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Abstract

Using the theory of Hilbert direct integrals, we introduce and study a monotonicity-
preserving operation, termed the integral resolvent mixture. It combines arbitrary
families of monotone operators acting on different spaces and linear operators. As a
special case, we investigate the resolvent expectation, an operation which combines
monotone operators in such a way that the resulting resolvent is the Lebesgue expec-
tation of the individual resolvents. Along the same lines, we introduce an operation
that mixes arbitrary families of convex functions defined on different spaces and lin-
ear operators to create a composite convex function. Such constructs have so far been
limited to finite families of operators and functions. The subdifferential of the inte-
gral proximal mixture is shown to be the integral resolvent mixture of the individual
subdifferentials. Applications to the relaxation of systems of composite monotone
inclusions are presented.

Keywords Hilbert direct integral - Integral proximal mixture - Integral resolvent
mixture - Monotone operator - Proximal expectation - Resolvent expectation
1 Introduction

Monotone inclusions provide an effective template to model a wide spectrum of prob-
lems in optimization and nonlinear analysis [3, 7, 8, 18, 20, 26, 29]. The question of
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combining monotone and linear operators in a fashion that preserves monotonicity has
been a recurrent topic; see, e.g., [5, 6, 9, 10, 19]. One such construct is the resolvent
mixture [19], an operation that includes in particular the resolvent average [2]. It com-
bines finitely many monotone and linear operators in such a way that the resolvent of
the resulting operator is the sum of the individual linearly composed resolvents. Our
objective is to extend this construct to arbitrary families of operators. Our analysis rests
on the concept of Hilbert direct integrals of families of monotone operators proposed
in [11]. Considering the case when the underlying operators are subdifferentials leads
us to introduce the Hilbert direct integral of a family of convex functions, a notion that
extends proximal mixtures of finite families and, in particular, the proximal average.
Our main contributions are the following.

e We introduce the notion of an integral resolvent mixture for arbitrary families
of monotone operators acting on different spaces. This construction exploits the
notion of Hilbert direct integrals of set-valued and linear operators from [11].
One of its salient features is that its resolvent is the Lebesgue integral of the
linearly composed resolvents of the individual operators. A dual operation of
integral resolvent comixture is also investigated.

e We introduce the notion of an integral proximal mixture for arbitrary families of
functions defined on different spaces. Its proximity operator turns out to be the
Lebesgue integral of the linearly composed proximity operators of the individual
functions. A dual operation of integral proximal comixture is also investigated.

e As an instance of an integral resolvent mixture, we propose a notion of resolvent
expectation for a family of maximally monotone operators and, likewise, of proxi-
mal expectation for a family of functions. These notions extend those of resolvent
and proximal averages for finite families.

e We apply the above tools to the relaxation of systems of monotone inclusions
involving linear operators. Applications fitting this framework are described and
a proximal-type algorithm is proposed.

The paper is organized as follows. In Sect.2, we set our notation and provide
necessary theoretical tools. In Sect.3, we study the integral resolvent mixture of a
family of monotone operators. Section4 is dedicated to the integral proximal mixture
of a family of functions. In Sect. 5, we present an application to systems of monotone
inclusions and discuss some special cases of interest arising in data analysis.

2 Notation and Background

We first present our notation, which follows [3].

Let H{ be a real Hilbert space with power set 2, identity operator Idy, scalar
product (- | - )4, associated norm || - ||y, and quadratic kernel @ = |- II%/Z.

Let C be a nonempty closed convex subset of . Then proj. is the projection
operator onto C and N¢ is the normal cone operator of C.

LetT: H — H and t € ]0, +o00[. Then T is nonexpansive if it is 1-Lipschitzian,
T-cocoercive if
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(Vx e H)(Vy € H) (x —y|Tx — Ty)y = llTx — Tyl 2.1)

and T is firmly nonexpansive if it is 1-cocoercive.

Let A: H — 2". The graph of A is graA = {(x,x*) € H x H | x* € Ax}, the
inverse of A is the operator A~': H — 27 with graph gra A=! = {(x*, x)eEH XH |
x* e Ax}, the domain of A is domA = {x eH | Ax # @}, the range of A is
ran A = Uycdom 4 AX, the set of zeros of A is zerA = {x € H | 0 € Ax}, the
resolvent of A is J4 = (Idy + A)~L, and the Yosida approximation of A of index
y €10, +ool is

Idy — Jya

YA =AD(y dy) = (A7 + yldy) ™" :

(2.2)

Suppose that A is monotone. Then A is maximally monotone if any extension of
gra A is no longer monotone in H @ H. In this case, dom J4 = H and Jy4 is firmly
nonexpansive.

Let f: H — [—o00, +00] and set dom f = {x eH| fx) < +oo}. The Moreau
envelope of f is

fOG@y: H— [—00, +00]: x > yir617f1(f(y) + Qn(x —y)) (2.3)

and the conjugate of f is

¥ H — [—00, +00]: x* > sug((x | x*) 3 — f(X)). (2.4)

Now suppose that f € Ih(H), that is, f is lower semicontinuous, convex, and such
that —oo ¢ f(H) # {+o0o}. The subdifferential of f is the maximally monotone
operator

f i H—2" x> [ e H | (Yy e H) (y —x |x*)y + f(x) < fF(0]} 2.5)
and the proximity operator prox , = Jyr of f maps every x € H to the unique
minimizer of the function H — ]—o0, +o0]: y = f(y) + Qx(x — y).

Finally, given a measure space (§2, J, i), the symbol V* means “for p-almost
every” [31].
Definition 2.1 ([19, Definition 1.1]) Let H and X be real Hilbert spaces, let A: H —

2" and let L: X — H be linear and bounded. The resolvent composition of A with
L is the operator L o A: X — 2X given by

LoA=(L*oJyoL) ' —Idy (2.6)
and the resolvent cocomposition of A with Lis L A = (Lo A~H~L
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Definition 2.2 ([19, Definition 1.4]) Let H and X be real Hilbert spaces, let f: H —
[—o0, 400], and let L: X — H be linear and bounded. The proximal composition of
f with L is the function L ¢ f: X — [—00, 400] given by

Lof=((f*06yoL)" -0, (2.7

and the proximal cocomposition of f with Lis L e f = (L ¢ f*)*.

