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Abstract

Maintaining an approximate maximum independent set of a dynamic collection of objects has been studied
extensively in the past few years. Recently, Bhore, Nöllenburg, Tóth, and Wulms (SoCG 2024) showed that for
(unweighted) disks in the plane, it is possible to maintain O(1)-factor approximate solution in polylogarithmic
amortized update time. In this work, we provide a much simpler dynamic O(1)-approximation algorithm, which
at the same time improves the number of logarithmic factors in the previous update time bound.

Along the way, we also obtain simpler and faster algorithms for dynamic independent set for axis-aligned
hypercubes as well as static independent set for fat objects in any constant dimension. All the above results also
hold for the minimum piercing set problem for the same classes of objects.

1 Introduction

Let S be a collection of objects in R
d. The geometric maximum independent set (MIS) problem asks for a

maximum-cardinality subset I ⊆ S of independent (i.e., pairwise-disjoint) objects. MIS is a fundamental geometric
optimization problem and among the most well-studied problems in computational geometry. Besides its
theoretical importance and connection to other fundamental optimization problems, e.g., piercing set, vertex
cover, etc., MIS has a wide range of applications in scheduling [BYHN+06], VLSI design [HM85], map
labeling [AvKS98], data mining [KMP98, BDMR01a], and many others.

MIS is already NP-hard for a set of unit disks in the plane [CCJ90]. However, for near-equal-sized fat
objects for any constant d, Hochbaum and Maass’s shifted grid method yields a PTAS [HM85]. Moreover,
for fat objects of arbitrary sizes, a simple greedy algorithm computes an O(1)-approximation [EKNS00] in
O(n2) time (although with appropriate geometric data structures, the running time can be improved to near

linear in R
2 [EKNS00], or subquadratic in R

d). Later, several PTASs with running time nO(1/εd) or nO(1/εd−1)

have been found, e.g., via shifted quadtrees, geometric separators, or local search [EJS05, Cha03, CH12]. The
case of arbitrary rectangles1 in R

2 has also been extensively studied. After a long line of work [AvKS98,
BDMR01b, CC09, AHW19, CE16], Mitchell [Mit22] obtained a polynomial-time O(1)-approximation algorithm
for rectangles. Subsequently, Gálvez et al. [GKM+21] improved the approximation factor to close to 2. Very
recently, Bhore and Chan [BC25] designed near-linear (O(n1+δ)) time constant factor approximation algorithms
for rectangles in R

2 as well as for arbitrary-sized fat objects in R
d for any constant d (including balls and

hypercubes).

Dynamic MIS. In dynamic settings, objects are inserted into or deleted from the collection S over time. The
objective is to achieve (almost) the same approximation ratio as in the static case while keeping the update time
as small as possible. In recent years, the dynamic version of the problem has received considerable attention. We
briefly summarize the key prior results:

• For intervals in R
1, Henzinger, Neumann, and Wiese [HNW20] gave the first fully dynamic (1 + ε)-

approximation algorithm with O(log2 n log2U) amortized update time (ignoring dependencies on ε),
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1All rectangles, boxes, squares, and hypercubes are axis-aligned by default in this paper
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assuming that all intervals are in [0, U] and have minimum length at least 1. Bhore, Cardinal, Iacono,
and Koumoutsos [BCIK21] improved the update time to O(logn) and made the bound worst-case. (The
weighted setting of the problem was also considered by Henzinger et al. [HNW20], and subsequently by
Compton et al. [CMR23].)

• For squares in R
2 and more generally hypercubes in R

d for any constant d, Henzinger et al. [HNW20]

gave a dynamic O(1)-approximation algorithm with O(log2d+1 n log2d+1U) amortized update time, again
assuming that all objects are in [0, U]d and have minimum side length at least 1. Bhore et al. [BCIK21]

improved the update time to O(log2d+1 n)while keeping approximation ratio O(1).
Note that it is not possible to maintain a (1 + ε)-approximation in sublinear time for a sufficiently small ε,
even in the case of unit squares (or unit disks) in R

2, since the static problem has a lower bound of nΩ(1/ε)

under ETH [Mar07].

