster static algorithms or efficient
dynamic algorithms is to take a known polynomial-time static algorithm and modify it. This was
indeed the approach taken originally by Chan and He [CH21] on dynamic geometric set cover,
and more recently by Agarwal et al. [AHRS24] on dynamic MPS. In these works, the previous
algorithms were LP-based, and the bottleneck was in solving the LP, which was done using a
multiplicative weight update (MWU) method. The idea was to apply geometric data structuring
(range searching) techniques to speed up each iteration of the MWU; if OPT is small, the number
of iterations is small, but if OPT is large, we can switch to a different strategy (since we can tolerate
a larger additive error).

We started our research by following the above strategy but end up discovering a different,
better, and simpler approach: namely, we directly reduce our problem to smaller instances, and

8



just solve these subproblems by invoking the known polynomial-time static algorithm as a black
box! This way, we do not even need to know how the previous static algorithm internally works.
(This is advantageous for MIS for rectangles, for example, since Mitchell’s previous algorithm was
not based on LP/MWU, and it is not clear how it can be sped up with data structures.)

More precisely: for MPS/MIS for rectangles, we first use a standard divide-and-conquer (simi-
lar to [AvKS98]) to reduce the problem to less complex instances where the rectangles are stabbable
by a small number of horizontal lines and by a small number of vertical lines. The divide-and-
conquer causes the approximation ratio to increase, but by using a larger branching factor nδ, the
increase is only by a constant factor. For each such instance, we “round” the input rectangles to
reduce the number of rectangles to nO(δ) (more formally, we form nO(δ) “classes” and map each
rectangle to a “representative” element in its class); we can then solve each such subproblem in
nO(δ) time by the black box. The key step is to show that input rounding increases the approxima-
tion ratio by only a constant factor; this combinatorial fact has simple proofs. This idea of reduc-
ing the input size by rounding is somewhat reminiscent to the familiar notion of coresets [AHV05],
though we have not seen coresets used in the context of geometric MPS/MIS before.

For fat objects, we proceed similarly, except that we use a divide-and-conquer based on shifted
quadtrees [Cha98].

Surprisingly, this (embarrassingly) simple approach is sufficient to yield all our new results by
MPS and MIS—for example, the description of our method for MPS for rectangles fits in under
two pages, in contrast to the much lengthier solution by Agarwal et al. [AHRS24]. A virtue of this
approach is that dynamization now becomes almost trivial.

Our techniques for MVC and MCM. For MVC, we return to the approach of speeding up MWU
using geometric data structures. There have been previous works [CHQ20, CH21] on speeding up
MWU for static and dynamic geometric set cover, but thus far not for geometric MVC. We show
that geometric MVC is well-suited to this approach (in some ways, even more so than geometric
set cover): interestingly, the right data structure for an efficient implementation of MWU turns out
to involve a type of a dynamic generalized closest pair problem, which Eppstein [Epp95] (see also
[Cha20a]) has conveniently developed a technique for. For MVC, the purpose of using MWU to
solve the LP (approximately) is in computing a Nemhauser–Trotter-style kernel [NTJ75], which
allows us to reduce n to ≤ 2OPT (roughly), after which we can flip to a MIS instance. As another
technical ingredient, we show that an approximate LP solution is sufficient for the kernelization.
To solve geometric MVC in the dynamic setting, we additionally use a standard trick: periodic
rebuilding. As mentioned, when OPT is small, the number of iterations of the MWU is small, but
when OPT is large, we only need to rebuild the solution after a long stretch of εOPT updates.

For MCM, kernels for matching seem harder to compute. Instead, in the bipartite case, we
adapt an approach based on Hopcroft and Karp’s classical matching algorithm [HK73], which
is known to yield good approximation after a constant number of iterations. We show how to
implement the approximate version of Hopcroft and Karp’s algorithm using range searching data
structures. Previously, Efrat, Itai, and Katz [EIK01] have already applied geometric data structures
to speed up Hopcroft and Karp’s exact algorithm, but their work was on the static case. The
dynamic setting is trickier and requires a more delicate approach. In the general non-bipartite
case, we need one more idea by Lotker, Patt-Shamir, and Pettie [LPP15] (also used in [HY22]) to
reduce the non-bipartite to the bipartite case in the approximate setting; we give a reinterpretation
of this technique in terms of color-coding [AYZ95], of independent interest.

9



Both our methods for geometric MVC and MCM are quite general, and work for any family of
objects satisfying certain requirements (see Theorems 4.4 and 5.2 for the general framework).

2 Minimum Piercing Set (MPS)

In this section, we present our static and dynamic approximation algorithms for MPS for boxes
and fat objects.

2.1 Boxes

To solve the MPS problem for boxes, we first consider a special case that can be solved by “round-
ing” the input boxes—this simple idea will be the key:

Lemma 2.1. Let d be a constant. Let Γ be a set of O(b) axis-aligned hyperplanes in R
d. Let S be a set of

n axis-aligned boxes in R
d with the property that each box in S is stabbed by at least one hyperplane in Γ

orthogonal to the k-th axis for every k ∈ {1, . . . , d}. We can compute an O(log logOPT)-approximation to
the minimum piercing set for S in Õ(n+bO(1)) time. Furthermore, we can support insertions and deletions
in S (assuming the property) in Õ(bO(1)) time.

Proof. The hyperplanes in Γ form a (non-uniform) grid with O(bd) grid cells. Place two boxes of
S in the same class if they intersect the same subset of grid cells (see Figure 1(a) for a depiction of
one class). There are O(b2d) classes (as each class can be specified by 2d hyperplanes in Γ). Let Ŝ
be a subset of S where we keep one “representative” element from each class. Then ∣Ŝ∣ = O(b2d).
We apply the known result by Aronov, Ezra, and Sharir [AES10] for d ∈ {2,3} or Ezra [Ezr10] for
d ≥ 4 (see also [AHRS24]) to compute an O(log logOPT)-approximation to the minimum piercing
set for the boxes in Ŝ. This takes time polynomial in ∣Ŝ∣, i.e., bO(1) time. Let P be the returned
piercing set for Ŝ. For each point p ∈ P , add the 2d corners of the grid cell containing p to a set P ′.
Then ∣P ′∣ ≤ 2d∣P ∣ ≤ O(log logOPT) ⋅OPT. We output P ′.

To show correctness, it suffices to show that P ′ is a piercing set for S. This follows because
if ŝ is the representative element of s’s class, and ŝ is pierced by p, then s intersects the grid cell
containing p and so s must be pierced by one of the corners of the grid cell (because of the stated
property), as illustrated in Figure 1(b).

Insertions and deletions are straightforward, by just maintaining a linked list per class, and
re-running Agarwal et al. [AHRS24]’s algorithm on Ŝ from scratch each time.

By combining the lemma with (a b-ary version of) a standard divide-and-conquer method [AvKS98],
we obtain our main result for boxes:

Theorem 2.2. Let d be a constant, and δ > 0 be a parameter. Given a set S of n axis-aligned boxes in R
d, we

can compute an O((1/δd) log logOPT)-approximation to the minimum piercing set for S in O(n1+O(δ))
time. Furthermore, we can support insertions and deletions in S in O(nO(δ)) amortized time.

Proof. In a type-j problem (j ∈ {0, . . . , d}), we assume that the given set S is stabbable by O(b)
hyperplanes orthogonal to the k-th axis for every k ∈ {1, . . . , j}. The original problem is a type-0
problem. A type-d problem can be solved directly by Lemma 2.1.
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Remark 2.4. Any improvement to the O(log logOPT) approximation ratio for polynomial-time
algorithms for piercing boxes would automatically improve the approximation ratio for our static
and dynamic algorithms.

For the static algorithm, the 1/δd factor in the running time can be lowered to logd(1/δ) by set-
ting b differently (as a function of the local input size n). In particular, when setting δ = 1/ logn, we
can obtain O(npolylogn) running time with approximation ratio O(log logOPT ⋅ (log logn)d) for
boxes in R

d. In Appendix A, we note another variant of the static algorithm with O(npolylogn)
running time, while keeping the approximation ratio at O(log logOPT); however, this variant uses
Monte Carlo randomization, and works only in the setting when we want to output an approxi-
mation to the optimal value rather than an actual piercing set.

For the dynamic algorithm, we have stated amortized bounds for simplicity; worst-case bounds
seem plausible by standard deamortization techniques for weight-balanced trees [Ove83].

2.2 Fat objects

We next turn to the case of fat objects. We begin with some definitions and preliminary facts.
In what follows, the diameter of an object s, denoted diam(s), refers to its L∞-diameter (i.e., the
side length of its smallest enclosing axis-aligned hypercube). We use the following definition of
fatness [Cha03], which is the most convenient here:

Definition 2.5. A collection C of objects in R
d is c-fat if the following property holds: for every

hypercube B, there exist c points piercing all objects in C that intersect B and have diameter at
least diam(B).

Definition 2.6. A quadtree box is a hypercube of the form [ i1
2ℓ
, i1+1

2ℓ
)×⋯×[ id

2ℓ
, id+1

2ℓ
) for some integers

i1, . . . , id, ℓ ∈ Z. (We also consider Rd to be a quadtree box.)

The fact below follows by applying standard tree partitioning schemes, e.g., Frederickson [Fre85],7

to the (compressed) quadtree.

Fact 2.7. Let d be a constant and b be a parameter. Let P be a set of n points in R
d. In O(n) time, we can

partition of Rd into b interior-disjoint cells, which each cell is either a quadtree box or the difference of two
quadtree boxes, such that each cell contains at most O(n/b) points of P .

Definition 2.8. An object s is c0-good if it is contained in a quadtree box B with diam(B) ≤ c0 ⋅

diam(s).

Fact 2.9 (Shifting Lemma [Cha98, Cha03]). Suppose d is even. Let vj = ( j
d+1 , . . . ,

j
d+1) ∈ Rd. For every

object s ⊂ [0,1)d, there exists j ∈ {0, . . . , d} such that s + vj is O(d)-good.

We present our key lemma addressing a special case that can be solved by “rounding” the
input objects:

Lemma 2.10. Let d, c, c0 be constants. Let Γ be a partition of Rd into b disjoint cells, where each cell is
either a quadtree box or the difference of two quadtree boxes. Let S be a set of n c0-good objects in R

d of

7Any constant-degree tree with n nodes can be partitioned into b connected pieces of O(n/b) nodes each, such that
each non-singleton piece is adjacent to at most two other pieces [Fre85]. When applied to the quadtree, each piece
corresponds to a quadtree box or the difference between two quadtree boxes.
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constant description complexity from a c-fat collection C, with the property that each object in S intersects
the boundary of at least one cell of Γ. We can compute an O(1)-approximation to the minimum piercing
set for S in Õ(n + bO(1)) time. Furthermore, we can support insertions and deletions in S (assuming the
property) in Õ(bO(1)) time.

