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Abstract: Using computations in the bidual of B(L>M) we develop a new technique
at the von Neumann algebra level to upgrade relative proper proximality to full proper
proximality. This is used to structurally classify subalgebras of LI" where I is an infinite
group that is biexact relative to a finite family of subgroups {A;};c; such that each A;
is almost malnormal in I". This generalizes the result of Ding et al. (Properly proximal
von Neumann algebras, 2022. arXiv:2204.00517) which classifies subalgebras of von
Neumann algebras of biexact groups. By developing a combination with techniques from
Popa’s deformation-rigidity theory we obtain a new structural absorption theorem for
free products and a generalized Kurosh type theorem in the setting of properly proximal
von Neumann algebras.

1. Introduction

Recently the authors and Peterson in [13] developed the theory of small at infinity com-
pactifications a la Ozawa [7], in the setting of tracial von Neumann algebras. At the
foundation of this work lies the theory of operator M-bimodules and the several natural
topologies that arise in this setting (see [16,25-27]). The small at infinity compactifica-
tion is a canonical strong operator bimodule (in the sense of Magajna [25]) containing the
compact operators. By using the noncommutative Grothendieck inequality (similar to
Ozawa in [32]) it was seen that this strong operator bimodule coincides with K> ! (M),
the closure K1 (M) of K(L2M) with respect to the || - ||oo,1-nOrm on B(L>M) given
by ITlloc,1 = SUPyepm |xj<1 ITx|l;. The small at infinity compactification of a tracial
von Neumann algebra M is then given by

S(M) =T € B(L*?M) | [T, JxJ] € K®!' (M), forall x € M}.

It is easy to see that this operator M-system S(M) contains M and K(L2M), and is an
M-bimodule. The advantage of the strong operator bimodule perspective is that it to
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identify an operator T € S(M) suffices to check that [T, JxJ] € K1 (M) for all x in
some weakly closed subset of M. This is what allows for the passage between the group
and the von Neumann algebra settings. Using this technology [13] defined the notion of
proper proximality for finite von Neumann algebras, extending the dynamical notion for
groups [5]: A finite von Neumann algebra (M, t) is properly proximal if there does not
exist an M -central state ¢ on S(M) such that ¢|y = 7. By identifying and studying this
property in various examples, the authors of [13] obtained applications to the structure
theory of II;-factors. The goal of the present paper is to add to the list of applications.

The machinery underlying the results in this paper is built on is the notion of an M-
boundary piece developed in [13], as an analogue of the group theoretic notion introduced
in [5]. The motivation for considering this notion is that it allows for one to exploit the
dynamics that is available only on certain locations of the Stone—Cech boundary of
the group. For a group I', a boundary piece is a closed left and right invariant subset
of B(I")\I", whereas in the von Neumann algebra setting, it is denoted by X typically
and is a certain hereditary C*-subalgebra of B(L>M) containing the compact operators
(see Sect.3.1). One then considers the small at infinity compactification relative to a
boundary piece Sx (M) where K ! (M) is replaced with K%O o1 (M), a suitable analogue
for the boundary piece. Then one can define the notion of proper proximality relative to
X, demanding that there be no M-central state restricting to the trace on Sx(M). The
main example we will be working with is a boundary piece generated by a finite family
of von Neumann subalgebras {M;}]_, (see Example 3.1), which is adapted from the
construction for a finite family of subgroups (see Example 3.3 in [5]).

In [12], the authors demonstrated an instance where relative proper proximality can
be lifted to full proper proximality, i.e, when the boundary piece arises from subgroups
that are almost malnormal' and not co-amenable (see Lemma 3.3 in [12]). The authors
used this idea to classify proper proximality for wreath product groups. In this paper, we
develop an analogue of this idea in the setting of von Neumann algebras (Theorem 1.1).
In both cases, one has to work in the bidual of the small at infinity compactification for
technical reasons, and this brings about an extra layer of subtlety especially in the von
Neumann setting. More specifically we show that one can map the basic construction
into the bidual version of the relative small at infinity compactification, provided the
boundary piece arises from a mixing subalgebra. Composing with an appropriate state
on this space, we get the link with relative amenability in the von Neumann setting. This
upgrading theorem is the main new technical tool we develop in the present work:

Theorem 1.1. Let M be a diffuse finite von Neumann algebra, Mi C M, i =1,...,n
diffuse von Neumann subalgebras, and A C pM p a von Neumann subalgebra, for some
p € P(M). Denoting by ey, the Jones projection of M; C M, we further assume there
exists a countable group G < U(M) with G = M such that

(1) The family {uJvJey, Jv*Ju* | u,v € G,i = 1,...,n} consists of pairwise com-
muting projections;

(2) For each i, M; C M admits a Pimsner—Popa basis {m};}keN C M such that for any
u € Gandk € N, we may find some k, € Nand u}( € U(M;) such that um}( = m};u u};,
and elements in {m}'{szJeMi J(m%)*](m};)* | k,£ e N,i =1,...,n}are pairwise
commuting.

Assume that A is properly proximal relative to X inside M, where X is the boundary
piece associated with {Mi}?:l, and M; C M is mixing for eachi = 1,...,n. Then

LA subgroup H < G is almost malnormal if for all g € G\ H, gHg*] N H is finite.
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there exist projections fy € Z(A) and f; € Z(A' N pMp), | < i < n, such that Afy
is properly proximal and Af; is amenable relative to M; inside M for each 1 <i < n,

and 37y fi = p.

Remark 1.2. We point out that the above two conditions on the existence of such count-
able subgroup G < U(M) are satisfied in the case of group von Neumann algebras,
which is our main application. Indeed, when M = LI" and M; = LT;, where I is a
countable discrete group and I'; < I is an infinite subgroup fori =1, ..., n, one may
take G = I" and for each i set mj = u;, € U(M), where {t; }yen C T is a transversal for
r/r;.

Using these ideas we are interested in classifying subalgebras of group von Neumann
algebras arising from groups that are biexact relative to a family of subgroups (see e.g.
[7, Chapter 15]). The first result of this kind was obtained in Theorem 7.2 of [13] where
it was shown that every subalgebra of the von Neumann algebra of a biexact group either
has an amenable direct summand or is properly proximal. As essentially observed there,
what relative biexactness buys us is the relative proper proximality for any subalgebra,
relative to the boundary piece arising from the subgroups. Combining this with our
upgrading result above, we obtain our main result below which is a structure theorem
for von Neumann subalgebras of group von Neumann algebras that are biexact relative
to a family of subgroups where each subgroup is almost malnormal.

