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Abstract

Language model probing is often used to test

specific capabilities of models. However, con-

clusions from such studies may be limited when

the probing benchmarks are small and lack

statistical power. In this work, we introduce

new, larger datasets for negation (NEG-1500-

SIMP) and role reversal (ROLE-1500) inspired

by psycholinguistic studies. We dramatically

extend existing NEG-136 and ROLE-88 bench-

marks using GPT3, increasing their size from

18 and 44 sentence pairs to 750 each. We also

create another version of extended negation

dataset (NEG-1500-SIMP-TEMP), created us-

ing template-based generation. It consists of

770 sentence pairs. We evaluate 22 models

on the extended datasets, seeing model perfor-

mance dip 20-57% compared to the original

smaller benchmarks. We observe high levels of

negation sensitivity in models like BERT and

ALBERT demonstrating that previous findings

might have been skewed due to smaller test sets.

Finally, we observe that while GPT3 has gen-

erated all the examples in ROLE-1500 is only

able to solve 24.6% of them during probing.

The datasets and code are available on Github1.

1 Introduction

Understanding the limitations of large language

models (LLMs) becomes ever more important with

their accelerated adoption and application to real-

life tasks. After the original discovery that large

LMs could perform simple NLP tasks without ad-

ditional training (Radford et al., 2019), the use of

these models has rapidly grown, as have their ca-

pabilities (Brown et al., 2020; Sanh et al., 2021;

Chowdhery et al., 2022). As the community in-

vests considerable effort into creating, training, and

deploying these models (Zhang et al., 2022; Black

et al., 2021), it is important to understand the types

of data and tasks they might not be well-suited.

1https://github.com/text-machine-
lab/extending_psycholinguistic_dataset

The field of analysis of pre-trained models has

grown rapidly in recent years (Zagoury et al., 2021;

Liu et al., 2021; Lialin et al., 2022; bench authors,

2023; Rogers et al., 2020). Methods such as at-

tention pattern analysis (Kovaleva et al., 2019;

Kobayashi et al., 2020), linear probing (Tenney

et al., 2019), and zero-shot probing (Belinkov et al.,

2020; Talmor et al., 2019; Ettinger, 2019; Lialin

et al., 2022) allow us to evaluate specific capabili-

ties of pre-trained models. Zero-shot methods give

us arguably the most clear picture, as they directly

probe what the model learned through the upstream

task and allow the researcher to target very specific

skills such as understanding of negation or role.

However, even though these methods do not re-

quire training data, producing a good dataset for

zero-shot evaluation of these language models is

not an easy task. We want these datasets to be clean,

diverse and to have enough statistical power to be

useful for model comparison (Card et al., 2020).

Many existing probing datasets struggle with at

least one of these requirements.

Psycholinguistic datasets used in a study by Et-

tinger (2019) have been particularly interesting in

that they enabled a comparison between model be-

havior and human response, including both N400

effects and well-reasoned cloze judgments by hu-

man speakers. Despite being used in multiple stud-

ies since (Lialin et al., 2022; Rogers et al., 2020;

Zhang et al., 2020), these datasets are quite small,

ranging in size from 18 sentence pairs in negation

(NEG-136-SIMP) to a maximum of 44 sentence

pairs in the role-reversal dataset (ROLE-88).

In our work, the NEG-136-SIMP and ROLE-

88 datasets are dramatically extended. For each

of them, we follow the original dataset collec-

tion method (Fischler et al., 1983; Chow et al.,

2016), with the exception of N400 amplitude (re-

quires electroencephalography) and cloze proba-

bility studies on humans (Federmeier and Kutas,

1999). To explore different approaches to data ex-
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tension, we extended negation dataset using two

methods 1) a template-based and 2) using GPT32

with human-in-the-loop. For ROLE, we only used

GPT3 to extend the dataset, as no additional role

categories were available in original source paper

for this data (Chow et al., 2016).

To understand how well language models per-

form on these extended datasets, we evaluated 22

models, including GPT3, following the methodol-

ogy from Lialin et al. (2022). Compared to the

original test sets, we see a significant drop (up to

57%) in accuracy for both Role and Negation tasks.

At the same time most models show higher sensi-

tivity to negation compared to the original dataset.

Finally, while GPT3 has generated all of the ex-

amples in ROLE-1500, it is only able to predict the

correct answer in 24.6% cases (top-5 accuracy).

ALBERT-v2-xxlarge surpasses GPT3 by 4.6%.