Proof. For each quadtree box B, define Λ(B) to be a set of points piercing all c0-good objects
in C that intersect ∂B. We can ensure that ∣Λ(B)∣ = O(1) by fatness, since all c0-good objects s

intersecting ∂B have diameter more than diam(B)/c0, and we can cover ∂B by O(1) hypercubes
with diameter diam(B)/c0.

For each cell γ which is the difference of an outer quadtree box B+ with an inner quadtree
box B−, define Λ(γ) to be Λ(B+) ∪Λ(B−). Then ∣Λ(γ)∣ = O(1).

It follows that OPT ≤ ∑γ∈Γ ∣Λ(γ)∣ ≤ O(b). In the static case, we could use the known greedy al-
gorithm (e.g., see [Cha03, EKNS00]) to compute an O(1)-approximation to the minimum piercing
set for the fat objects in S, which runs in time Õ(n ⋅OPT) = Õ(bn). We propose a better approach
which is dynamizable.

Place two objects of S in the same class if they intersect the same subset of cells in Γ. There
are at most bO(1) classes: since the objects have constant description complexity, each object maps
to a point in a constant-dimensional space; the objects intersecting a cell map to a semialgebraic
set in this space; a class corresponds to a cell in the arrangement of these b semialgebraic sets;
there are bO(1) cells in the arrangement. We can determine the class of an object in Õ(1) time by
point location in the arrangement [AS00], after preprocessing in bO(1) time. Let Ŝ be a subset of
S where we keep one “representative” element from each class. Then ∣Ŝ∣ ≤ bO(1). We apply the
known greedy algorithm to compute an O(1)-approximation to the minimum piercing set for the
fat objects in Ŝ. This takes time polynomial in ∣Ŝ∣, i.e., bO(1) time. Let P be the returned piercing
set for Ŝ. For each point p ∈ P , find the cell γ ∈ Γ containing p and add Λ(γ) to a set P ′. Then
∣P ′∣ ≤ O(1) ⋅ ∣P ∣ ≤ O(1) ⋅OPT. We output P ′.

To show correctness, it suffices to show that P ′ is a piercing set for S. This follows because if
ŝ is the representative element of s’s class, and ŝ is pierced by p, then s intersects the cell γ ∈ Γ
containing p, and thus s intersect ∂γ (because of the stated property), and so s must be pierced by
one of the points in Λ(γ).

Insertions and deletions are now straightforward, by just maintaining a linked list per class,
and re-running Agarwal et al.’s algorithm on Ŝ from scratch each time.

Combining with a quadtree-based divide-and-conquer, we obtain our main result for fat ob-
jects:

Theorem 2.11. Let d and c be constants, and δ > 0 be a parameter. Given a set S of n objects in R
d of

constant description complexity from a c-fat collection C, we can compute an O(1/δ)-approximation to the
minimum piercing set for S in O(n1+O(δ)) time. Furthermore, we can support insertions and deletions in
S in O(nO(δ)) amortized time.

Proof. We assume that all objects of S are in [0,1)d and are O(d)-good. This is without loss of
generality by the shifting lemma (Fact 2.9): for each of the d + 1 shifts vj (j ∈ {0, . . . , d}), we can
solve the problem for the good objects of S + vj , and return the union of the piercing sets found
(after shifting back by −vj). The approximation ratio increases by a factor of d + 1 = O(1).

We build a b-ary tree8 for S as follows. Arbitrarily pick one “center” point from each object of

8This is basically a b-ary variant of Arya et al.’s balanced box decomposition (BBD) tree [AMN+98].
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S and apply Fact 2.7 to the n center points of S, to obtain a partition Γ into b cells. Store the objects
that intersect the boundaries of these cells at the root. Recursively build subtrees for the subset of
the O(n/b) boxes that are contained in each of the b cells.

For each of the O(logb n) levels of the tree, we compute a piercing set for the subset of all objects
stored at that level; we then return the union of these O(logb n) piercing sets. The approximation
ratio consequently increases by an O(logb n) factor. To compute a piercing set at one level, since
the objects at different nodes lie in disjoint cells, we can just compute a piercing set for the boxes
at each node separately and return the union. Computing a piercing set at each node reduces to
the case handled by Lemma 2.10. The overall approximation ratio is thus O(logb n).

To analyze the running time, observe that each object is stored in one node of the tree and is
thus assigned to one subproblem handled by Lemma 2.10. The total running time is Õ(bO(1)n).

When we insert/delete an object, we insert/delete the object in one subproblem handled by
Lemma 2.10. The update time is Õ(bO(1)). One technical issue is tree balancing: for each subtree
with n objects, each child’s cell should have O(n/b) center points. We can use a standard weight-
balancing scheme, rebuilding the subtree after encountering n/b updates. The amortized cost for

rebuilding is still Õ( bO(1)n
n/b ) = Õ(bO(1)) per level.

Finally, we set b = nδ to get the bounds in the theorem.

Observations similar to Remark 2.4 hold here as well.

3 Maximum Independent Set (MIS)

In this section, we present our static and dynamic approximation algorithms for MIS for (un-
weighted or weighted) rectangles and fat objects. The approach is very similar to our algorithms
for MPS in the previous section. The main difference is in the justification that rounding the input
objects increases the approximation ratio by at most an O(1) factor: the proofs are trickier, but still
short.

3.1 Rectangles

Lemma 3.1. Let Γ be a set of O(b) horizontal/vertical lines in R
2. Let S be a set of n axis-aligned rectangles

in R
2 with the property that each rectangle in S is stabbed by at least one horizontal line and at least one

vertical line in Γ. We can compute an O(1)-approximation to the maximum independent set for S in
Õ(n + bO(1)) time. Furthermore, we can support insertions and deletions in S (assuming the property) in
Õ(bO(1)) time.

If the rectangles in S are weighted, we can do the same for an O(log log b)-approximation to the
maximum-weight independent set.

Proof. Define classes as in the proof of Lemma 2.1. Let Ŝ be a subset of S where we keep one “rep-
resentative” element from each class—in the weighted case, we keep the largest-weight element
of the class. Then ∣Ŝ∣ = O(b4). We apply Mitchell’s result [Mit22] (or its subsequent improve-
ment [GKM+22, GKM+21]) to compute an O(1)-approximation to the maximum independent set
for the rectangles in Ŝ in the unweighted case, or Chalermsook and Walczak’s result [CW21] to
compute an O(log log ∣Ŝ∣)-approximation in the weighted case. This takes time polynomial in ∣Ŝ∣,
i.e., bO(1) time. We output the returned independent set Î for Ŝ.
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To analyze the approximation ratio, let I∗ be the optimal independent set. For each rectangle
s, let ŝ denote the representative element of s’s class. We claim that {ŝ ∶ s ∈ I∗} contains an
independent set of cardinality Ω(1) ⋅ ∣I∗∣ in the unweighted case, or of weight Ω(1) times the
weight of I∗ in the weighted case. From the claim, it would follow that the overall approximation
ratio is O(1) in the unweighted case or O(log log b) in the weighted case.

To prove the claim, we first show that {ŝ ∶ s ∈ I∗} has maximum depth9 ∆ ≤ 4. To see this,
observe that if a point p lies inside ŝ, then s intersects the grid cell containing p, and so s contains
one of the 4 corners of this cell (because of the stated property), as illustrated in Figure 1(b), but
there are at most 4 rectangles s ∈ I∗ satisfying this condition for a fixed p (because of disjointness
of I∗). A classical result of Asplund and Grünbaum [AG60] states that every arrangement of
axis-aligned rectangles with maximum depth ∆ is O(∆2)-colorable.10 Thus, {ŝ ∶ s ∈ I∗} can be
O(1)-colored, and the largest-cardinality/weight color class, which is an independent set of Ŝ,
must have an Ω(1) fraction of the cardinality/weight of {ŝ ∶ s ∈ I∗}.

Insertions and deletions are straightforward, by just maintaining a linked list per class in the
unweighted case, or a priority queue (to maintain the largest-weight element) per class in the
weighted case, and re-running Mitchell’s or Chalermsook and Walczak’s algorithm on Ŝ from
scratch each time.

Alternative Proof. We describe an interesting, alternative proof of the above claim, which does not
rely on the known coloring results. Consider the grid formed by Γ. For each rectangle s, let ξ−(s)
and ξ+(s) be the grid columns containing the left and right edge of s respectively, and let η−(s)
and η+(s) be the grid rows containing the bottom and top edge of s respectively. Observe that
there exists a subset Z of the grid columns and rows, such that I∗Z = {s ∈ I∗ ∶ ξ−(s) ∈ Z ∧ ξ+(s) /∈
Z ∧ η−(s) ∈ Z ∧ η+(s) /∈ Z} has at least 1

16
of the cardinality/weight of I∗. This can be proved in

several ways11; for example, a standard, simple probabilistic argument is to pick Z randomly and
just note that the expected cardinality/weight of I∗Z is equal to 1

16
times that of I∗.

To finish, observe that {ŝ ∶ s ∈ I∗Z} is independent: if s and s′ do not intersect but ŝ and ŝ′

intersect, then ξ+(s) = ξ−(s′) or ξ+(s′) = ξ−(s) or η+(s) = η−(s′) or η+(s′) = η−(s); but this can’t
happen when s, s′ ∈ I∗Z by our definition of I∗Z .

Theorem 3.2. Let δ > 0 be a parameter. Given a set S of n axis-aligned rectangles in R
2, we can compute

an O(1/δ2)-approximation to the maximum independent set for S in O(n1+O(δ)) time. Furthermore, we
can support insertions and deletions in S in O(nO(δ)) amortized time.

If the rectangles in S are weighted, we can do the same for an O((1/δ2) log logn)-approximation to the
maximum-weight independent set.

Proof. We proceed as in the proof of Theorem 2.2. A type-d problem is now solved by Lemma 3.1
with d = 2.

To solve a type-j problem with j < d, we build the same b-ary tree as in the proof of The-
orem 2.2. For each of the O(logb n) levels of the tree, we compute an independent set for the

9The depth of a point is the number of objects containing the point. For rectangles/boxes (but not necessarily other
objects), the maximum depth (also called ply) is equal to the maximum clique size in the intersection graph.

