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Abstract: Using computations in the bidual of B(L2M) we develop a new technique
at the von Neumann algebra level to upgrade relative proper proximality to full proper
proximality. This is used to structurally classify subalgebras of L� where � is an infinite
group that is biexact relative to a finite family of subgroups {�i }i∈I such that each �i
is almost malnormal in �. This generalizes the result of Ding et al. (Properly proximal
von Neumann algebras, 2022. arXiv:2204.00517) which classifies subalgebras of von
Neumann algebras of biexact groups. By developing a combination with techniques from
Popa’s deformation-rigidity theory we obtain a new structural absorption theorem for
free products and a generalized Kurosh type theorem in the setting of properly proximal
von Neumann algebras.

1. Introduction

Recently the authors and Peterson in [13] developed the theory of small at infinity com-
pactifications a la Ozawa [7], in the setting of tracial von Neumann algebras. At the
foundation of this work lies the theory of operator M-bimodules and the several natural
topologies that arise in this setting (see [16,25–27]). The small at infinity compactifica-
tion is a canonical strong operator bimodule (in the sense of Magajna [25]) containing the
compact operators. By using the noncommutative Grothendieck inequality (similar to
Ozawa in [32]) it was seen that this strong operator bimodule coincides with K

∞,1(M),
the closure K

∞,1(M) of K(L2M) with respect to the ‖ · ‖∞,1-norm on B(L2M) given
by ‖T ‖∞,1 = supx∈M,‖x‖≤1 ‖T x̂‖1. The small at infinity compactification of a tracial
von Neumann algebra M is then given by

S(M) = {T ∈ B(L2M) | [T, J x J ] ∈ K
∞,1(M), for all x ∈ M}.

It is easy to see that this operator M-system S(M) contains M and K(L2M), and is an
M-bimodule. The advantage of the strong operator bimodule perspective is that it to
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identify an operator T ∈ S(M) suffices to check that [T, J x J ] ∈ K
∞,1(M) for all x in

some weakly closed subset of M . This is what allows for the passage between the group
and the von Neumann algebra settings. Using this technology [13] defined the notion of
proper proximality for finite von Neumann algebras, extending the dynamical notion for
groups [5]: A finite von Neumann algebra (M, τ ) is properly proximal if there does not
exist an M-central state ϕ on S(M) such that ϕ|M = τ . By identifying and studying this
property in various examples, the authors of [13] obtained applications to the structure
theory of II1-factors. The goal of the present paper is to add to the list of applications.

The machinery underlying the results in this paper is built on is the notion of an M-
boundary piece developed in [13], as an analogue of the group theoretic notion introduced
in [5]. The motivation for considering this notion is that it allows for one to exploit the
dynamics that is available only on certain locations of the Stone–Cech boundary of
the group. For a group �, a boundary piece is a closed left and right invariant subset
of β(�)\�, whereas in the von Neumann algebra setting, it is denoted by X typically
and is a certain hereditary C∗-subalgebra of B(L2M) containing the compact operators
(see Sect. 3.1). One then considers the small at infinity compactification relative to a
boundary piece SX(M) where K

∞,1(M) is replaced with K
∞,1
X

(M), a suitable analogue
for the boundary piece. Then one can define the notion of proper proximality relative to
X, demanding that there be no M-central state restricting to the trace on SX(M). The
main example we will be working with is a boundary piece generated by a finite family
of von Neumann subalgebras {Mi }ni=1 (see Example 3.1), which is adapted from the
construction for a finite family of subgroups (see Example 3.3 in [5]).

In [12], the authors demonstrated an instance where relative proper proximality can
be lifted to full proper proximality, i.e, when the boundary piece arises from subgroups
that are almost malnormal1 and not co-amenable (see Lemma 3.3 in [12]). The authors
used this idea to classify proper proximality for wreath product groups. In this paper, we
develop an analogue of this idea in the setting of von Neumann algebras (Theorem 1.1).
In both cases, one has to work in the bidual of the small at infinity compactification for
technical reasons, and this brings about an extra layer of subtlety especially in the von
Neumann setting. More specifically we show that one can map the basic construction
into the bidual version of the relative small at infinity compactification, provided the
boundary piece arises from a mixing subalgebra. Composing with an appropriate state
on this space, we get the link with relative amenability in the von Neumann setting. This
upgrading theorem is the main new technical tool we develop in the present work:

Theorem 1.1. Let M be a diffuse finite von Neumann algebra, Mi ⊂ M, i = 1, . . . , n
diffuse von Neumann subalgebras, and A ⊂ pMp a von Neumann subalgebra, for some
p ∈ P(M). Denoting by eMi the Jones projection of Mi ⊂ M, we further assume there
exists a countable group G < U(M) with G′′ = M such that