• For disks in R
2, Bhore, Nöllenburg, Tóth, and Wulms [BNTW24] recently presented the first dynamic O(1)-

approximation algorithm with polylogarithmic expected amortized update time. Their algorithm is quite
involved (the full paper is 37 pages long), and it requires a data structure for dynamic lower envelopes
of surfaces in R

3 by Kaplan et al. [KMR+20] (which generalizes Chan’s data structure for dynamic lower
envelopes of planes in R

3 [Cha10, Cha20]). The update time of the data structure is close to O(log9 n).

• For rectangles in R
2, Henzinger et al. [HNW20] gave a dynamic O(logU)-approximation algorithm with

O(log2 n log5U) amortized update time. Bhore and Chan [BC25] recently obtained a dynamic algorithm
with an improved approximation ratio of O(1) and with O(nδ) amortized update time for an arbitrarily
small constant δ > 0 (the approximation ratio is polynomial in 1/δ).

• For arbitrary fat objects in R
d, Cardinal, Iacono, and Koumoutsos [CIK21] designed dynamic O(1)-

approximation algorithms with sublinear worst-case update time, but the exponent in the update bound
converges to 1 as d increases. Bhore and Chan [BC25] recently gave a substantially faster dynamic O(1)-
approximation algorithm with O(nδ) amortized update time for any constant δ > 0. Note that in the
specific case of disks in R

2, this update time bound is worse than the polylogarithmic bound of Bhore
et al. [BNTW24], although Bhore and Chan’s algorithm is simple and more general (it also works for the
weighted setting).

Main new result. Our main result is a new dynamic O(1)-approximation algorithm for MIS for the case of disks
in R

2 with polylogarithmic amortized update time (Theorem 4.1). We are able to describe our entire algorithm
and analysis in under 5 pages, thus significantly simplifying Bhore et al.’s previous work [BNTW24]. At the
same time, we also (unintentionally) improve their update time, from about O(log9 n) to O(log6 n) (and avoiding
randomization as well). In particular, we are able to replace their use of Kaplan et al.’s data structure for dynamic
lower envelope of surfaces in R

3 [KMR+20], with Chan’s original data structure for lower envelope of planes in
R

3 [Cha20], which requires fewer of logarithmic factors.
More precisely, the data structure we maintain is just a version of the well-known shifted balanced

quadtree [AMN+98, Cha98], where each node is augmented with an instance of Chan’s lower-envelope data
structure. We show that given this augmented balanced quadtree, one can recompute an O(1)-approximation of
the MIS in output-sensitive time by a simple recursive algorithm—the key idea to ensure O(1)-approximation
(instead of O(logn)-approximation) is to skip over long paths of “degree-1” nodes in the recursion. Combined
with a standard trick of lazy updating and periodic rebuilding (namely, we don’t need to recompute a solu-
tion till after about δOPT updates,2 since OPT changes by at most 1 per update), we obtain polylogarithmic
amortized update time.

We should mention that all these ideas individually have appeared in some form or another in prior
work. For example, Bhore et al.’s algorithm [BNTW24] also used some (less conventional) variant of quadtrees
(“nonatrees”) and shifting, and they also dealt with the same issue of skipping over paths of “degree-1” nodes,
but in a far more complicated way—the complication arose partly because they did not incorporate the lazy
updating trick (dynamization of their method required maintaining multiple invariants at the tree nodes about

2We use OPT to denote the optimal value for the optimization problem at hand.
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“obstacle cells”, “barrier clearance disks”, etc., which we completely bypass). On the other hand, the lazy
updating trick itself has been used in many previous dynamic algorithms, e.g., for geometric MIS [CIK21], and
geometric piercing, vertex cover, matching, etc. [AHRS24, BC25]. Our contribution lies in how we distill the
essential ideas and put them together in a way that strives for simplicity and elegance.