2 Related Work

Recent research has shown that LLMs are capa-

ble of generating labeled data (Anaby-Tavor et al.,

2020; Papanikolaou and Pierleoni, 2020; Kumar

et al., 2020; Meng et al., 2022; Mohapatra et al.,

2020; Yang et al., 2020; Li et al., 2022; Wu et al.,

2022). Most previous studies used GPT or GPT2

for dataset extension (Schick and Schütze, 2021;

Gao et al., 2022; Whitfield, 2021; Anaby-Tavor

et al., 2020). Smith et al. (2022) attempted to gen-

erate labels for the unlabelled dataset using GPT3.

In our work, we generate the entire dataset, rather

than just the labels. Bonifacio et al. (2022) used

GPT3 to generate questions, sampling from 100k

documents to create the prompts. Han et al. (2021)

and Liu et al. (2022) prompted GPT3 to generate

synthetic translation and NLI datasets, respectively.

Lialin et al. (2022) and Ettinger (2019) evalu-

ated language models on smaller datasets for nega-

tion and role reversal. We extend these datasets to

around 1500 data points and evaluate 22 models,

including GPT3. To our knowledge, our work is

the first to extend psycholinguistic datasets and use

it to evaluate an extended set of models.

3 Data generation

3.1 Negation Dataset: NEG-1500-SIMP

The existing negation dataset NEG-136-SIMP from

Ettinger (2019) consists of 18 sentence pairs. Each

pair is made of one affirmative and one negated

2We use text-davinci-002 version of GPT3

sentence e.g. the sentences ªA robin is a birdº (af-

firmative) and ªA robin is not a treeº (negated)

form a pair. We extend this dataset using two

methods: template-based and generation-based. By

employing both methods, we could gauge the po-

tential strengths and limitations inherent to each

method, which we discuss in Section 5. We create

770 sentence pairs with the template-based method

and generate 750 pairs using GPT3. We refer

to these datasets as NEG-1500-SIMP-TEMP and

NEG-1500-SIMP-GEN, respectively.

NEG-1500-SIMP-TEMP Each pair in the orig-

inal dataset follows a template. For affirmative

sentences, the template is ªA/An {subject} is a/an

{object}º. Its negated version is ªA/An {subject} is

not a/an {another object}º. Battig and Montague

(1969) and Fischler et al. (1983) provide a template

and a list of objects (e.g., robin, pine) and the cor-

responding categories (e.g., bird, tree) which are

used to generate samples 3. For instance, the cate-

gory, ªbirdº in the example, ªA robin is a birdº is

replaced with another category (ªtreeº) to generate

the negated example ªA robin is not a treeº.

We experimented with using WordNet to gener-

ate from this template, but found that it required

a careful curation of hypernym hierarchies. Since

our goal was to reduce human effort and cost, we

decided against it. We used a template from Fis-

chler et al. (1983) along with the categories and

subcategories listed in Battig and Montague (1969)

to create 770 sentence pairs. Similar to Ettinger

(2019), we did not use multi-word category names.

NEG-1500-SIMP-GEN We use human-in-the-

loop and few-shot prompted GPT3-text-davinci-

002 with default parameters, to generate 750 pairs

(1500 sentences). Each GPT3 prompt consists of an

instruction and four randomly selected in-context

examples. The cost of generating the dataset is

around $30. An example of the prompt is shown

in the appendix A. After generating samples from

GPT3, the dataset was manually cleaned to filter

out poorly generated examples. Details about man-

ual filtering in mentioned in Appendix B.1.

We analyzed the word distribution for the ex-

tended datasets and found that for NEG-1500-

SIMP-GEN, few categories are more frequent than

others, for example, the highest frequent category

ªanimalº has three times more examples than the

3Fischler et al. (1983) refers to these as ªsubjectsº and
ºobjectsº, respectively.
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lowest frequent category ªtreeº. This difference is

1.5 times in NEG-1500-SIMP-TEMP. Appendix D

show the top 20 categories for all datasets.

3.2 Role-reversal Dataset: ROLE-1500

The original ROLE-88 dataset (Ettinger, 2019;

Chow et al., 2016) is a role reversal dataset consist-

ing 88 sentences (44 sentence pairs). Here is an

example of a sentence pair: ªThe librarian docu-

mented which journalist the celebrities had avoided.º

ªThe librarian documented which celebrities the

journalist had interviewedº. The first sentence

has two words representing roles (here: journal-

ist, celebrities), which are reversed in the second

sentence. The target verb (the last verb in the sen-

tence) is always preceded by the auxiliary ªhadº.

This dataset was created to observe the effect of

role reversal on the target verb. We notice that all of

the role words represent human roles (chef, worker,

etc.) or animals (whale, dog, etc.). There were

some pairs where the role reversal didn’t change

the target word, but they were semantically correct.

