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Abstract
Using the theory of Hilbert direct integrals, we introduce and study a monotonicity-
preserving operation, termed the integral resolvent mixture. It combines arbitrary
families of monotone operators acting on different spaces and linear operators. As a
special case, we investigate the resolvent expectation, an operation which combines
monotone operators in such a way that the resulting resolvent is the Lebesgue expec-
tation of the individual resolvents. Along the same lines, we introduce an operation
that mixes arbitrary families of convex functions defined on different spaces and lin-
ear operators to create a composite convex function. Such constructs have so far been
limited to finite families of operators and functions. The subdifferential of the inte-
gral proximal mixture is shown to be the integral resolvent mixture of the individual
subdifferentials. Applications to the relaxation of systems of composite monotone
inclusions are presented.

Keywords Hilbert direct integral · Integral proximal mixture · Integral resolvent
mixture · Monotone operator · Proximal expectation · Resolvent expectation

1 Introduction

Monotone inclusions provide an effective template to model a wide spectrum of prob-
lems in optimization and nonlinear analysis [3, 7, 8, 18, 20, 26, 29]. The question of
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combining monotone and linear operators in a fashion that preserves monotonicity has
been a recurrent topic; see, e.g., [5, 6, 9, 10, 19]. One such construct is the resolvent
mixture [19], an operation that includes in particular the resolvent average [2]. It com-
bines finitely many monotone and linear operators in such a way that the resolvent of
the resulting operator is the sum of the individual linearly composed resolvents. Our
objective is to extend this construct to arbitrary families of operators. Our analysis rests
on the concept of Hilbert direct integrals of families of monotone operators proposed
in [11]. Considering the case when the underlying operators are subdifferentials leads
us to introduce the Hilbert direct integral of a family of convex functions, a notion that
extends proximal mixtures of finite families and, in particular, the proximal average.

Our main contributions are the following.

• We introduce the notion of an integral resolvent mixture for arbitrary families
of monotone operators acting on different spaces. This construction exploits the
notion of Hilbert direct integrals of set-valued and linear operators from [11].
One of its salient features is that its resolvent is the Lebesgue integral of the
linearly composed resolvents of the individual operators. A dual operation of
integral resolvent comixture is also investigated.

• We introduce the notion of an integral proximal mixture for arbitrary families of
functions defined on different spaces. Its proximity operator turns out to be the
Lebesgue integral of the linearly composed proximity operators of the individual
functions. A dual operation of integral proximal comixture is also investigated.

• As an instance of an integral resolvent mixture, we propose a notion of resolvent
expectation for a family of maximally monotone operators and, likewise, of proxi-
mal expectation for a family of functions. These notions extend those of resolvent
and proximal averages for finite families.

• We apply the above tools to the relaxation of systems of monotone inclusions
involving linear operators. Applications fitting this framework are described and
a proximal-type algorithm is proposed.

The paper is organized as follows. In Sect. 2, we set our notation and provide
necessary theoretical tools. In Sect. 3, we study the integral resolvent mixture of a
family of monotone operators. Section4 is dedicated to the integral proximal mixture
of a family of functions. In Sect. 5, we present an application to systems of monotone
inclusions and discuss some special cases of interest arising in data analysis.

2 Notation and Background

We first present our notation, which follows [3].
Let H be a real Hilbert space with power set 2H, identity operator IdH, scalar

product 〈· | ·〉H, associated norm ‖·‖H, and quadratic kernel QH = ‖·‖2H/2.
Let C be a nonempty closed convex subset of H. Then projC is the projection

operator onto C and NC is the normal cone operator of C .
Let T : H → H and τ ∈ ]0,+∞[. Then T is nonexpansive if it is 1-Lipschitzian,

τ -cocoercive if
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(∀x ∈ H)(∀y ∈ H) 〈x − y | T x − T y〉H � τ‖T x − T y‖2H, (2.1)

and T is firmly nonexpansive if it is 1-cocoercive.
Let A : H → 2H. The graph of A is gra A = {(x, x∗) ∈ H × H | x∗ ∈ Ax

}
, the

inverse of A is the operator A−1 : H → 2H with graph gra A−1 = {(x∗, x) ∈ H × H |
x∗ ∈ Ax

}
, the domain of A is dom A = {x ∈ H | Ax 
= ∅

}
, the range of A is

ran A = ⋃x∈dom A Ax , the set of zeros of A is zer A = {x ∈ H | 0 ∈ Ax
}
, the

resolvent of A is JA = (IdH + A)−1, and the Yosida approximation of A of index
γ ∈ ]0,+∞[ is

γA = A �
(
γ −1IdH

) = (A−1 + γ IdH
)−1 = IdH − Jγ A

γ
. (2.2)

Suppose that A is monotone. Then A is maximally monotone if any extension of
gra A is no longer monotone in H ⊕ H. In this case, dom JA = H and JA is firmly
nonexpansive.

Let f : H → [−∞,+∞] and set dom f = {x ∈ H | f (x) < +∞}. The Moreau
envelope of f is

f �QH : H → [−∞,+∞] : x �→ inf
y∈H
(
f (y) +QH(x − y)

)
(2.3)

and the conjugate of f is

f ∗ : H → [−∞,+∞] : x∗ �→ sup
x∈H
(〈x | x∗〉H − f (x)

)
. (2.4)

Now suppose that f ∈ Γ0(H), that is, f is lower semicontinuous, convex, and such
that −∞ /∈ f (H) 
= {+∞}. The subdifferential of f is the maximally monotone
operator

∂ f : H → 2H : x �→ {x∗ ∈ H | (∀y ∈ H) 〈y − x | x∗〉H + f (x) � f (y)
}
(2.5)

and the proximity operator prox f = J∂ f of f maps every x ∈ H to the unique
minimizer of the function H → ]−∞,+∞] : y �→ f (y) +QH(x − y).

Finally, given a measure space (Ω,F, μ), the symbol ∀μ means “for μ-almost
every” [31].

Definition 2.1 ([19, Definition 1.1]) Let H and X be real Hilbert spaces, let A : H →
2H, and let L : X → H be linear and bounded. The resolvent composition of A with
L is the operator L 
 A : X → 2X given by

L 
 A = (L∗ ◦ JA ◦ L
)−1 − IdX (2.6)

and the resolvent cocomposition of A with L is L ˛ A = (L 
 A−1)−1.
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Definition 2.2 ([19, Definition 1.4]) Let H and X be real Hilbert spaces, let f : H →
[−∞,+∞], and let L : X → H be linear and bounded. The proximal composition of
f with L is the function L 
 f : X → [−∞,+∞] given by

L 
 f = (( f ∗ �QH) ◦ L
)∗ −QX, (2.7)

and the proximal cocomposition of f with L is L ˛ f = (L 
 f ∗)∗.

Here are some notation and facts regarding integration in Hilbert spaces. Let
(Ω,F, μ) be a complete σ -finite measure space and let H be a separable real Hilbert
space. For every p ∈ [1,+∞[, set

L p(Ω,F, μ;H)

=
{
x : Ω → H

∣∣∣∣ x is (F,BH)-measurable and
∫

Ω

‖x(ω)‖p
H μ(dω) < +∞

}
,

(2.8)

whereBH is the Borel σ -algebra of H. The Lebesgue (also called Bochner) integral of
a mapping x ∈ L1(Ω,F, μ;H) is denoted by

∫
Ω
x(ω)μ(dω); see [31, Section V.§7]

for background. We denote by L p(Ω,F, μ;H) the space of equivalence classes of
μ-a.e. equal mappings inL p(Ω,F, μ;H).