Theorem 1.3. Let T" be a countable group with a family of almost malnormal subgroups
{Ai}!_,. If T is biexact relative to {A;};_,, then for any von Neumann subalgebra
A C LT, there exists p € Z(A) and projections p; € Z((Ap)' N pL(T')p) such that
\/?Zl pj = p and Ap; is amenable relative to LA; inside LT, for eachi =1,...,n

and Ap* is properly proximal.

There are two natural instances where such a phenomenon (a countable group I'
with a family of almost malnormal subgroups {A;}?_, where I' is biexact relative to
{A;}?_,) is observed: First is in the setting of free products, which we deal with in the
present paper. Second is in the setting of wreath products, which is investigated in a
follow-up work by the first author [11]. There is conjecturally a third setting of relative
hyperbolicity, which we comment on in the end of the introduction.

Thanks to Bass—Serre theory [39] we have a complete understanding of subgroups
of a free product of groups. As a result, one can derive results of the following nature:
If H < G1 * G, such that |H N G| > 3, then H is amenable only if H < Gj. This
phenomenon is referred to as amenable absorption. Interestingly, the situation for von
Neumann algebras is much more complicated. There is comparatively a very limited
understanding of von Neumann subalgebras of free products. Whether every self adjoint
operator in any finite von Neumann algebra is contained in a copy of the hyperfinite II; -
factor was itself an open problem for many years.” Popa settled it in the negative in [37]
by discovering a surprising amenable absorption theorem for free product von Neumann
algebras, thereby showing that a generator masa in LI, is maximally amenable.

Popa’s ideas been used to show maximal amenability in other situations (See for
instance [6,9,34,41]). In the past decade there have been other new ideas that have
been used to prove absorption theorems: Boutonnet—Carderi’s approach [2] relies on
elementary computations in a crossed-product C*-algebra; Boutonnet-Houdayer [4] use
the study of non normal conditional expectations; [17] used a free probabilistic approach

2 This is a question of Kadison, Problem 7 from ’Problems on von Neumann algebras, Baton Rouge
Conference’
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to study absorption. Ozawa in [32] then gave a short proof of amenable absorption in
tracial free products. There have also been a variety of important free product absorption
results which are of a different flavor, and are structural in nature. See for example [22]
and [10].

By applying our Theorem 1.3 in the setting of free products and using machinery
from Popa’s deformation-rigidity theory (specifically work of Ioana [21]), we obtain a
generalized structural absorption theorem below:

Corollary 1.4. Let (M1, t1) and (M», 12) be suchthat M; = LT'; where I'; are countable
exact groups and M = M1* M3 be the tracial free product. Let A C M be avon Neumann
subalgebra with A N M diffuse. If A C M has no properly proximal direct summand,
then A C M;.

Remark 1.5. Using results of the upcoming work [14], one can relax the assumption on
M;, from being infinite group von Neumann algebras of exact groups, to just that they
are diffuse weakly exact von Neumann algebras. We do not comment more on this at
the moment because for the sake of examples, the above setting already provides many.

The authors of [23] showed that there are examples of groups that are neither inner
amenable nor properly proximal. All of these group von Neumann algebras fit into the
setting of the above corollary. Note that Vaes constructed in [40] plenty of groups that are
inner amenable, yet their group von Neumann algebras lack Property (Gamma). Hence
our results give a strict generalization of (Gamma) absorption (see Houdayer’s Theorem
4.1 in [18] and see also Theorem A in [17]) in these examples.

Remark 1.6. The above result is false if one considers amalgamated free products. For
instance, take M| = M, = LF,®R and A = (LZ x LZ)®R C M; xg M>, where two
copies of LZ in A are from M and M5, respectively.

Remark 1.7. Shortly before the posting of this paper, Drimbe announced a paper (see
[15]) where he shows using Popa’s deformation-rigidity theory that for any nonamenable
inner amenable group I', if L(I") C M * M>, then L(I") intertwines into M; for some
i = 1, 2. This in particular generalizes Corollary 1.4 in the case that A = LT for some
inner amenable group I', because he doesn’t require any assumptions for ;.

Our techniques also reveal the following new Kurosh type structure theorem for free
products in the setting of proper proximality, (partially generalizing Corollary 8.1 in
[15]). See also [19,22,31,35] for other important Kurosh type theorems.

Corollary 1.8. Let M = LT'1 *x---x L"), = LAy *---% LA, where all groups T'; and
A j are countable exact nonamenable non-properly proximal i.c.c. groups. Thenm = n
and after a permutation of indices LT'; is unitarily conjugate to L A;.

We conclude by state the following folklore conjecture (also stated in [29]), which
would provide another family of examples for applying Theorem 1.3. Indeed the periph-
eral subgroups below are almost malnormal (see Theorem 1.4 in [28]).

Conjecture 1. [29] If G is exact and hyperbolic relative to a family of peripheral sub-
groups {H;}!_,, then G is biexact relative to {H;}]_,.
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2. Preliminaries

2.1. The basic construction and Pimsner—Popa orthogonal bases. Let M be a finite von
Neumann algebra and Q9 C M be a von Neumann subalgebra. The basic construction
(M, eg) is defined as the von Neumann subalgebra of B(L*M) generated by M and the
orthogonal projection e from L%(M) onto L?(Q). There is a semifinite faithful normal
trace on (M, eg) satisfying Tr(xepy) = t(xy), forevery x, y € M.

Let N C M be a von Neumann subalgebra. Then a Pimsner—Popa basis (see [36]) of
M over N is a family of elements denoted M /N = {m };c; C M such that

(1) EN(m;fmk) =4 kpj, where p; € P(N) is a projection.
() L*(M) = EBJ-EJ mjLz(N) and every x € M has a unique decomposition x =
Zj ijN(m;‘»x).

In the case that N = L(A) and M = L(I') where A < I', we can identify a
Pimnser—Popa basis in M from a choice of coset-representatives i.e, I' = | ;- %A,
andmk :Z)\tk EU(LF)ZM/NZ{Mj}jeJ. B

2.2. Popa’s intertwining-by-bimodules.

Theorem 2.1. [38] Let (M, t) be a tracial von Neumann algebra and P C pMp, Q C
M be von Neumann subalgebras. Then the following are equivalent:

(1) There exist projections py € P, qo € Q, a x-homomorphism 6 : poPpo — qoQ0qo
and a non-zero partial isometry v € qoM po such that 6 (x)v = vx, forall x € po P po.
(2) There is no sequence u, € U(P) satisfying ||Eg(x*upy)ll2 = 0, forallx,y € pM.

If one of these equivalent conditions holds, we write P <y; Q, and say that a corner
of P embeds into Q inside M.