10This has been improved to O(∆log∆) by Chalermsook and Walczak [CW21]. In our case, the rectangles are
pseudo-disks, and the bound can be improved further to O(∆). But all this is not too important, since ∆ = O(1) in our
application.

11This is similar to the well-known fact that in any undirected graph, the maximum cut contains at least half of the
edges (this has multiple proofs, including the simple probabilistic one).
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subset of all rectangles stored at that level; we then return the largest-cardinality/weight of these
O(logb n) independent sets. The approximation ratio consequently increases by an O(logb n) fac-
tor. To compute an independent set at a level, since the rectangles at different nodes lie in disjoint
slabs, we can just compute an independent set for the rectangles at each node separately and
return the union. Computing an independent set at each node reduces to a type-(j + 1) problem.

The approximation ratio for a type-j problem satisfies the recurrence fj ≤ O(logb n) ⋅ fj+1, with
fd = O(1) in the unweighted case or fd = O(log log b) in the weighted case. Thus, the overall
approximation ratio is f0 = O((logb n)d) in the unweighted case or f0 = O((logb n)d log log b) with
d = 2.

The analysis of the running time and update time is as before.

By standard binary divide-and-conquer [AvKS98], we can extend the result to higher-dimensional
boxes, with the approximation ratio increased by one logarithmic factor per dimension:

Corollary 3.3. Let d be a constant and δ > 0 be a parameter. Given a set S of n axis-aligned boxes in R
d, we

can compute an O((1/δ2) logd−2 n)-approximation to the maximum independent set for S in O(n1+O(δ))
time. Furthermore, we can support insertions and deletions in S in O(nO(δ)) amortized time.

If the boxes in S are weighted, we can do the same for an O((1/δ2) logd−2 n log logn)-approximation to
the maximum-weight independent set.

Remark 3.4. Observations similar to Remark 2.4 hold here as well. For example, in Appendix B.2,
we note a randomized variant of the static algorithm in R

2 with O(npolylogn) running time and
approximation ratio O(1) (an absolute constant), when we only want an approximation to the
optimal value but not an independent set.

Any improvement to the approximation ratio for polynomial-time algorithms for unweighted
or weighted case would automatically imply analogous improvements to the approximation ratio
for our static and dynamic algorithms for any constant d. (Although the first proof of Lemma 3.1
relies on a coloring result that holds only in R

2, the alternative proof of the lemma straightfor-
wardly extends to higher dimensions.)

3.2 Fat objects

Lemma 3.5. Let d, c, c0 be constants. Let Γ be a partition of Rd into b disjoint cells, where each cell is either
a quadtree box or the difference of two quadtree boxes. Let S be a set of n c0-good weighted objects in R

d of
constant description complexity from a c-fat collection C, with the property that each object in S intersects
the boundary of at least one cell of Γ. We can compute an O(1)-approximation to the maximum-weight
independent set for S in Õ(n + bO(1)) time. Furthermore, we can support insertions and deletions in S

(assuming the property) in Õ(bO(1)) time.

Proof. Define Λ(⋅), classes, and Ŝ as in the proof of Lemma 2.10. We apply a known algorithm
(e.g., see [Cha03]) to compute an O(1)-approximation to the maximum-weight independent set
for the fat objects in Ŝ. This takes time polynomial in ∣Ŝ∣, i.e., bO(1) time. We output the returned
independent set Î for Ŝ.

To analyze the approximation ratio, let I∗ be the optimal independent set. For each object s, let
ŝ denote the representative element of s’s class. We first show that {ŝ ∶ s ∈ I∗} has maximum depth
∆ = O(1). To see this, observe that if a point p lies inside ŝ, then s intersects the cell γ ∈ Γ containing
p, and thus s intersects ∂γ (because of the stated property), and so s must contain at least one of the
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O(1) points in Λ(γ), but there are at most O(1) objects s ∈ I∗ satisfying this condition (because of
disjointness of I∗). The intersection graph of any collection of c-fat objects with maximum depth
∆ is (c∆)-degenerate12 and is therefore (c∆ + 1)-colorable. Thus, {ŝ ∶ s ∈ I∗} can be O(1)-colored,
and the largest-weight color class, which is an independent set of Ŝ, must have Ω(1) fraction of
the weight of {ŝ ∶ s ∈ I∗}. It follows that the weight of Î is at least Ω(1) times the weight of I∗.

Insertions and deletions are straightforward as before.

Theorem 3.6. Let d and c be constants, and δ > 0 be a parameter. Given a set S of n weighted objects in R
d

of constant description complexity from a c-fat collection C, we can compute an O(1/δ)-approximation to
the maximum-weight independent set for S in O(n1+O(δ)) time. Furthermore, we can support insertions
and deletions in S in O(nO(δ)) amortized time.

Proof. We proceed as in the proof of Theorem 2.11. As before, we assume that all objects of S are
in [0,1)d and are O(d)-good. This is without loss of generality by the shifting lemma (Fact 2.9): for
each of the d + 1 shifts vj (j ∈ {0, . . . , d}), we can solve the problem for the good objects of S + vj ,
and return the largest-weight of the independent sets found. The approximation ratio increases
by a factor of d + 1 = O(1).

We build the same b-ary tree as in the proof of Theorem 2.11. For each of the O(logb n) lev-
els of the tree, we compute an independent set for the subset of all objects stored at that level;
we then return the largest-weight of these O(logb n) independent sets. The approximation ratio
consequently increases by an O(logb n) factor. To compute an independent set at a level, since
the objects at different nodes lie in disjoint cells, we can just compute an independent set for the
boxes at each node separately and return the union. Computing an independent set at each node
reduces to the case handled by Lemma 3.5. The overall approximation ratio is thus O(logb n).

The analysis of the running time and update time is as before.

4 Minimum Vertex Cover (MVC)

In this section, we study efficient static and dynamic algorithms for the MVC problem for inter-
section graphs of geometric objects.

4.1 Approximating the LP via MWU

For a graph G = (V,E), a fractional vertex cover is a vector (xv)v∈V such that xu+xv ≤ 1 for all uv ∈ E
and xv ∈ [0,1] for all v ∈ V . Its size is defined as∑v∈V xv. Finding a minimum-size fractional vertex
cover corresponds to solving an LP, namely, the standard LP relaxation of the MVC problem.

It is known that solving this LP is equivalent to computing the MVC in a related bipartite
graph, and thus can be done by known bipartite MCM algorithms—in fact, in time almost linear in
the number of edges by recent breakthrough results [CKL+22]. However, there are two issues that
prevent us from applying such algorithms. First of all, we are considering geometric intersection
graphs, which may have Ω(n2) number of edges; this issue could potentially be fixed by using
known techniques involving biclique covers to sparsify the graph (maximum matching in a bipartite
graph then reduces to maximum flow in a sparser 3-layer graph [FM95]). Second, for dynamic

12Recall that a graph is k-degenerate if every induced subgraph has a vertex of degree at most k. To see why the
intersection graph is (c∆)-degenerate, pick the object s in the subgraph with the smallest diameter. From the definition
of c-fatness, the objects intersecting s can be pierced by c points; so there can be at most c∆ objects intersecting s.
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MVC, we will need efficient data structures that can solve the LP still faster, in sublinear time when
OPT is small.

For our purposes, we only need to solve the LP approximately. Our idea is to use a different
well-known technique: multiplicative weight update (MWU). The key lemma is stated below. The
MWU algorithm and analysis here are not new (the description is short enough that we choose
to include it to be self-contained), and MWU algorithms have been used before for static and
dynamic geometric set cover and other geometric optimization problems (the application to vertex
cover turns out to be a little simpler). However, our contribution is not in the proof of the lemma,
but in the realization that MWU reduces the problem to designing a dynamic data structure (for
finding min-weight edges subject to vertex-weight updates), which geometric intersection graphs
happen to possess, as we will see.

Lemma 4.1. We are given a graph G = (V,E). Suppose there is a data structure DS for storing a vector
(wv)v∈V that can support the following two operations in τ time: (i) find an edge uv ∈ E minimizing
wu +wv, and (ii) update a number wv.

Given a data structure DS for the vector that currently has wv = 1 for all v ∈ V , we can compute a
(1 +O(δ))-approximation to the minimum fractional vertex cover in Õ((1/δ2)OPT ⋅ τ) time. Here, OPT
denotes the minimum vertex cover size.

Proof. Given a number z, the following algorithm attempts to find a fractional vertex cover of size
at most z (below, W denotes ∑v∈V wv):

let wv = 1 for all v ∈ V , and W = n
while there exists uv ∈ E with wu +wv <W /z do

let uv be such an edge
W ←W + δ(wu +wv), wu ← (1 + δ)wu, wv ← (1 + δ)wv

If and when the algorithm terminates, we have wu + wv ≥ W /z for all uv ∈ E. Thus, defining
xv ∶=min{zwv/W, 1}, we have xu +xv ≥ 1 for all uv ∈ E, and∑v∈V xv ≤ z, i.e., (xv)v∈V is a fractional
vertex cover of size at most z.

We now bound the number of iterations t. In each iteration, W increases by at most a factor of
1 + δ/z. Thus, at the end,

W ≤ (1 + δ/z)tn.
Write each wv as (1 + δ)cv for some integer cv. Let (x∗v)v∈V be an optimal fractional vertex cover
of size z∗. In each iteration, ∑v∈V cvx

∗
v increases by at least 1 (since we increment cu and cv for the

chosen edge uv, and we know x∗u + x
∗
v ≥ 1). Thus, at the end, ∑v∈V cvx

∗
v ≥ t. Since ∑v∈V x∗v = z∗, it

follows that maxv∈V cv ≥ t/z∗. Thus,
W ≥ (1 + δ)t/z∗ .

Therefore, (1+δ)t/z∗ ≤ (1+δ/z)tn ≤ eδt/zn, implying (t/z∗) ln(1+δ) ≤ δt/z+ lnn. So, if z ≥ (1+δ)z∗,
then t ≤ z∗ lnn

ln(1+δ)−δ/(1+δ) = O((1/δ2)z∗ logn).
Note that only O(t) = O((1/δ2)z∗ logn) of the numbers wv are not equal to 1, so the vector

(xv)v∈V can be encoded in Õ(z∗) space.
We can try different z values by binary or exponential search till the algorithm terminates in

O((1/δ2)z∗ logn) iterations. Each run can be implemented with O((1/δ2)z∗ logn) operations in
DS . After each run, we reset all the modified values wv back to 1 by O((1/δ2)z∗ logn) update
operations in DS .
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4.2 Kernel via Approximate LP

Our approach for solving the MVC problem is to use a standard kernel by Nemhauser and Trot-
ter [NTJ75], which allows us to reduce the problem to an instance where the number of vertices is
at most 2OPT. Nemhauser and Trotter’s construction is obtained from the LP solution: the kernel
is simply the subset of all vertices v ∈ V with xv = 1

2
.