We have not worked out or tried to optimize the precise constant in the approximation ratio, to keep the
presentation simple, although Bhore et al. [BNTW24] have not either, and we believe the constant should be
similar in magnitude to theirs (or perhaps smaller because our algorithm and analysis are simpler).

Other new results. Our approach is not limited to MIS for disks, but generalizes to other classes of fat objects
(with time bounds depending on the class), and it leads to a number of other interesting consequences:

• For hypercubes in R
d for any constant d, we obtain a dynamic O(1)-approximation algorithm for MIS with

O(logn) amortized update time (Theorem 4.2), which substantially reduces the number of logarithmic
factors in the previous methods by Henzinger et al. [HNW20] and Bhore et al. [BCIK21], from O(d) all the
way to one! (To be fair, the constant in our approximation ratio is worse than Henzinger et al.’s [HNW20].
Ours is O(1)d, whereas Henzinger et al.’s approached 2d, the approximation ratio of the standard static
greedy algorithm.)

• As a byproduct, we also obtain a new static O(1)-approximation algorithm for arbitrary fat objects in R
d

running in O(n logn) time (Theorem 4.3). This is faster than the standard greedy algorithm [EKNS00]. It
is also slightly faster than Bhore and Chan’s recent O(n1+δ)-time algorithm [BC25]. (To be fair, Bhore and
Chan’s algorithm generalized to the weighted setting, whereas our approach does not. They also gave
a faster, Monte Carlo randomized variant of their algorithm with O(npolylogn) running time, but this
variant can only compute an approximation of the optimal value and not the independent set itself.)

• The same approach can also solve the minimum piercing set (MPS) problem: finding a minimum-cardinality
set of points Q ⊂ Rd such that every object of S is pierced by (i.e., contains) at least one point of Q. MPS
is closely related to MIS: it is easy to see that the piercing number (the size of the minimum piercing set)
is always at least the independence number (the size of the maximum independent set); for fat objects,
they are known to be within a constant factor of each other [EKNS00]. Our approach implies O(1)-
approximation dynamic algorithms for MPS for disks in R

2 with O(log6 n) amortized update time and for
hypercubes in R

d with O(logn) amortized update time. These are slightly faster than Bhore and Chan’s
recent dynamic MPS algorithms with O(nδ) amortized update time [BC25] (and significantly faster than
Agarwal, Har-Peled, Raychaudhury, and Sintos’s previous dynamic MPS algorithm for squares in R

2 with
O(n1/3 polylogn) amortized update time [AHRS24]).

2 Preliminaries

We will describe our algorithm in a general setting, for families of objects satisfying the following properties:

• We assume that the objects are fat, in the following sense: for any hypercube B, there exist O(1) points
piercing all objects that intersect B and have L∞-diameter at least diam∞(B). (Throughout the paper,
diam∞(s) denotes the L∞-diameter of an object s.) Disks, balls, and hypercubes fulfill this definition of
fatness.

• We assume that each object has constant description complexity.

• We assume that there is an efficient data structure DS0 for storing a set Z of n objects, with P0(n)
preprocessing time and U0(n) amortized update time, so that given any query box B, we can find an
object of Z completely inside B (if exists), and an object of Z completely outside B (if exists), in Q0(n)
time. (For disks, the “outside” case turns out to be more challenging than the “inside” case, as we will see
later.)

Our data structure is an augmented version of a standard geometric data structure: shifted balanced
quadtrees [Cha98] (related to the balanced-box decomposition trees of Arya et al. [AMN+98]). We review basic
definitions below:
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DEFINITION 1. A quadtree box is a hypercube of the form [ i1
2ℓ
, i1+1

2ℓ
) ×⋯× [ id

2ℓ
, id+1

2ℓ
) for some integers i1, . . . , id, ℓ.

DEFINITION 2. An object s is c0-good if s is contained in a quadtree box B with diam∞(B) ≤ c0 ⋅ diam∞(s).