2.3. Relative amenability. Let P C M and Q C M be a von Neumann subalgebras. We
say that P is amenable relative to Q inside M if there exists a sequence &, € L>((M, eg))
such that (x&,, &,) — 7(x), forevery x € M, and ||y, — &,y — O, forevery y € P.
By [33], Theorem 2.1 P is amenable relative to Q inside M if and only if there exists
a P-central state in the basic construction (M, ep) that is normal when restricted to M,
and faithful on Z(P' N M).

2.4. Mixing subalgebras and free products of finite von Neumann algebras. Let M be
a finite von Neumann algebra and N C M a von Neumann subalgebra. Recall the
inclusion N C M is mixing if L2(M © N) is mixing as an N-N bimodule, i.e., for
any sequence u, € U(N) converging to O weakly, one has ||Ex(xu,y)|l» — 0 for any
X,y € M & N.When M and N are both diffuse, we may replace sequence of unitaries
with any sequence in N converging to 0 weakly [13, Theorem 5.9].

Remark 2.2. Let M be a diffuse finite von Neumann algebra and N C M a diffuse von
Neumann subalgebra. If N C M is mixing, then it is easy to check that exxJyJey €
B(L>M) is a compact operator from M to L>M assuming x ory € M © N.
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Examples of mixing subalgebras include M| and M, C M| * M>, where M| and M»
are diffuse [24, Proposition 1.6] and LA C LT, where A < I' is almost malnormal (see
Proposition 2.4 in [3]).

The following [20, Corollary 2.12] is crucial to the proof of Theorem 5.1.

Lemma 2.3 (Ioana). Let My, My be two diffuse tracial von Neumann algebras and
M = M * M> be the tracial free product. Let A C M be a subalgebra such that A is
amenable relative to My in M. Then either A <y My or A is amenable.

We also need the following case of the main result of [4]:

Theorem 2.4 (Boutonnet-Houdayer). Let M = M1 x M»>, where M; are diffuse tracial
von Neumann algebras. If A C M is a von Neumann subalgebra that satisfies A N M
is diffuse and A is amenable relative to My inside M, then A C M.

3. Proper Proximality for von Neumann Algebras and Boundary Pieces

3.1. Boundary pieces from von Neumann subalgebras. Let M be a finite von Neumann
algebra. An M-boundary piece is a hereditary C*-subalgebra X C B(L>M) such that
M(X) N M and M(X) N J M J are weakly dense in M and J M J, respectively, where
M(X) is the multiplier algebra of X. To avoid pathological examples, we will always
assume that X # {0}, and it follows that K(L?> M) C X, by the assumption on M(X).

The main example of an M-boundary piece we use in this paper is one generated by
von Neumann subalgebras. We recall some facts about hereditary C*-algebras for what
follows (see e.g. [1, I1.5]).

Let A be a C*-algebra. There is a one-to-one correspondence between the set of
hereditary C*-subalgebras of A and the set of closed left ideals in A: given a hereditary
C*-subalgebra H C A, Ly := AH = {ah |a € A, h € H} is a closed left ideal; and
for a closed left ideal L C A, Hy, = L N L* is a hereditary C*-subalgebra of A. Given
a subset of operators {b;};c; C A, the hereditary C*-subalgebra generated by {b;};<; is
BAB = {bab | b € B;,a € A}, where B is the C*-subalgebra generated by {b;};c;.

Example 3.1. (Boundary piece generated by subalgebras) Let M be a finite von Neumann
algebra. Suppose M; C M,i = 1,...,n are von Neumann subalgebras and denote
by ey, € B(L? M) the orthogonal projection from L?>M onto the space L>M;. The
M-boundary piece associated with the family of subalgebras {M;}?_, is the hereditary
C*-subalgebra of B(L? M) generated by operators of the form xJyJe Mm; withx, y € M,
i=1,...,n,and it is clear that M and JMJ are contained in its multiplier algebra.

Lemma 3.2. Let M be a finite von Neumann algebra and M; C M, i = 1,...,n von
Neumann subalgebras such that the projections {ey,}!_, are pairwise commuting. Let
X be the hereditary C*-subalgebra in B(L> M) generated by {x JyJ(Vi_jem) 1 x,y €
M)} and Y the hereditary C*-subalgebra in B(L?>M) generated by {(xJyJey, |i =
1,---n, x,y € M}. Then X =Y.

Proof. First note that ey, € X for each i since 0 < ey, < V/_ epy,;. We also have
Vi_jem; € Y. In fact, for each pair i, j, em; Nem; € Yas0 < ey, Ney; < ey;, and
em; NV em;=em; +em; —em; Ney; € Y as [ep;, eMj] = 0. To see that X C Y, note
that L = B(L2M)X is contained in K = B(L2M)Y. Indeed, for any x,y € M and
T € B(L? M), we have T(V'_ en,)xJyJ € B(L? M)YxJyJ = B(L> M)Y as M and
JM J are in the multiplier algebra of Y. By a similar argument we see that Y C X. 0O
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Fix an M-boundary piece X and let K%(M ) C B(L%2M) denote the I - lloo,2 closure

lIlloo,2

of the closed left ideal B(L2M)X, i.e., Ké(M) = B(L2 M)X , where || - |lo0,2 ON
B(L* M) is given by [|T|lcc,2 = sup,c(y), IT X2 for T € B(L2M).

We let Kx(M) = (K& (M))* N (K& (M)), which is a hereditary C*-subalgebra of
B(L2 M) with M and J M J contained in M(K%(M)) [13, Sect. 3]. Denote by K;;*l(M)
the || - lso.1 closure of Kx (M) in B(L> M), |T||lc.1 = supme(M)l(T)?, y) for T €

B(L> M) and it coincides with gt
Now put Sx(M) C B(L?>M) to be

Sx(M) = {T € B(L>M) | [T, JxJ] € K¥*' (M) for all x € M},

which is an operator system that contains M. In the case when X = K(L% M), we write
S(M) instead of Sk ;2 yr)(M).

Recall from [13, Theorem 6.2] that for a finite von Neumann subalgebra N C M and
an M-boundary piece X, we say N is properly proximal relative to X in M if there is no
N-central state ¢ on Sx (M) that is normal on M. And we say M is properly proximal
if M is properly proximal relative to K(L>M) in M.

Remark 3.3. Let M and Q be finite von Neumann algebras, X an M-boundary piece,
and N C pMp be a von Neumann subalgebra, where 0 # p € P(M).

(1) Consider the u.c.p. map Ey = Ad(ey) o Ad(pJpJ) : B(L> M) — B(L>N). Then
by [13, Remark 6.3] that Ey (Kx (M)) C B(L?N) forms an N-boundary piece. And
we say Exy (Kx (M)) is the induced N-boundary piece, which will be denoted by XV,

(2) If N is properly proximal relative to X inside M, then zN is also properly proximal
relative to X inside M for any 0 # z € Z(P(N)), since Ad(z) o Sx(M) C Sx(M).