(1) The family {u Jv JeMi Jv∗ Ju∗ | u, v ∈ G, i = 1, . . . , n} consists of pairwise com-
muting projections;

(2) For each i , Mi ⊂ M admits a Pimsner–Popa basis {mi
k}k∈N ⊂ M such that for any

u ∈ G and k ∈ N, wemay find some ku ∈ N and uik ∈ U(Mi ) such that umi
k = mi

ku
uik ,

and elements in {mi
k Jm

i
� JeMi J (mi

�)
∗ J (mi

k)
∗ | k, � ∈ N, i = 1, . . . , n} are pairwise

commuting.

Assume that A is properly proximal relative to X inside M, where X is the boundary
piece associated with {Mi }ni=1, and Mi ⊂ M is mixing for each i = 1, . . . , n. Then

1 A subgroup H < G is almost malnormal if for all g ∈ G\H , gHg−1 ∩ H is finite.
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there exist projections f0 ∈ Z(A) and fi ∈ Z(A′ ∩ pMp), 1 ≤ i ≤ n, such that A f0
is properly proximal and A fi is amenable relative to Mi inside M for each 1 ≤ i ≤ n,
and

∑n
i=0 fi = p.

Remark 1.2. We point out that the above two conditions on the existence of such count-
able subgroup G < U(M) are satisfied in the case of group von Neumann algebras,
which is our main application. Indeed, when M = L� and Mi = L�i , where � is a
countable discrete group and �i < � is an infinite subgroup for i = 1, . . . , n, one may
take G = � and for each i set mi

k = utk ∈ U(M), where {tk}k∈N ⊂ � is a transversal for
�/�i .

Using these ideas we are interested in classifying subalgebras of group von Neumann
algebras arising from groups that are biexact relative to a family of subgroups (see e.g.
[7, Chapter 15]). The first result of this kind was obtained in Theorem 7.2 of [13] where
it was shown that every subalgebra of the von Neumann algebra of a biexact group either
has an amenable direct summand or is properly proximal. As essentially observed there,
what relative biexactness buys us is the relative proper proximality for any subalgebra,
relative to the boundary piece arising from the subgroups. Combining this with our
upgrading result above, we obtain our main result below which is a structure theorem
for von Neumann subalgebras of group von Neumann algebras that are biexact relative
to a family of subgroups where each subgroup is almost malnormal.

Theorem 1.3. Let � be a countable group with a family of almost malnormal subgroups
{�i }ni=1. If � is biexact relative to {�i }ni=1, then for any von Neumann subalgebra
A ⊂ L�, there exists p ∈ Z(A) and projections p j ∈ Z((Ap)′ ∩ pL(�)p) such that∨n

j=1 p j = p and Api is amenable relative to L�i inside L�, for each i = 1, . . . , n

and Ap⊥ is properly proximal.

There are two natural instances where such a phenomenon (a countable group �

with a family of almost malnormal subgroups {�i }ni=1 where � is biexact relative to
{�i }ni=1) is observed: First is in the setting of free products, which we deal with in the
present paper. Second is in the setting of wreath products, which is investigated in a
follow-up work by the first author [11]. There is conjecturally a third setting of relative
hyperbolicity, which we comment on in the end of the introduction.

Thanks to Bass–Serre theory [39] we have a complete understanding of subgroups
of a free product of groups. As a result, one can derive results of the following nature:
If H < G1 ∗ G2 such that |H ∩ G1| ≥ 3, then H is amenable only if H < G1. This
phenomenon is referred to as amenable absorption. Interestingly, the situation for von
Neumann algebras is much more complicated. There is comparatively a very limited
understanding of von Neumann subalgebras of free products. Whether every self adjoint
operator in any finite von Neumann algebra is contained in a copy of the hyperfinite II1-
factor was itself an open problem for many years.2 Popa settled it in the negative in [37]
by discovering a surprising amenable absorption theorem for free product von Neumann
algebras, thereby showing that a generator masa in LF2 is maximally amenable.

Popa’s ideas been used to show maximal amenability in other situations (See for
instance [6,9,34,41]). In the past decade there have been other new ideas that have
been used to prove absorption theorems: Boutonnet–Carderi’s approach [2] relies on
elementary computations in a crossed-productC∗-algebra; Boutonnet–Houdayer [4] use
the study of non normal conditional expectations; [17] used a free probabilistic approach

2 This is a question of Kadison, Problem 7 from ’Problems on von Neumann algebras, Baton Rouge
Conference’
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to study absorption. Ozawa in [32] then gave a short proof of amenable absorption in
tracial free products. There have also been a variety of important free product absorption
results which are of a different flavor, and are structural in nature. See for example [22]
and [10].