Here are some notation and facts regarding integration in Hilbert spaces. Let
(£2,F, n) be a complete o -finite measure space and let H be a separable real Hilbert
space. For every p € [1, 4-o0[, set

3”([2,9',;/4 H)

:{x:.Q—>H

x is (¥, By)-measurable and / x(@)If} u(dw) < —i—oo},
2
2.8)

where By is the Borel o-algebra of H. The Lebesgue (also called Bochner) integral of
amapping x € FUR, T, w; H) is denoted by fg x(w)u(dw); see [31, Section V.§7]
for background. We denote by L”(£2, F, u; H) the space of equivalence classes of
wn-a.e. equal mappings in 7 (2, F, p; H).

Lemma 2.3 Let (2, F, i) be a complete o -finite measure space, let H be a separable
real Hilbert space, and let x € L1 (22, F, ; H). Then the following hold:

(i) [31, Théoreme 5.7.13] || [ x(@)p(dw) ||y < [ollx(@)|n n(dw).
(ii) Let x* € H. Then the function 2 — R: w +— (x(w) | x*)y is u-integrable and

f<mmnxﬂHuuw)=</nxw»uww>xﬁ | 2.9)
2 2 H
(iii) Suppose that | is a probability measure. Then
2
| x@naa)| < [ Ix@i; o). 2.10)
2 H 2

Proof (ii): Apply [31, Théoréeme 5.8.16] with the continuous linear functional L =
(- IX*)p.
(iii): We derive from (i) and the Cauchy—Schwarz inequality that
2
H/xwmwm
2

< /QIQ(CU)HX(CU)“HH(dO)) SM(Q)/Qllx(w)Ilﬁu(dw),

2.11)

2
H

which concludes the proof. O
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Notation 2.4 Let (£2,F, u) be a complete o-finite measure space, let X and H be
separable real Hilbert spaces, and let (T,),e be a family of operators from X to H
such that, for every x € X, the mapping 2 — H: o — T,x is (F, By)-measurable.
Let

D= {x e X ‘ f ITeX|lg m(dw) < +oo}. (2.12)
Q
Then
/ Tou(dw): D — H: x — / Tox u(dw). (2.13)
Q Q

In particular, if u is a probability measure, then

E(Tw)wen =/9Twu(dw) (2.14)

is the w-expectation of the family (Ty,)peg.

The following setup describes the main functional setting employed in the paper.
As in [11], it relies on the notion of a Hilbert direct integral of Hilbert spaces [25].

Assumption 2.5 Let (£2, F, i) be a complete o -finite measure space, let (H,),es2 be
a family of real Hilbert spaces, and let [ [, . He be the usual real vector space of
mappings x defined on £2 such that (Vo € £2) x(w) € Hy,. Let (Hy)wpes2, ®) be an
F-measurable vector field of real Hilbert spaces, that is, & is a vector subspace of
[[,c Ho which satisfies the following:

[A] For every x € &, the function 2 — R: @ > [|x(@)lly, is F-measurable.
[B] Forevery x € [[,co Ho.

[(Vye®) 2 > R:o (x(@)]y(@))y, is F-measurable | = x € &.
(2.15)

[C] There exists a sequence (e;,),cN in & such that (Yo € §2) span{e, () },en = He .-

Set
9= {x €& ‘ / Ix(@)|If, 1(dw) < +oo}, (2.16)
2

and let H be the real Hilbert space of equivalence classes of (-a.e. equal mappings in
$ equipped with the scalar product

(1) Hx H o R (x,y) > /Q<x(w> Y@ ulde).,  (217)
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where we adopt the common practice of designating by x both an equivalence class
in H and a representative of it in §). We write

6 D
H= / Hou(dw) (2.18)
2

and call H the Hilbert direct integral of (Hy)wes2, ®) [25].
Here are some instances of Hilbert direct integrals [11].

Example 2.6 Let p € N~ {0}, let (o) 1<k p be a family in 0, +ool, let (Hp)1<k<p
be separable real Hilbert spaces, let & = Hj x - - - x H), be the usual Cartesian product
vector space, and set

2={1,....,p), F=20P and (Vke({l,....,p}) n({k}) = .
(2.19)

Then ((Hp)i1<kgp, ®) is an F-measurable vector field of real Hilbert spaces and

ij ga Hou(dw) is the weighted Hilbert direct sum of (Hi)1<k<p, namely the Hilbert
space obtained by equipping & with the scalar product

P
() 1<k<ps YO 1<k<p) — Zak Xk [ Y1) H, - (2.20)
k=1

Example 2.7 Let (ay)ken be a family in ]0, +ool, let (Hg)xen be separable real Hilbert
spaces, let & = [, oy Hk, and set

=N, =2 and (Vk eN) u({k}) = o. (2.21)

Then ((Hix)ken, ®) is an F-measurable vector field of real Hilbert spaces and
® /. _f; H, 1 (dw) is the Hilbert space obtained by equipping the vector space

H= {(Xk)keN €& | > arlxlly, < —l—oo} (2.22)
keN
with the scalar product
(ke (Yren) Zak(xk [ YiH, - (2.23)
keN

Example 2.8 Let (£2,F, ) be a complete o -finite measure space, let H be a separable
real Hilbert space, and set

[ Vw € £2) H, =H ] and & = {x: 2 —>H|xis (T, ‘BH)-measurable}.
(2.24)
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Then ((Hy)wes2, ®) is an F-measurable vector field of real Hilbert spaces and

S ,rd
/ Hoi(dw) = L*(2,F, 13 H). (2.25)
2

3 Integral Resolvent Mixtures

Our setting hinges on the following assumptions.

Assumption 3.1 Assumption 2.5 and the following are in force:

[A] For every w € 2, A, : H, — 2" is maximally monotone.
[B] For every x € $), the mapping o +— Ja,x(w) lies in &.
[C]dom ®[2 A, u(dw) # @, where

&, rd
/ Api(dw): H — 2" x > {x* eH| Vo e R2) x*(w) € wa(a))}
2
3.1

is the Hilbert direct integral of the operators (Ay)wes relative to & [11].

Assumption 3.2 Assumption 2.5 and the following are in force:

[A] Xis a separable real Hilbert space.

[B] Forevery w € £2, L,: X — H,, is linear and bounded.
[C] For every x € X, the mapping e, X: w — L,Xx lies in &.
[D] 0 < [y llLulnde) < 1.

The main purpose of this section is to study the following objects which mix families
of monotone and linear operators.