(3) If N is properly proximal relative to X inside M, then N has no amenable direct
summand. To see this, suppose g N is amenable for some 0 # ¢ € Z(P(N) and
let ¢ be a g N-central state on B(L?(gN)). Consider i := ¢ o Ad(g) o Ad(ey) :
B(L2M) — C, and one checks that j is a N-central state with M m being normal.

(4) Notice that from the definition it follows that proper proximality is stable under taking
direct sum. Thus we may take f € Z(P(Q)) so that Qf is the maximal properly
proximal direct summand of Q.

3.2. Bidual formulation of proper proximality. Given a finite von Neumann algebra M
and a C*-subalgebra A C B(L?M) such that M and JM J are contained in MI(A), we
recall that AM*M (resp. A7MJE/MTy denotes the space of ¢ € A* such that for each
T € AthemapM x M > (a,b) — ¢(aTbh) (resp. IMJ x JMJ > (a,b) — ¢(aTbh))

is separately normal in each variable and set Aﬁj = AMEM n AIMIEIMJ Noreover,
we may view (At})* as a von Neumann algebra in the following way, as shown in [13,
Sect. 2]. Denote by pnor € B(L?M)** the supremum of support projections of states in
B(L%M)* that restrict to normal states on M and JM J, so that M and JM J may be
viewed as von Neumann subalgebras of pyorM(A)** ppor. Note that ppor lies in MI(A)**
and pporMI(A)** ppor is canonically identified with (M(A)I})*. Letgs € P(M(A)*) be
the central projection such that g4 (M[(A)**) = A™* and we may then identify (Ag)* with
A Pnor MI(A)** pror = Pnor A™ Pnor, Which is also a von Neumann algebra. Furthermore,
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if B C A is another C*-subalgebra with M, JMJ C M(B), we may identify (Bi)*

with ¢ g pnor A** pnorg B, Which is a non-unital subalgebra of (At})*.
We will need the following bidual characterization of properly proximal.

Lemma 3.4. [13, Lemma 8.5] Let M be a separable tracial von Neumann algebra with
an M-boundary piece X. Then M is properly proximal relative to X if and only if there
is no M-central state ¢ on

Sx(M) = {T c (B(L2M)3>* | [T, a] € (KX(M)fj)* forall a ¢ JMJ}

such that ¢y is normal.

Using the above notations, we observe that we may identify Sx(M) in the following
way:

Sx(M) ={T € (B(L*M)})"| [T, a] € (Kx(M)’)", foranya € JMJ}
= {T € pr1(>r183(Lz]W)>x<>k
Pror | [T, al € gx pnor(M(Kx (M)))™ prorgx, foranya € JMJ},

where ¢x is the identity of Kx(M)** C (M(KX(M)))**. If we set gk = g (1.2 m) to be

the identity of K(L2M)** C_B(L>M)**, then using the above description of Sx (M),
L

we have q}Jg-Sx(M)qFJ{ C qxS(M), as gx commutes with JM J.

Remark 3.5. Recall that we may embed B(L2M) into (B(LzM)g)* through the u.c.p.
map tpor, Which is given by tpor = Ad(pnor) o ¢, Where ¢ : B(L2M) — B(LEZM)** is
the canonical *-homomorphism into the universal envelope, and ppor is the projection
in B(L2M)** such that pporB(L? M)*™* ppor = (B(L? M)B)*. Restricting tpor to C*-
subalgebra A C B(L>M) satisfying M, JMJ C M(A) give rise to the embedding of

A into (At})*, and (tnor)|m, (tnor)|smy are faithful normal representations of M and
J M J, respectively. Furthermore, although tpor is not a x-homomorphism, we still have
spMepM = sp{xepy | x, y € M} isin the multiplicative domain of ¢, where B C M
is a von Neumann subalgebra and e : L? M — L*B is the Jones projection, by
Lemma 3.8.

Lemma 3.6. Let M be a finite von Neumann algebra and X an M-boundary piece. Let
Xo C Kx(M) be a C*-subalgebra and {e,},e; an approximate unit of Xo. If tnor (Xo)
is weak® dense in (Kx(M )L})’k and t(e,) commutes with pnor for each n € I, then

limy, thor(en) € (Kx(M )i)* is the identity, where the limit is in the weak™® topology.

Proof. Lete = limy, tpor(e,) € (Kx(M )uj)* be a weak™ limit point and for any 7' € X,
we have

etnor(T) = li,ﬁn Prort(en)t(T) pnor = lirlln Prort(enT) pror = tnor (1),

and similarly tnor(T)e = tnor(T). By density of (h0r(Xo) C (Kx(M )tj)*, we conclude
that e is the identity in (K (M)5)*. O
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Lemma 3.7. Let M be a finite von Neumann algebra and My C M,d = 1,...,n be
von Neumann subalgebras such that {ey,} are pairwise commuting. Set e = \'j_ ep,.
Suppose My C M is a weakly dense C*-algebra. Denote by X the M-boundary piece
associated with {My};_, and Xg C B(L2M) the norm closure of sp{x1Jy1JT Iy2Jx7 |

Xi, yi € Mo, T € eB(L?> M)e}. Then tnor(Xo) C (KX(M)t})* is weak™ dense.

Proof. Recall from Lemma 3.2 that X is the norm closure of sp{x;Jy;JSJy,Jxy |
Xi,yi € M,S € eB(L* M)e}. First we claim that for any ¢ € KX(M)t} and any
T = x1Jy1JSJy>»Jxy € X, with contractions x;, y; € M and S € eB(L? M)e, we may
find a sequence T, € Xg such that (T — 7,) — 0. Indeed, for each i = 1, 2, take
sequences of contractions xy, y, € My such that limy ||x;, —x; |2 = limg ||y, — yill2 = 0.
Observe that for Ty, , jx = x,I,,JyrlJSJyszx,% € Xo withm, r, j, k € N, we have

Q(T = T )] < lo((x1 — x)Iy1 I STy2dx2)| + l@(xp T (y1 — ¥ I STy2Jx2)]
+ 19 Iy T ST (v2 = YD I x|+ l@Cun Ty} T STy3T (x2 — x}))].

For any n € N, pick m(n) € N such that |¢((x] —x}ln(n))JleSJszxgﬂ < 27" This is

possible since ¢ € KX(M)Ii , Which implies that M 5 x — @(xJy;JSJy2Jx2) € Cisa
normal functional. Next we may pick yrl(n) such that |¢(J (y; —yrl(n))Jx,il(n) STyrJx2)| <
27" since x VL ) is already chosen. Repeating this process, we obtain
Ty = Xy I VI SIYi I Xy € Xo with o(T — T,)| < 2>7", which justifies
the claim.