By applying our Theorem 1.3 in the setting of free products and using machinery
from Popa’s deformation-rigidity theory (specifically work of Ioana [21]), we obtain a
generalized structural absorption theorem below:

Corollary 1.4. Let (M1, τ1) and (M2, τ2) be such that Mi ∼= L�i where�i are countable
exact groups and M = M1∗M2 be the tracial free product. Let A ⊂ M bea vonNeumann
subalgebra with A ∩ M1 diffuse. If A ⊂ M has no properly proximal direct summand,
then A ⊂ M1.

Remark 1.5. Using results of the upcoming work [14], one can relax the assumption on
Mi , from being infinite group von Neumann algebras of exact groups, to just that they
are diffuse weakly exact von Neumann algebras. We do not comment more on this at
the moment because for the sake of examples, the above setting already provides many.

The authors of [23] showed that there are examples of groups that are neither inner
amenable nor properly proximal. All of these group von Neumann algebras fit into the
setting of the above corollary. Note that Vaes constructed in [40] plenty of groups that are
inner amenable, yet their group von Neumann algebras lack Property (Gamma). Hence
our results give a strict generalization of (Gamma) absorption (see Houdayer’s Theorem
4.1 in [18] and see also Theorem A in [17]) in these examples.

Remark 1.6. The above result is false if one considers amalgamated free products. For
instance, take M1 = M2 = LF2⊗R and A = (LZ ∗ LZ)⊗R ⊂ M1 ∗R M2, where two
copies of LZ in A are from M1 and M2, respectively.

Remark 1.7. Shortly before the posting of this paper, Drimbe announced a paper (see
[15]) where he shows using Popa’s deformation-rigidity theory that for any nonamenable
inner amenable group �, if L(�) ⊂ M1 ∗ M2, then L(�) intertwines into Mi for some
i = 1, 2. This in particular generalizes Corollary 1.4 in the case that A ∼= L� for some
inner amenable group �, because he doesn’t require any assumptions for Mi .

Our techniques also reveal the following new Kurosh type structure theorem for free
products in the setting of proper proximality, (partially generalizing Corollary 8.1 in
[15]). See also [19,22,31,35] for other important Kurosh type theorems.

Corollary 1.8. Let M = L�1 ∗ · · · ∗ L�m = L�1 ∗ · · · ∗ L�n, where all groups �i and
� j are countable exact nonamenable non-properly proximal i.c.c. groups. Then m = n
and after a permutation of indices L�i is unitarily conjugate to L�i .

We conclude by state the following folklore conjecture (also stated in [29]), which
would provide another family of examples for applying Theorem 1.3. Indeed the periph-
eral subgroups below are almost malnormal (see Theorem 1.4 in [28]).

Conjecture 1. [29] If G is exact and hyperbolic relative to a family of peripheral sub-
groups {Hi }ni=1, then G is biexact relative to {Hi }ni=1.
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2. Preliminaries

2.1. The basic construction and Pimsner–Popa orthogonal bases. Let M be a finite von
Neumann algebra and Q ⊂ M be a von Neumann subalgebra. The basic construction
〈M, eQ〉 is defined as the von Neumann subalgebra of B(L2M) generated by M and the
orthogonal projection eQ from L2(M) onto L2(Q). There is a semifinite faithful normal
trace on 〈M, eQ〉 satisfying Tr(xeQ y) = τ(xy), for every x, y ∈ M .

Let N ⊂ M be a von Neumann subalgebra. Then a Pimsner–Popa basis (see [36]) of
M over N is a family of elements denoted M/N = {m j } j∈J ⊂ M such that

(1) EN (m∗
jmk) = δ j,k p j , where p j ∈ P(N ) is a projection.

(2) L2(M) = ⊕
j∈J m j L2(N ) and every x ∈ M has a unique decomposition x =

∑
j m j EN (m∗

j x).

In the case that N = L(�) and M = L(�) where � < �, we can identify a
Pimnser–Popa basis in M from a choice of coset-representatives i.e, � = ⊔

k≥0 tk�,
and mk := λtk ∈ U(L�): M/N = {u j } j∈J .

2.2. Popa’s intertwining-by-bimodules.

Theorem 2.1. [38] Let (M, τ ) be a tracial von Neumann algebra and P ⊂ pMp, Q ⊂
M be von Neumann subalgebras. Then the following are equivalent:

(1) There exist projections p0 ∈ P, q0 ∈ Q, a ∗-homomorphism θ : p0Pp0 → q0Qq0
and a non-zero partial isometry v ∈ q0Mp0 such that θ(x)v = vx, for all x ∈ p0Pp0.