Lemma 2.3 Let (Ω,F, μ) be a complete σ -finite measure space, let H be a separable
real Hilbert space, and let x ∈ L1(Ω,F, μ;H). Then the following hold:

(i) [31, Théorème 5.7.13] ‖∫
Ω
x(ω)μ(dω)‖H �

∫
Ω

‖x(ω)‖H μ(dω).
(ii) Let x∗ ∈ H. Then the function Ω → R : ω �→ 〈x(ω) | x∗〉H is μ-integrable and

∫

Ω

〈x(ω) | x∗〉H μ(dω) =
〈∫

Ω

x(ω)μ(dω)

∣∣∣∣ x
∗
〉

H
. (2.9)

(iii) Suppose that μ is a probability measure. Then

∥∥∥∥

∫

Ω

x(ω)μ(dω)

∥∥∥∥

2

H
�
∫

Ω

‖x(ω)‖2H μ(dω). (2.10)

Proof (ii): Apply [31, Théorème 5.8.16] with the continuous linear functional L =
〈· | x∗〉H.

(iii): We derive from (i) and the Cauchy–Schwarz inequality that

∥∥∥∥

∫

Ω

x(ω)μ(dω)

∥∥∥∥

2

H
�
∣∣∣∣

∫

Ω

1Ω(ω)‖x(ω)‖H μ(dω)

∣∣∣∣

2

� μ(Ω)

∫

Ω

‖x(ω)‖2H μ(dω),

(2.11)

which concludes the proof. ��

123



2332 Journal of Optimization Theory and Applications (2024) 203:2328–2353

Notation 2.4 Let (Ω,F, μ) be a complete σ -finite measure space, let X and H be
separable real Hilbert spaces, and let (Tω)ω∈Ω be a family of operators from X to H
such that, for every x ∈ X, the mapping Ω → H : ω �→ Tωx is (F,BH)-measurable.
Let

D =
{
x ∈ X

∣∣∣∣

∫

Ω

‖Tωx‖H μ(dω) < +∞
}
. (2.12)

Then

∫

Ω

Tωμ(dω) : D → H : x �→
∫

Ω

Tωxμ(dω). (2.13)

In particular, if μ is a probability measure, then

E(Tω)ω∈Ω =
∫

Ω

Tωμ(dω) (2.14)

is the μ-expectation of the family (Tω)ω∈Ω .

The following setup describes the main functional setting employed in the paper.
As in [11], it relies on the notion of a Hilbert direct integral of Hilbert spaces [25].

Assumption 2.5 Let (Ω,F, μ) be a complete σ -finite measure space, let (Hω)ω∈Ω be
a family of real Hilbert spaces, and let

∏
ω∈Ω Hω be the usual real vector space of

mappings x defined on Ω such that (∀ω ∈ Ω) x(ω) ∈ Hω. Let ((Hω)ω∈Ω,G) be an
F-measurable vector field of real Hilbert spaces, that is, G is a vector subspace of∏

ω∈Ω Hω which satisfies the following:

[A] For every x ∈ G, the function Ω → R : ω �→ ‖x(ω)‖Hω
is F-measurable.

[B] For every x ∈∏ω∈Ω Hω,

[
(∀y ∈ G) Ω → R : ω �→ 〈x(ω) | y(ω)〉Hω

is F-measurable
] ⇒ x ∈ G.

(2.15)

[C] There exists a sequence (en)n∈N inG such that (∀ω ∈ Ω) span{en(ω)}n∈N = Hω.

Set

H =
{
x ∈ G

∣∣∣∣

∫

Ω

‖x(ω)‖2Hω
μ(dω) < +∞

}
, (2.16)

and letH be the real Hilbert space of equivalence classes of μ-a.e. equal mappings in
H equipped with the scalar product

〈· | ·〉H : H × H → R : (x, y) �→
∫

Ω

〈x(ω) | y(ω)〉Hω
μ(dω), (2.17)
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where we adopt the common practice of designating by x both an equivalence class
inH and a representative of it in H. We write

H =
G∫ ⊕

Ω

Hωμ(dω) (2.18)

and call H the Hilbert direct integral of ((Hω)ω∈Ω,G) [25].

Here are some instances of Hilbert direct integrals [11].

Example 2.6 Let p ∈ N � {0}, let (αk)1�k�p be a family in ]0,+∞[, let (Hk)1�k�p

be separable real Hilbert spaces, letG = H1×· · ·×Hp be the usual Cartesian product
vector space, and set

Ω = {1, . . . , p}, F = 2{1,...,p}, and
(∀k ∈ {1, . . . , p}) μ

({k}) = αk .

(2.19)

Then ((Hk)1�k�p,G) is an F-measurable vector field of real Hilbert spaces and
G∫ ⊕

Ω
Hωμ(dω) is the weighted Hilbert direct sum of (Hk)1�k�p, namely the Hilbert

space obtained by equipping G with the scalar product

(
(xk)1�k�p, (yk)1�k�p

) �→
p∑

k=1

αk〈xk | yk〉Hk
. (2.20)

Example 2.7 Let (αk)k∈N be a family in ]0,+∞[, let (Hk)k∈N be separable real Hilbert
spaces, let G =∏k∈N Hk , and set

Ω = N, F = 2N, and (∀k ∈ N) μ
({k}) = αk . (2.21)

Then ((Hk)k∈N,G) is an F-measurable vector field of real Hilbert spaces and
G∫ ⊕

Ω
Hωμ(dω) is the Hilbert space obtained by equipping the vector space

H =
{
(xk)k∈N ∈ G

∣∣∣∣
∑

k∈N
αk‖xk‖2Hk

< +∞
}

(2.22)

with the scalar product

(
(xk)k∈N, (yk)k∈N

) �→
∑

k∈N
αk〈xk | yk〉Hk

. (2.23)

Example 2.8 Let (Ω,F, μ) be a complete σ -finite measure space, let H be a separable
real Hilbert space, and set

[
(∀ω ∈ Ω) Hω = H

]
and G = {x : Ω → H | x is (F,BH)-measurable

}
.

(2.24)
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Then ((Hω)ω∈Ω,G) is an F-measurable vector field of real Hilbert spaces and

G∫ ⊕

Ω

Hωμ(dω) = L2(Ω,F, μ;H). (2.25)

3 Integral Resolvent Mixtures

Our setting hinges on the following assumptions.

Assumption 3.1 Assumption 2.5 and the following are in force:

[A] For every ω ∈ Ω , Aω : Hω → 2Hω is maximally monotone.
[B] For every x ∈ H, the mapping ω �→ JAω x(ω) lies in G.

[C] dom G∫ ⊕
Ω

Aωμ(dω) 
= ∅, where

G∫ ⊕

Ω

Aωμ(dω) : H → 2H : x �→ {x∗ ∈ H | (∀μω ∈ Ω) x∗(ω) ∈ Aωx(ω)
}

(3.1)

is the Hilbert direct integral of the operators (Aω)ω∈Ω relative to G [11].

Assumption 3.2 Assumption 2.5 and the following are in force:

[A] X is a separable real Hilbert space.
[B] For every ω ∈ Ω , Lω : X → Hω is linear and bounded.
[C] For every x ∈ X, the mapping eLx : ω �→ Lωx lies in G.
[D] 0 <

∫
Ω

‖Lω‖2μ(dω) � 1.

Themain purpose of this section is to study the following objectswhichmix families
of monotone and linear operators.

Definition 3.3 Suppose that Assumptions 3.1 and 3.2 are in force. The integral resol-
vent mixture of (Aω)ω∈Ω and (Lω)ω∈Ω is



M(Lω,Aω)ω∈Ω =

(∫

Ω

(
L∗
ω ◦ JAω ◦ Lω

)
μ(dω)

)−1

− IdX, (3.2)

and the integral resolvent comixture of (Aω)ω∈Ω and (Lω)ω∈Ω is

˛
M(Lω,Aω)ω∈Ω =

( 

M
(
Lω,A−1

ω

)
ω∈Ω

)−1
. (3.3)

We start off with some properties of integrals of composite Lipschitzian operators.