Definition 3.3 Suppose that Assumptions 3.1 and 3.2 are in force. The integral resol-
vent mixture of (Ay)wes and (Ly) e 18

-1
<
MLy, Av)wen = (/ (LZ) o Ja, 0 Lw)ﬂ(dw)> — Idx, (3.2)
Q
and the integral resolvent comixture of (Ay)wep and (Ly)pesn 18

- o —1
ML, Audoee = (M(Lo AZ1),c0) - (33)

We start off with some properties of integrals of composite Lipschitzian operators.

Proposition 3.4 Suppose that Assumption 2.5 is in force. Let X be a separable real
Hilbert space, let B: §2 — 10, +00[ be F-measurable and such that ess sup f < 400,
and for every w € $2, let T, : H, — Hy, be B(w)-Lipschitzian and let L, : X — Hy
be linear and bounded. Suppose that the following are satisfied:
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[A] For every x € $), the mapping @ +— T,x(w) lies in &.

[B] There exists z € §) such that the mapping o +— T,z(w) lies in $.
[C] Forevery x € X, the mapping e.X: w > LyX lies in &.

ID] [oILoll*1(dw) < +oo.

Set
T= / (LZOTw o Lw)u(da)) and T :/ ||Lw||2/3(a))u(da)). (3.4)
2 2

Then the following hold:

(i) T: X — Xis well defined and t-Lipschitzian.
(ii) Define L: X —> H: X+ exxand T = 6];‘; Tou(dw). Then L is well defined,

linear, and bounded with ||L|| </ [, ILolI?i(dw), and T=L*o T o L.

(iii) Suppose that, for every w € §2, Ty, is 1/B(w)-cocoercive and L, # 0. Then the
following are satisfied:

(a) Tis 1/t-cocoercive.
(b) {[o LETux(@)pu(dw) | x € H} C tanT.
(c) int{ [ L (Tux(@)pu(dw) | x € H} CranT.

Proof Observe that, by [11, Proposition 3.12(i)], the function 2 — R: w — ||L, ]| is
F-measurable and, by [D],

T < (ess sup,B)/ ||Lw||2u(da)) < 400. 3.5
Q

We set (Vo € 2) R, =L 0T, 0Ly,

(1): Let x € X. It results from [11, Proposition 3.12(ii)] that the mapping w — L,X
lies in $). In turn, [A] ensures that the mapping w +— T, (LX) lies in &. Therefore,
we deduce from [C] and [11, Lemma 2.2(i)] that, for every y € X, the function
2 — R:o = (y|RuX)x = (Loy|Tu(LoX))y, is F-measurable. Thus, since
(£2, F, ) is a complete o -finite measure space and X is separable, we infer from [31,
Théoréme 5.6.24] that the mapping 2 — X: @ — RyX is (F, Bx)-measurable. Next,
since ess sup f < 400, it follows from [A], [B], and [11, Proposition 3.4(i)] that, for
every x € $, the mapping w — T,x(w) lies in $; in particular, fg ||Tw0||f|mu(da)) <
+o00. Hence, because

(Vy €)Y € 2) IRoX — RuYlix < Lol [TwLwX) — TuLoy)lin,
< ILoliB(@)[LoX — LoYlin,
<

Ll B@)lIx = ylix. (3.6)

we derive from the triangle and Cauchy—Schwarz inequalities that
[ Roxl o) < [ [1Rox = Ruli e + [ 1ROl i)
2 2 2
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< Tlxlix + fQIILwII IToOlln,, 1 (dw)

< lixlix + \/ / ||Lw||2u<dw)\/ [ 1m0, i)
2 2

< +00. 3.7

Thus, [31, Théoréeme 5.7.21] implies that T: X — X is well defined. Moreover, by
virtue of (3.6) and Lemma 2.3(i), T is t-Lipschitzian.

(i1): Thanks to [11, Items (ii) and (v) in Proposition 3.12], L: X — H is a well-
defined bounded linear operator with adjoint

L*:H— X:x*+— / L x™(w)p(dw) (3.8)
2

and ||L|| </ fg ILylI? 1 (dw). On the other hand, [11, Proposition 3.4(i)] asserts that

T: H — 'H and that, for every x € H, a representative of 7x in $) is the mapping
w = Tupx(w). Altogether, for every x € X, because w +— L,X is a representative of
Lx in $, we deduce that

L*(T(Lx)) = /9 L (To (LX) (dw) = Tx, (3.9)

as announced.

(iii)(a): Take x € X and y € X. Define an F-measurable function on 2 by
a: 2 — 10,+00[: ® +— ||Lw||2/3(a))/t and a probability measure P on F by
P: 2 — fE a(w)u(dw). Then we derive from items (ii) and (iii) of Lemma 2.3
together with [31, Théoréeme 5.10.13] that

(X —y|Tx — Ty)y = /Q(x —y | L (To (LX) = L (T (Lwy)) )y 1(dw)
— [ {rox =Ly [Tl = Tt (o)

1 2
> [ e ot = Tutto [, e

! 2
> | g e (Toen) = Ly (To(ke d
/:z Lo 2B () L& (To (L) = L5 (T (Loy) [ 1(de)
1 1 5
G /g | 2 Rex = R | Peder)
1 1 2
Z = / _(wa - RwY)P(da))
T/ a(w) «
2
= 1 f (wa — Rmy)u(dw)
T Q X

@ Springer



Journal of Optimization Theory and Applications (2024) 203:2328-2353 2337

1 2
= —ITx=Tyllx. (3.10)

(iii)(b) and (iii)(c): Define L and T as in (ii), and recall that T = L* o T o L. In the
light of [3, Corollary 20.28], (i) and (iii)(a) imply that T is maximally monotone. At the
same time, we deduce from [11, Proposition 3.4(ii)] that 7: H — H is cocoercive.
Thus, it results from (3.8), [3, Example 25.20(i)], and [28, Theorem 5] that

{ / L (T (@) 1 (dw)
2

x eﬁ} =L*(anT) Ctan(L*oT o L) =TanT
(3.11)

and that

int { / LY (wa (a)))u (dw)
2

X € 5’)} =int L*(ranT) C ran(L* oTo L) =ranT,

(3.12)
which completes the proof. O
The main properties of integral resolvent mixtures can now be laid out.
Theorem 3.5 Suppose that Assumptions 3.1 and 3.2 are in force. Set
& *
W =MLy, Av)wee and C=M(Ly, Ap)wecs- (3.13)