In our scenario, we are only able to solve the LP approximately. We observe that this is
still enough to give a kernel of approximately the same size. We adapt the standard analysis of
Nemhauser and Trotter, but some extra ideas are needed. The proof below will be self-contained.

Lemma 4.2. Let c ≥ 1 and 0 ≤ δ < γ < 1
4
. Given a (1 +O(δ))-approximation to the minimum fractional

vertex cover in a graph G = (V,E), we can compute a subset K ⊆ V of size at most (2 + O(γ))OPT,

in O(OPT) time, such that a c(1 + O(
√
δ/γ))-approximation to the minimum vertex cover of G can be

obtained from a c-approximation to the minimum vertex cover of G[K] (the subgraph of G induced by K).
Here, OPT denotes the minimum vertex cover size of G.

Proof. Let (xv)v∈V be the given fractional vertex cover. Let λ < γ be a parameter to be set later. Pick
a value α ∈ [1

2
− γ −λ, 1

2
−λ]which is an integer multiple of λ, minimizing ∣{v ∈ V ∶ α ≤ xv < α+λ}∣.

This can be found in O(∣{v ∈ V ∶ xv ≥ 1
2
− γ − λ}∣) ≤ O(OPT) time.13

Partition V into 3 subsets: L = {v ∈ V ∶ xv < α}, H = {v ∈ V ∶ xv > 1 − α}, and K = {v ∈ V ∶ α ≤
xv ≤ 1 − α}. Note that ∣K ∣ ≤ 1

α ∑v∈V xv ≤ (2 +O(γ))(1 + δ)OPT = (2 +O(γ))OPT.
Let XK be a c-approximate minimum vertex cover of G[K]. We claim that X ∶= XK ∪H is a

c(1 +O(
√
δ/γ))-approximation to the minimum vertex cover of G.

First, XK ∪H is a vertex cover of G, since vertices in L can only be adjacent to vertices in H .
Let X∗ be a minimum vertex cover of G, with ∣X∗∣ = OPT. Since K ∩X∗ is a vertex cover of

G[K], we have ∣XK ∣ ≤ c∣K ∩X∗∣, and so ∣X ∣ ≤ c(∣K ∩X∗∣ + ∣H ∣) = c(∣X∗∣ + ∣H ∖X∗∣ − ∣L ∩X∗∣).
We will upper-bound ∣H ∖X∗∣ − ∣L ∩X∗∣. To this end, let L′ = {v ∈ V ∶ α ≤ xv < α + λ}, and

define the following modified vector (x′v)v∈V :

x′v =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xv − λ if v ∈H ∖X∗
xv + λ if v ∈ (L ∪L′) ∩X∗
xv otherwise.

Note that (x′v)v∈V is still a fractional vertex cover, since for each edge uv ∈ E with u ∈ H ∖X∗ and
v ∈ (L∪L′)∩X∗, we have x′u +x

′
v = (xu −λ)+ (xv +λ) ≥ 1; on the other hand, for each edge uv ∈ E

with u ∈H ∖X∗ and v /∈ (L∪L′)∩X∗, we have v ∈X∗ (since X∗ is a vertex cover) and so v /∈ L∪L′,
implying that x′u + x

′
v ≥ (1 − α − λ) + (α + λ) ≥ 1. Now, ∑v∈V xv −∑v∈V x′v = λ(∣H ∖X∗∣ − ∣L ∩X∗∣ −

∣L′ ∩X∗∣). On the other hand, ∑v∈V xv −∑v∈V x′v ≤ (1 − 1
1+O(δ))∑v∈V xv ≤ O(δ)∣X∗∣. It follows that

∣H ∖X∗∣ − ∣L ∩X∗∣ ≤ O( δ
λ
)∣X∗∣ + ∣L′ ∩X∗∣.

By our choice of α, we have ∣L′∣ ≤ O( 1
γ/λ) ⋅ ∣{v ∈ V ∶ xv ≥ 1

2
− γ − λ}∣ ≤ O(λ

γ
)∣X∗∣. We conclude

that ∣X ∣ ≤ c(∣X∗∣ + ∣H ∖X∗∣ − ∣L ∩X∗∣) ≤ c(1 +O( δ
λ
+

λ
γ
))∣X∗∣. Choose λ =

√
γδ.

13This assumes an appropriate encoding of the vector (xv)v∈V , for example, the encoding from the proof of
Lemma 4.1.

19



4.3 Dynamic Geometric MVC via Kernels

We now use kernels to reduce the dynamic vertex cover for geometric intersection graphs to a
special case of static vertex cover where the number of objects is approximately at most 2OPT. We
use a simple, standard idea for dynamization: be lazy, and periodically recompute the solution
only after every εOPT updates (since the optimal size changes by at most 1 per update). This idea
is commonly used in dynamic algorithms, e.g., in various previous works on dynamic geometric
MIS [CIK21], dynamic MPS [AHRS24], dynamic matching in graphs [GP13], etc.

We observe that the data structure subproblem of dynamic min-weight intersecting pair, needed
in Lemma 4.1, is reducible to dynamic intersection detection by known techniques.

Lemma 4.3. Let C be a class of geometric objects, where there is a dynamic data structureDS0 for n objects
in C that can detect whether there is an object intersecting a query object, and supports insertions and
deletions of objects, with O(τ0(n)) query and update time.

Then there is a dynamic data structure DS for n weighted objects in C that maintains an intersecting
pair of objects minimizing the sum of the weights, under insertions and deletions of weighted objects, with
Õ(τ0(n)) amortized time.

Proof. Eppstein [Epp95] gave a general technique to reduce the problem of dynamic closest pair to
the problem of dynamic nearest neighbor search, for arbitrary distance functions, while increasing
the time per operation by at most two logarithmic factors (with amortization). Chan [Cha20a] gave
an alternative method achieving a similar result. The DS problem can be viewed as a dynamic
closest pair problem, where the distance between objects u and v is wu + wv if they intersect, and
∞ otherwise. Thus, our problem reduces to the corresponding dynamic nearest neighbor search
problem, namely, designing a data structure that can find a min-weight object intersecting a query
object, subject to insertions and deletions of objects (dynamic min-weight intersection searching).

We can further reduce this to the DS0 problem (dynamic intersection detection) by a standard
multi-level data structuring technique [AE99], where the primary data structure is a 1D search
tree over the weights, and each node of the tree stores a secondary data structure for dynamic
intersection detection. Query and update time increase by one more logarithmic factor.

We are now ready to state our general framework for solving MVC problems for geometric
objects: the following theorem allows us to convert any efficient static approximation algorithm
for the special case when n is roughly less than 2OPT to not only an efficient static approximation
algorithm for the general case, but an efficient dynamic approximation algorithm at the same time,
under the assumption that there is an efficient dynamic data structure for intersection detection
(as noted in the introduction, some form of range searching is unavoidable for MVC).

Theorem 4.4. Let c ≥ 1, ε > 0, and 0 ≤ δ < γ < 1
4
. Let C be a class of geometric objects with the following

oracles:

(i) a dynamic data structureDS0 for n objects in C that can detect whether there is an object intersecting
a query object, and supports insertions and deletions of objects, with O(τ0(n)) query and update time;

(ii) a static algorithmA for computing a c-approximation of the minimum vertex cover of the intersection
graph of n objects in C in T (n) time, under the promise that n ≤ (2 +O(γ))OPT, where OPT is the
optimal vertex cover size.
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Then there is a dynamic data structure for n objects in C that maintains a c(1 + O(
√
δ/γ + ε))-

approximation of the minimum vertex cover of the intersection graph, under insertions and deletions of
objects, in Õ((1/(δ2ε))τ0(n) + (1/ε)T (n)/n) amortized time, assuming that T (n)/n is monotonically
increasing and T (2n) = O(T (n)).

Proof. Assume that b ≤ OPT < 2b for a given parameter b. Divide into phases with εb updates each.
At the beginning of each phase:

1. Compute a (1 + δ)-approximation to the minimum fractional vertex cover by Lemma 4.1 in
Õ((1/δ2)b ⋅ τ0(n)) amortized time using the data structure DS from Lemma 4.3. (A weight
change can be done by a deletion and an insertion. It is important to note that we don’t
rebuild DS at the beginning of each phase; we continue using the same structure DS in the
next phase, after resetting the modified weights back to 1.)

2. Generate a kernel K with size at most (2 +O(γ))OPT by Lemma 4.2 in O(b) time.

3. Compute a c-approximation to the minimum vertex cover of the intersection graph of K

by the static algorithm A in O(T ((2 +O(γ))OPT)) = O(T (b)) time, from which we obtain a

c(1+O(
√
δ/γ))-approximation of the minimum vertex cover of the entire intersection graph.

Since the above is done only at the beginning of each phase, the amortized cost per update is

Õ( (1/δ2)b⋅τ0(n)+T (b)
εb

).
During a phase, we handle an object insertion simply by inserting it to the current cover, and

we handle an object deletion simply by removing it from the current cover. This incurs an additive
error at most O(εb) = O(εOPT). We also perform the insertion/deletion of the object in DS , with
initial weight 1, in Õ(τ0(n)) amortized time.

How do we obtain a correct guess b? We build the above data structure for each b that is a
power of 2, and run the algorithm simultaneously for each b (with appropriate cap on the run
time based on b).

4.4 Specific Results

We now apply our framework to solve the dynamic geometric vertex cover problem for various
specific families of geometric objects. By Theorem 4.4, it suffices to provide (i) a dynamic data
structureDS0 for intersection detection queries, and (ii) a static algorithmA for solving the special
case of the vertex cover problem when n ≤ (2 +O(γ))OPT.