To extend ROLE dataset, we used the same

method as NEG-1500-SIMP-GEN and generated

1500 sentences with temperature set to 0.64 4. We

call this new dataset as ROLE-1500 and cost of

generating it is $25. After generating samples from

GPT3, the dataset was manually cleaned. An ex-

ample of the prompt, details on data filtering and

word distribution for ROLE-1500 is provided in the

Appendix A, B.2, and D respectively. Word dis-

tribution analysis in ROLE-1500 revealed a three-

fold difference between the highest and lowest fre-

quency categories, similar to the findings in NEG-

1500-SIMP-GEN.

4 Evaluation on Extended Datasets

Following methodology from Lialin et al. (2022),

we evaluated 22 models on the newly created nega-

tion and role reversal data (Figure 1). Both nega-

tion and role reversal tasks were first converted

into a masked language modeling task, where the

category (the final verb) was replaced with a mask

token. For GPT2 and GPT3, the task was converted

into a causal language modeling task, where the

target was removed, and the model had to predict

the target word. The responses of the models were

evaluated against the true target.

4We set Hyperparameters by manually evaluating the out-
put and selecting values that produced samples close to the
specifications mentioned in the original dataset papers.

For GPT3, we also performed zero-shot evalua-

tion with two prompts: with and without instruc-

tions pre-pended to the input sentence (see Ap-

pendix A). We used the GPT3-text-davinci-002

model via OpenAI API with the default parame-

ters with max_tokens as 1. GPT3 response was

evaluated against gold label.

Our evaluation metric is the top-5 prediction ac-

curacy, following Ettinger (2019). It is the percent-

age of the model responses where the gold label

is among the top five predictions from the model.

Table 1 shows the results for the original and ex-

tended datasets. We also included top 1, 10, and 20

accuracies in Appendix F. For the negation dataset,

we used model sensitivity as an additional metric.

Since we didn’t have N400 amplitude and cloze

probability for the extended datasets, we defined

sensitivity as the percentage of sentence pairs for

which the top-1 prediction changed, when ªnotº

was added. Table 1 shows the sensitivity result. Re-

sults for all models are shown in Appendix E. We

could not compute ROLE-1500 sensitivity, as in

some sentence pairs the target word was the same.

To assess the reliability of the new datasets,

we employed the methodology proposed by Card

et al. (2020) to evaluate the statistical power of the

datasets. Specifically, we used McNemar’s test to

assess the top two models on each dataset. For the

ROLE dataset, our primary criterion was accuracy,

while for the NEG dataset, we used the accuracy

on affirmative examples (as in Ettinger (2019)).

Additionally, we conducted a permutation test to

check the statistical significance of the differences

for extended datasets. The results are discussed in

Section 5.

We validated our new datasets through human

evaluation. For this, we randomly selected 100

samples from each of the extended datasets. Each

of these sentences was presented to two annotators,

who were asked to complete the sentences with a

one-word response. The completion was compared

against target labels. This is a method analogous

to the cloze test used traditionally to gauge human

language comprehension. We used Cohen’s kappa

to compute inter-annotator agreement.

5 Results

Models performance dropped substantially

on extended datasets. Model performance5

5Difference in the model performance is mentioned as the
difference in percentage points. For example, if model A
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ROLE-88
NEG-136
SIMP(Aff)

NEG-136
Sensitivity

ROLE-
1500

NEG-1500
SIMP

TEMP(Aff)

NEG-1500
SIMP

GEN(Aff)

NEG-1500
SIMP-TEMP

Sensitivity

NEG-1500
SIMP-GEN
Sensitivity

BERTbase 27.3 100.0 16.7 20.3 58.4 55.3 53.5 35.9
BERTlarge 37.5 100.0 33.3 21.5 65.1 53.8 53.5 40.3
RoBERTabase 46.6 94.4 66.7 23.0 62.1 44.0 64.4 71.5
RoBERTalarge 55.7 94.4 50.0 26.1 63.4 53.7 64.5 69.5
DistilBERTbase 28.4 94.4 27.8 19.3 57.3 52.8 44.7 41.5
AlBERTv2base 26.1 33.3 38.9 15.3 10.0 11.7 37.3 35.9
AlBERTv2xlarge 37.5 94.4 27.8 21.1 40.4 47.8 52.7 51.1
AlBERTv2xxlarge 50.0 100.0 44.4 29.0 42.9 45.3 55.7 61.5
T5large 36.4 94.4 50.0 18.2 60.4 49.8 44.0 0.0
T5xl 44.3 83.3 66.7 21.5 60.9 60.9 68.2 70.0
GPT2base 0.0 0.0 66.7 11.2 48.3 37.7 60.4 56.4
GPT2xl 0.0 0.0 44.4 18.8 63.6 52.8 59.0 71.9
GPT3 44.4 94.4 100.0 24.6 65.9 63.3 100.0 100.0
GPT3prompt 38.6 72.2 100.0 24.4 55.9 55.2 100.0 100.0