Moreover, as X is the norm closure of sp{x|Jy1JSJy»Jx2 | xij,yi € M,S €
eB(L? M)e}, we conclude that for any ¢ € Kx(M )3 andany 7' € X, we may a sequence
T, € X such that |p(T — T,)| — 0. In other words, tnor(X) is in the weak™-closure
of thor (Xo). We remark that the sequence {7},} is not necessarily uniformly bounded in
norm.

Thus to show tpor (Xo) C (Kx(M )tJ)* is dense in the weak™*-topology, it suffices to
show (por (X) C (Kx(M )ﬁj)* is dense in the weak*-topology. To this end, we show the
unit ball of X is dense in the unit ball of Kx (M) in || - || s0,1, Which then implies the weak™-
density of tnor(X) C (Kx (M))* by [13, Proposition 3.1]. Let T € Kx (M) ¢ X1™"
be a contraction and 7,, € X such that |7 — T,|lco,1 — 0. By [13, Proposition
3.1], for each n there exists a,, by, cn,dy € M and z, € Ma(B(L2M)) such that
limy (lanll3 + 162 1)"/? = Tim, [lzall = limu(leall5 + 1dal3)'/* = 0and T, = T =

%
(JZ"J> n (]2” J). For some N € N, consider projections e, =
n n
]1[071/N](a2‘a,, + cj:cn)J and fn = 1[0,1/N](b;lkbn + d:dn) Then ||enJaZJ||2,
1 Jendenll®, | fabi 112, lldn full* < 1/N andhence |le, fo (T, —T) frenll — Oasn — oc.
Moreover, note that 1 —Je, J < N(a}a,+c;c,)and ||an||§, ||cn||% — 0,and thuse, — 1
in the strong operator topology. Similarly, f,, — 1 in the strong operator topology as
well. Finally, we have

llen fuTn fuen — T”oo,l <llex fu(Tn = T) frenll + llen fu T fren — T”oo,l — 0.

Since e, f, T, fnen € X, after renormalization we conclude that 7 may be approximated
by a sequence of contractions in X in || - ||co,1- |
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Lemma 3.8. Let M be a finite von Neumann algebra and N C M a von Neumann
subalgebra. Let ey € IB%(LZM) be the orthogonal projection onto L%N. Then tley) €
B(L? M)** commutes with por.

Proof. Suppose B(L2M)**  B(H) and notice that £7{ is in the range of ppo, if and
onlyif M >x — (t(x)§,&) and IMJ > x — (1(x)&, &) are normal. For & € phorH,
we have p(x) := (t(x)t(ep)&, tlen)€) = (L(En(x))E, &) is also normal for x € M and
JM J, which implies that t(ey) pror = Pnort(€N) Pnor- It follows that ((ey) and ppor
commutes. O

Lemma 3.9. Let N C M be a mixing von Neumann subalgebra admitting a Pimsner—
Popa basis {my} where my € M. Let Xy be the associated boundary piece (see Ex-
ample 3.1), and gx € (K(L? M)t})*, gxy € Kxy (M)%)* be the respective identity
elements. Then

> dictnor(mi JmyJen Jmy Jmy) = qicqs.y.
k.l

Proof. Denote by pi; = qﬂétnor(mk JmjJeyJm;Jmj). Note that since N C M is mix-
ing, we have eyxJyJey —enEn(x)JEN(y)Jen € K(M), i.e, is a compact operator
when viewed as a bounded operator from the normed space M to L*(M). Indeed, we
compute

enxJyJeny —enEN(xX)JEN(Y)J
=en(x —En(x))JyJey +enEn(x)J(y — ENn(¥))Jen
=en(x —Enx)J(y — En())Jey
+ey(x — Ey()JEN(y)Jeny +enEn(X)J(y — En(y))Jey.
Notice thatey(x — Ex(x))JEn(V)Jey = enEn(x)J(y — En(y))Jen = 0 and thus
enxJyJey —enEN(X)JEN(Y)] =en(x — EN(x)J(y — En(y))Jeny € K(M).

It then follows that {p ¢} is a family of pairwise orthogonal projections, as

DPkiDi .y = qﬂétnor(kamlleNJm?‘mlerka/eNJml*, Jmy,)
= it tnor (M JmyJen J qid qren Jmi Jm) Sy 1811
= Gittnor (M Jm} Jen Jm Jm )y 1611,

where g; € P(N) such that ¢; = Ey (m]m;) and automatically satisfies m;q; = m; (see
Sect.2.1).

Denote by Xg C B(L?>M) the hereditary C*-subalgebra generated by xJyJey for
x, y inthe C*-algebra A generated by {mya}sen ken. Itis clear that X is an M-boundary
piece and note that A is weakly dense (see Sect.2.1, (2)) in M.

To see )y ¢ Prt = qﬂéqxl\,, it suffices to show

O pi i) tmor(miJmeJalbJen) = qigtnor(mi JmeJabJey) ()
kI
and
1
tnor(en Jme JmpaJbI)(Y | prr) = qictnor(en JmeJmyaJbJ) )

kU
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for all a,b € N and k,l € N. Indeed, every element in X can be written as a
norm limit of linear spans consisting of elements of the from x;Jy; JT Jy>Jx2, where
xi,yvi € Aand T € ]B%(L2N). Further we can assume x; = mya with a € N from den-
sity. Then we will get that for all z € Xp, Zk‘l qﬂétnor(mk JmfJen JmyJmi)inor(z) =

qﬂétnor (z). Since by Lemma 3.7 we have X is weak™ dense in (Kx,, (M )ﬁj)*, we conclude

> it i tnor (i Jm} Jen JmyJmy) = qiqx, -
Finally to see (1), notice that a direct computation shows that

P 'tnor(miJmeJaJbJeyn) = 5k,k/5z,1/qﬁétnor(mk1mz JaJbJey).

Similarly, (2) holds as well. |

Lemma 3.10. Let M be a finite von Neumann algebra and M; C M, i = 1,...n be von
Neumann subalgebras. Suppose G C U(M) is a countable group such that G’ = M
and {uJvJey, Jv*Ju* | u,v € G,i = 1,...,n} is a family of pairwise commuting
projections. Let X denote the boundary piece associated to {M;}}_, as in Example 3.1.
Let X; denote the boundary pieces associated to M;. Let q; denote the identities of the
von Neumann algebras (Kx, (M )3)* and gx denote the identity of (Kx(M )3)*. Then
we have that gx = V}_,q;.