Then the following hold:

(i) W' = M(Lo A3 e and €' = M(Lu, A, Doce.
(ii) W and C are maximally monotone.
(i) C= (Idx + [ (L} 0 Ja, o Lo — L¥ o Ly)u(dw)) ™! — Idx.
(iv) Suppose that p is a probability measure and that, for every w € $2, L, is an
isometry. Then W = C.
(v) Jw = [o(L} o Ja, o Ly)u(dw).
(vi) Jc =1Idx + [o(L} o Ja, oLy — L} o Ly)pu(dw).
(vii) WO Idx = Idx — [ (L} o (A;1 01dy,) o Ly)pu(dw).
(viii) COldy = fQ(LZ o (Ap O1dn,) o Ly)pu(dw).
(ix) zer C = zer fQ(LZ) o (A, Oldn,) o Ly)u(dw).
(x) domW = { /o LEx*(@)u(dw) | x* € H and (V' € 2) x*(w) € domA,}.
(xi) Tan C = { [, Lix*(@)u(dw) | x* € H and (Vo € 2) x*(w) € ranA,,}.
(xii) intdom W = int{ [, L% (Ja,x (@) pu(dw) | x € H}.
(xiii) intranC = int{fg LY (Jp-1x(w)p(dw) | x € H}.
(xiv) Suppose that, for every we £2, A, is nonexpansive with dom A,, = H,,. Then C
is nonexpansive.
(xv) Let t € ]0, +o0[, set§ = (t + 1)/ fQIILwllzu(da)) — 1, and suppose that, for
every w € §2, A, is T-cocoercive with dom A, = H,. Then C is §-cocoercive.
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Proof Set

6 ,rd
A:/ A,u(dow). (3.14)
2

Then [11, Theorem 3.8(i)] states that A is maximally monotone, and [11, Theo-
rem 3.8(ii)(a)] asserts that, for every x € §, the mapping @ — Ja, x(w) lies in
£ and

G
Ja = / I, m(dw). (3.15)
Q
Therefore, by Assumption 3.2[D] and items (i) and (iii)(a) of Proposition 3.4,

/ (L o Ja, o Ly)p(dw): X — X is a well-defined firmly nonexpansive operator,
fo)
(3.16)

which confirms that W is well defined. Additionally, it follows from Proposition 3.4(ii)
and Assumption 3.2[D] that

L: X — H: x +— e x is a well-defined bounded linear operator such that ||L|| < 1,

(3.17)
and
(Vx € X) L*(Ja(Lx)) = /Q LY (Ja, (LoX)) (dw). (3.18)
Moreover, the adjoint of L is given by [11, Proposition 3.12(v)]
L* H— X:x"— [(ZLZx*(w)u(dw). (3.19)

Likewise, appealing to [11, Proposition 3.7], we deduce that C is well defined and
(Vx € X) L*(J-1(Lx)) = /9 Lo (Ja-1 (LoX)) w(dw). (3.20)
Hence, by virtue of Definition 2.1,
W=Lo¢A and C=Le+A. (3.21)
(1): A consequence of (3.2) and (3.3).
(i1): In the light of [19, Theorem 4.5(i)—(ii)], the claim follows from (3.17) and

(3.21).
(iii): A consequence of (3.18), (3.19), (3.21), and [19, Proposition 4.1(ii)].
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(iv): By (2.17) and (3.17),

(Vx € X) IILXII%=/QIILw><IIﬁmM(dw)=/QIIXII>2<u(dw) = (@I = I3,
(3.22)

which shows that L is an isometry. Consequently, the conclusion follows from (3.21)
and [19, Proposition 4.1(iii)].

(v): An immediate consequence of (3.2).

(vi): An immediate consequence of (iii).

(vii): This follows from (3.21), [19, Proposition 4.1(xiv)], and (3.18).

(viii): This follows from (3.21), [19, Proposition 4.1(xv)], and (3.20).

(ix): Use (ii), (viii), and [3, Proposition 23.38].

(x): Set U = {x e H | (V*w € 2) x(w) € domA,}. Then U = dom A [11,
Theorem 3.8(iii)]. Hence, [19, Theorem 4.5(vi)] implies that

domW = L*(dom A) = L*(dom A) = L*(U) = L*(U). (3.23)

This and (3.19) yield the desired identity.
(xi): Combine (3.3), (x), and the fact that (Vo € §2) dom A;l =ranA,.
(xii): Use (3.2) and Proposition 3.4(iii)(c).
(xiii): A consequence of (3.3) and (xii).
(xiv): It follows from [11, Theorem 3.8(v)(a)] that

for every x € §), the mapping @ > proja_ () 0 = Apx(w) liesin &. (3.24)

wX (@

Hence, [11, Proposition 3.4(i)] implies that A is nonexpansive with dom A = H.
Hence, it follows from [19, Proposition 4.9] and (3.21) that C is nonexpansive.

(xv): We argue as in (xiv) to deduce that A: H — 'H is t-cocoercive. On the
other hand, (3.17) ensures that ||[L|| < +/t + 1. Thus, it follows from (3.21), [19,
Proposition 4.8], and Proposition 3.4(ii) that C = L ¢ A is cocoercive with constant
T+ DIL|2=1=8. O

<&
Remark 3.6 The motivation for calling M(L, Ay,)pes2 an integral resolvent mixture
comes from Theorem 3.5(v).

Let us provide some examples of integral resolvent mixtures.
Example 3.7 Consider the setting of Example 2.6. Then (3.2) becomes
S P -1
M(Li, A 1<k p = <Z L} o Ja, o Lk> — Idy, (3.25)
k=1

which is the resolvent mixture introduced in [19, Example 3.4].
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Example 3.8 Let (2, F, i) be a complete o -finite measure space and let (¢,,),c2 be
a family in IH(R) such that the function 2 x R — [—o00, 400]: (0, X) > ¢, (X) is
F ® Br-measurable and (Vo € £2) ¢, = ¢,(0) = 0. Further, let X be a separable real
Hilbert space and let e € L*(£2, 9, w; X) be such that 0 < fg ||e(a))||)2( uldw) < 1.
Set

Mo e 2) Ay, =0¢, and L, = (-|e(w))x. (3.26)

Then

° —1
MLy, Av)wee = (/ﬂ(prox%(- Ie(w)>x)€(w)u(dw)) —lIdx. (3.27)

For instance, suppose that, for every w € £2, ¢, is the support function of a closed
interval C,, in R containing 0, with §,, = inf C,, and p,, = sup C,,. Now set

2 0 ={we 2| Xle@)x > po)

W =MLy, Av)wee and (Vx € X) {,Q_(X) — {Cl) € 2| (X | 6(0))>X < 810}

(3.28)
Then
(VxeX) Jwx = /Q(X)«x | e(@))x — po)e(@)u(do)
+/Q(X)(<X le(@))x — 8)e(@)u(dw). (3.29)

This process provides a representation of x which eliminates the contributions of the
coefficients (x| e(w))x € [6w, po]- For instance, in the context of Example 2.7, if
(e(k))ken is an orthonormal basis and C; = [—pk, px], then Jw is known as a soft-
thresholder and it has been used extensively in data analysis [21, 24].