Table 1: Zero-shot top-5 word prediction accuracy and sensitivity (top-5 over the whole vocabulary). ROLE-88 and

NEG-136 are from Lialin et al. (2022). ROLE-1500 and NEG-1500 are the new datasets. The best result for each

task is in bold. ªSIMPº stands for simple, ªpromptº stands for prompting(adding instruction). The negation task is

evaluated in the affirmative form (Aff ). Sensitivity is the percentage of sentence pairs for which the top-1 prediction

changed. See Appendix E for accuracy and sensitivity of all models on extended datasets.

dropped by 40-50% on negation (affirmative-only)

and by 20-30% on role reversal for all models

except GPT2. Even top-20 prediction accuracy

couldn’t reach the performance shown for the

original datasets. For NEG-1500-SIMP-TEMP,

BERT6, RoBERTa, DistilBERT and T5 accuracy

decreased 30% each, while ALBERT-xxlarge-v2

had the biggest drop of 57%. Compared to NEG-

1500-SIMP-TEMP, NEG-1500-SIMP-GEN shows

5-10% more (absolute) drop in the performance.

In ROLE-1500, the performance of BERT, Dis-

tilBERT and T5 decreased by about 5-15% each.

RoBERTa and ALBERT showed the highest drop

of 23-29% on this task. Increasing dataset size

had a larger effect on model accuracy for negation

than for the role-reversal task. The models that per-

formed best on the small datasets did not remain in

the lead on the extended. For example, in ROLE,

RoBERTa-large was the best model on the original

dataset, but ALBERT-v2-xxlarge surpassed it on

the extended one. For negation, BERT and AL-

BERT were best originally, but GPT3 surpassed

them when the datasets became larger.

GPT3 cannot solve, but can generate such ex-

amples. While GPT3 is unable to reliably solve

scores 40% and model B scores 20%, model B is worse by 20
percentage point and not by 50%.

6When we mention a model without specifying its size,
we refer to the average percentage change for different sizes
within that model family used in our experiments. For exam-
ple, BERT performance will include BERT-base and BERT-
large accuracies.

these tasks, it is perfectly capable of picking up

the pattern and generating valid examples. ROLE-

1500 was generated by GPT3, and yet, RoBERTa-

large, and ALBERT-xxlarge perform better on it

than GPT3. There is a gap of around 4.5% be-

tween the best model and GPT3. Adding instruc-

tions to the prompt, didn’t change the performance

on ROLE-1500, but decreased the accuracy by 8-

10% on negation. Sensitivity to negation remains

the same for GPT3 with and without instruction

prompts.

GPT3 responses contain variety of mistakes.

Approximately 2/3 of the generated ROLE data was

manually filtered out. 14.3% of responses were sin-

gle sentences without a pair. 7.4% responses were

semantically incorrect. Similar kind of errors were

filtered out in the negation data as well. GPT3

also generated duplicate entries. 62.5% of negation

data generated with GPT3 were duplicate samples,

compared to 32.5% for the role reversal dataset.

GPT3 generates more diverse examples than the

template-based method. While GPT-3 provided

a way to generate diverse samples, the template-

based method ensured consistency and alignment

with the original dataset. Our result shows that

GPT-3 generated samples offered a variety with

63 unique target labels whereas the template-based

method provided controlled variability based on

predefined structures with 23 unique target labels.

11 of these target labels are common between both
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the datasets. The models exhibit similar perfor-

mance when evaluated on datasets produced by

both template as well as model based methods.

Models are more sensitive to negation for ex-

tended dataset. All models except ALBERT-

v2-base, T5-large, and GPT2-base show higher

sensitivity to negation on both extended nega-

tion datasets compared to the original one. For

NEG-1500-SIMP-TEMP, the sensitivity for BERT

and ALBERT-xl increased by 36.8% and 21-25%,

respectively. For RoBERTa-base, T5-large and

GPT2, sensitivity to negation dropped by 2.3-

6%. The sensitivity to negation on NEG-1500-

SIMP-GEN either increased or remained the same

compared to original data for all models, except

ALBERT-v2-base, T5-large and GPT2-base. For

BERT and RoBERTa the sensitivity increased by al-

most 20%. Results demonstrate high levels of nega-

tion sensitivity in models like BERT and ALBERT,

suggesting that previous findings might have been

skewed due to smaller test sets.

Change in model performance on extended

datasets depends on its architecture and size.