Disks in R
2. Intersection detection queries for disks in R

2 reduce to additively weighted Eu-
clidean nearest neighbor search, where the weights (different from the weights from MWU) are
the radii of the disks. Kaplan et al. [KKK+22] adapted Chan’s data structure [Cha10, Cha20b] for
dynamic Euclidean nearest neighbor search in R

2 (reducible to dynamic convex hull in R
3) and

obtained a data structure for additively weighted Euclidean nearest neighbor search with poly-
logarithmic amortized update time and query time. Thus, DS0 can be implemented in τ0(n) =
O(logO(1) n) amortized time for disks in R

2.
In Appendix B.1, we give a static (1 + O(ε))-approximation algorithm A for MVC for disks,

under the promise that n = O(OPT), with running time T (n) = Õ(2O(1/ε2)n). The algorithm is
obtained by modifying a known PTAS for MIS for disks [Cha03].
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Applying Theorem 4.4 with c = 1 +O(ε), γ = Θ(1), and δ = ε2, we obtain our main result for
disks:

Corollary 4.5. There is a dynamic data structure for n disks in R
2 that maintains a (1+O(ε))-approximation

of the minimum vertex cover of the intersection graph, under insertions and deletions, in O(2O(1/ε2) logO(1) n)
amortized time. (In particular, there is a static (1+O(ε))-approximation algorithm running in O(2O(1/ε2)n logO(1) n)
time.)

Rectangles in R
2. For rectangles in R

2, dynamic intersection detection requires τ0(n) = O(logO(1) n)
query and update time, by standard orthogonal range searching techniques (range trees) [PS85,
AE99].

(Note: There is an alternative approach that bypasses Eppstein’s technique and directly solves
the DS data structure problem: We dynamically maintain a biclique cover, which can be done in
polylogarithmic time for rectangles [Cha06]. It is then easy to maintain the minimum weight of
each biclique, by maintaining the minimum weight of each of the two sides of the biclique with
priority queues.)

In Appendix B.2, we give a static (3
2
+O(ε))-approximation algorithm for MVC for rectangles,

with running time T (n) = Õ(2O(1/ε2)n). The algorithm is obtained by modifying the method
by Bar-Yehuda, Hermelin, and Rawitz [BHR11], and combining with our efficient kernelization
method.

Applying Theorem 4.4 with c = 3
2
+O(ε), γ = Θ(1), and δ = ε2, we obtain our main result for

rectangles:

Corollary 4.6. There is a dynamic data structure for n axis-aligned rectangles in R
2 that maintains a

(3
2
+O(ε))-approximation of the minimum vertex cover of the intersection graph, under insertions and dele-

tions, in O(2O(1/ε2) logO(1) n) amortized time. (In particular, there is a static (3
2
+O(ε))-approximation

algorithm running in O(2O(1/ε2)n logO(1) n) time.)

Fat boxes (e.g., hypercubes) in R
d. For the case of fat axis-aligned boxes (e.g., hypercubes) in a

constant dimension d, dynamic intersection detection can again be solved with τ0(n) = O(logO(1) n)
amortized query and update time by orthogonal range searching [PS85, AE99]. We can design
the static algorithm A in exactly the same way as in the case of disks (since the method in Ap-

pendix B.1 holds for fat objects in R
d), achieving T (n) = Õ(2O(1/εd)n).

Corollary 4.7. There is a dynamic data structure for n fat axis-aligned boxes in R
d for any constant d

that maintains a (1 +O(ε))-approximation of the minimum vertex cover of the intersection graph, under

insertions and deletions, in O(2O(1/εd) logO(1) n) amortized time.

We can also obtain results for balls or other types of fat objects in R
d, but because intersection

detection data structures have higher complexity, the update time would be sublinear rather than
polylogarithmic.

Bipartite disks in R
2. For the case of a bipartite intersection graph between two sets of disks in

R
2, we have τ0(n) = O(logO(1) n) as already noted. In the bipartite case, the static algorithm A is

trivial: we just return the smaller of the two parts in the bipartition, which yields a vertex cover of
size at most n/2 ≤ (1 +O(ε))OPT under the promise that n ≤ (2 +O(ε))OPT.
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Applying Theorem 4.4 with c = 1 +O(ε), γ = ε, and δ = ε3, we obtain:

Corollary 4.8. There is a dynamic data structure for two sets of O(n) disks in R
2 that maintains a (1 +

O(ε))-approximation of the minimum vertex cover of the bipartite intersection graph, under insertions and

deletions, in O((1/ε7) logO(1) n) amortized time.

Bipartite boxes in R
d. For the case of a bipartite intersection graph between two sets of (not

necessarily fat) boxes in R
d, we have τ0(n) = O(logO(1) n) by orthogonal range searching. As

already noted, in bipartite cases, the static algorithm A is trivial.

Corollary 4.9. There is a dynamic data structure for two sets of O(n) axis-aligned boxes in R
d for any con-

stant d that maintains a (1+O(ε))-approximation of the minimum vertex cover of the bipartite intersection

graph, under insertions and deletions, in O((1/ε7) logO(1) n) amortized time.

We did not write out the number of logarithmic factors in our results, as we have not attempted
to optimize them, but it is upper-bounded by 3 plus the number of logarithmic factors in τ0(n).

5 Bipartite Maximum-Cardinality Matching (MCM)

The approach in the previous section finds a (1 + O(ε))-approximation of the MVC of bipartite
geometric intersection graphs, and so it allows us to approximate the size of the MCM in such
bipartite graphs. However, it does not compute a matching. In this section, we give a different
approach to maintain a (1+O(ε))-approximation of the MCM in bipartite intersection graphs. The
first thought that comes to mind is to compute a kernel, as we have done for MVC, but for MCM,
known approaches seem to yield only a kernel of O(OPT2) size (e.g., see [GP13]). Instead, we will
bypass kernels and construct an approximate MCM directly.

5.1 Approximate Bipartite MCM via Modified Hopcroft–Karp

It is well known that Hopcroft and Karp’s O(m√n)-time algorithm for exact MCM in bipartite
graphs [HK73] can be modified to give a (1 + ε)-approximation algorithm that runs in near-
linear time, simply by terminating early after O(1/ε) iterations (for example, see the introduc-
tion in [DP14]). We describe a way to reimplement the algorithm in sublinear time when OPT is
small by using appropriate data structures, which correspond to dynamic intersection detection
in the case of geometric intersection graphs. Note that earlier work by Efrat, Itai, and Katz [EIK01]
has already combined Hopcroft and Karp’s algorithm with geometric data structures to obtain
static exact algorithm [EIK01] for maximum matching in bipartite geometric intersection graphs
(see also Har-Peled and Yang’s paper [HY22] on static approximation algorithms). However, to
achieve bounds sensitive to OPT, our algorithm will work differently (in particular, it will be DFS-
based instead of BFS-based).

Lemma 5.1. We are given an unweighted bipartite graph G = (V,E). Suppose there is a data structure
DS0 for storing a subset X ⊆ V of vertices, initially with X = ∅, that supports the following two operations
in τ0 time: given a vertex u ∈ V , find a neighbor of u that is in X (if exists), and insert/delete a vertex
to/from X .
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Given a data structure DS0 that currently has X = V , and given a maximal matching M0, we can
compute a (1 +O(ε))-approximation to the maximum-cardinality matching in Õ((1/ε2)OPT ⋅ τ0) time.
Here, OPT denotes the maximum matching size.

Proof. The algorithm proceeds iteratively. We maintain a matching M . At the beginning of the
ℓ-th iteration, we know that the current matching M does not have augmenting paths of length
≤ 2ℓ − 1. We find a maximal collection Γ of vertex-disjoint augmenting paths of length 2ℓ + 1. We
then augment M along the paths in Γ. As shown by Hopcroft and Karp [HK73], the new matching
M will then not have augmenting paths of length ≤ 2ℓ + 1.

As shown by Hopcroft and Karp [HK73], there are at least OPT− ∣M ∣ vertex-disjoint augment-
ing paths, and so ∣M ∣ ≥ (ℓ + 1)(OPT − ∣M ∣), i.e., OPT ≤ (1 + 1

ℓ+1)∣M ∣. Thus, once ℓ reaches Θ(1/ε),
we may terminate the algorithm. Initially, we can set M =M0 before the first iteration.

It suffices to describe how to find a maximal collection Γ of vertex-disjoint augmenting paths
of length 2ℓ + 1 in the ℓ-th iteration, under the assumption that there are no shorter augmenting
paths. Hopcroft and Karp originally proposed a BFS approach, starting at the “exposed” vertices
not covered by the current matching M . Unfortunately, this approach does not work in our setting:
because we want the running time to be near OPT, the searches need to start at vertices of M . We
end up adopting a DFS approach, but the vertices of M need to be duplicated ℓ times in ℓ “layers”
(this increases the running time by a factor of ℓ, but fortunately, ℓ is small in our setting).

Let VM be the 2∣M ∣ vertices of the current matching M . As is well known, OPT ≤ 2∣M ∣. A
walk v0u1v1⋯uℓvℓuℓ+1 in G is an augmenting walk of length 2ℓ + 1 if v0 /∈ VM , v0u1 /∈ M , u1v1 ∈ M ,
. . . , vℓuℓ+1 /∈ M , and uℓ+1 /∈ VM . In such an augmenting walk of length ℓ, we automatically have
v0 ≠ uℓ+1 (because G is bipartite) and the walk must automatically be a simple path (because
otherwise we could short-cut and obtain an augmenting path of length ≤ 2ℓ − 1). In the procedure
EXTEND(v0u1v1⋯ui, ℓ) below, the input is a walk v0u1v1⋯ui with v0u1 /∈M , u1v1 ∈M , . . . , vi−1ui /∈
M , and the output is true if it is possible to extend it to an augmenting walk v0u1v1⋯uℓvℓuℓ+1 of
length 2ℓ + 1 that is vertex-disjoint from the augmenting walks generated so far.

MAXIMAL-AUG-PATHS(ℓ):
1. let X = V ∖ VM and X1 = ⋯ =Xℓ = VM

2. for each u1 ∈X1 do
3. let v0 be a neighbor of u1 with v0 ∈X
4. if v0 does not exist then delete u1 from X1

5. else EXTEND(v0u1, ℓ)

EXTEND(v0u1v1⋯ui, ℓ):
1. let vi be the partner of ui in M

2. if i = ℓ then
3. let uℓ+1 be a neighbor of vℓ with uℓ+1 ∈X
4. if uℓ+1 does not exist then delete uℓ from Xℓ and return false
5. output the augmenting path v0u1v1⋯uℓvℓuℓ+1
6. delete v0 and uℓ+1 from X , and u1, . . . , uℓ from all of X1, . . . ,Xℓ, and return true
7. for each neighbor ui+1 of vi with ui+1 ∈Xi+1 ∖ {ui} do
8. if EXTEND(v0u1v1⋯ui+1, ℓ) = true then return true
9. delete ui from Xi and return false

Note that if it is not possible to extend the walk v0u1v1⋯ui to an augmenting walk of length
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2ℓ + 1, then it is not possible to extend any other walk v′0u
′
1v
′
1⋯u

′
i of the same length with u′i =

ui. This justifies why we may delete ui from Xi in line 9 of EXTEND (and similarly why we
may delete uℓ from Xℓ in line 4 of EXTEND, and why we may delete u1 from X1 in line 4 of
MAXIMAL-AUG-PATHS).