Proof Let ® = {x: 2 —>R|xis S‘-measurable} and, forevery w € £2,letH, = R.
Then, in view of Example 2.8, Assumption 2.5 is satisfied and

6 @
H= / Hou(dow) = L*(2, F, u; R). (3.30)
2

Since (£2, F, ) is complete, we deduce from [30, Corollary 14.34 and Exercise 14.38]
that, forevery x € ®, the function 2 — R: w — prox, x(w)liesin &. Additionally,
for every w € £2, since 0 € Argmin ¢,, we get 0 € A,0 and Jp,0 = prox, 0 =
0. Hence, the family (A,)pes satisfies Assumption 3.1. Next, since e: £2 — X is
(&, Bx)-measurable, we deduce that, for every x € X, the mapping 2 — R: o —
(x| e(w))x = Lyx lies in &. Further,

Vo € 2) L) : R — X: x — xe(w) (3.31)
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and
/Q ILolPi(dw) = /Q le@)I2 u(de) = llel, € 10. 11. (3.32)

This confirms that Assumption 3.2 is satisfied. Therefore, we obtain (3.27) by invoking
(3.2). Next, let us establish (3.29). Take x € X. Thanks to the F-measurability of the
function £2 — R: @ > prox, (Xx|e(w))x, we obtain

2700 ={w e 2 | (Xle(@)x — projc, (x| e@))y > 0}
= {w € 2 | prox,, (x| e(w))x > 0}
e (3.33)

Likewise, £2_(x) € J. On the other hand, by [3, Example 24.34],

X — Pw, 1if X > py;
(Vo € 2) proxy : R — R:ix— 10, if x € Cp; (3.34)

X — 8w, 1f X < 8.

Therefore, we obtain (3.29) by using Theorem 3.5(v) and the fact that (Vo € £2)
Ja, = proxg . O

Next, we define the resolvent expectation of a family of maximally monotone
operators.

Definition 3.9 Let (£2, F, P) be a complete probability space, let H be a separable
real Hilbert space, and let (Ay)yes2 be a family of maximally monotone operators
from H to 2M. Suppose that, for every x € H, the mapping 2 — H: w Ja, X is
(F, By)-measurable and that fQ IIJA{UOIIE| u(dw) < +oo. Using the notation (2.14),
the resolvent expectation of the family (Ay)peg 1S

< -1
E(Aw)wea = (E(Ua,)wee)  —Idu. (3.35)
Example 3.10 Consider the measure space (§2, F, u) of Example 2.6 with the addi-

tional assumption that 2113:1 o = 1. Let H be a separable real Hilbert space and let
(Ar)1<k<p be maximally monotone operators from H to 2H. Then (3.35) becomes

o P -1
E(AD 1<ksp = (Z akJAk) — Id, (3.36)
k=1

which is the resolvent average studied in [2].
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Let us relate resolvent expectations to integral resolvent mixtures.

Proposition 3.11 Consider the setting of Example 2.8 with the additional assumption
that p is a probability measure. Let (A,)pe be a family of maximally monotone
operators from H to 21 such that, for every x € H, the mapping 2 — H: w — Ja, X
is (F, Bu)-measurable and that f_Q ||JAwO|||%| u(dw) < +o00. Then

o < *
E(Aw)wee = MUdH, Aw)wee = MIdH, Ay)wes- (3.37)

Proof Appealing to [14, Lemma III.14] and the continuity of the operators (Ja,)wes,
we infer that the mapping 2 x H - H: (@, x) — Jp x is (F @ By, By)-measurable.
Thus, for every x € §, the mapping 2 — H: o — Jp, x(w) is (F, By)-measurable,

i.e., it lies in &. On the other hand, letting A = ®f§; Appn(dw)andr: 2 - H: o —
Ja, 0 yields —r € Ar, which implies that dom A # &. Hence, it follows from (3.35)

<& <& <&
and (3.2) that E(Ay)wee = MIdH, Ay)wesn, While the identity M(Idy, Ay)we =
M(Idn, Ab)wes2 follows from Theorem 3.5(iv). O

By specializing Theorem 3.5 to the scenario of Proposition 3.11, we obtain at once
the following properties of the resolvent expectation and, in particular, those of the
resolvent average of finitely many operators studied in [2].

Corollary 3.12 Consider the setting of Definition 3.9. Then the following hold:
< <
(i) (E(Aw)wer) ™" = EA,Doca.
<&
(ii) E(Ay)wesn is maximally monotone.

(iii) Jo = E(Ja,)wen-

E(Aw)weﬂ
(iv) (E(Aw)wes) Oldy = E(A, O ldp)wegp-
<&
(v) domE(Ay)wen = {Ex* | x* € L2(22, F,P; H) and (V' € 2) x*(w) € domA,}.

<&
(vi) Tan E(Ay)wez = {Ex* | x* € L2(2,F,P; H) and Vo € 2) x*(w) € ranAw}.
<>
(vii) intdom E(Ay)pen = int{E(Ja,x(@)wes | x € L2(2,F,P; H)}.

<
(viii) intran E(A)wee = int{E(Jp-1x(@)wea | x € L2(2,F, PiH)}.
(ix) Suppose that, for every w € 2, A, is nonexpansive with dom A,, = H,. Then

<&
E(Ay)wes is nonexpansive.
(x) Let T € 10, 400[ and suppose that, for every w € §2, A, is T-cocoercive with

<&
dom A, = H,. Then E(A,)wes is T-cocoercive.

4 Integral Proximal Mixtures

The integral proximal mixture will be cast in the following setting.