Encoder-only models had the highest performance

drop of 15% for ROLE-1500 and 40% for NEG-

1500 (average of template-based and generated

negation dataset). In comparison, the seq-to-seq

models accuracy decreased by 14% in ROLE-1500

and 29% in NEG-1500, while decoder-only mod-

els show a gain of 5% in ROLE-1500 and 27%

in NEG-1500. Encoder-only models also demon-

strate the highest increase in negative sensitivity,

with a gain of 13% , while seq-to-seq and decoder-

only models gains only 1.2% and 7.4% respectively.

When analyzed across model size, we found mod-

els of size around 60M show the highest drop of

around 35% in NEG-1500, while models of size

close to 300M experience the highest decrease of

14.6% in the ROLE dataset. The 300M size mod-

els exhibit the highest gain of 44% in negativity

sensitivity (see tables in Appendix G).

New extended datasets are more reliable than

original small datasets. The power analysis us-

ing McNemar’s test reveals very low power for

original datasets. ROLE-88 has a power of 0.26

whereas NEG-136’s power is 0.01. For the ex-

tended dataset ROLE-1500, the power to differen-

tiate between the top two accuracy models signifi-

cantly improved to 0.72, and for GPT3-generated

NEG-1500-SIMP, the power reached a full 1.00

in distinguishing top models. However, for the

template-generated NEG-1500-SIMP, the power

remained low: 0.04 for the top two models and

0.23 for the top 1 versus top 3. From these re-

sults, it is evident that ROLE-1500 and NEG-

1500-SIMP-GEN are dramatically more reliable

datasets. Specifically, they can distinguish between

small effects of approximately 0.03 for ROLE and

about 0.15 for NEG-1500-SIMP-GEN (minimum

detectable effect, MDE).

The permutation test shows a statistically signifi-

cant difference between the accuracies of the top-

2 models for ROLE-1500 and NEG-1500-SIMP-

GEN at a 0.05 significance level. P-values are 0.01

and 0.0002 respectively. In contrast, template gen-

erated dataset (NEG-1500-SIMP-TEMP) does not

show statistically significant accuracies and fails

the test with a p-value of 0.22.

Human performance surpasses all model perfor-

mance. From human cloze test on ROLE-1500

and NEG-1500-SIMP(TEMP and GEN), we ob-

served that human performance consistently ex-

ceeded model performance across all datasets.

Specifically, for NEG-1500-SIMP-TEMP, human

evaluation resulted in a top-1 accuracy of 58.5%,

whereas the top-performing model, T5-xl, achieved

about 40%. In the case of NEG-1500-SIMP-GEN,

the human evaluation yielded an accuracy of 45.5%,

5.8% higher than the leading model, T5-xl. For

ROLE, human performance (10%) is better than

all of the model performances except ALBERT-

xxlarge (v1 and v2). Human evaluation results are

included in Tables 3, 4 and 5. Inter-annotator agree-

ment for ROLE-1500 is 0.07, whereas for NEG-

1500-SIMP-TEMP and NEG-1500-SIMP-GEN, it

is 0.50 and 0.45 respectively.

6 Conclusion

We provide a new resource that dramatically ex-

tends existing probing data for negation and role

reversal. The psycholinguistic datasets NEG-136-

SIMP and ROLE-88 are extended to more reliable

and large datasets, each with 1500 data points. We

evaluate 22 models using the new data, observing

that the absolute accuracy drops for most models

on both tasks. However, most models do show

an increased sensitivity to negation. Strikingly, as

seen in the role reversal task, we show that GPT3

may be capable of generating the data for a task

while failing to show top performance on it.
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Limitations

The current work has several limitations. The study

did not include N400 amplitude. Another limitation

is the smaller size of the original datasets. As we

had a limited number of in-context samples that

were drawn from original datasets, there was a

limitation on the number of new data points we

could generate. Additionally, the cost of generating

samples with GPT3 was another limiting factor.

Lastly, the frequency distribution of the categories

in the new datasets is not balanced, which may

introduce some bias in model evaluation. This

imbalance exists in the original datasets too.

Ethics Statement

Using large closed-source language models to gen-

erate evaluation data, while highly effective, should

be approached with caution. First, neural networks

of hundreds of billions of parameters are compu-

tationally expensive to infer and potential carbon

dioxide emissions should be taken into consider-

ation. Second, while API access to such models

allows to avoid many technical challenges, espe-

cially having enough resources to inference large

models, it comes with limitations. For example,

GPT3 can only return the logprops of at most five

top tokens over the vocabulary. Also, the API pro-

vides no control over the random seed used for

sampling reducing the potential reprehensibility of

the research. Finally, without the direct access to

the model weights, there is no guarantee that this

version of the model will be always accessible to

researchers in the future and won’t be restricted,

modified, deleted, or lost.
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A GPT3 prompt

A.1 ROLE-1500 generation prompt

An example prompt for generating ROLE-1500

dataset is given below. The roles are colored orange

and blue, whereas the target word is highlighted in

green:

The task is to reverse the role in the sentences.