For the running time analysis, note that each vertex may be a candidate for ui in only one call
to EXTEND per i, because we delete ui from Xi, either in line 9 if false is returned, or in line 6 if
true is returned. Thus, the number of calls to EXTEND is at most O(ℓ∣M ∣).

We use the given data structureDS0 to maintain X . This allows us to do line 3 of MAXIMAL-AUG-PATHS.
Line 1 of MAXIMAL-AUG-PATHS requires O(∣M ∣) initial deletions from X . At the end, we reset X
to V by performing O(∣M ∣) insertions of the deleted elements.

We also maintain X1, . . . ,Xℓ in ℓ new instances of the data structure DS0. This allows us to
do lines 3 and 7 of EXTEND. Line 1 of MAXIMAL-AUG-PATHS requires O(ℓ∣M ∣) initial insertions to
X1, . . . ,Xℓ. We conclude that MAXIMAL-AUG-PATHS takes O(ℓ∣M ∣ ⋅ τ0) time. Hence, the overall
running time of all ℓ = Θ(1/ε) iterations is O((1/ε2)∣M ∣ ⋅ τ0).

5.2 Dynamic Geometric Bipartite MCM

To solve dynamic bipartite MCM for geometric intersection graphs, we again use a standard idea
for dynamization: be lazy, and periodically recompute the solution only after every εOPT updates
(since the optimal size changes by at most 1 per update). The following theorem states our general
framework:

Theorem 5.2. Let C be a class of geometric objects, where there is a dynamic data structure DS0 for
n objects in C that can find an object intersecting a query object (if exists), and supports insertions and
deletions of objects, with O(τ0(n)) query and update time.

Then there is a dynamic data structure for two sets of O(n) objects in C that maintains a (1 +O(ε))-
approximation of the maximum-cardinality matching in the bipartite intersection graph, under insertions
and deletions of objects, in Õ((1/ε3)τ0(n)) amortized time.

Proof. First, observe that we can maintain a maximal matching M0 with O(τ0(n)) update time:
We maintain the subset S of all vertices not in M0 in a data structure DS0. When we insert a new
object u, we match it with an object in S intersecting u (if exists) by queryingDS0. When we delete
an object u, we delete u and its partner v in M0, and reinsert v.

Assume that b ≤ OPT < 2b for a given parameter b. Divide into phases with εb updates each.
At the beginning of each phase, compute a (1+O(ε))-approximation of the maximum-cardinality
matching by Lemma 5.1 in Õ((1/ε2)b⋅τ0(n)) time. (It is important to note that we don’t rebuild the
data structure DS for X = V at the beginning of each phase; we continue using the same structure
DS in the next phase, after resetting the modified X back to V .)

Since the above is done only at the beginning of each phase, the amortized cost per update is

Õ( (1/ε2)b⋅τ0(n)
εb

).
During a phase, we handle an object insertion simply by doing nothing, and we handle an

object deletion simply by removing its incident edge (if exists) from the current matching. This
incurs an additive error at most O(εb) = O(εOPT). We also perform the insertion/deletion of the
object in DS0 for X = V , in Õ(τ0(n)) time.

How do we obtain a correct guess b? We build the above data structure for each b that is a
power of 2, and run the algorithm simultaneously for each b.
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5.3 Specific Results

Recall that for disks in R
2 as well as boxes in R

d, we have τ0(n) = O(logO(1) n). (Note that most
data structures for intersection detection can be modified to report a witness object intersecting
the query object if the answer is true.) Thus, we immediately obtain:

Corollary 5.3. There is a dynamic data structure for two sets of O(n) disks in R
2 that maintains a

(1+O(ε))-approximation of the maximum-cardinality matching in the bipartite intersection graph, under

insertions and deletions, in O((1/ε3) logO(1) n) amortized time.

Corollary 5.4. There is a dynamic data structure for two sets of O(n) axis-aligned boxes in R
d for any

constant d that maintains a (1+O(ε))-approximation of the maximum-cardinality matching in the bipartite

intersection graph, under insertions and deletions, in O((1/ε3) logO(1) n) amortized time.

6 General MCM

In this section, we adapt our results for bipartite MCM to general MCM. We use a simple idea by
Lotker, Patt-Shamir, and Pettie [LPP15] to reduce the problem for general graphs (in the approxi-
mate setting) to finding maximal collections of short augmenting paths in bipartite graphs, which
we already know how to solve. (See also Har-Peled and Yang’s paper [HY22], which applied
Lotker et al.’s idea to obtain static approximation algorithms for geometric intersection graphs.)
The reduction has exponential dependence in the path length ℓ (which is fine since ℓ is small),
and is originally randomized. We reinterpret their idea in terms of color-coding [AYZ95], which
allows for efficient derandomization, and also simplifies the analysis (bypassing Chernoff-bound
calculations). With this reinterpretation, it is easy to show that the idea carries over to the dynamic
setting.

We begin with a lemma, which is a consequence of the standard color-coding technique:

Lemma 6.1. For any n and ℓ, there exists a collection Z(n,ℓ) of O(2O(ℓ) logn) subsets of [n] ∶= {1, . . . , n}
such that for any two disjoint sets A,B ⊆ [n] of total size at most ℓ, we have A ⊆ Z and B ⊆ [n] ∖ Z for
some Z ∈ Z . Furthermore, Z(n,ℓ) can be constructed in O(2O(ℓ)n logn) time.

Proof. As shown by Alon, Yuster, and Zwick [AYZ95], there exists a collectionH(n,ℓ) of O(2O(ℓ) logn)
mappings h ∶ [n]→ [ℓ], such that for any set X ⊆ [n] of size at most ℓ, the elements in {h(v) ∶ v ∈X}
are all distinct. Furthermore, H(n,ℓ) can be constructed in O(2O(ℓ)n logn) time. (This is related to
the notion of “ℓ-perfect hash family”.)

For each h ∈ H(n,ℓ) and each subset I ⊆ [ℓ], add the subset Zh,I = {v ∈ [n] ∶ h(v) ∈ I} to Z(n,ℓ).
The number of subsets is ∣H(n,ℓ)∣ ⋅ 2ℓ ≤ 2O(ℓ) logn. For any two disjoint sets A,B ⊆ [n] of total size
at most ℓ, let h ∈H(n,ℓ) be such that the elements in {h(a) ∶ a ∈ A} and {h(b) ∶ b ∈ B} are all distinct,
and let I = {h(a) ∶ a ∈ A}; then A ⊆ Zh,I and B ⊆ [n] ∖Zh,I .

We now present a non-bipartite analog of Lemma 5.1:

Lemma 6.2. We are given an unweighted graph G = (V,E), with V = [n]. LetZ(n,1/ε) be as in Lemma 6.1.
Suppose there is a data structure DS∗0 for storing a subset X ⊆ V of vertices, initially with X = ∅, that
supports the following two operations in τ0 time: given a vertex u ∈ V and Z ∈ Z(n,1/ε), find a neighbor
of u that is in X ∩ Z (if exists) and a neighbor of u that is in X ∖ Z (if exists); and insert/delete a vertex
to/from X .
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Given a data structure DS0 that currently has X = V , and given a maximal matching M0, we can
compute a (1 +O(ε))-approximation to the maximum-cardinality matching in Õ(2O(1/ε)OPT ⋅ τ0) time.
Here, OPT denotes the maximum matching size.

Proof. As in the proof of Lemma 5.1, we iteratively maintain a current matching M , and it suffices
to describe how to find a maximal collection Γ of vertex-disjoint augmenting paths of length 2ℓ+1

in the ℓ-th iteration, under the assumption that there are no augmenting paths of length ≤ 2ℓ − 1.
However, the presence of odd-length cycles complicates the computation of Γ.

Initialize Γ = ∅. We loop through each Z ∈ Z(n,1/ε) one by one and do the following. Let
GZ be the subgraph of G with edges {uv ∈ E ∶ u ∈ Z, v /∈ Z}. We find a maximal collection of
vertex-disjoint augmenting paths of length 2ℓ+1 in GZ that are vertex-disjoint from paths already
selected to be in Γ; we then add this new collection to Γ. Since GZ is bipartite, this step can be done
using the MAXIMAL-AUG-PATHS procedure from the proof of Lemma 5.1. Since we are working
with GZ instead of G, when we find neighbors of a given vertex, they are now restricted to be in Z

if the given vertex is in [n] ∖Z, or vice versa; the data structure DS∗0 allows for such queries. The
only other change is that when we initialize X,X1, . . . ,Xℓ, we should remove vertices that have
appeared in paths already selected to be in Γ.

Assume 2ℓ + 2 ≤ 1/ε. We claim that after looping through all Z ∈ Z(n,1/ε), the resulting collec-
tion Γ of vertex-disjoint length-(2ℓ + 1) augmenting paths is maximal in G. To see this, consider
any length-(2ℓ + 1) augmenting path v0u1v1⋯uℓvℓuℓ+1 in G. There exists Z ∈ Z(n,1/ε) such that
u1, . . . , uℓ+1 ∈ Z and v0, . . . , vℓ /∈ Z. Thus, the path must intersect some path in Γ during the itera-
tion when we consider Z.

We can now obtain a non-bipartite analog of Theorem 5.2:

Theorem 6.3. Let C be a class of geometric objects, where there is a dynamic data structure DS0 for
n objects in C that can find an object intersecting a query object (if exists), and supports insertions and
deletions of objects, with O(τ0(n)) query and update time.

Then there is a dynamic data structure for O(n) objects in C that maintains a (1+O(ε))-approximation
of the maximum-cardinality matching in the intersection graph, under insertions and deletions of objects,
in Õ(2O(1/ε)τ0(n)) amortized time.

Proof. This is similar to the proof of Theorem 5.2, with Lemma 6.2 replacing Lemma 5.1. The only
difference is that to support the data structureDS∗0 , we maintain O(2O(1/ε) logn) parallel instances
of the data structure DS0 for X ∩ Z and X ∖ Z, for every Z ∈ Z(n,1/ε). This increases the update
time by a factor of O(2O(1/ε) logn).