Assumption 4.1 Assumption 2.5 and the following are in force:

[A] Foreveryw € £2,f,: H, — ]—00, +00] possesses a continuous affine minorant.
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[B] There exists » € §) such that the function @ > o, (r(®)) lies in 1 (2, F, u; R).

[C] There exists r* € § such that the function 0 + f (r*(w)) lies in
YR, F, uR).

[D] For every x* € §, the mapping w +—> proxgs x*(w) lies in &.

Definition 4.2 Suppose that Assumptions 3.2 and 4.1 are in force. The integral prox-
imal mixture of (f,))en and (Ly)wep is

> %
M(Ly, fo)wen = (/ ((sz O@y,) o Lw)u(dw)) — O, “.1)
Q
and the integral proximal comixture of (f,)wer and (Ly)wegn 1S

M(Lo, fo)wes — ( (Lw,fj,)weg)*. 4.2)

Item (viii) below connects Definitions 3.3 and 4.2.

Theorem 4.3 Suppose that Assumptions 3.2 and 4.1 are in force. Then the following
hold:
. <
(i) M(Lw»fw)a)eﬂ € FO(X)
(ii) M(Ly, fw)wesn € To(X).
(iii) Let x € X. Then
(M(st fw)wE.Q)(X)

= min{/ fz*(x(w))u(dw) + Qp(x) — Qx(X) | x € H and / Lix(@)u(dw) = X}.
2 2

(iv) dTml\?\(Lw, fwwee = {[o Lix(@u(dw) | x € H and (Vo € 2) x(w) € domf*}.
(1) ML Fuloe)* = M(Lo, F)wen = (@x — [o (F0@u,) 0 Ly i (dw) —
(Vi) (M(Lay folweg)* = r\?(Lw, F)ues-

(vii) M(Lus fo)oez 0 @x + M(Lu, F-)we O @x = G

< <&

(viii) 9 M(Ly, fw)we!? = M(Lo, af:)*)weﬂ

(ix) prox&( L= Jo (L o proxees oLy, u(dw).

wslw)wes? @
(x) prox =Idx — [, (L} o proxg oly,)pu(dw).
M(stfw)meﬂ @

(xi) M(Lo, fo)wee 0Qx = [o(fy 0@H,) o Ly, u(dw).

(xii) Argmin M(Ly,, f)wee = Argmin [, (f5" 0 @h,) o L, u(dw).
(xiii) Suppose that | lS a probability measure and that, for every w € 2, L, is an

lsometry Then M(Lw, fa))a)e.Q = M(Lw: fw)weQ
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Proof Set

< *

g = M(L,, fo)wee and h =M(Ly, fu)wen- 4.3)
In the light of [3, Propositions 13.12(ii) and 13.10(ii)], we infer from [A] and [B]
of Assumption 4.1 that (Vo € £2) f:; € Ip(Hy,). Next, define o: 2 — R: w —
—f,(r(w)). Then, by Assumption 4.1[B], o € 2,7, w; R). Additionally, (Vw €
2)fF > (- |r(w)) + o(w). Hence, we conclude that the family (f}),ep satisfies the
assumptions of [11, Theorem 4.7] and therefore that the family (8ffu*)w€g satisfies
Assumption 3.1. Let us now check that the family (f}),eq satisfies Assumption 4.1
by using the mapping r to fulfill [C]. To this end, we need to show that the function
0w f:)*(r(a))) liesin £ (£2, F, w; R). First, it follows from [11, Theorem 4.7(ix)]
that ¢ is F-measurable. Further, since, for every w € £2, f:;* < fy,, Assumption 4.1[B]
implies that ¢ is majorized by an integrable function. Finally, since

Yo € 2) £ > (@), — 5 (@), 4.4)

Assumption 4.1[C] implies that ¢ is minorized by an integrable function. Next, we
observe that [11, Theorem 4.7(i)—(ii)] assert that

g: H — ]—o0, +oo]: x* > /ij)(x*(w))u(dw) 4.5)
is a well-defined function in I'H(). Moreover, by [11, Theorem 4.7(viii)],
gl0@y: H— R: x*— /g(f; 0@, (x* (w)) u(dw) (4.6)
and, by [11, Theorem 4.7(ix)],
g1 H — ]—00, +00]: x > fg £ (x (@) w(do). @7

We also recall from (3.17) that

L: X — H: x> e.x is a well-defined bounded linear operator with [|L] < 1.
4.8)

(1): We deduce from (4.1), Moreau’s biconjugation theorem [3, Corollary 13.38],
Definition 2.2, and [19, Example 3.6(ii)] that

M(Lo fodoce = (8 01@r) o L) — @x = L o g* € [y(X). 4.9)

(i1): It follows from (i), Definition 2.2, and [19, Example 3.10(i)] that

h= (R?I(Lw, f;)weg)* = (Log™) =Leg*e MHX. (4.10)
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(iii): We derive from (4.9) and [3, Corollary 15.28(i) and Proposition 13.24(i)] that

(¥x € X) g(x) = min{(g 0 Gx)*(x) — @x(x) | x € H and L*x = x}
= min{g*(x) + @n(x) — Ox(X) | x € H and L*x =x}. (4.11)

Thus, (4.7) and (3.19) yield the announced identity.
(iv): Set U = {x € H | (V*w € £2) x(») € domf}. Then [11, Theorem 4.7(v)]
states that dom g* = U. Thus, it results from (4.9) and [19, Theorem 5.5(ii)] that

domg = dom(L ¢ g*) = L*(dom g*) = L*(dom g*) = L*(U) = L*(U), (4.12)

and the assertion follows from (3.19).
(v): It follows from (4.9), [19, Proposition 5.3(iv)], and (4.2) that

g*=(Log") =Leg™ =MLy fuco. (4.13)
At the same time, we derive from (4.9), [3, Proposition 13.29], and (4.6) that
= (@x — ((§0@x) o L)™)" — O

= (@x - / (f: 0@u,) oL, ,u(dco)) — Ox. (4.14)
2

(vi): Since g € I'h(H), we deduce from (4.10), [19, Proposition 5.3(v)], Moreau’s
biconjugation theorem, and (i) that

<&
h* = (L Qg*)* =L Og** =L o g = M(L,,, w)a)eﬂ (4.15)
(vii): Use (i), (v), and [3, Theorem 14.3(1)].