Goodness is desirable: good fat objects intersecting the boundary of a quadtree box B must have L∞-
diameter at least diam∞(B)/c0, and so can be pierced by O(1) points (since ∂B can be covered by O(1)
hypercubes of L∞-diameter diam∞(B)/c0).

Goodness can be guaranteed by shifting:

FACT 2.1. (SHIFTING LEMMA [CHA98, CHA03]) Suppose d is even. Let vj = ( j

d+1
, . . . , j

d+1
) ∈ Rd. For every object

s ⊂ [0,1)d, there exists j ∈ {0, . . . , d} such that s + vj is O(d)-good.

Quadtrees may generally have large height, but a balanced version with O(logn) height can be obtained by
extending the shapes of cells (to allow for one “hole”), using the fact below:

DEFINITION 3. A quadtree cell is defined as either a quadtree box or the difference of an “outer” quadtree box and an
“inner” quadtree box.

FACT 2.2. ([AMN+98]) Given n > 1 points inside a quadtree cell γ, we can decompose γ into O(1) disjoint quadtree
subcells, such that each subcell contains at most αn points for some constant α < 1, in O(n) time.3

Proof. (Sketch) For completeness, we include a quick proof sketch. Let B0 be a minimal quadtree box that
contains at least 1

2d+1
n points (this corresponds to a “centroid” in the quadtree; see [AMN+98] on how to find B0

in O(n) time). At most 2d

2d+1
n points are outside B0. Furthermore, B0 can be covered by 2d quadtree subboxes,

each of which contains at most 1
2d+1

n points by minimality of B0. Thus, at most 2d

2d+1
n points are inside B0. So,

∂B0 subdivides γ into two cells each with at most αn points with α ∶= 2d

2d+1
.

However, one of the cells may have more than one hole if B0 and the inner box of γ are disjoint. To fix this,
we can take the smallest quadtree box B containing B0 and γ, and subdivide B into 2d quadtree subboxes. Then
∂B0 together with the boundaries of these 2d subboxes subdivide γ into at most 2d + 1 quadtree cells (each of
which indeed has at most one hole).

For a given point set P , we can build a tree by applying Fact 2.2 and recursively building a subtree for the
points inside each quadtree subcell, until each leaf cell contains one point. This tree is referred to as the balanced
quadtree for P , which indeed has height O(logn).

For each object s, designate an arbitrary point inside s as the “center” of s. For a given set S of objects, we
build a balanced quadtree T for the set of all centers of S. For each quadtree cell γ in T :

• Let Sγ denote the subset of all objects of S that are (completely) contained in γ.

• Let Zγ = Sγ − ⋃child γ′ of γ Sγ′ . Note that each object s belongs to Zγ for exactly one cell γ of T (namely, γ
corresponds to the lowest node for which s ∈ Sγ). We store each Zγ in an instance of the data structure
DS0.

We say that a cell γ is empty if Sγ = ∅. We don’t explicitly store Sγ : we just maintain a flag to indicate whether
it is empty, and if not, store an arbitrary single object in Sγ . This entire data structure will be referred to as the
augmented balanced quadtree for S, and it can be built in O(n logn + P0(n)) time.4

LEMMA 2.1. We can maintain an augmented balanced quadtree for n objects in a constant dimension, under insertions

and deletions in O(U0(n) + P0(n)
n

logn + log2 n) amortized time.

3As in a number of previous work, we assume a model of computation that supports taking the bitwise exclusive-or of two numbers and
computing the most significant bit of a number in constant time.

4We assume that P0(n)/n is nondecreasing.
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Proof. To insert/delete an object s, we find the unique cell γ with s ∈ Zγ , by descending along a path of the tree
T in O(logn) time; we can then update Zγ and its corresponding data structure DS0 in O(U0(n)) time. We can
maintain the flags by updating along a path of the tree.

To ensure that balance is maintained after insertion/deletion, we can use a standard weight-balancing
scheme: when the number of centers in a child cell exceeds α + δ times the number of centers in the parent
cell (for a sufficiently small constant δ > 0), we rebuild the entire data structure at the parent. The amortized cost

of rebuilding is at most O(n logn+P0(n)
n

) for the cells at one level of the tree; there are O(logn) levels.