(2) There is no sequence un ∈ U(P) satisfying ‖EQ(x∗un y)‖2 → 0, for all x, y ∈ pM.

If one of these equivalent conditions holds, we write P ≺M Q, and say that a corner
of P embeds into Q inside M.

2.3. Relative amenability. Let P ⊂ M and Q ⊂ M be a von Neumann subalgebras. We
say that P is amenable relative to Q inside M if there exists a sequence ξn ∈ L2(〈M, eQ〉)
such that 〈xξn, ξn〉 → τ(x), for every x ∈ M , and ‖yξn − ξn y‖2 → 0, for every y ∈ P .
By [33], Theorem 2.1 P is amenable relative to Q inside M if and only if there exists
a P-central state in the basic construction 〈M, eQ〉 that is normal when restricted to M ,
and faithful on Z(P ′ ∩ M).

2.4. Mixing subalgebras and free products of finite von Neumann algebras. Let M be
a finite von Neumann algebra and N ⊂ M a von Neumann subalgebra. Recall the
inclusion N ⊂ M is mixing if L2(M � N ) is mixing as an N -N bimodule, i.e., for
any sequence un ∈ U(N ) converging to 0 weakly, one has ‖EN (xun y)‖2 → 0 for any
x, y ∈ M � N . When M and N are both diffuse, we may replace sequence of unitaries
with any sequence in N converging to 0 weakly [13, Theorem 5.9].

Remark 2.2. Let M be a diffuse finite von Neumann algebra and N ⊂ M a diffuse von
Neumann subalgebra. If N ⊂ M is mixing, then it is easy to check that eN x J y JeN ∈
B(L2M) is a compact operator from M to L2M assuming x or y ∈ M � N .
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Examples of mixing subalgebras include M1 and M2 ⊂ M1 ∗ M2, where M1 and M2
are diffuse [24, Proposition 1.6] and L� ⊂ L�, where � < � is almost malnormal (see
Proposition 2.4 in [3]).

The following [20, Corollary 2.12] is crucial to the proof of Theorem 5.1.

Lemma 2.3 (Ioana). Let M1, M2 be two diffuse tracial von Neumann algebras and
M = M1 ∗ M2 be the tracial free product. Let A ⊂ M be a subalgebra such that A is
amenable relative to M1 in M. Then either A ≺M M1 or A is amenable.

We also need the following case of the main result of [4]:

Theorem 2.4 (Boutonnet–Houdayer). Let M = M1 ∗ M2, where Mi are diffuse tracial
von Neumann algebras. If A ⊂ M is a von Neumann subalgebra that satisfies A ∩ M1
is diffuse and A is amenable relative to M1 inside M, then A ⊂ M1.

3. Proper Proximality for von Neumann Algebras and Boundary Pieces

3.1. Boundary pieces from von Neumann subalgebras. Let M be a finite von Neumann
algebra. An M-boundary piece is a hereditary C∗-subalgebra X ⊂ B(L2M) such that
M(X) ∩ M and M(X) ∩ JM J are weakly dense in M and JM J , respectively, where
M(X) is the multiplier algebra of X. To avoid pathological examples, we will always
assume that X �= {0}, and it follows that K(L2 M) ⊂ X, by the assumption on M(X).

The main example of an M-boundary piece we use in this paper is one generated by
von Neumann subalgebras. We recall some facts about hereditary C∗-algebras for what
follows (see e.g. [1, II.5]).

Let A be a C∗-algebra. There is a one-to-one correspondence between the set of
hereditary C∗-subalgebras of A and the set of closed left ideals in A: given a hereditary
C∗-subalgebra H ⊂ A, LH := AH = {ah | a ∈ A, h ∈ H} is a closed left ideal; and
for a closed left ideal L ⊂ A, HL = L ∩ L∗ is a hereditary C∗-subalgebra of A. Given
a subset of operators {bi }i∈I ⊂ A, the hereditary C∗-subalgebra generated by {bi }i∈I is
BAB = {bab | b ∈ B+, a ∈ A}, where B is the C∗-subalgebra generated by {bi }i∈I .
Example 3.1. (Boundary piece generated by subalgebras) Let M be a finite von Neumann
algebra. Suppose Mi ⊂ M , i = 1, . . . , n are von Neumann subalgebras and denote
by eMi ∈ B(L2 M) the orthogonal projection from L2M onto the space L2Mi . The
M-boundary piece associated with the family of subalgebras {Mi }ni=1 is the hereditary
C∗-subalgebra of B(L2 M) generated by operators of the form x J y JeMi with x, y ∈ M ,
i = 1, . . . , n, and it is clear that M and JM J are contained in its multiplier algebra.