Proof. Recall from the beginning of this section that (Kx(M )ﬁj)* is a von Neumann
algebra, as M, JM J are in the multiplier algebra of M((Kx(M)). It is easy to see that
gx > q; foreachi.

Now we show that gx < V!_,q;. Let F, C G be an increasing family of finite
subsets such that UF,, = G. Let eg = V,ey, and e, = Vy yer,uJvJ (Viey,)Jv* Ju*.
Since {uJvJey, Jv*Ju* | u,v € G,i = 1,...,n} is a family of pairwise commuting
projections, we have e, € X by Lemma 3.2. If we denote by Xg = {x1Jy1JT JyrJx> |
X1,X2, V1,2 € Mo, T € eoIB(L2 M)ep}, where My is the C*-subalgebra generated
by G, then one checks that {e,} is an approximate unit of Xg. In fact, note that for
u,v € G, we have egJvJue, = wJvJ)(w*Jv*JeyJvJu)e, = egJvJu whenever
u*Jv*JegJvJu < ey,i.e., whenever u*, v* € F),. Since M is the C*-algebra generated
by G, this shows that for any x, y € My, ||[(egJyJx)e, — egJyJx|| = 0asn — oo.
Similarly, we also have |le,(egJyJx) — egJyJx| — 0 as n — oo, and hence {e,} is
an approximate unit for Xg.

We claim that tpor(e;) < Vi_,q;. Note that v, yepuJvJey, Jv*Ju* € X; and
hence tnor (Vi ver,uJvJey, Jv* Ju*) < g;. Furthermore, since

tnor(en) = Lnor(\/u,van (Viu-lv-leM,- JU*JM*)) = Lnor(\/i(vu,van
uJvJey, Jv*Ju®)) < V;l:lq,',

by Lemmas 3.6 and 3.7 we see that gx = lim,, tpor(e,) < V?:lql" O

3.3. Induced boundary pieces in the bidual.

Lemma 3.11. Let M be a finite von Neumann algebra and N C pMp a von Neumann
subalgebra for some 0 # p € P(M). Set E := Ad(ey) o Ad(pJpJ) : B(L’M) —
B(L2N). Then its restriction E\suy maps S(M) to S(N). Moreover, there exists a u.c.p.
map E : S(M) — S(N) such that E|M agrees with the conditional expectation from M
to N.
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Proof. To see Eisry @ S(M) — S(N), note that pJpJeyJyaly = JaJpJpJey
foranya € N.and E : B(L2M) — B(L2N) is || - oo, 1-continuous. Thus for any
T € S(M) and any a € N, we have

LE(T). Jyaly) = E((T, JaJ)) € ERGD"™" = KA 1= = k=1 (v,

ie., E(T) € S(N).
Note that E* : B(L2N)* — B(L?>M)* maps ]B%(LzN)t} to IB%(LZM)g by [13, Lemma
5.3, and similarly E* : (K(L2N)); — (K(L?M))]. Therefore £ := (E* 5 5 :)" :
J

B(L2 M)")* — (B(L2N)")* and EKK(LZM))%* D (K(L2M)S)* — (K(L2N))*.

Hence we conclude that E : S(M ) — §(N ) with E| M agrees with the conditional
expectation from M to N. O

3.4. Relative biexactness and relative proper proximality. Given a countable discrete
group I', a boundary piece I is a I x I" invariant closed ideal such that coI" C I C £°°T
[5]. The small at infinity compactification of I relative to [ is the spectrum of the C*-
algebra S;(I') = {f € £*°T | f — R, f € I, foranyt € TI'}. Recall that T" is said
to be biexact relative to X if ' ~S;(I")/I is topologically amenable [5], [7, Chapter
15], [30]. We remark that this is equivalent to I' ~S;(I") is amenable. Indeed, first
note that we have a I'-equivariant unital embedding £*°T < [** by taking {¢;} € I
a ['-asymptotically invariant approximate unit and consider a weak™* limit point of ¢; :
LT > f = e f € I C I'™. Since we have T~ 1™ @ (S;(I")/1)™ = S;(I")™* is
amenable, and it follows that I' ~ S; (") is an amenable action [8, Proposition 2.7].

The following is a general version of [13, Theorem 7.1], whose proof follows sim-
ilarly. For the convenience of the reader we include the proof sketch below. A more
general version of this is obtained in the upcoming work [14].

Theorem 3.12. Let M = LT where T is an nonamenable group that is biexact relative
to a finite family of subgroups {A;}icj. Denote by X the M-boundary piece associated
with {LA;}ic;. If A C pMp for some 0 # p € P(M) such that A has no amenable
direct summands, then A is properly proximal relative to X*, where X4 is the induced
A-boundary piece as in Remark 3.3).

Proof. Consider the I'-equivariant diagonal embedding £°(I") C B(¢2T). Note that
under this embedding co(T", {A;}icr) is sent to X. Denote by Sx(I") = {f € £°(")| f —
fg € co(l', {Ai}ier), Vg € I'}, therelative small at infinity compactification at the group
level. Restricting this embedding to Sx(I") then gives a I'-equivariant embedding into
Sx (M). Therefore we obtain a x-homomorphism from Sx(I") %, I' — B(¢%(I")) whose
image is contained in Sx(M). Composing this with the map E from Lemma 3.11, we
obtain a u.c.p map ¢ : Sx(I') x, I' — Sxa(A). By hypothesis we have a projection
po € Z(A) and an Apg bimodular u.c.p map ® : Sxa(A) — Apo. Further composing
with this map we obtain a u.c.p map from ¢ : Sx(I") x, ' — Apo.
{xP0. o)

Now set ¢ : Sx(I') x, I' — C, by ¢(x) := R We then get a representation

7y : Sx(I') %, I' = H, and a state ¢ € B(H,,)« such that ¢ = @ o 7. Since C;¥(I') is
weakly dense in M, we see by an argument of Boutonnet—Carderi (see Propositon 4.1
in [2]) that there is a projection g € (7, (Sx(I") %, I'))” such that ¢(¢) = 1 and there
exists a normal unital x-homomorphism ¢ : L(I") — ¢, (Sx(I") x, I"))"q.
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Since T is biexact relative to X, we have that Sx(I") x, I' is a nuclear C*-algebra.
Therefore there is a u.c.p map 7 : IB%(EZ(F)) — q(Sx(I") x, I')’q extending t. Now we
see that @ oTis an Apg central state on B(¢2(I")) showing that A has an amenable direct
summand, which is a contradiction. O