Proposition 3.4 Suppose that Assumption 2.5 is in force. Let X be a separable real
Hilbert space, let β : Ω → ]0,+∞[ beF-measurable and such that ess supβ < +∞,
and for every ω ∈ Ω , let Tω : Hω → Hω be β(ω)-Lipschitzian and let Lω : X → Hω

be linear and bounded. Suppose that the following are satisfied:
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[A] For every x ∈ H, the mapping ω �→ Tωx(ω) lies in G.
[B] There exists z ∈ H such that the mapping ω �→ Tωz(ω) lies in H.
[C] For every x ∈ X, the mapping eLx : ω �→ Lωx lies in G.
[D]
∫
Ω

‖Lω‖2μ(dω) < +∞.

Set

T =
∫

Ω

(
L∗
ω ◦ Tω ◦ Lω

)
μ(dω) and τ =

∫

Ω

‖Lω‖2β(ω)μ(dω). (3.4)

Then the following hold:

(i) T : X → X is well defined and τ -Lipschitzian.
(ii) Define L : X → H : x �→ eLx and T = G∫ ⊕

Ω
Tωμ(dω). Then L is well defined,

linear, and bounded with ‖L‖ �
√∫

Ω
‖Lω‖2μ(dω), and T = L∗ ◦ T ◦ L.

(iii) Suppose that, for every ω ∈ Ω , Tω is 1/β(ω)-cocoercive and Lω 
= 0. Then the
following are satisfied:

(a) T is 1/τ -cocoercive.
(b)
{∫

Ω
L∗
ω(Tωx(ω))μ(dω) | x ∈ H

} ⊂ ran T.
(c) int

{∫
Ω
L∗
ω(Tωx(ω))μ(dω) | x ∈ H

} ⊂ ran T.

Proof Observe that, by [11, Proposition 3.12(i)], the function Ω → R : ω �→ ‖Lω‖ is
F-measurable and, by [D],

τ � (ess supβ)

∫

Ω

‖Lω‖2μ(dω) < +∞. (3.5)

We set (∀ω ∈ Ω) Rω = L∗
ω ◦ Tω ◦ Lω.

(i): Let x ∈ X. It results from [11, Proposition 3.12(ii)] that the mapping ω �→ Lωx
lies in H. In turn, [A] ensures that the mapping ω �→ Tω(Lωx) lies in G. Therefore,
we deduce from [C] and [11, Lemma 2.2(i)] that, for every y ∈ X, the function
Ω → R : ω �→ 〈y | Rωx〉X = 〈Lωy | Tω(Lωx)〉Hω

is F-measurable. Thus, since
(Ω,F, μ) is a complete σ -finite measure space and X is separable, we infer from [31,
Théorème 5.6.24] that the mapping Ω → X : ω �→ Rωx is (F,BX)-measurable. Next,
since ess supβ < +∞, it follows from [A], [B], and [11, Proposition 3.4(i)] that, for
every x ∈ H, the mapping ω �→ Tωx(ω) lies in H; in particular,

∫
Ω

‖Tω0‖2Hω
μ(dω) <

+∞. Hence, because

(∀y ∈ X)(∀ω ∈ Ω) ‖Rωx − Rωy‖X � ‖Lω‖ ‖Tω(Lωx) − Tω(Lωy)‖Hω

� ‖Lω‖β(ω)‖Lωx − Lωy‖Hω

� ‖Lω‖2β(ω)‖x − y‖X, (3.6)

we derive from the triangle and Cauchy–Schwarz inequalities that

∫

Ω

‖Rωx‖X μ(dω) �
∫

Ω

‖Rωx − Rω0‖X μ(dω) +
∫

Ω

‖Rω0‖X μ(dω)
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� τ‖x‖X +
∫

Ω

‖Lω‖ ‖Tω0‖Hω
μ(dω)

� τ‖x‖X +
√∫

Ω

‖Lω‖2μ(dω)

√∫

Ω

‖Tω0‖2Hω
μ(dω)

< +∞. (3.7)

Thus, [31, Théorème 5.7.21] implies that T : X → X is well defined. Moreover, by
virtue of (3.6) and Lemma 2.3(i), T is τ -Lipschitzian.

(ii): Thanks to [11, Items (ii) and (v) in Proposition 3.12], L : X → H is a well-
defined bounded linear operator with adjoint

L∗ : H → X : x∗ �→
∫

Ω

L∗
ωx

∗(ω)μ(dω) (3.8)

and ‖L‖ �
√∫

Ω
‖Lω‖2μ(dω). On the other hand, [11, Proposition 3.4(i)] asserts that

T : H → H and that, for every x ∈ H, a representative of T x in H is the mapping
ω �→ Tωx(ω). Altogether, for every x ∈ X, because ω �→ Lωx is a representative of
Lx in H, we deduce that

L∗(T (Lx)
) =
∫

Ω

L∗
ω

(
Tω(Lωx)

)
μ(dω) = Tx, (3.9)

as announced.
(iii)(a): Take x ∈ X and y ∈ X. Define an F-measurable function on Ω by

α : Ω → ]0,+∞[ : ω �→ ‖Lω‖2β(ω)/τ and a probability measure P on F by
P : Ξ �→ ∫

Ξ
α(ω)μ(dω). Then we derive from items (ii) and (iii) of Lemma 2.3

together with [31, Théorème 5.10.13] that

〈x − y | Tx − Ty〉X =
∫

Ω

〈
x − y

∣∣ L∗
ω

(
Tω(Lωx)

)− L∗
ω

(
Tω(Lωy)

)〉
X μ(dω)

=
∫

Ω

〈
Lωx − Lωy

∣∣ Tω(Lωx) − Tω(Lωy)
〉
Hω

μ(dω)

�
∫

Ω

1

β(ω)

∥∥Tω(Lωx) − Tω(Lωy)
∥∥2
Hω

μ(dω)

�
∫

Ω

1

‖Lω‖2β(ω)

∥∥L∗
ω

(
Tω(Lωx)

)− L∗
ω

(
Tω(Lωy)

)∥∥2
X μ(dω)

= 1

τ

∫

Ω

∥∥∥
1

α(ω)
(Rωx − Rωy)

∥∥∥
2

X
P(dω)

� 1

τ

∥∥∥∥

∫

Ω

1

α(ω)
(Rωx − Rωy)P(dω)

∥∥∥∥

2

X

= 1

τ

∥∥∥∥

∫

Ω

(
Rωx − Rωy

)
μ(dω)

∥∥∥∥

2

X
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= 1

τ
‖Tx − Ty‖2X. (3.10)

(iii)(b) and (iii)(c): Define L and T as in (ii), and recall that T = L∗ ◦ T ◦ L . In the
light of [3, Corollary 20.28], (i) and (iii)(a) imply that T is maximallymonotone. At the
same time, we deduce from [11, Proposition 3.4(ii)] that T : H → H is cocoercive.
Thus, it results from (3.8), [3, Example 25.20(i)], and [28, Theorem 5] that

{∫

Ω

L∗
ω

(
Tωx(ω)

)
μ(dω)

∣∣∣∣ x ∈ H

}
= L∗(ran T ) ⊂ ran

(
L∗ ◦ T ◦ L

) = ran T

(3.11)

and that

int

{∫

Ω

L∗
ω

(
Tωx(ω)

)
μ(dω)

∣∣∣∣ x ∈ H

}
= int L∗(ran T ) ⊂ ran

(
L∗ ◦ T ◦ L

) = ran T,

(3.12)

which completes the proof. ��
The main properties of integral resolvent mixtures can now be laid out.