We have assumed that the input objects are labeled by integers in [n]. When a new object is
inserted, we can just assign it the next available label in [n]. When the number of objects exceeds
n, we double n and rebuild the entire data structure from scratch. Similarly, when the number of
objects is below n/4, we halve n and rebuild.

Corollary 6.4. There is a dynamic data structure for n disks in R
2 that maintains a (1+O(ε))-approximation

of the maximum-cardinality matching in the intersection graph, under insertions and deletions, in O(2O(1/ε) logO(1) n)
amortized time.

Corollary 6.5. There is a dynamic data structure for n axis-aligned boxes in R
d for any constant d that

maintains a (1 + O(ε))-approximation of the maximum-cardinality matching in the intersection graph,

under insertions and deletions, in O(2O(1/ε) logO(1) n) amortized time.
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7 Conclusion

In this paper, we have presented a plethora of results on efficient static and dynamic approxi-
mation algorithms for four fundamental geometric optimization problems, all obtained from two
simple and general approaches (one for piercing and independent set, and the other for vertex
cover and matching). We hope that our techniques will find many more applications in future
work on these and other fundamental geometric optimization problems.

Many interesting open questions remain in this area. We list some below:

• Is there an O(1)-approximation polynomial-time algorithm for the piercing (MPS) prob-
lem for rectangles in R

2 (like MIS for rectangles [Mit22])? Is there an O(1)-approximation
polynomial-time algorithm for the weighted version of independent set (MIS) for rectan-
gles in R

2? Is there a sublogarithmic-approximation polynomial-time algorithm for (un-
weighted) MIS for boxes in R

3? If the answer is yes to any of these questions, our approach
could automatically convert such an algorithm into near-linear-time static algorithms and
efficient dynamic algorithms.

• Is there an O(nε)-approximation algorithm for MIS for arbitrary line segments or poly-
gons [FP11] with near linear running time? Our input rounding approach does not seem
to work for arbitrary line segments or non-fat polygons.

• Is there a (2−ε)-approximation algorithm for vertex cover (MVC) for arbitrary line segments
or strings [LPS+24] with near linear running time?

• Are there efficient dynamic algorithms for the weighted version of geometric MVC similar
to our unweighted MVC results?

• Can we avoid the exponential dependence on ε in our results (in Section 6) on non-bipartite
geometric maximum-cardinality matching (MCM)?
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searching on the RAM, revisited. In Proceedings of the 27th ACM Symposium on Com-
putational Geometry (SoCG), pages 1–10, 2011. doi:10.1145/1998196.1998198.
40

[CM05] Timothy M. Chan and Abdullah-Al Mahmood. Approximating the piercing number
for unit-height rectangles. In Proceedings of the 17th Annual Canadian Conference on
Computational Geometry (CCCG), pages 15–18, 2005. 3

32



[CMR23] Spencer Compton, Slobodan Mitrovic, and Ronitt Rubinfeld. New partitioning tech-
niques and faster algorithms for approximate interval scheduling. In Proceedings of
the 50th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 261 of LIPIcs, pages 45:1–45:16, 2023. doi:https://doi.org/10.4230/
LIPIcs.ICALP.2023.45. 7

[CPW24] Jana Cslovjecsek, Michał Pilipczuk, and Karol Wegrzycki. A polynomial-time OPTε-
approximation algorithm for maximum independent set of connected subgraphs in
a planar graph. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 625–638, 2024. doi:10.1137/1.9781611977912.23.
5

[CW21] Parinya Chalermsook and Bartosz Walczak. Coloring and maximum weight
independent set of rectangles. In Proceedings of the 32nd ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 860–868, 2021. doi:10.1137/1.

9781611976465.54. 6, 14, 15

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Com-
putational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL:
https://www.worldcat.org/oclc/227584184. 11

[DP14] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight match-
ing. J. ACM, 61(1):1:1–1:23, 2014. doi:10.1145/2529989. 8, 23

[EIK01] Alon Efrat, Alon Itai, and Matthew J Katz. Geometry helps in bottleneck
matching and related problems. Algorithmica, 31:1–28, 2001. doi:10.1007/

S00453-001-0016-8. 8, 9, 23

[EJS05] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation
schemes for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–
1323, 2005. doi:10.1137/S0097539702402676. 4, 6, 7

[EKNS00] Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data struc-
tures for fat objects and their applications. Computational Geometry, 15(4):215–227,
2000. doi:10.1016/S0925-7721(99)00059-0. 3, 4, 13

[Epp95] David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of
binary functions. Discret. Comput. Geom., 13:111–122, 1995. doi:10.1007/

BF02574030. 9, 20

[Ezr10] Esther Ezra. A note about weak ε-nets for axis-parallel boxes in d-space. Information
Processing Letters, 110(18-19):835–840, 2010. doi:10.1016/J.IPL.2010.06.005.
3, 10

[FM95] Tomás Feder and Rajeev Motwani. Clique partitions, graph compression and
speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261–272, 1995. doi:10.1006/
JCSS.1995.1065. 17

33



[FP11] Jacob Fox and János Pach. Computing the independence number of intersection
graphs. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1161–1165, 2011. doi:10.1137/1.9781611973082.87. 5,
28

[Fre85] Greg N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM J. Comput., 14(4):781–798, 1985. doi:10.1137/

0214055. 12

[GKM+21] Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy
Pittu, and Andreas Wiese. A (2 + ε)-approximation algorithm for maximum inde-
pendent set of rectangles. CoRR, abs/2106.00623, 2021. arXiv:2106.00623. 5,
14

[GKM+22] Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy
Pittu, and Andreas Wiese. A 3-approximation algorithm for maximum independent
set of rectangles. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 894–905, 2022. doi:10.1137/1.9781611977073.38.
5, 14

[GP13] Manoj Gupta and Richard Peng. Fully dynamic (1 + ε)-approximate matchings. In
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 548–557, 2013. doi:10.1109/FOCS.2013.65. 8, 20, 23

[Har23] Sariel Har-Peled. Approximately: Independence implies vertex cover. CoRR,
abs/2308.00840, 2023. arXiv:2308.00840. 6

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.
8, 9, 23, 24

[HM85] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and
packing problems in image processing and VLSI. Journal of the ACM, 32(1):130–136,
1985. doi:10.1145/2455.214106. 3, 4, 7

[HNW20] Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate
maximum independent set of intervals, hypercubes and hyperrectangles. In Proceed-
ings of the 36th International Symposium on Computational Geometry (SoCG), volume
164 of LIPIcs, pages 51:1–51:14, 2020. doi:10.4230/LIPICS.SOCG.2020.51. 3,
5, 6, 7
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A MPS and MIS: Speedup via Sampling

In this appendix, we note that the O(n1+O(δ)) running time of our static algorithms for MPS and
MIS in Sections 2–3 can be lowered to O(npolylogn) if we are only required to output an ap-
proximation to the optimal value. The idea is to approximate a sum by random sampling. This
idea has been used before in dynamic geometric algorithms, e.g., in [CH21] on dynamic set cover.
In the weighted case, we use importance sampling (which has also been used before in geometric
optimization, e.g., in [Ind07]).

Fact A.1.

(Basic random sampling) Let a1, . . . , am ∈ [1,B]. Select a random multiset R ⊆ {a1, . . . , am} of
size ℓ = ⌈4B/ε2⌉, where each of its ℓ elements is chosen independently and is ai with probability 1/m. Then
X ∶= ∑ai∈R ai ⋅m/ℓ is a (1 ± ε)-approximation of S ∶= ∑m

i=1 ai with probability at least 3/4.
(Importance sampling) More generally: Let ai ∈ [wi,Bwi] for each i = 1, . . . ,m, with ∑m

i=1wi =W .
Select a random multiset R ⊆ {a1, . . . , am} of size ℓ = ⌈4B/ε2⌉, where each of its ℓ elements is chosen
independently and is ai with probability wi/W . Then X ∶= ∑ai∈R ai ⋅W /(wiℓ) is a (1 ± ε)-approximation
of S ∶= ∑m

i=1 ai with probability at least 3/4.

Proof. We will prove the more general statement. First note that E[X] = ℓ∑
m
i=1(ai ⋅W /(wiℓ)) ⋅

wi/W = S. Also, Var[X] ≤ ℓ∑m
i=1(ai ⋅W /(wiℓ))2 ⋅ wi/W = (1/ℓ)∑m

i=1 a
2
iW /wi ≤ (1/ℓ)∑m

i=1BaiW =

BSW /ℓ ≤ BS2/ℓ ≤ (εS/2)2. By Chebyshev’s inequality, Pr[∣X − S∣ ≥ εS] ≤ 1/4.

Theorem A.2. Let d be a constant. Given a set S of n axis-aligned boxes in R
d, we can compute an

O(log logOPT)-approximation to the size of the minimum piercing set for S in Õ(n) time w.h.p.14 by a
static Monte Carlo randomized algorithm.

Proof. In the algorithm in the proof of Theorem 2.2, the size of the returned piercing set can be
expressed as a sum of the sizes of piercing sets for a number of type-d subproblems handled
by Lemma 2.1. The size of the piercing set for each type-d subproblem lies in the range from
1 to B ∶= O(bd) (after removing empty subproblems). We can approximate the sum to within
a constant factor by summing over a random sample of O(B) terms (see Fact A.1), with error
probability at most 1/4 (which can be lowered by by repeating for logarithmically many trials and
returning the median). Thus, the number of calls to Lemma 2.1 is Õ(bd). The total running time is
now Õ(n + bO(1)), which is Õ(n) by setting b = nδ for a sufficiently small constant δ.

Theorem A.3. Let d and c be constants. Given a set S of n objects in R
d of constant description complexity

from a c-fat collection C, we can compute an O(1)-approximation to the size of the minimum piercing set
for S in Õ(n) time w.h.p. by a static Monte Carlo randomized algorithm.

Proof. This follows by a similar modification to the proof of Theorem 2.11 with random sampling.

Theorem A.4. Given a set S of n axis-aligned rectangles in R
2, we can compute an O(1)-approximation

to the size of the maximum independent set for S in Õ(n) time w.h.p. by a static Monte Carlo randomized
algorithm.

If the rectangles in S are weighted, we can do the same for an O(log logn)-approximation to the weight
of the maximum-weight independent set.