In the case of general free products of finite von Neumann algebras M = M| x M»
it ought to be the case that that if A C M such that A has no amenable direct summand,
then A C M is properly proximal relative to the boundary piece generated by M7 and
M,. However, currently we are only able to obtain this with an additional technical
assumption that M; = LI; where I'; are exact, so that I'j % "> is biexact relative to
{I'1, T2} [7, Proposition 15.3.12]. We record below a general result about subalgebras
in free products which follows essentially from Theorem 9.1 in [13], however we do not
get the boundary piece associated to the subalgebras M;. We instead get the boundary
piece associated to the word length:

Let M1, M; be two finite von Neumann algebras and M = M * M; be the tracial
free product. Let A C M be a nonamenable subalgebra. Consider the free product
deformation from [22], i.e., M = M % LF, 6, = Ad(u}) * Ad(ub) € Aut(M), with
u} = exp(itay), uh = exp(itaz), where oy, a3 are selfadjoint element in LIF; such that
exp(ia;) = uy, exp(iop) = uo and ug, up are Haar unitaries in LIF,. For ¢ > 0, we
have Epy ooy = Py + Zzozl(sin(rrt)/nt)z” P, (see Sect. 2.5 in [20]), where P, is the
orthogonal projection to H,, = @, i,)eS, LZ(M,-l o0)R® --® L2(M,-,, ©C) and S,
is the set of alternating sequences of length n. Consider the hereditary C*-algebra X
generated by { Py },>0.

Proposition 3.13. In the above setup, there exists a projection p € A such that Ap is
amenable and Ap™ is properly proximal relative to Xf.

Proof. Ttfollows from the proof of [ 13, Proposition 9.1] that there exists an M-bimodular
u.c.p. map ¢ : (M°PY NB(L?M O L* M) — SXF (M). Moreover, since L2M © L* M =
L? M®K as an M-M bimodule for some right M module K [20, Lemma 2.10], we may
restrict ¢ to B(L?> M) ® idic. Take p € Z(A) to be the maximal projection such that Ap
is amenable and p # 1 as A is nonamenable. If Ap™ is not properly proximal relative
to X inside M, i.e., there exists an A-central state ¢ on Sx (M) which is normal when
restricted to pMp~. Then pick ¢ € Z(Ap™) be the support projection of (¢ o D) apt
and we have Aq is amenable, which contradicts the maximality of p. O

4. The Upgrading Theorem

Proof of Theorem 1.1. First notice that since A is properly proximal relative to X inside
M, it has no amenable direct summand by (3) of Remark 3.3. Let f € Z(A) be the
projection such that Af is the maximal properly proximal direct summand of A by
(4) of Remark 3.3, and we may assume f 7 0 since otherwise A would be properly
proximal. Therefore A f has no amenable direct summand, is properly proximal relative
to X inside M by (2) of Remark 3.3 and has no properly proximal direct summand. It
follows from Lemma 3.4 that there exists an A f-central state & on S(Af) such that p4 ¢
is normal. Moreover, by a maximal argument, we may assume [ zay) is faithful, as
Af has no properly proximal direct summand.

Let E : g(M) — S(Af) be the u.c.p. map as in Lemma 3.11. Define a state ¢ = o
E : S(M) — C, and it follows that @ is Af-central and ¢ r 7 is a faithful normal state.
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Let gk be the identity of the von Neumann algebra (K(L*M )tj)’k c (B(L>*M )i)*, gx
the identity of von Neumann algebra (Kx (M )i)* c (B(L*M )3)*. Note that gx < gx
as K(L2M) c Kx(M).

First we analyze the support of ¢. Observe that <p(q]f<;) = l.Indeed, if p(gx) > 0,1i.e.,
¢ does not vanish on (K(L*M )3)*, then we may restrict ¢ to B(L2M), which embeds

into (K(L®*M )3)* as a normal operator M-system [13, Sect. 8], and this shows that Af
would have an amenable direct summand. Moreover, we have ¢(gx) = 1. Indeed, if
<p(q§§) > 0, then

o Ad(g%) : Sx(M) — C
u(q;é)(p )= ot =

would be an A f-central that restricts to a normal state on f M f. Since Sx (M) naturally
embeds into Sx (M), this contradicts that Af is properly proximal relative to X inside
M. Therefore we conclude that (p(qxqﬂé) =1.

Foreach 1 <i < n,denote by X; := Xy, C IB%(LZM) the M-boundary piece asso-
ciated with M; and ¢; € (Kx, (M )3)* the identity. Since V_,¢; = gx by Lemma 3.10
and [g;,gj] = 0 by Lemma 3.9 and condition (2), we have ¢(g jqﬂé) > ( for some
l<j=<n

Claim: there existsau.c.p.map¢ : (M, ey;) — qﬂéqjg(M)qj suchthat ¢ (x) = qﬂéqjx
forany x € M.

Proof of the claim.. Denote by {my}r>0 C M abounded Pimsner—Popa basis of M over
M;. For each n > 0, consider the u.c.p. map v, : (M, eM_;) — (M, eMj> given by

Yn () = O myenrmp)x(Y_ moer;my),
k<n l<n
and notice that ¥, maps (M, eMj) into the x-subalgebra Ag := sp{mkaeMij‘ | a €

M, k, ¢ >0}
Recall notations from Remark 3.5. By Lemma 3.8, we have

{tnor (ST ens, Tmi D=0 C BLEM))*

is a family of pairwise orthogonal projections. Set

ej = tnor(JmpJey, JmiJ) € (B(L*M)))*
k>0

and define the map
¢0 : Ag — git (B(L>M)7)*
mraey;my > g tnor (Mra)e jinor (M),

Itis easy to check that ¢ is well-defined. We then check that ¢ is a =-homomorphism.
It suffices to show that for any x € M, we have

gicejtnor (¥)€j = qictnor (Epr; ())e;. 3)
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Now we compute,

1
gic€jtnor(x)e;

= ‘I]IJ{ Z ‘nor((JkaeMj JmZJ)x(ngJeMj sz,]))
k,£>0

S el e I )
k=0
+ > tnor((JmyJ ey, Jmi Dx(JmyJ ey, Jm ).
k£t

By Remark 2.2, we have (Jmi Jew; JmiJ)(x— Eyp; (x))(ImyJepy; JmjlJ) e B(L> M)
is a compact operator from

M to L*>M for k # £. Since (JmiJewm; Jm,fJ)EM (x)(ImeJepm; JmyJ) =0if £ #
k, we have Zk# thnor(JkaeM JkamegJeM/ JmeJ) = 0. Similarly, one checks
thathLnor((JkaeM Jka)x(JkaeM JmZJ)) —qunor(EM )(ImyJey; JmZJ))

It then follows from (3) that ¢ is a x-homomorphism. Now we verify that ¢ is norm
continuous.