Generate more sentence like this:

The journalist investigated which athlete the

team had recruited, The journalist investigated

which team the athlete had joined,

The detective interviewed which witness the doc-

tor had suspected, The detective interviewed which

doctor the witness had seen.

The teacher lectured which student the class had

ignored, The teacher lectured which class the stu-

dent had left,

The police reported which criminal the witness

had described, The police reported which witness

the criminal had robbed,

The doctor treated which patient the nurse had

examined, The doctor treated which nurse the

patient had injured,

A.2 NEG-1500-SIMP-GEN generation

prompt

An example prompt for generating NEG-1500-

SIMP-GEN dataset is given below.

ªThe task is to generate affirmative sentences

and its negation. The object of the sentence should

be a hypernym of the subject of the sentence. Gen-

erate more sentence pairs like these: º

A robin is a bird, A robin is not a tree,

An oak is a tree, An oak is not a flower,

A carrot is a vegetable, A carrot is not a bird,

A hammer is a tool, A hammer is not a tree,º

A.3 ROLE-1500 evaluation prompts with and

without instructions

Prompt with instruction for ROLE-1500:

ªThe goal is to complete the given sentence with

one English word. Avoid punctuation or a new

line or space. The librarian documented which

journalist the celebrities hadº.

The prompt without instruction: ªThe librarian

documented which journalist the celebrities hadº.

The model predicts the next word in sentence.

Instruction is same for ROLE-1500 and NEG-

1500-SIMP-GEN. Only the in-context example

changes.

B Manual cleaning of the datasets

B.1 NEG-1500-SIMP

For NEG-1500-SIMP-GEN, to get 1500 cleaned

samples, we generated 12000 sentences. 87.5% of

the responses were rejected as they were a) dupli-

cates (62.5%) b) empty lines (15%) c) only negated

sentences (8.75%) d) others (1.25%). Others in-

clude sentences like ªA toy is a toyº and ªA toy is

an objectº, as well as objects with multiple words

and semantically wrong sentences (e.g., ªA flower

is a roseº, ªA cloud is a weatherº). The cost of

generating NEG-SIMP-1500-GEN was $35.

B.2 ROLE-1500

After generating GPT3 responses to these prompts,

the samples were manually cleaned to get 1500

sentences (750 sentence pairs). We generated 4700

sentences (including empty, partial and no-pair sen-

tences), out of which 68% were removed, as a)

32.5% were duplicates, b) 14.3% missed on get-

ting a pair or were simple sentences, c) 8.5% were

empty lines, d) 7.4% were semantically wrong sen-

tences or had a wrong role reversal (e.g., ªThe

camper reported which book the girl had eatenº),

e) 5.3% were repeating instructions or partial sen-

tences. In some instances, generated examples in-

cluded some repetition of the role nouns present in

the in-context examples.

C Rules to create NEG-1500-SIMP-GEN

An affirmative sentence and a negation sentence

make a pair. Affirmative sentences follow the for-

mat of ªsubject is an objectº whereas its negation

form is ªsubject is not an objectº. Affirmative sen-

tences can be, for example ªRobin is a birdº or

ªRobin is an animalº, the subject word is ªRobinº,

the object word is ªbirdº and its immediate super-

ordinate category name is ªanimalº. The negation

for any of these two affirmative sentences can be

ªRobin is not a plantº or ªRobin is not a treeº.

The target completion ( e.g. ªplantº or ªtreeº)

has to be an object or superordinate word from an-

other category. Figure 1 in the Appendix 1 shows

two categories (Animal and Plant) together with

its respective subject and object words (Battig and

Montague, 1969).
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Animal

Insect

Bird
Robin

Sparrow

Ant

Bee

Plant

Flower

Tree
Oak

Pine

Rose

Daisy

Figure 1: Sentence subject word (Robin). Affirmative sentence completion are in green - object word(Bird) and

super ordinate category name(Animal). Negative sentence completion are in red - object word(Tree) and super

ordinate category name(Plant). (Battig and Montague, 1969)

D Top 20 target words for all datasets

Figure 2 and 6 show top 20 object words for

original datasets NEG-136-SIMP and ROLE-88.

Figure 3, 4 and 5 depict top 20 object words for

original new extended datasets. Y axis represents

the number of times the target words. NEG-136-

SIMP has less than 20 categories, therefore all of

them has been shown in the figure 2.

E Result for all models

Table 2 shows the top five accuracy for all the

models.