REMARK 1. In the appendix, we show that a more careful scheme to maintain balance can lower the log
2 n term

to logn. Also, if we assume input coordinates are integers bounded by U and we are happy with logU factors
instead of logn factors, then the data structure can be simplified: we can just use the original quadtree, which
has O(logU) height; there is no need for quadtree cells with holes, and no extra work to maintain balance.

3 Main Algorithm

We now show that given the augmented balanced quadtree, it is possible to compute an approximate maximum
independent set from scratch in time sensitive to OPT. The quadtree naturally suggests a simple divide-and-
conquer algorithm, but one could lose a logarithmic factor in the approximation ratio if not careful. The key idea
is to skip over paths of “degree-1” nodes during recursion (as will be made precise below).

LEMMA 3.1. Given an augmented balanced quadtree for n O(1)-good fat objects in any constant dimension d, we can
compute an O(1)-approximation of the maximum independent set in O(OPT ⋅Q0(n) log2 n) time.

Proof. Given a nonempty cell γ, the following algorithm computes an independent set for Sγ :

INDEP-SET(γ):
0. let γ0 = γ and i = 0

1. repeat {
2. if γi has at least two nonempty children γ′ then
3. return ⋃nonempty child γ′ of γi

INDEP-SET(γ′)
4. if γi has no nonempty child then
5. return any single object of Sγ

6. let γ′ be the unique nonempty child of γ
7. if there is an object s ∈ Zγ0

∪⋯∪Zγi
not intersecting γ′ then

8. return INDEP-SET(γ′) ∪ {s}
9. let γi+1 = γ

′ and increment i
}

The algorithm generates a path γ0, . . . , γi, starting at the given node γ0, and stopping when we have found a
node γi with at least two nonempty children (line 2) or none (line 4), or when γi has one nonempty child γ′ and
there exists an object s ∈ Zγ0

∪ ⋯ ∪ Zγi
not intersecting γ′ (line 7). The algorithm then recursively explores the

nonempty child(ren) of γi (line 3 or 8). See Figure 1.

To analyze the algorithm, we define a new rooted tree T̂ : if we arrive at line 3, we define the children of γ in

T̂ to be all the nonempty children γ′ of γi; if we arrive at line 5, we make γ a leaf in T̂ storing the single object

returned; if we arrive at line 8, we define the children of γ in T̂ to be γ′ and a leaf storing the object s. The output

independent set I is precisely the objects stored in the leaves of this tree T̂ . All internal nodes of T̂ have degree

at least 2. Thus, the number of nodes in T̂ is at most twice the number of leaves, i.e., 2∣I ∣.
The condition in line 7 can be tested by querying the data structure DS0 for Zγj

(finding an object in Zγj

completely outside the outer box of γ′ or completely inside the inner box of γ′), for each j ∈ {0, . . . , i}. The cost
for line 7 is thus O(i ⋅Q0(n)) ≤ O(Q0(n) logn). There are at most O(logn) iterations of the repeat loop. Thus, the

total time is O(Q0(n) log2 n) times the number of nodes in T̂ , i.e., O(∣I ∣ ⋅Q0(n) log2 n).
Next, we analyze the approximation factor. All objects in Zγ0

∪⋯ ∪Zγi−1
intersect γi (because otherwise the

repeat loop would have terminated in the previous iteration), and none of these objects are contained in γi (by
definition of the Zγ ’s), so they all must intersect ∂γi. Furthermore, all objects in Zγi

must intersect⋃child γ′ of γi
∂γ′.
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searching in R
4, after mapping rectangles in R

2 to points in R
4. So, the problem can be solved with O(log4 n)

update and query time by standard range trees [dBCvKO08] (or better, by more advanced techniques [CT18]).
Finding a disk s ∈ Z completely outside a rectangle B = [x1, x2) × [y1, y2) is more challenging. Let (as, bs)

denote the center of s, and rs denote its radius. We break into cases:

• Case 1: (as, bs) ∈ [x1, x2] × [y2,∞). This case is equivalent to finding an s ∈ Z with (as, bs − rs) ∈
[x1, x2) × [y2,∞). This reduces to orthogonal range searching in R

2.