Given Zflzl mkiaieM/.mZ € Ag, we may assume that k; # k; and £; # £; if i # j.
Consider P, = qﬂé Z‘»j 1 Lnor(Jkamg.eM.m( Jm}J) and

Or = q]K Z 1 tnor (JmgJmy;ep, mk Jm¥ ©J). We have P and Qy are a projections
and Py P, = QO Q, =0ifk #r by Remark 2.2. And for the same reason, we have
tnor (€M m? JmiJ)Py = thnor(eM m/Z JmiJ) as well as tnor (€M mk JmiJ)Or =
qKLmr(eM mk JmiJ)foreachl < i < d.Let’H be the Hilbert space where (]B%(LZM) )*
is represented on. For &, n € (H), we compute

d
(oD miaiers;m)E, 1)

i=1

d
=< Z | Z(CI]]J(:Lnor(eMjmz sz‘])€9 Lnor(JkamkieMjai)*nH
k>0 i=1

d
=D 1D tnor(ens;my, JmiT) ek tnor (Jmg T my e ai)* Qxn) |
k>0 i=1

d
< o (Tmid O muazers;my,) Jmig D) ||| PN Qenl

k=0 i=1

< (sup lme 1)1 ka aies;my 1 IPEID 2O INowEID'?
i=1 k>0 k>0
d

< (sup eI miaien;mi |-
i=1

This shows that ¢y is norm continuous as required.
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Lastly we show that ¢ maps into qﬂi;g(M ). AS tnor (M) commutes with tpor (JMJ),
it suffices to show [e, tnor(JuJ)] = O for any u € G, which follows from condition (2).
Indeed,

tnor(Jud)ejtnor(Ju*J) = qig (Y tnor(Jumy Jers; Jmju*J)),
k>0

while
JukaeMijZu*J = Jmy,upJ ey, JuZmZuJ = JmkuJeMij;uJ,
and hence

tnor(Jud)ejinor(Ju*J) = gz (D tnor(Jmg, Jers; Imi, 1) < ej,
k>0

for any u € G. Since G is a group, we actually have tyor(JuJ)ejinor(Ju*J) = e, as
desired. -

Combining all the above arugments, we may extend ¢9 : A — qﬂéS(M ) to a -
homomorphism on A, where A = A_OM is a C*-algebra.

The next step is to define the map ¢. For each n > 0, set ¢, (= ¢p o ¥, :
(M, em;) — qHJ{S(M ), which is c.p. and subunital by construction. We may then pick
¢ € CB((M, ey;). q¢S(M)) a weak* limit point of {¢, }nen, which exists as g#S(M)
is a von Neumann algebra.

We claim that

Ad(g)) o ¢ : (M, em,) — qitq;S(M)q;

is an M-bimodular u.c.p. map, which amounts to showing ¢ (x) = q]f(;q jtnor (x) for any
xeM.
In fact, for any x € M, we have

¢(X)=nlij;o¢o( Z (mkEMj(mmez)EMijf)>
0<k,l<n

1
=dqK lim E Lnor(mkEM/ (mzxmé))ejlnor(m?)
n—00 :
0<k,l<n

=q1§ nli>ngo0 kX{: (Lnor(mk)ejlnor(mZ))Lnor(x)(Lnor(mé)ejlnor(mz))a
=k,t=n

where the last equation follows from (3). Finally, note that { p }x>0 is a family of pairwise
orthogonal projections by Remark 2.2, where

Pk = Qi:tnor(mk)ejlnor(mZ) = CI]]J(: Z tnor (S Jmk@Mjszm;kJ)»

r>0

and Zkzo Dk = Zk,rZO qﬂétnor(lmr Impey;myJmyiJ) = qﬂéqj by Lemma 3.9. There-
fore, we conclude that ¢ (x) = qﬂéq jtnor (X), as desired. O
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1
0(qxq;)
which is a normal state when restricted to fMf. Let f; € Z((Af) N fMf) be the
support projection of vz FYNFMS) and then we have Af; is amenable relative to M
inside M [33, Theorem 2.1]. Apply the same argument for each i with w(qﬂéqi) > 0, we
then obtain projections f; € f M f (possibly 0) such that Af; is amenable relative to M;
inside M.

Finally, to show V!_, fi = f, note that ¢(q; f;) = ¢(q;) as

Now considerv = go¢ € (M, ey; )* and notice that vis an Af-central state,

0(qi ) = e(aicqi £ = e(@(f;H) = v(fH) = 0.
Consequently we have
e(Vi_i fi) = o(Vi_qi fi) = e(Vi_1qi) = 1,

and hence V_, fi = f by the faithfulness of ¢|rp5. Since f; € Z((Af) N fMf), we
may rearrange these projections so that Y 7, f; = f. O

5. Proofs of Main Theorems

Proof of Theorem 1.3. This follows from noticing that the Jones projections ey A, pair-
wise commute, and then applying Theorems 1.1 and 3.12. O

Theorem 5.1. Let (M1, t1) and (M3, 1) be such that M; = LT'; where I'; are countable
exact groups and M = M1 x My be the tracial free product. Let A C M be von Neumann
subalgebra, then there exists projections {p,'}l.3=] € Z(A' N\ M) such that Ap; <y M;

or each i = 1 and 2, Aps is amenable and A(V3_, p;)* is properly proximal.
i=1

Proof of Theorem 5.1. First note that the free products of the exact groups I'; is biexact
relative to {I'y, I'2} [7, Proposition 15.3.12] and [ep,, em,] = 0. Then by Theorem 3.12,
we may take f1 and f> from Theorem 1.1 and let p; € Z(Af;) be the maximal projection
such that Ap! is amenable for each i = 1,2. Set p; = f; — p fori = 1 and 2, and
p3 = p) + p5 and the rest follows from Lemma 2.3. O

Proof of Corollary 1.4. Since A C M has no properly proximal direct summand, it
follows from Theorems 1.1 and 3.12 that there exists central projections fj and f> in
Z(A’N M) such that Af; is amenable relative to M; inside M foreachi,and f1+ f» = 1.

If Af> is not amenable, then by Lemma 2.3 we have that Af, <y M;. However,
since A N M is diffuse, we may pick a sequence of trace zero unitaries {¢,} in A N M
converging to 0. One then checks that || Ey, (xu, f2y)|l2 — 0 for any x, y € M, which
is a contradiction. Therefore A is amenable relative to M inside M. And then it follows
from Theorem 2.4 that A C M;. m]

Proof of Corollary 1.8. Note that in the case of A = LTy, we have Z(A' N M) = C
and hence Theorem 5.1 implies that either LI'; <py LAjor LT'1 <py LAy x---xLA,.
The same argument as in [15, Corollary 8.1] deduces the desired result. a
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