F Top 1, 10 and 20 prediction accuracy

for all models

Table 4 and 3 show top 1, 10 and 20 accuracy for

new negation datasets. Table 5 depict top 1, 10

and 20 accuracy for new role reversal dataset.

G Results across model type and model

size

Table 6 and 7 show the change in the model ac-

curacy for extended dataset as compared to the

original dataset across model type and model size

respectively. NEG-1500 represents the average

of NEG-1500-SIMP-TEMP and NEG-1500-SIMP-

GEN. We didn’t mention 1B and 175B model sen-

sitivity in Table 7 as they were 100% in original

and extended datasets, therefore the difference is

zero.
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Figure 6: Top 20 target words for ROLE-88

ROLE-88
NEG-136
SIMP(Aff)

NEG-136
Sensitivity

ROLE-
1500

NEG-1500
SIMP

TEMP(Aff)

NEG-1500
SIMP

GEN(Aff)

NEG-1500
SIMP-TEMP

Sensitivity

NEG-1500
SIMP-GEN
Sensitivity

BERTbase 27.3 100.0 16.7 20.3 58.4 55.3 53.5 35.9
BERTlarge 37.5 100.0 33.3 21.5 65.1 53.8 53.5 40.3
RoBERTabase 46.6 94.4 66.7 23.0 62.1 44.0 64.4 71.5
RoBERTalarge 55.7 94.4 50.0 26.1 63.4 53.7 64.5 69.5
DistilBERTbase 28.4 94.4 27.8 19.3 57.3 52.8 44.7 41.5
AlBERTv1base 17.1 72.2 22.2 10.4 37.1 36.4 40.0 35.6
AlBERTv1large 26.1 83.3 22.2 17.4 48.4 42.4 38.6 32.9
AlBERTv1xlarge 34.1 55.5 55.6 19.5 22.3 26.0 77.0 62.5
AlBERTv1xxlarge 53.4 72.2 55.6 28.5 38.7 39.3 59.9 61.7
AlBERTv2base 26.1 33.3 38.9 15.3 10.0 11.7 37.3 35.9
AlBERTv2large 29.5 83.3 22.2 18.8 36.6 36.2 31.7 33.1
AlBERTv2xlarge 37.5 94.4 27.8 21.1 40.4 47.8 52.7 51.1
AlBERTv2xxlarge 50 100.0 44.4 29.0 42.9 45.3 55.7 61.5
T5small 9.1 44.4 0.0 5.8 33.6 25.3 16.8 19.6
T5base 27.3 88.9 27.8 14.8 58.2 45.1 46.5 33.5
T5large 36.4 94.4 50.0 18.2 60.4 49.8 44.0 0.0
T5xl 44.3 83.3 66.7 21.5 60.9 60.9 68.2 70.0
GPT2base 0.0 0.0 66.7 11.2 48.3 37.7 60.4 56.4
GPT2medium 0.0 0.0 50.0 16.4 61.4 46.9 53.1 60.7
GPT2large 0.0 0.0 38.9 16.8 61.7 51.7 57.9 69.2
GPT2xl 0.0 0.0 44.4 18.8 63.6 52.8 59.0 71.9
GPT3 44.4 94.4 100.0 24.6 65.9 63.3 100.0 100.0
GPT3prompt 38.6 72.2 100.0 24.4 55.9 55.2 100.0 100.0

Table 2: Zero-shot top-5 word prediction accuracy and sensitivity (top-5 over the whole vocabulary). ROLE-88 and

NEG-136 are from Lialin et al. (2022). ROLE-1500 and NEG-1500 are the new datasets. The best result for each

task is in bold. ªSIMPº stands for simple, ªpromptº stands for prompting. The negation task is evaluated in the

affirmative form (Aff ). Sensitivity is the percentage of sentence pairs for which the top-1 prediction changed.
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NEG-1500-SIMP-TEMP Top 1 Top 10 Top 20

BERTbase 28.5 64.7 71.4
BERTlarge 34.2 71.9 76.5
RoBERTabase 22.2 68.7 73.0
RoBERTalarge 30 69.2 74.4
DistilBERTbase 28.6 67.8 75.6
AlBERTv1base 14.3 43.9 49.5
AlBERTv1large 13.5 56.9 63.3
AlBERTv1xlarge 10.3 28.0 32.6
AlBERTv1xxlarge 12.1 48.6 57.3
AlBERTv2base 2.0 18.8 29.2
AlBERTv2large 10.6 46.8 55.6
AlBERTv2xlarge 24.7 45.2 50.0
AlBERTv2xxlarge 14.8 53.4 62.8
T5small 1.7 43.6 51.6
T5base 21.4 65.6 71.3
T5large 22.7 68.3 73.8
T5xl 39.7 66.2 69.9
GPT2base 0.0 57.1 63.6
GPT2medium 0.0 69.5 73.2
GPT2large 0.0 70.0 75.7
GPT2xl 0.0 70.1 75.6
GPT3 27.5 N/A N/A
GPT3prompt 21.8 N/A N/A