Theorem 3.5 Suppose that Assumptions 3.1 and 3.2 are in force. Set

W = 

M(Lω,Aω)ω∈Ω and C = ˛

M(Lω,Aω)ω∈Ω. (3.13)

Then the following hold:

(i) W−1 = ˛
M(Lω,A−1

ω )ω∈Ω and C−1 = 

M(Lω,A−1

ω )ω∈Ω .
(ii) W and C are maximally monotone.
(iii) C = (IdX + ∫

Ω
(L∗

ω ◦ JAω ◦ Lω − L∗
ω ◦ Lω)μ(dω))−1 − IdX.

(iv) Suppose that μ is a probability measure and that, for every ω ∈ Ω , Lω is an
isometry. Then W = C.

(v) JW = ∫
Ω

(L∗
ω ◦ JAω ◦ Lω)μ(dω).

(vi) JC = IdX + ∫
Ω

(L∗
ω ◦ JAω ◦ Lω − L∗

ω ◦ Lω)μ(dω).
(vii) W � IdX = IdX − ∫

Ω
(L∗

ω ◦ (A−1
ω � IdHω) ◦ Lω)μ(dω).

(viii) C � IdX = ∫
Ω

(L∗
ω ◦ (Aω � IdHω) ◦ Lω)μ(dω).

(ix) zer C = zer
∫
Ω

(L∗
ω ◦ (Aω � IdHω) ◦ Lω)μ(dω).

(x) domW = {∫
Ω
L∗
ωx

∗(ω)μ(dω) | x∗ ∈ H and (∀μω ∈ Ω) x∗(ω) ∈ dom Aω

}
.

(xi) ran C = {∫
Ω
L∗
ωx

∗(ω)μ(dω) | x∗ ∈ H and (∀μω ∈ Ω) x∗(ω) ∈ ranAω

}
.

(xii) int domW = int
{∫

Ω
L∗
ω(JAω x(ω))μ(dω) | x ∈ H}.

(xiii) int ran C = int
{∫

Ω
L∗
ω(JA−1

ω
x(ω))μ(dω) | x ∈ H}.

(xiv) Suppose that, for every ω ∈ Ω , Aω is nonexpansive with dom Aω = Hω. Then C
is nonexpansive.

(xv) Let τ ∈ ]0,+∞[, set δ = (τ + 1)/
∫
Ω

‖Lω‖2μ(dω) − 1, and suppose that, for
every ω ∈ Ω , Aω is τ -cocoercive with dom Aω = Hω. Then C is δ-cocoercive.
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Proof Set

A =
G∫ ⊕

Ω

Aωμ(dω). (3.14)

Then [11, Theorem 3.8(i)] states that A is maximally monotone, and [11, Theo-
rem 3.8(ii)(a)] asserts that, for every x ∈ H, the mapping ω �→ JAω x(ω) lies in
H and

JA =
G∫ ⊕

Ω

JAωμ(dω). (3.15)

Therefore, by Assumption 3.2[D] and items (i) and (iii)(a) of Proposition 3.4,

∫

Ω

(
L∗
ω ◦ JAω ◦ Lω

)
μ(dω) : X → X is a well-defined firmly nonexpansive operator,

(3.16)

which confirms thatW is well defined. Additionally, it follows from Proposition 3.4(ii)
and Assumption 3.2[D] that

L : X → H : x �→ eLx is a well-defined bounded linear operator such that ‖L‖ � 1,

(3.17)

and

(∀x ∈ X) L∗(JA(Lx)
) =
∫

Ω

L∗
ω

(
JAω(Lωx)

)
μ(dω). (3.18)

Moreover, the adjoint of L is given by [11, Proposition 3.12(v)]

L∗ : H → X : x∗ �→
∫

Ω

L∗
ωx

∗(ω)μ(dω). (3.19)

Likewise, appealing to [11, Proposition 3.7], we deduce that C is well defined and

(∀x ∈ X) L∗(JA−1(Lx)
) =
∫

Ω

L∗
ω

(
JA−1

ω
(Lωx)

)
μ(dω). (3.20)

Hence, by virtue of Definition 2.1,

W = L 
 A and C = L ˛ A. (3.21)

(i): A consequence of (3.2) and (3.3).
(ii): In the light of [19, Theorem 4.5(i)–(ii)], the claim follows from (3.17) and

(3.21).
(iii): A consequence of (3.18), (3.19), (3.21), and [19, Proposition 4.1(ii)].
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(iv): By (2.17) and (3.17),

(∀x ∈ X) ‖Lx‖2H =
∫

Ω

‖Lωx‖2Hω
μ(dω) =

∫

Ω

‖x‖2X μ(dω) = μ(Ω)‖x‖2X = ‖x‖2X,
(3.22)

which shows that L is an isometry. Consequently, the conclusion follows from (3.21)
and [19, Proposition 4.1(iii)].

(v): An immediate consequence of (3.2).
(vi): An immediate consequence of (iii).
(vii): This follows from (3.21), [19, Proposition 4.1(xiv)], and (3.18).
(viii): This follows from (3.21), [19, Proposition 4.1(xv)], and (3.20).
(ix): Use (ii), (viii), and [3, Proposition 23.38].
(x): Set U = {x ∈ H | (∀μω ∈ Ω) x(ω) ∈ dom Aω

}
. Then U = dom A [11,

Theorem 3.8(iii)]. Hence, [19, Theorem 4.5(vi)] implies that

domW = L∗(dom A) = L∗(dom A
) = L∗(U ) = L∗(U ). (3.23)

This and (3.19) yield the desired identity.
(xi): Combine (3.3), (x), and the fact that (∀ω ∈ Ω) dom A−1

ω = ranAω.
(xii): Use (3.2) and Proposition 3.4(iii)(c).
(xiii): A consequence of (3.3) and (xii).
(xiv): It follows from [11, Theorem 3.8(v)(a)] that

for every x ∈ H, the mapping ω �→ projAωx(ω) 0 = Aωx(ω) lies in G. (3.24)

Hence, [11, Proposition 3.4(i)] implies that A is nonexpansive with dom A = H.
Hence, it follows from [19, Proposition 4.9] and (3.21) that C is nonexpansive.

(xv): We argue as in (xiv) to deduce that A : H → H is τ -cocoercive. On the
other hand, (3.17) ensures that ‖L‖ <

√
τ + 1. Thus, it follows from (3.21), [19,

Proposition 4.8], and Proposition 3.4(ii) that C = L ˛ A is cocoercive with constant
(τ + 1)‖L‖−2 − 1 � δ. ��

Remark 3.6 The motivation for calling


M(Lω,Aω)ω∈Ω an integral resolvent mixture

comes from Theorem 3.5(v).

Let us provide some examples of integral resolvent mixtures.

Example 3.7 Consider the setting of Example 2.6. Then (3.2) becomes



M(Lk,Ak)1�k�p =

( p∑

k=1

αkL∗
k ◦ JAk ◦ Lk

)−1

− IdX, (3.25)

which is the resolvent mixture introduced in [19, Example 3.4].
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Example 3.8 Let (Ω,F, μ) be a complete σ -finite measure space and let (φω)ω∈Ω be
a family in Γ0(R) such that the function Ω × R → ]−∞,+∞] : (ω, x) �→ φω(x) is
F⊗BR-measurable and (∀ω ∈ Ω) φω � φω(0) = 0. Further, let X be a separable real
Hilbert space and let e ∈ L2(Ω,F, μ;X) be such that 0 <

∫
Ω

‖e(ω)‖2X μ(dω) � 1.
Set

(∀ω ∈ Ω) Aω = ∂φω and Lω = 〈· | e(ω)〉X. (3.26)

Then



M(Lω,Aω)ω∈Ω =

(∫

Ω

(
proxφω

〈· | e(ω)〉X
)
e(ω)μ(dω)

)−1

− IdX. (3.27)

For instance, suppose that, for every ω ∈ Ω , φω is the support function of a closed
interval Cω in R containing 0, with δω = inf Cω and ρω = supCω. Now set

W = 

M(Lω,Aω)ω∈Ω and (∀x ∈ X)

{
Ω−(x) = {ω ∈ Ω | 〈x | e(ω)〉X > ρω

}

Ω−(x) = {ω ∈ Ω | 〈x | e(ω)〉X < δω

}
.