• Case 2: (as, bs) ∈ [x2,∞] × [y2,∞). Under this constraint, s is completely outside B iff s does not contain
the point (x2, y2), or equivalently, the lifted plane πs ∶= {(x, y, z) ∶ z−2asx−2bsy+a2s+b2s = r2s} ⊂ R3 is below
the lifted point (x2, y2, x

2
2 + y

2
2) ∈ R3.

Chan [Cha10, Cha20] gave a data structure for dynamic lower envelopes of planes in R
3, which maintains

a set of n planes in R
3, with O(n log2 n) preprocessing time and O(log4 n) amortized update time, so that

we can find a plane below a query point in O(log2 n) time. We combine with a standard multi-level data
structure technique [AE99]: we first use a 2D range tree to pick out all s with (as, bs) ∈ [x2,∞) × [y2,∞),
expressed as a union of canonical subsets; for each canonical subset, we store Chan’s data structure. All the
time bounds increase by 2 logarithmic factors.

• All other cases are symmetric.

THEOREM 4.1. For n disks in R
2, we can maintain an O(1)-approximation of the maximum independent set in O(log6 n)

amortized time.

4.2 Fat boxes in R
d. For boxes in any constant dimension, we can implement the data structure DS0 easily

in polylogarithmic time by reduction to orthogonal range searching; this immediately implies polylogarithmic
overall update time. However, we note an alternative implementation with much fewer logarithmic factors, by
observing that the algorithm in the proof of Theorem 3.1 only requires a special case of DS0 with the following
restrictions:

1. the query boxes B are all quadtree boxes, and

2. the objects all intersect the boundaries of O(1) quadtree boxes (this is because the objects of each Zγi
all

intersect the boundary of a child cell of γi).

LEMMA 4.2. For a set Z of n axis-aligned boxes in R
d, all intersecting the boundary of a fixed quadtree box B0, there is a

data structure DS0, with P0(n) = O(n) preprocessing time and U0(n) = O(logn) update time, so that we can find a box
of Z completely inside/outside a query quadtree box in Q0(n) = O(1) time.

Proof. Finding a box s ∈ Z completely inside a query quadtree box B: If B0 is disjoint from B, then the answer
does not exist. Thus, we may assume that B0 is contained in B. Let ℓs denote the L∞-diameter of the smallest
quadtree box containing s. The problem is equivalent to finding an s ∈ Z with ℓs ≤ diam∞(B). This reduces to
finding the box s ∈ Z with the minimum ℓs, and can be solved using a standard binary heap.

Finding a box s ∈ Z completely outside a query box B = [x−1 , x+1) × ⋯ × [x−d , x+d): Let s = [a−s,1, a+s,1) × ⋯ ×
[a−s,d, a+s,d). This problem is equivalent to finding an s ∈ Z such that a−s,j ≥ x

+
j or a+s,j ≤ x

−
j for some j ∈ {1, . . . , d}.

This reduces to finding the box s ∈ Z with the maximum a−s,j , and finding the box s ∈ Z with the minimum a+s,j ,
for every j, and can again be solved using heaps.

Applying Theorem 3.1 immediately yields O(log2 n) amortized time for maintain an O(1)-approximation of
the maximum independent set for fat boxes.

We can do still better by observing that line 7 in the algorithm from Theorem 3.1 can be implemented in
O(1) time instead of O(Q0(n) logn) = O(logn): As in the proof of Lemma 4.2, the answer to the query in line 7
can be determined from the minimum/maximum of certain values (ℓs, a+s,j , and a−s,j) over all s ∈ Zγ0

∪ ⋯ ∪ Zγi
.