Human cloze completion 58.5 - -

Table 3: Zero-shot top-1,10 and 20 word prediction accuracy on NEG-1500-SIMP-TEMP. Top-5 is selected over the

whole model vocabulary. The best result on each task is highlighted in bold. SIMP stands for simple, TEMP stands

for template. Negation tasks are evaluated in the affirmative form (aff ). GPT3 only produces top 5 predictions.

Human cloze completion accuracy is the average accuracy of two annotators.

NEG-1500-SIMP-GEN Top 1 Top 10 Top 20

BERTbase 18.8 66.0 73.3
BERTlarge 22.8 64.3 72.0
RoBERTabase 15.4 51.6 60.1
RoBERTalarge 24.4 61.6 71.7
DistilBERTbase 22.5 61.9 70.5
AlBERTv1base 11.2 46.0 53.6
AlBERTv1large 12.9 50.5 59.6
AlBERTv1xlarge 7.2 34.4 41.6
AlBERTv1xxlarge 12.4 50.7 60.7
AlBERTv2base 2.5 22.2 32.3
AlBERTv2large 10.7 44.8 54.7
AlBERTv2xlarge 24.0 56.5 64.5
AlBERTv2xxlarge 15.3 55.3 54.1
T5small 2.9 36.3 45.6
T5base 15.1 65.5 65.3
T5large 15.1 60.5 68.3
T5xl 39.7 66.2 69.9
GPT2base 16.4 48.0 60.0
GPT2medium 26.1 56.1 66.9
GPT2large 29.3 60.7 69.6
GPT2xl 30.4 60.1 70.4
GPT3 26.5 N/A N/A
GPT3prompt 24.3 N/A N/A

Human cloze completion 45.5 - -

Table 4: Zero-shot top-1,10 and 20 word prediction accuracy on NEG-1500-SIMP-GEN. Top-5 is selected over the

whole model vocabulary. The best result on each task is highlighted in bold. SIMP stands for simple, negation tasks

is evaluated in the affirmative form. GPT3 allow only till top 5 predictions.
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ROLE-1500 Top 1 Top 10 Top 20

BERTbase 6.7 28.1 38.9
BERTlarge 9.1 30.9 40.7
RoBERTabase 0 33.9 47.3
RoBERTalarge 0 38.6 52
DistilBERTbase 6.5 27.3 36.9
AlBERTv1base 2.8 16.2 25.3
AlBERTv1large 4.8 24.2 32.7
AlBERTv1xlarge 7.2 27.3 35.5
AlBERTv1xxlarge 12.2 37.2 45.1
AlBERTv2base 6.2 22.7 29.9
AlBERTv2large 5.9 27.0 36.1
AlBERTv2xlarge 8.8 29.6 37.9
AlBERTv2xxlarge 11.6 37.1 45.1
T5small 1.3 12.1 18.3
T5base 4.7 21.9 28.5
T5large 6.2 25.3 31.3
T5xl 7.9 29.0 36.5
GPT2base 0 18.9 27.1
GPT2medium 0 25.2 36.5
GPT2large 0 27.0 37.7
GPT2xl 0 29.9 38.8
GPT3 7.7 N/A N/A
GPT3prompt 5.7 N/A N/A

Human cloze completion 10.0 - -

Table 5: Zero-shot top-1,10 and 20 word prediction accuracy on ROLE-1500. Top-5 is selected over the whole

model vocabulary. The best result on each task is highlighted in bold. GPT3 produces only top 5 predictions.

Model type ROLE-1500 NEG-1500 NEG-1500 sentivity

Encoder-Only -15.32 -39.52 13.07
Seq-to-Seq -14.20 -28.48 1.20
Decoder-Only 4.87 27.60 7.38

Table 6: Change in the model accuracy for extended dataset as compared to the original dataset across model type.

Negative sign shows drop in the model performance whereas positive number shows the gain in model performance

when dataset was extended.

Model type ROLE-1500 NEG-1500 NEG-1500 sentivity

<60M -10.04 -34.83 13.6
100M -6.47 -13.83 6.98
300M -14.60 -24.77 44.52
1B -1.35 13.3 NA

175B -17.00 -23.23 NA

Table 7: Change in the model accuracy for extended dataset as compared to the original dataset across model size.

Negative sign shows drop in the model performance whereas positive number shows the gain in model performance

when dataset was extended.

2107