(3.28)

Then

(∀x ∈ X) JWx =
∫

Ω−(x)

(〈x | e(ω)〉X − ρω

)
e(ω)μ(dω)

+
∫

Ω−(x)

(〈x | e(ω)〉X − δω

)
e(ω)μ(dω). (3.29)

This process provides a representation of x which eliminates the contributions of the
coefficients 〈x | e(ω)〉X ∈ [δω, ρω]. For instance, in the context of Example 2.7, if
(e(k))k∈N is an orthonormal basis and Ck = [−ρk, ρk], then JW is known as a soft-
thresholder and it has been used extensively in data analysis [21, 24].

Proof LetG = {x : Ω → R | x is F-measurable
}
and, for every ω ∈ Ω , let Hω = R.

Then, in view of Example 2.8, Assumption 2.5 is satisfied and

H =
G∫ ⊕

Ω

Hωμ(dω) = L2(Ω,F, μ; R

)
. (3.30)

Since (Ω,F, μ) is complete, we deduce from [30, Corollary 14.34 andExercise 14.38]
that, for every x ∈ G, the functionΩ → R : ω �→ proxφω

x(ω) lies inG. Additionally,
for every ω ∈ Ω , since 0 ∈ Argmin φω, we get 0 ∈ Aω0 and JAω0 = proxφω

0 =
0. Hence, the family (Aω)ω∈Ω satisfies Assumption 3.1. Next, since e : Ω → X is
(F,BX)-measurable, we deduce that, for every x ∈ X, the mapping Ω → R : ω �→
〈x | e(ω)〉X = Lωx lies in G. Further,

(∀ω ∈ Ω) L∗
ω : R → X : x �→ xe(ω) (3.31)

123



Journal of Optimization Theory and Applications (2024) 203:2328–2353 2341

and

∫

Ω

‖Lω‖2μ(dω) =
∫

Ω

‖e(ω)‖2X μ(dω) = ‖e‖2H ∈ ]0, 1]. (3.32)

This confirms that Assumption 3.2 is satisfied. Therefore, we obtain (3.27) by invoking
(3.2). Next, let us establish (3.29). Take x ∈ X. Thanks to the F-measurability of the
function Ω → R : ω �→ proxφω

〈x | e(ω)〉X, we obtain

Ω−(x) = {ω ∈ Ω | 〈x | e(ω)〉X − projCω
〈x | e(ω)〉X > 0

}

= {ω ∈ Ω | proxφω
〈x | e(ω)〉X > 0

}

∈ F. (3.33)

Likewise, Ω−(x) ∈ F. On the other hand, by [3, Example 24.34],

(∀ω ∈ Ω) proxφω
: R → R : x �→

⎧
⎪⎨

⎪⎩

x − ρω, if x > ρω;
0, if x ∈ Cω;
x − δω, if x < δω.

(3.34)

Therefore, we obtain (3.29) by using Theorem 3.5(v) and the fact that (∀ω ∈ Ω)

JAω = proxφω
. ��

Next, we define the resolvent expectation of a family of maximally monotone
operators.

Definition 3.9 Let (Ω,F, P) be a complete probability space, let H be a separable
real Hilbert space, and let (Aω)ω∈Ω be a family of maximally monotone operators
from H to 2H. Suppose that, for every x ∈ H, the mapping Ω → H : ω �→ JAωx is
(F,BH)-measurable and that

∫
Ω

‖JAω0‖2H μ(dω) < +∞. Using the notation (2.14),
the resolvent expectation of the family (Aω)ω∈Ω is



E(Aω)ω∈Ω = (E(JAω)ω∈Ω

)−1 − IdH. (3.35)

Example 3.10 Consider the measure space (Ω,F, μ) of Example 2.6 with the addi-
tional assumption that

∑p
k=1 αk = 1. Let H be a separable real Hilbert space and let

(Ak)1�k�p be maximally monotone operators from H to 2H. Then (3.35) becomes



E(Ak)1�k�p =

( p∑

k=1

αk JAk

)−1

− IdH, (3.36)

which is the resolvent average studied in [2].
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Let us relate resolvent expectations to integral resolvent mixtures.

Proposition 3.11 Consider the setting of Example 2.8 with the additional assumption
that μ is a probability measure. Let (Aω)ω∈Ω be a family of maximally monotone
operators from H to 2H such that, for every x ∈ H, the mapping Ω → H : ω �→ JAωx
is (F,BH)-measurable and that

∫
Ω

‖JAω0‖2H μ(dω) < +∞. Then



E(Aω)ω∈Ω = 


M(IdH,Aω)ω∈Ω = ˛
M(IdH,Aω)ω∈Ω. (3.37)

Proof Appealing to [14, Lemma III.14] and the continuity of the operators (JAω)ω∈Ω ,
we infer that the mappingΩ ×H → H : (ω, x) �→ JAωx is (F⊗BH,BH)-measurable.
Thus, for every x ∈ H, the mapping Ω → H : ω �→ JAω x(ω) is (F,BH)-measurable,

i.e., it lies inG. On the other hand, letting A = G∫ ⊕
Ω

Aωμ(dω) and r : Ω → H : ω �→
JAω0 yields −r ∈ Ar , which implies that dom A 
= ∅. Hence, it follows from (3.35)

and (3.2) that


E(Aω)ω∈Ω = 


M(IdH,Aω)ω∈Ω , while the identity


M(IdH,Aω)ω∈Ω =

˛
M(IdH,Aω)ω∈Ω follows from Theorem 3.5(iv). ��

By specializing Theorem 3.5 to the scenario of Proposition 3.11, we obtain at once
the following properties of the resolvent expectation and, in particular, those of the
resolvent average of finitely many operators studied in [2].

Corollary 3.12 Consider the setting of Definition 3.9. Then the following hold:

(i) (


E(Aω)ω∈Ω)−1 = 


E(A−1
ω )ω∈Ω .

(ii)


E(Aω)ω∈Ω is maximally monotone.

(iii) J

E(Aω)ω∈Ω

= E(JAω)ω∈Ω .

(iv) (


E(Aω)ω∈Ω) � IdH = E(Aω � IdH)ω∈Ω .

(v) dom


E(Aω)ω∈Ω = {Ex∗ | x∗ ∈ L2(Ω,F, P;H) and (∀μω ∈ Ω) x∗(ω) ∈ dom Aω

}
.

(vi) ran


E(Aω)ω∈Ω = {Ex∗ | x∗ ∈ L2(Ω,F, P;H) and (∀μω ∈ Ω) x∗(ω) ∈ ranAω

}
.

(vii) int dom


E(Aω)ω∈Ω = int

{
E(JAω x(ω))ω∈Ω | x ∈ L2(Ω,F, P;H)

}
.

(viii) int ran


E(Aω)ω∈Ω = int

{
E(JA−1

ω
x(ω))ω∈Ω | x ∈ L2(Ω,F, P;H)

}
.

(ix) Suppose that, for every ω ∈ Ω , Aω is nonexpansive with dom Aω = Hω. Then

E(Aω)ω∈Ω is nonexpansive.

(x) Let τ ∈ ]0,+∞[ and suppose that, for every ω ∈ Ω , Aω is τ -cocoercive with

dom Aω = Hω. Then


E(Aω)ω∈Ω is τ -cocoercive.

4 Integral Proximal Mixtures

The integral proximal mixture will be cast in the following setting.