(viii): In view of (4.9), we derive from [3, Theorem 18.15], [11, Theorem 4.7(iv)],
and (3.19) that

o 1
I M(Lo, fo)wee (v ((g0@x) o L)) — ldy

(L (V(g 0 @) o L) —Idy

-1
/ L O ProXg:: oL) (da))) — Idy (4.16)
2

<&

M(Lwy af )wefz (417)
(ix): Use (4.16) and [3, Example 23.3].

(x): By [3, Proposition 13.16(iii)], (Vo € £2) f** = {7 . Hence, it results from (ii),

Moreau’s decomposition [3, Theorem 14.3(ii)], (vi), and (ix) that
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prox;, = Idx — proxp»

= Idx — prox.
M(Lmvfz))a)eﬂ

=Idy — / (LZ) O PrOXpewr oLw)u(da))
Q w

=1Idy — / (L:f) o Proxg oLw)u(da)). (4.18)
Q w

(xi): Because g* € I'h(H), it results from (4.10), [19, Theorem 5.5(v)], [11, Theo-
rem 4.7(viii)], and (4.8) that

hO@x=(Leg*) 0@ =(g"0@x) oL = /9((f;‘;* 0Gh,) oLy ) 1(do).
(4.19)

(xii): Combine (xi) and [3, Proposition 17.5].
(xiii): In this case, L is an isometry and the conclusion follows from [19, Proposi-
tion 5.3(vii)], (4.9), and (4.10). O

1o
Remark 4.4 The motivation for calling M(L,,, f,,)wec an integral proximal mixture
comes from Theorem 4.3(ix).

Example 4.5 Consider the setting of Example 2.6. Then (4.1) becomes
o p *
MLk, f)r<ksy = (Z o (ff 0 @w,) 0 Lk> — Ox, (4.20)
k=1
which is the proximal mixture introduced in [19, Example 5.9].

Our next illustration concerns a new object: the proximal expectation of a family
of functions.

Definition 4.6 Let (£2, F, P) be a complete probability space, let H be a separable real
Hilbert space, and let (f,) »es2 be a family of functions in Ih(H) such that the function

2 xH— ]—00, +0]: (w, X) = f,(X) 4.21)

is ¥ ® By-measurable. Suppose that there exist r € 32(.(2, F,P;H) and r* €
ZF2(2,F, P: H) such that the functions @ — fu,(r(®)) and @ f* (r*(w)) lie in
< 1(.(2, JF, P; R). Using the notation (2.14), the proximal expectation of the family
(fw)wE.Q is

E(f)ue = (E(f;; 0 @H)weg)* — Oy. (4.22)
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Proposition 4.7 Consider the setting of Example 2.8 with the additional assumption
that w is a probability measure. Let (f,)wec be a family of functions in I'y(H) such
that the function

2 xH— ]—00, +0]: (w, X) = f,(X) (4.23)
is F ® By-measurable. Suppose that there exist r € L*(2,F, w;H) and r* €
L2, F, i H) such that the functions @ — fo(r(w)) and @ ¥ (r*(w)) lie
in 31(.(2, F, u; R). Then

< < .
E(fw)a)e.Q = M(IdH, f(u)we.Q = M(Ide fa))weﬂ- (424)
Proof Note that

9 =L*2,F, wH). (4.25)

Using the completeness of (£2, F, i), we derive from [1, Théoréeme 2.3], [14, Lemma
II1.14], and [3, Proposition 12.28] that, for every x € $), the mapping 2 — H: o
proxg, x(w) lies in &. Thus, for every x* € §), using [3, Theorem 14.3(ii)], we deduce
that the mapping 2 — H: v — proxex x*(w) = x*(w) — prox¢, x*(w) also lies in
®. Hence, the family (f,),c satisfies Assumption 4.1. Thus, invoking Notation 2.4,
we deduce from Theorem 4.3(xiii), (4.1), and (4.22) that

* <

M(Idy, fo)wee = M(dy, fu)wee

%
= </ ((f:) 0O@y) o IdH) ,u(da))) — @y
Q

— (B 001, e) — 0
=Efo)wes. (4.26)

as announced. O

Combining Theorem 4.3, Proposition 3.11, and Proposition 4.7 yields at once the
following properties of the proximal expectation.

Proposition 4.8 Consider the setting of Definition 4.6. Then the following hold:

>
(i) E(fw)wen € To(H).
(ii) Letx € H. Then

(Ew)oc)®

= min{/g (fw (x(w)) + @y (x(a))))P(dw) — Qu(x)

x € L*(2,7,P; H) and Ex = x}.

4.27)
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(iii) dom E(fy)peq = {Ex | x € L2(22,F,P; H) and (V}w € 2) x(w) € domf,}.
<O <O

(iv) (Efo)wea)” = E(ff)wer = (E(fo 0 QH)peo)™ — CH.
< <

(v) EE(fw)wE.Q = E(fp)wen-

(vi) E(fw)wGQ 0Qn = E(fa) 0GQH)pen-
(vii) proxe = E(proxfw)weg.

w)wes2
<
(viii) Argmin E(f,)pen = Argmin E(f, O Qn)pen-

Remark 4.9 In Definition 4.6, consider the measure space (£2, F, u) of Example 2.6
with the additional assumption that Z,le ar = 1. Then the proximal expectation
becomes

° p *
E(f)i<ksy = (Z a(fi O @H)) — G@n. (4.28)
k=1

(i) The function of (4.28) is the proximal average of the family (f;) <k < p- By special-
izing Proposition 4.8 to this setting, we recover properties of the proximal average
found in [4].

(ii) Let (fx)1<k<p be functions in I'h(H). In some data analysis applications (see, e.g.,
[16, 27, 32]), (4.28) has been used instead of the standard average Zle oy fr.
The latter can be regarded as the empirical p-sample approximation to the true
expectation E(f,),cg arising from a family (f,)yeq2 in IH(H). Likewise, we can
regard the proximal average (4.28) as the empirical approximation to the proximal

<&
expectation E(f,)peq-

Remark 4.10 The strategy described in Remark 4.9(ii) can be generalized as follows.
Let u be a probability measure. Then it may be appropriate in certain variational
problems to replace the standard composite average f o (fy oLy) i (dw) by the integral

proximal comixture M(L,, f,)pes2 of Definition 4.2. The latter is easier to handle
numerically as its proximity operator is explicitly given by Theorem 4.3(x) and it
follows from Theorem 4.3(xii) that its set of minimizers coincides with that of the
function [, ((f, O @h,) o Ly)u(dw).