14With high probability, i.e., with probability 1 −O(1/nc) for an arbitrarily large constant c.
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Proof. In the algorithm in the proof of Theorem 3.2 (after minor modification), the size/weight of
returned independent set can be expressed as the maximum of the sizes/weights of O((logb n)d)
independent sets, each of which is a sum of the sizes/weights of independent sets for a number of
type-d subproblems handled by Lemma 3.1. In the unweighted case, the size of the independent
set for each type-d subproblem lies in the range from 1 to B ∶= O(bd) (after removing empty sub-
problems). In the weighted case, the weight of the independent set for the i-th type-d subproblem
lies between wi and Bwi where wi is the largest rectangle weight in the i-th subproblem. We can
approximate the sum to within a constant factor by summing over O(B) terms, via basic random
sampling in the unweighted case or importance sampling in the weighted case (see Fact A.1), with
error probability at most 1/4 (which can be lowered by by repeating for logarithmically many tri-
als and returning the median). Thus, the number of calls to Lemma 3.1 is Õ(bd). The total running
time is now Õ(n + bO(1)), which is Õ(n) by setting b = nδ for a sufficiently small constant δ.

Theorem A.5. Let d and c be constants. Given a set S of n weighted objects in R
d of constant description

complexity from a c-fat collection C, we can compute an O(1)-approximation to the weight of the maximum-
weight independent set for S in Õ(n) time w.h.p. by a static Monte Carlo randomized algorithm.

Proof. This follows by a similar modification to the proof of Theorem 3.6 with importance sam-
pling.

B MVC: Fast Static Algorithms

B.1 Disks in R2

In this subsection, we give a static, near-linear-time, (1 + O(ε))-approximation algorithm A for
MVC for disks under the promise that n = O(OPT). As we are aiming for a (1 + O(ε))-factor
approximation, we may tolerate an additive error of O(εn) because of the promise. MVC with
O(εn) additive error reduces to MIS with O(εn) additive error, by complementing the solution.

PTASs are known for MIS for disks, but allowing O(εn) additive error, there are actually EP-

TASs that run in near linear time. For example, we can adapt an approach by Chan [Cha03] based
on divide-and-conquer via separators. Specifically, we can use the following variant of Smith and
Wormald’s geometric separator theorem [SW98]:

Lemma B.1 (Smith and Wormald’s separator). Given n fat objects in a constant dimension d, there is
an axis-aligned hypercube B, such that the number of objects inside B and the number of objects outside B
are both at most (1 − β)n for some constant β > 0 (dependent on d), and the objects intersecting ∂B can be
stabbed by O(n1−1/d) points. Furthermore, B can be constructed in O(n) time.

Proof. (The following is a modification of a proof in [CH24], which is based on Smith and Wormald’s
original proof [SW98].)

For each object, first pick an arbitrary “center” point inside the object. Let B0 be the smallest
hypercube that contains at least n

2d+1
center points. Let r be the side length of B0. Let h be a

parameter to be set later. For each t ∈ { 1
h
, 2
h
, . . . , h−1

h
}, let Bt be the hypercube with a scaled copy

of B0 with the same center and side length (1 + t)r. Since Bt can be covered by 2d quadtree boxes

of side length < r, the number of center points inside Bt is at most 2dn
2d+1

.
An object of diameter ≤ r/h intersects ∂Bt for at most O(1) choices of t. Thus, we can find a

value t in O(n) time such that ∂Bt intersects O(n/h) objects of diameter ≤ r/h. On the other hand,
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the objects of diameter > r/h intersecting ∂Bt can all be stabbed by O(hd−1) points, because of

fatness. Set h = n1/d, and Bt satisfies the desired properties with β = 2d

2d+1
.

One remaining issue is how to find B0 quickly. Let C be a sufficiently large constant. Form
a C × ⋯ × C grid, so that the number of center points between any two consecutive parallel grid
hyperplanes is n/C. This takes O(Cn) time by a linear-time selection algorithm. Round each
center point to its nearest grid point. The rounded point set is a multiset with O(Cd) distinct
elements. Redefine B0 as the smallest hypercube that contains at most n

2d+1
rounded center points

(multiplicity included), which can now be computed in CO(1) time. For any box, the number
of center points inside the box changes by at most O(n/C) after rounding. So, we just need to
increase β by O(1/C).

The MIS algorithm is simple: we just recursively compute an independent set for the disks
inside B and an independent set for the disks outside B, and take the union of the two sets. If n is
below a constant b, we solve the problem exactly by brute force in 2O(C) time. (This is analogous
to Lipton and Tarjan’s original EPTAS for independent set for planar graphs [LT80].)

Since the optimal independent set can have at most O(√n) disks intersecting ∂B, the total
additive error satisfies a recurrence of the form

E(n) ≤
⎧⎪⎪⎨⎪⎪⎩

maxn1,n2≤(1−β)n∶ n1+n2≤n(E(n1) +E(n2) +O(
√
n)) if n ≥ b

0 if n < b.

This yields E(n) = O(n/
√
b). We set b = 1/ε2. The running time of the resulting static algorithm A

is T (n) = Õ(2O(1/ε2)n).

B.2 Rectangles in R2

In this subsection, we give a static, near-linear-time, (3
2
+O(ε))-approximation algorithm for MVC

for rectangles, by adapting Bar-Yehuda, Hermelin, and Rawitz’s previous, polynomial-time, (3
2
+

O(ε))-approximation algorithm [BHR11].

Triangle-free case. We first start with the case when the intersection graph is triangle-free, or
equivalently, when the maximum depth of the rectangles is at most 2. (The depth of a point q
among a set of rectangles refers to the number of rectangles containing q; the maximum depth
refers to the maximum over all q ∈ R2.)

We will design a static algorithm A for MVC for rectangles, under the promise that n ≤ (2 +
O(ε))OPT.

We say that a rectangle s dominates another rectangle s′ if ∂s intersects ∂s′ four times, with s

having larger height than s′. Bar-Yehuda, Hermelin, and Rawitz’s algorithm proceeds as follows:

1. Decompose the input set S into 2 subsets S1 and S2, such that there are no dominating pairs
within each subset Si.

The existence of such a decomposition follows easily from Dilworth’s theorem, but for an
explicit construction, we can just define S1 to contain all rectangles in S that are not domi-
nated by any other rectangle in S, and define S2 to be S∖S1. Correctness is easy to see (since
the maximum depth is 2).
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We can compute S1 (and thus S2) by performing O(n) orthogonal range queries, after lifting
each rectangle to a point in R

4. In fact, computing S1 corresponds to the maxima problem in
R
4, for which O(n logn)-time algorithms are known [CLP11].

2. For each i ∈ {1,2}, compute a vertex cover Xi of Si which approximates the minimum with
additive error at most εn.

Since we tolerate εn additive error, it suffices to approximate the MIS of Si with εn additive
error.

Because Si has no dominating pairs, it forms a pseudo-disk arrangement (each pair’s bound-
aries intersect at most twice). It is known [BHR11, KLPS86] that the intersection graph of
any set of pseudo-disks that have maximum depth 2 and have no containment pair is in
fact planar. (We can easily eliminate containment pair, by removing rectangles that contain
another rectangle; and we can detect such rectangles again by orthogonal range queries.) So,
we can use a known near-linear-time EPTAS for MIS for planar graphs; for example, Lipton

and Tarjan’s divide-and-conquer algorithm via planar-graph separators runs in Õ(2O(1/ε2)n)
time [LT80].

3. Return X , the smaller of the two sets: X1 ∪ S2 and X2 ∪ S1.

Let X∗ be the minimum vertex cover. Then

∣X ∣ ≤ 1
2
(∣X1∣ + ∣S2∣ + ∣X2∣ + ∣S1∣)

≤ 1
2
(∣X∗ ∩ S1∣ + ∣X∗ ∩ S2∣ + ∣S1∣ + ∣S2∣) + εn = 1

2
(∣X∗∣ + n) + εn ≤ (3

2
+O(ε))∣X∗∣

under the assumption that n ≤ (2 +O(ε))∣X∗∣. The running time is T (n) = Õ(2O(1/ε2)n).
At this point, if we apply Theorem 4.4 with c = 3

2
+ O(ε), γ = ε, and δ = ε3 (and τ0(n) =

O(logO(1) n) as noted in Section 4.4), we obtain:

Corollary B.2. There is a dynamic data structure for n rectangles in R
2 that maintains a (3

2
+ O(ε))-

approximation of the minimum vertex cover of the intersection graph, under insertions and deletions, in

O(2O(1/ε2) logO(1) n) amortized time, under the assumption that the intersection graph is triangle-free.

General case. We now design our final static algorithmA for MVC for rectangles that avoids the
triangle-free assumption, again by building on Bar-Yehuda, Hermelin, and Rawitz’s approach:

1. Remove vertex-disjoint triangles T1, . . . , Tℓ so that the remaining set S′ ∶= S ∖ (T1 ∪⋯∪ Tℓ) is
triangle-free.

We can implement this step greedily in polynomial time, but a faster approach is via a plane
sweep. Namely, we modify the standard sweep-line algorithm to computing the maximum
depth of n rectangles in R

2 (similar to Klee’s measure problem) [PS85]. The algorithm uses a
data structure for a 1D problem: maintaining the maximum depth of intervals in R

1, subject
to insertions and deletions of intervals. Simple modification of standard search trees achieve
O(logn) time per insertion and deletion. As we sweep a vertical line ℓ from left to right, we
maintain the maximum depth of the y-intervals of the rectangles intersected by ℓ. When ℓ

hits the left side of a rectangle, we insert an interval. When ℓ hits the right side of a rectangle,
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we delete an interval. When the maximum depth becomes 3, we remove the 3 intervals
containing the maximum-depth point, which correspond to a triangle in the intersection
graph, and continue the sweep. The total time is O(n logn).

2. Compute a vertex cover X ′ of S′ which is a (3
2
+O(ε))-approximation to the minimum. This

can be done by Corollary B.2 in Õ(2O(1/ε2)n) time (we actually don’t need the full power of
a dynamic data structure, since we just want a static algorithm for this step).

3. Return X =X ′ ∪ T with T ∶= T1 ∪⋯∪ Tℓ.

Let X∗ be the minimum vertex cover. The key observation is that X∗ must contain at least 2 of
the 3 vertices in each triangle Ti, and so ∣X∗ ∩ T ∣ ≥ 2

3
∣T ∣. Thus,

∣X ∣ = ∣X ′∣ + ∣T ∣ ≤ (3
2
+O(ε))∣X∗ ∩ S′∣ + 3

2
∣X∗ ∩ T ∣ ≤ (3

2
+O(ε))∣X∗∣.

The running time of our final static algorithm A is T (n) = Õ(2O(1/ε2)n).
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