Assumption 4.1 Assumption 2.5 and the following are in force:

[A] For everyω ∈ Ω , fω : Hω → ]−∞,+∞] possesses a continuous affineminorant.
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[B] There exists r ∈ H such that the functionω �→ fω(r(ω)) lies inL1(Ω,F, μ; R).
[C] There exists r∗ ∈ H such that the function ω �→ f∗ω(r∗(ω)) lies in

L1(Ω,F, μ; R).
[D] For every x∗ ∈ H, the mapping ω �→ proxf∗ω x∗(ω) lies in G.

Definition 4.2 Suppose that Assumptions 3.2 and 4.1 are in force. The integral prox-
imal mixture of (fω)ω∈Ω and (Lω)ω∈Ω is



M(Lω, fω)ω∈Ω =

(∫

Ω

(
(f∗ω �QHω) ◦ Lω

)
μ(dω)

)∗
−QX, (4.1)

and the integral proximal comixture of (fω)ω∈Ω and (Lω)ω∈Ω is

˛
M(Lω, fω)ω∈Ω =

( 

M
(
Lω, f∗ω

)
ω∈Ω

)∗
. (4.2)

Item (viii) below connects Definitions 3.3 and 4.2.

Theorem 4.3 Suppose that Assumptions 3.2 and 4.1 are in force. Then the following
hold:

(i)


M(Lω, fω)ω∈Ω ∈ Γ0(X).

(ii)
˛
M(Lω, fω)ω∈Ω ∈ Γ0(X).

(iii) Let x ∈ X. Then

( 

M(Lω, fω)ω∈Ω

)
(x)

= min

{∫

Ω

f∗∗
ω

(
x(ω)
)
μ(dω) +QH(x) −QX(x)

∣∣∣∣ x ∈ H and
∫

Ω

L∗
ωx(ω)μ(dω) = x

}
.

(iv) dom


M(Lω, fω)ω∈Ω = {∫Ω L∗

ωx(ω)μ(dω) | x ∈ H and (∀μω ∈ Ω) x(ω) ∈ dom f∗∗
ω

}
.

(v) (


M(Lω, fω)ω∈Ω)∗ = ˛

M(Lω, f∗ω)ω∈Ω = (QX − ∫
Ω

(f∗ω �QHω)◦ Lω μ(dω))∗ −QX.

(vi) (
˛
M(Lω, fω)ω∈Ω)∗ = 


M(Lω, f∗ω)ω∈Ω .

(vii)


M(Lω, fω)ω∈Ω �QX + ˛

M(Lω, f∗ω)ω∈Ω �QX = QX.

(viii) ∂


M(Lω, fω)ω∈Ω = 


M(Lω, ∂f∗∗
ω )ω∈Ω .

(ix) prox 

M(Lω,fω)ω∈Ω

= ∫
Ω(L∗

ω ◦ proxf∗∗
ω

◦Lω)μ(dω).

(x) prox
M(Lω,fω)ω∈Ω

= IdX − ∫
Ω(L∗

ω ◦ proxf∗ω ◦Lω)μ(dω).

(xi)
˛
M(Lω, fω)ω∈Ω �QX = ∫

Ω
(f∗∗

ω �QHω) ◦ Lω μ(dω).

(xii) Argmin
˛
M(Lω, fω)ω∈Ω = Argmin

∫
Ω

(f∗∗
ω �QHω) ◦ Lω μ(dω).

(xiii) Suppose that μ is a probability measure and that, for every ω ∈ Ω , Lω is an

isometry. Then


M(Lω, fω)ω∈Ω = ˛

M(Lω, fω)ω∈Ω .
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Proof Set

g = 

M(Lω, fω)ω∈Ω and h = ˛

M(Lω, fω)ω∈Ω. (4.3)

In the light of [3, Propositions 13.12(ii) and 13.10(ii)], we infer from [A] and [B]
of Assumption 4.1 that (∀ω ∈ Ω) f∗ω ∈ Γ0(Hω). Next, define � : Ω → R : ω �→
−fω(r(ω)). Then, by Assumption 4.1[B], � ∈ L1(Ω,F, μ; R). Additionally, (∀ω ∈
Ω) f∗ω � 〈· | r(ω)〉 + �(ω). Hence, we conclude that the family (f∗ω)ω∈Ω satisfies the
assumptions of [11, Theorem 4.7] and therefore that the family (∂f∗∗

ω )ω∈Ω satisfies
Assumption 3.1. Let us now check that the family (f∗ω)ω∈Ω satisfies Assumption 4.1
by using the mapping r to fulfill [C]. To this end, we need to show that the function
ϕ : ω �→ f∗∗

ω (r(ω)) lies inL1(Ω,F, μ; R). First, it follows from [11,Theorem4.7(ix)]
that ϕ is F-measurable. Further, since, for every ω ∈ Ω , f∗∗

ω � fω, Assumption 4.1[B]
implies that ϕ is majorized by an integrable function. Finally, since

(∀ω ∈ Ω) f∗∗
ω � 〈· | r∗(ω)〉Hω

− f∗ω
(
r∗(ω)

)
, (4.4)

Assumption 4.1[C] implies that ϕ is minorized by an integrable function. Next, we
observe that [11, Theorem 4.7(i)–(ii)] assert that

g : H → ]−∞,+∞] : x∗ �→
∫

Ω

f∗ω
(
x∗(ω)

)
μ(dω) (4.5)

is a well-defined function in Γ0(H). Moreover, by [11, Theorem 4.7(viii)],

g �QH : H → R : x∗ �→
∫

Ω

(f∗ω �QHω)
(
x∗(ω)

)
μ(dω) (4.6)

and, by [11, Theorem 4.7(ix)],

g∗ : H → ]−∞,+∞] : x �→
∫

Ω

f∗∗
ω

(
x(ω)
)
μ(dω). (4.7)

We also recall from (3.17) that

L : X → H : x �→ eLx is a well-defined bounded linear operator with ‖L‖ � 1.

(4.8)

(i): We deduce from (4.1), Moreau’s biconjugation theorem [3, Corollary 13.38],
Definition 2.2, and [19, Example 3.6(ii)] that



M(Lω, fω)ω∈Ω = ((g �QH) ◦ L

)∗ −QX = L 
 g∗ ∈ Γ0(X). (4.9)

(ii): It follows from (i), Definition 2.2, and [19, Example 3.10(i)] that

h =
( 

M
(
Lω, f∗ω

)
ω∈Ω

)∗ = (L 
 g∗∗)∗ = L ˛ g∗ ∈ Γ0(X). (4.10)
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(iii): We derive from (4.9) and [3, Corollary 15.28(i) and Proposition 13.24(i)] that

(∀x ∈ X) g(x) = min
{
(g �QH)∗(x) −QX(x) | x ∈ H and L∗x = x

}

= min
{
g∗(x) +QH(x) −QX(x) | x ∈ H and L∗x = x

}
. (4.11)

Thus, (4.7) and (3.19) yield the announced identity.
(iv): Set U = {x ∈ H | (∀μω ∈ Ω) x(ω) ∈ dom f∗∗

ω

}
. Then [11, Theorem 4.7(v)]

states that dom g∗ = U . Thus, it results from (4.9) and [19, Theorem 5.5(ii)] that

dom g = dom(L 
 g∗) = L∗(dom g∗) = L∗(dom g∗) = L∗(U ) = L∗(U ), (4.12)

and the assertion follows from (3.19).
(v): It follows from (4.9), [19, Proposition 5.3(iv)], and (4.2) that

g∗ = (L 
 g∗)∗ = L ˛ g∗∗ = ˛
M(Lω, f∗ω)ω∈Ω. (4.13)

At the same time, we derive from (4.9), [3, Proposition 13.29], and (4.6) that

g∗ = (QX − ((g �QH) ◦ L
)∗∗)∗ −QX

=
(
QX −

∫

Ω

(f∗ω �QHω) ◦ Lω μ(dω)