5 Relaxation of Systems of Monotone Inclusions

We place our focus on the following general system of composite monotone inclusions.

Problem 5.1 Suppose that Assumptions 3.1 and 3.2 are in force and that V # {0} is a
closed vector subspace of X. The task is to

find x € V such that (V*w € £2) 0 € A, (LyX). (5.1)

The instantiations of Problem 5.1 found in [19, 22, 23] (see also [13, 15] for further
special cases) correspond to the setting of Example 2.6 with finitely many inclusions,
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that is,
find x € V such that (Vk € {1,..., p}) 0 € Ax(Lgx). (5.2)

On the other hand, the instantiation of [12] corresponds to the setting of Example 2.8
where p is a probability measure, V = H and, for every w € §2, A,, is the normal cone
operator of a nonempty closed convex subset C,, of H and L,, = Idy, that is,

find x € H such that (Vo € £2) x € C,. (5.3)

The last problem is known as the stochastic convex feasibility problem. Our formula-
tion targets a much broader inclusion model than those.

Of interest to us are the scenarios in which Problem 5.1 has no solution and must
be replaced by a relaxed one which furnishes meaningful solutions. We consider the
following relaxation which corresponds, in the special case of Example 2.6, to that
proposed in [23].

Problem 5.2 Suppose that Assumptions 3.1 and 3.2 are in force and that V # {0} is a
closed vector subspace of X, and let y € ]0, +-o0[. The task is to

find x € X such that 0 e (projv o M(Ly, yAw)weg)x. (5.4)

Let us examine the interplay between Problems 5.1 and 5.2.

Proposition 5.3 Consider the settings of Problems 5.1 and 5.2, let S| and Sy be their

respective sets of solutions, and set W = projy ¢ M(Ly, Y Aw)wes2- Then the following
hold:

(i) W is maximally monotone.

(ii) Jw = projy o(Idx + fQ(L:‘U o (Jya, —Idn,) o Ly,)u(dw)) o projy.
(iii) Sy and Sy are closed convex sets.

(iv) Problem 5.2 is an exact relaxation of Problem 5.1 in the sense that S # & =

S» =5;.
(v) S2 =zer(Ny + [ (L} o (YA,) o Ly)pu(dw)).
Proof Set A = ®[2 A, u(dw) and
L:X— H: X eX. (5.5)

Then [11, Proposition 3.5] asserts that

& rd & rd
Jya = / Jya,m(dw) and A = / YA, w(dw). (5.6)
I?) Q
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In addition, it follows from [11, Proposition 3.12] that L is a well-defined bounded
linear operator with adjoint

L*:H— X:x*— / Lix* (w)u(dw) (5.7)
Q
and such that | L|| < 1. We also recall from (3.21) that

M(Ly, YAw)wez = L ¢ (Y A). (5.8)
Further, (5.1) is equivalent to
find x € V such that 0 € A(Lx) 5.9)

and (5.4) is equivalent to
find x € X such that 0 € (projv o(Le (yA)))x. (5.10)

(i): We derive from [11, Theorem 3.8(i)] that A is maximally monotone and hence
from [19, Theorem 4.5(ii)] that L & (y A) is likewise. In turn, [19, Theorem 4.5(i)] and
(5.8) assert that W = projy ¢ (L & (y A)) is maximally monotone.

(i1): By invoking successively [19, Theorem 6.3(ii)], (5.6), and (5.7), we obtain

Jw = projy o(Idx + L* o (J, 4 — Idy) o L) o projy

= projy o(Idx + / (LZ) o (Jya, —1Idn,) o Lw)u(da))) o projy - (5.11)
Q

(iii): Use (5.9), (5.10), and [19, Theorem 6.3(iii)].
(iv): Combine (5.10) and [19, Theorem 6.3(v)].
(v): Using (5.10), [19, Theorem 6.3(vi)], (5.6), and (5.7), we obtain

S, = zer(N\/ +L*o (YA) o L) = Zer(Nv + / (LZ o (YA,) o Lw),u,(da))>,
2
(5.12)

which concludes the proof. O

We now present an algorithm to solve Problem 5.2.
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Proposition 5.4 Suppose that Problem 5.2 has a solution, let (A,;)qeN be a sequence
in 10, 2[ such that )", .y An(2 — A,) = +00, and let xg € V. Iterate

forn=0,1,...
for w-almost every w € 2
{yn (@) = LoXy
qn(w) = yu(w) — JyAw.Yn (w)
2y = [ L (gn (@) u(dw)
Xn+1 = Xp — Ay PIOjy Zp-

(5.13)

Then (X,)neN converges weakly to a solution to Problem 5.2.

Proof Set W = projy, ¢ M(Ly, yAy)wes and recall from Proposition 5.3(ii) that

Jw = projy o(Idx +/ (LZ) o (Jya, —Idn,) o Lw),u(da))) oprojy . (5.14)
2

We derive from (5.13), (5.6), and (5.7) that (X, ), N is generated by the proximal point
algorithm

Vrn e N) Xu41 = Xy + A (JWXy — Xp). (5.15)

It then follows from [17, Lemma 2.2(vi)] that (X, ),cN converges weakly to a point in
zer W, i.e., a solution to (5.4). |

Example 5.5 Let us specialize Problem 5.1 to the scenario in which

Vo€ 2) Ay=(dy, —Tp+1,) " —Idu,,

To: Hy — Hy is firmly nonexpansive

where (5.16)
ro € Hyp.
Then (5.1) becomes
find x € V such that (V¥ € 2) Ty, (LyX) = . (5.17)

This model has been considered in [23] in the setting of Example 2.6. There, £2 is a
finite set and each r,, models the observation of an unknown signal x € H through a
Wiener system, i.e., the concatenation of a nonlinear operator T,, and a linear trans-
formation L,,. Our framework allows us to extend it to models with a continuum of
observations. In this context, and (5.4) yields the relaxed problem

findx € V such that / L (To (LX) — Fo)i(dw) € V*. (5.18)
2
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Furthermore, (5.13) becomes

forn=0,1,...
for p-almost every w € £2
Lyn(w) = LoXn
Gn(®) = Ty yp(w) — ty
2, = [o Li(gn(@)u(dw)
Xn+1 = Xp — Ay PIOjy Zp.

(5.19)
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