We can look up the minimum/maximum values over all s ∈ Zγi
from the heaps for Zγi

, and so can compute the
minimum/maximum values over all s ∈ Zγ0

∪⋯∪Zγi
in O(1) time, when given the minimum/maximum values

over all s ∈ Zγ0
∪⋯ ∪ Zγi−1

computed from the previous iteration. The total running time for Lemma 3.1 is thus
lowered from O(log2 n) to O(logn). The overall update time for Theorem 3.1 is then lowered from O(log2 n) to
O(logn), if we use the refined version of Lemma 2.1 from the appendix.
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THEOREM 4.2. For n axis-aligned fat boxes (e.g., hypercubes) in any constant dimension, we can maintain an O(1)-
approximation of the maximum independent set in O(logn) amortized time.

REMARK 2. The approximation ratio of our algorithm is of the order of O(d)d, but can be lowered to O(1)d if
we switch to Bern’s version of the shifting lemma [Ber93]; this version uses 2d shifts but achieves goodness O(1)
independent of d.

4.3 Static case. In the static setting, we don’t even need the data structure DS0. In line 7 of the algorithm in
Lemma 3.1, we can just do linear search in Zγ0

∪⋯ ∪ Zγi
; we can charge each object of Zγ0

∪⋯ ∪ Zγi
one unit to

cover the cost. Each object is charged O(logn) times over the entire algorithm. Thus, the total running time is
O(n logn). (The division into phases in the proof of Theorem 3.1 is not needed.)

THEOREM 4.3. For n fat objects (with constant description complexity) in any constant dimension, we can compute an
O(1)-approximation of the maximum independent set in O(n logn) time.

4.4 Piercing. The same approach works for the minimum piercing set problem. The proof of Lemma 3.1
already indicates how to obtain O(1) ⋅ ∣I ∣ ≤ O(1) ⋅ OPT piercing points from the algorithm. In the proof of
Theorem 3.1, we can return the union of the piercing sets found for each shift; the approximation ratio again
increases by a d+1 factor. And during a phase, we can lazily add one piercing point for each new object inserted,
again resulting in O(δOPT) additive error.

As a consequence, we get an O(1)-approximation dynamic algorithm for piercing for disks in R
2 with

O(log6 n) amortized update time, or for fat boxes (e.g., hypercubes) in R
d with O(log2 n) amortized update

time. We also get an O(1)-approximation static algorithm for arbitrary fat objects running in O(n logn) time.
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A Appendix: Maintaining Balance

In this appendix, we note a refinement of Lemma 2.1 that lowers the log
2 n term to logn (which is needed in

Theorem 4.2 but nowhere else). While dynamic versions of balanced quadtrees have been proposed before
(e.g., using dynamic topology trees) [CK95, Fre93], our situation is trickier, as we are also maintaining auxiliary
information at the tree nodes (namely, the Zγ sets). When a subtree becomes out of balance, our idea is to rebuild
some parts of the subtree but keep some parts unchanged, rather than rebuilding the entire subtree from scratch.

LEMMA A.1. We can maintain an augmented balanced quadtree for n objects in a constant dimension, under insertions

and deletions in O(U0(n) + P0(n)
n

logn + logn) amortized time.

Proof. Let α < 1, c, and 0 < δ < 1 −α be parameters (constants) to be set later. We maintain the invariant that each
cell γ of the tree T has degree at most c, and that ∣Pγ′ ∣ ≤ (α + δ)∣Pγ ∣ for every child γ′ of γ, where Pγ denotes the
set of centers inside γ. Define the imbalance of γ to be max

child γ′ of γ
(∣Pγ′ ∣ − α∣Pγ ∣).