)∗
−QX. (4.14)

(vi): Since g ∈ Γ0(H), we deduce from (4.10), [19, Proposition 5.3(v)], Moreau’s
biconjugation theorem, and (i) that

h∗ = (L ˛ g∗)∗ = L 
 g∗∗ = L 
 g = 

M(Lω, f∗ω)ω∈Ω. (4.15)

(vii): Use (i), (v), and [3, Theorem 14.3(i)].
(viii): In view of (4.9), we derive from [3, Theorem 18.15], [11, Theorem 4.7(iv)],

and (3.19) that

∂


M(Lω, fω)ω∈Ω =

(
∇((g �QH) ◦ L

))−1 − IdX

=
(
L∗ ◦(∇(g �QH)

) ◦ L
)−1 − IdX

=
(∫

Ω

(
L∗
ω ◦ proxf∗∗

ω
◦Lω

)
μ(dω)

)−1

− IdX (4.16)

= 

M(Lω, ∂f∗∗

ω )ω∈Ω. (4.17)

(ix): Use (4.16) and [3, Example 23.3].
(x): By [3, Proposition 13.16(iii)], (∀ω ∈ Ω) f∗∗∗

ω = f∗ω. Hence, it results from (ii),
Moreau’s decomposition [3, Theorem 14.3(ii)], (vi), and (ix) that
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proxh = IdX − proxh∗

= IdX − prox 

M(Lω,f∗ω)ω∈Ω

= IdX −
∫

Ω

(
L∗
ω ◦ proxf∗∗∗

ω
◦Lω

)
μ(dω)

= IdX −
∫

Ω

(
L∗
ω ◦ proxf∗ω ◦Lω

)
μ(dω). (4.18)

(xi): Because g∗ ∈ Γ0(H), it results from (4.10), [19, Theorem 5.5(v)], [11, Theo-
rem 4.7(viii)], and (4.8) that

h �QX = (L ˛ g∗) �QX = (g∗ �QH) ◦ L =
∫

Ω

((
f∗∗
ω �QHω

) ◦ Lω

)
μ(dω).

(4.19)

(xii): Combine (xi) and [3, Proposition 17.5].
(xiii): In this case, L is an isometry and the conclusion follows from [19, Proposi-

tion 5.3(vii)], (4.9), and (4.10). ��

Remark 4.4 The motivation for calling


M(Lω, fω)ω∈Ω an integral proximal mixture

comes from Theorem 4.3(ix).

Example 4.5 Consider the setting of Example 2.6. Then (4.1) becomes



M(Lk, fk)1�k�p =

( p∑

k=1

αk(f
∗
k �QHk ) ◦ Lk

)∗
−QX, (4.20)

which is the proximal mixture introduced in [19, Example 5.9].

Our next illustration concerns a new object: the proximal expectation of a family
of functions.

Definition 4.6 Let (Ω,F, P) be a complete probability space, let H be a separable real
Hilbert space, and let (fω)ω∈Ω be a family of functions in Γ0(H) such that the function

Ω × H → ]−∞,+∞] : (ω, x) �→ fω(x) (4.21)

is F ⊗ BH-measurable. Suppose that there exist r ∈ L2(Ω,F, P;H) and r∗ ∈
L2(Ω,F, P;H) such that the functions ω �→ fω(r(ω)) and ω �→ f∗ω(r∗(ω)) lie in
L1(Ω,F, P; R). Using the notation (2.14), the proximal expectation of the family
(fω)ω∈Ω is



E(fω)ω∈Ω =

(
E
(
f∗ω �QH

)
ω∈Ω

)∗ −QH. (4.22)
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Proposition 4.7 Consider the setting of Example 2.8 with the additional assumption
that μ is a probability measure. Let (fω)ω∈Ω be a family of functions in Γ0(H) such
that the function

Ω × H → ]−∞,+∞] : (ω, x) �→ fω(x) (4.23)

is F ⊗ BH-measurable. Suppose that there exist r ∈ L2(Ω,F, μ;H) and r∗ ∈
L2(Ω,F, μ;H) such that the functions ω �→ fω(r(ω)) and ω �→ f∗ω(r∗(ω)) lie
inL1(Ω,F, μ; R). Then



E(fω)ω∈Ω = 


M(IdH, fω)ω∈Ω = ˛
M(IdH, fω)ω∈Ω. (4.24)

Proof Note that

H = L2(Ω,F, μ;H). (4.25)

Using the completeness of (Ω,F, μ), we derive from [1, Théorème 2.3], [14, Lemma
III.14], and [3, Proposition 12.28] that, for every x ∈ H, the mapping Ω → H : ω �→
proxfω x(ω) lies inG. Thus, for every x∗ ∈ H, using [3, Theorem 14.3(ii)], we deduce
that the mapping Ω → H : ω �→ proxf∗ω x∗(ω) = x∗(ω) − proxfω x∗(ω) also lies in
G. Hence, the family (fω)ω∈Ω satisfies Assumption 4.1. Thus, invoking Notation 2.4,
we deduce from Theorem 4.3(xiii), (4.1), and (4.22) that

˛
M(IdH, fω)ω∈Ω = 


M(IdH, fω)ω∈Ω

=
(∫

Ω

(
(f∗ω �QH) ◦ IdH

)
μ(dω)

)∗
−QH

=
(
E
(
f∗ω �QH

)
ω∈Ω

)∗ −QH

= 

E(fω)ω∈Ω, (4.26)

as announced. ��
Combining Theorem 4.3, Proposition 3.11, and Proposition 4.7 yields at once the

following properties of the proximal expectation.

Proposition 4.8 Consider the setting of Definition 4.6. Then the following hold:

(i)


E(fω)ω∈Ω ∈ Γ0(H).

(ii) Let x ∈ H. Then

(

E(fω)ω∈Ω

)
(x)

= min

{∫

Ω

(
fω
(
x(ω)
)+QH

(
x(ω)
))
P(dω) −QH(x)

∣∣∣∣ x ∈ L2
(
Ω,F, P;H) and Ex = x

}
.

(4.27)
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(iii) dom


E(fω)ω∈Ω = {Ex | x ∈ L2(Ω,F, P;H) and (∀μω ∈ Ω) x(ω) ∈ dom fω

}
.

(iv) (


E(fω)ω∈Ω)∗ = 


E(f∗ω)ω∈Ω = (E(fω �QH)ω∈Ω)∗ −QH.

(v) ∂


E(fω)ω∈Ω = 


E(∂fω)ω∈Ω .

(vi)


E(fω)ω∈Ω �QH = E(fω �QH)ω∈Ω .

(vii) prox

E(fω)ω∈Ω

= E(proxfω)ω∈Ω .

(viii) Argmin


E(fω)ω∈Ω = Argmin E(fω �QH)ω∈Ω .

Remark 4.9 In Definition 4.6, consider the measure space (Ω,F, μ) of Example 2.6
with the additional assumption that

∑p
k=1 αk = 1. Then the proximal expectation

becomes



E(fk)1�k�p =

( p∑

k=1

αk
(
f∗k �QH

))∗
−QH. (4.28)

(i) The function of (4.28) is the proximal average of the family (fk)1�k�p. By special-
izing Proposition 4.8 to this setting, we recover properties of the proximal average
found in [4].

(ii) Let (fk)1�k�p be functions in Γ0(H). In some data analysis applications (see, e.g.,
[16, 27, 32]), (4.28) has been used instead of the standard average

∑p
k=1 αk fk .

The latter can be regarded as the empirical p-sample approximation to the true
expectation E(fω)ω∈Ω arising from a family (fω)ω∈Ω in Γ0(H). Likewise, we can
regard the proximal average (4.28) as the empirical approximation to the proximal

expectation


E(fω)ω∈Ω .

Remark 4.10 The strategy described in Remark 4.9(ii) can be generalized as follows.
Let μ be a probability measure. Then it may be appropriate in certain variational
problems to replace the standard composite average

∫
Ω

(fω ◦Lω)μ(dω) by the integral

proximal comixture
˛
M(Lω, fω)ω∈Ω of Definition 4.2. The latter is easier to handle

numerically as its proximity operator is explicitly given by Theorem 4.3(x) and it
follows from Theorem 4.3(xii) that its set of minimizers coincides with that of the
function

∫
Ω

((fω �QHω) ◦ Lω)μ(dω).

5 Relaxation of Systems of Monotone Inclusions

Weplace our focus on the following general systemof compositemonotone inclusions.

Problem 5.1 Suppose that Assumptions 3.1 and 3.2 are in force and that V 
= {0} is a
closed vector subspace of X. The task is to

find x ∈ V such that (∀μω ∈ Ω) 0 ∈ Aω(Lωx). (5.1)

The instantiations of Problem 5.1 found in [19, 22, 23] (see also [13, 15] for further
special cases) correspond to the setting of Example 2.6 with finitely many inclusions,
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that is,

find x ∈ V such that
(∀k ∈ {1, . . . , p}) 0 ∈ Ak(Lkx). (5.2)

On the other hand, the instantiation of [12] corresponds to the setting of Example 2.8
where μ is a probability measure, V = H and, for every ω ∈ Ω , Aω is the normal cone
operator of a nonempty closed convex subset Cω of H and Lω = IdH, that is,

find x ∈ H such that (∀μω ∈ Ω) x ∈ Cω. (5.3)

The last problem is known as the stochastic convex feasibility problem. Our formula-
tion targets a much broader inclusion model than those.

Of interest to us are the scenarios in which Problem 5.1 has no solution and must
be replaced by a relaxed one which furnishes meaningful solutions. We consider the
following relaxation which corresponds, in the special case of Example 2.6, to that
proposed in [23].

Problem 5.2 Suppose that Assumptions 3.1 and 3.2 are in force and that V 
= {0} is a
closed vector subspace of X, and let γ ∈ ]0,+∞[. The task is to

find x ∈ X such that 0 ∈
(
projV 
 ˛

M(Lω, γAω)ω∈Ω

)
x. (5.4)

Let us examine the interplay between Problems 5.1 and 5.2.

Proposition 5.3 Consider the settings of Problems 5.1 and 5.2, let S1 and S2 be their

respective sets of solutions, and setW = projV 
 ˛
M(Lω, γAω)ω∈Ω . Then the following

hold:

(i) W is maximally monotone.
(ii) JW = projV ◦(IdX + ∫

Ω
(L∗

ω ◦ (JγAω − IdHω) ◦ Lω)μ(dω)) ◦ projV .
(iii) S1 and S2 are closed convex sets.
(iv) Problem 5.2 is an exact relaxation of Problem 5.1 in the sense that S1 
= ∅ ⇒

S2 = S1.
(v) S2 = zer(NV + ∫

Ω
(L∗

ω ◦ (γAω) ◦ Lω)μ(dω)).

Proof Set A = G∫ ⊕
Ω

Aωμ(dω) and

L : X → H : x �→ eLx. (5.5)

Then [11, Proposition 3.5] asserts that

Jγ A =
G∫ ⊕

Ω

JγAωμ(dω) and γA =
G∫ ⊕

Ω

γAω μ(dω). (5.6)
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In addition, it follows from [11, Proposition 3.12] that L is a well-defined bounded
linear operator with adjoint

L∗ : H → X : x∗ �→
∫

Ω

L∗
ωx

∗(ω)μ(dω) (5.7)

and such that ‖L‖ � 1. We also recall from (3.21) that

˛
M(Lω, γAω)ω∈Ω = L ˛ (γ A). (5.8)

Further, (5.1) is equivalent to

find x ∈ V such that 0 ∈ A(Lx) (5.9)

and (5.4) is equivalent to

find x ∈ X such that 0 ∈
(
projV 
 (L ˛ (γ A)

))
x. (5.10)

(i): We derive from [11, Theorem 3.8(i)] that A is maximally monotone and hence
from [19, Theorem 4.5(ii)] that L ˛ (γ A) is likewise. In turn, [19, Theorem 4.5(i)] and
(5.8) assert that W = projV 
 (L ˛ (γ A)) is maximally monotone.

(ii): By invoking successively [19, Theorem 6.3(ii)], (5.6), and (5.7), we obtain

JW = projV ◦(IdX + L∗ ◦ (Jγ A − IdH) ◦ L
) ◦ projV

= projV ◦
(
IdX +

∫

Ω

(
L∗
ω ◦ (JγAω − IdHω) ◦ Lω

)
μ(dω)

)
◦ projV . (5.11)

(iii): Use (5.9), (5.10), and [19, Theorem 6.3(iii)].
(iv): Combine (5.10) and [19, Theorem 6.3(v)].
(v): Using (5.10), [19, Theorem 6.3(vi)], (5.6), and (5.7), we obtain

S2 = zer
(
NV + L∗ ◦ (γA) ◦ L

) = zer

(
NV +

∫

Ω

(
L∗
ω ◦ (γAω) ◦ Lω

)
μ(dω)

)
,

(5.12)

which concludes the proof. ��

We now present an algorithm to solve Problem 5.2.
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Proposition 5.4 Suppose that Problem 5.2 has a solution, let (λn)n∈N be a sequence
in ]0, 2[ such that

∑
n∈N λn(2 − λn) = +∞, and let x0 ∈ V. Iterate

for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢
⎣

for μ-almost every ω ∈ Ω⌊
yn(ω) = Lωxn
qn(ω) = yn(ω) − JγAω yn(ω)

zn = ∫
Ω
L∗
ω(qn(ω))μ(dω)

xn+1 = xn − λn projV zn .

(5.13)

Then (xn)n∈N converges weakly to a solution to Problem 5.2.

Proof Set W = projV 
 ˛
M(Lω, γAω)ω∈Ω and recall from Proposition 5.3(ii) that

JW = projV ◦
(
IdX +

∫

Ω

(
L∗
ω ◦ (JγAω − IdHω) ◦ Lω

)
μ(dω)

)
◦ projV . (5.14)

We derive from (5.13), (5.6), and (5.7) that (xn)n∈N is generated by the proximal point
algorithm

(∀n ∈ N) xn+1 = xn + λn(JWxn − xn). (5.15)

It then follows from [17, Lemma 2.2(vi)] that (xn)n∈N converges weakly to a point in
zerW, i.e., a solution to (5.4). ��

Example 5.5 Let us specialize Problem 5.1 to the scenario in which

(∀ω ∈ Ω) Aω = (IdHω − Tω + rω
)−1 − IdHω ,

where

{
Tω : Hω → Hω is firmly nonexpansive

rω ∈ Hω.
(5.16)

Then (5.1) becomes

find x ∈ V such that (∀μω ∈ Ω) Tω(Lωx) = rω. (5.17)

This model has been considered in [23] in the setting of Example 2.6. There, Ω is a
finite set and each rω models the observation of an unknown signal x ∈ H through a
Wiener system, i.e., the concatenation of a nonlinear operator Tω and a linear trans-
formation Lω. Our framework allows us to extend it to models with a continuum of
observations. In this context, and (5.4) yields the relaxed problem

find x ∈ V such that
∫

Ω

L∗
ω

(
Tω(Lωx) − rω

)
μ(dω) ∈ V⊥. (5.18)
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Furthermore, (5.13) becomes

for n = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢
⎣

for μ-almost every ω ∈ Ω⌊
yn(ω) = Lωxn
qn(ω) = Tωyn(ω) − rω

zn = ∫
Ω
L∗
ω(qn(ω))μ(dω)

xn+1 = xn − λn projV zn .

(5.19)
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