Suppose the invariant is violated at a root cell γ, but is true at all descendants of γ. Assume that γ has degree
at most C, for another parameter C > c. We describe a procedure to fix γ:

1. First pick a great-grandchild γ∗ of γ maximizing ∣Pγ∗ ∣. Then

1
Cc2
∣Pγ ∣ ≤ ∣Pγ∗ ∣ ≤ (α + δ)2∣Pγ ∣.

2. Let Γ be the set of all siblings of γ∗, all siblings of the parent of γ∗, and all siblings of the grandparent of
γ∗, together with γ∗ itself. Then Γ consists of at most 2(c − 1) + (C − 1) + 1 < C + 2c quadtree cells. In the
following steps, we will rearrange the nodes in Γ, to make γ∗ a child of γ.

3. Pick an arbitrary point in each cell in Γ, and let QΓ be the resulting point set. Find a quadtree box B0 such

that ∣QΓ ∩B0∣, ∣QΓ ∖B0∣ ≤ 2d

2d+1
∣QΓ∣, as in the proof of Fact 2.2.

4. Let Ψ be a set of quadtree boxes, which include B0 and the inner and outer boxes of γ∗, so that ⋃B∈Ψ ∂B

subdivides γ into at most c1 quadtree cells, for some constant c1 (depending only on d); see the proof of
Fact 2.2 on how to ensure each cell has at most one hole.

5. The boxes in Ψ may not necessarily “align” with the boundaries of Γ. To rectify this, we modify Ψ into a

new set Ψ̂: for each box B ∈ Ψ, if ∂B is already part of ⋃γ′∈Γ ∂γ
′, then we just add B to Ψ̂; otherwise, ∂B is

contained in a unique γ′ ∈ Γ and we add the inner and outer boxes of γ′ to Ψ̂.

6. Now, ⋃B∈Ψ̂ ∂B subdivides γ into at most 2c1 quadtree cells (each cell still has at most one hole); we make
these cells the new children of γ. Note that γ∗ is one of these children. For each new child γ′ of γ that
contains more than one cell of Γ, we define the children of γ′ to be all cells γ′′ ∈ Γ contained in γ′. We can
compute Zγ and Zγ′ by a linear scan in O(∣Sγ ∣) ≤ O(∣Pγ ∣) time, and can also preprocess the corresponding
data structures DS0 in O(P0(∣Pγ ∣)) time. Note that γ has degree at most 2c1 ≤ c and each new child γ′ of γ

has degree at most 2d

2d+1
(C + 2c) ≤ C, by setting c ∶= 2c1 and C ∶= 2d+1c.

The invariant is now satisfied at γ; in fact, γ now has imbalance 0, since ∣Pγ∗ ∣ ≤ (α + δ)2∣Pγ ∣ ≤ α∣Pγ ∣ and
every other child γ′ of γ has ∣Pγ′ ∣ ≤ (1 − 1

Cc2
)∣Pγ ∣ ≤ α∣Pγ ∣, by setting α ∶= 1 − 1

Cc2
and δ ∶=

√
α − α.

7. However, the invariant may be violated at some of the children of γ. For each child γ′ of γ other than γ∗,
we recursively fix γ′. We leave the subtree at γ∗ unchanged.

The running time for fixing a cell γ with ∣Pγ ∣ =m satisfies the recurrence

T (m) ≤ max
mi with ∑i mi≤(1−1/(Cc2))m

T (mi) + O(m + P0(m)),

which solves to T (m) = O(m + P0(m)).
We handle each insertion and deletion in O(logn +U0(n)) time as in the proof of Lemma 2.1. Whenever the

invariant is violated at some cell γ in T , we invoke the above procedure to fix γ in O(∣Pγ ∣ + P0(∣Pγ ∣)) time. As a
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result, the imbalance at γ decreases from δ∣Pγ ∣ to 0, while the imbalance at every other cell in T either decreases
to 0 or stays the same. Thus, the total imbalance decreases by Ω(∣Pγ ∣), and we can bound the fixing cost by the

decrease in total imbalance times O(1 + P0(∣Pγ ∣)

∣Pγ ∣
). Since each insertion/deletion increases the total imbalance by

at most O(logn), the amortized fixing cost is at most O(logn ⋅ (1 + P0(n)
n
)) per insertion/deletion.
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