Lemma 3.2. Let M be a finite von Neumann algebra and Mi ⊂ M, i = 1, . . . , n von
Neumann subalgebras such that the projections {eMi }ni=1 are pairwise commuting. Let
X be the hereditary C∗-subalgebra in B(L2M) generated by {x J y J (∨n

i=1eMi ) | x, y ∈
M} and Y the hereditary C∗-subalgebra in B(L2M) generated by {x J y JeMi | i =
1, · · · n, x, y ∈ M}. Then X = Y.

Proof. First note that eMi ∈ X for each i since 0 ≤ eMi ≤ ∨n
i=1eMi . We also have

∨n
i=1eMi ∈ Y. In fact, for each pair i, j , eMi ∧ eMj ∈ Y as 0 ≤ eMi ∧ eMj ≤ eMi , and

eMi ∨ eMj=eMi + eMj − eMi ∧ eMj ∈ Y as [eMi , eMj ] = 0. To see that X ⊂ Y, note
that L = B(L2M)X is contained in K = B(L2M)Y. Indeed, for any x, y ∈ M and
T ∈ B(L2 M), we have T (∨n

i=1eMi )x J y J ∈ B(L2 M)Yx J y J = B(L2 M)Y as M and
JM J are in the multiplier algebra of Y. By a similar argument we see that Y ⊂ X. ��
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Fix an M-boundary piece X and let K
L
X
(M) ⊂ B(L2M) denote the ‖ · ‖∞,2 closure

of the closed left ideal B(L2M)X, i.e., K
L
X
(M) = B(L2 M)X

‖·‖∞,2
, where ‖ · ‖∞,2 on

B(L2 M) is given by ‖T ‖∞,2 = supx∈(M)1
‖T x̂‖2 for T ∈ B(L2M).

We let KX(M) = (KL
X
(M))∗ ∩ (KL

X
(M)), which is a hereditary C∗-subalgebra of

B(L2 M) with M and JM J contained in M(KL
X
(M)) [13, Sect. 3]. Denote by K

∞,1
X

(M)

the ‖ · ‖∞,1 closure of KX(M) in B(L2 M), ‖T ‖∞,1 = supx,y∈(M)1
〈T x̂, ŷ〉 for T ∈

B(L2 M) and it coincides with X
‖·‖∞,1 .

Now put SX(M) ⊂ B(L2M) to be

SX(M) = {T ∈ B(L2M) | [T, J x J ] ∈ K
∞,1
X

(M) for all x ∈ M},

which is an operator system that contains M . In the case when X = K(L2 M), we write
S(M) instead of SK(L2 M)(M).

Recall from [13, Theorem 6.2] that for a finite von Neumann subalgebra N ⊂ M and
an M-boundary piece X, we say N is properly proximal relative to X in M if there is no
N -central state ϕ on SX(M) that is normal on M . And we say M is properly proximal
if M is properly proximal relative to K(L2M) in M .

Remark 3.3. Let M and Q be finite von Neumann algebras, X an M-boundary piece,
and N ⊂ pMp be a von Neumann subalgebra, where 0 �= p ∈ P(M).

(1) Consider the u.c.p. map EN := Ad(eN ) ◦ Ad(pJpJ ) : B(L2 M) → B(L2N ). Then
by [13, Remark 6.3] that EN (KX(M)) ⊂ B(L2N ) forms an N -boundary piece. And
we say EN (KX(M)) is the induced N -boundary piece, which will be denoted by X

N .
(2) If N is properly proximal relative to X inside M , then zN is also properly proximal

relative to X inside M for any 0 �= z ∈ Z(P(N )), since Ad(z) ◦ SX(M) ⊂ SX(M).
(3) If N is properly proximal relative to X inside M , then N has no amenable direct

summand. To see this, suppose qN is amenable for some 0 �= q ∈ Z(P(N ) and
let ϕ be a qN -central state on B(L2(qN )). Consider μ := ϕ ◦ Ad(q) ◦ Ad(eN ) :
B(L2M) → C, and one checks that μ is a N -central state with μ|M being normal.

(4) Notice that from the definition it follows that proper proximality is stable under taking
direct sum. Thus we may take f ∈ Z(P(Q)) so that Q f is the maximal properly
proximal direct summand of Q.

3.2. Bidual formulation of proper proximality. Given a finite von Neumann algebra M
and a C∗-subalgebra A ⊂ B(L2M) such that M and JM J are contained in M(A), we
recall that AM�M (resp. AJM J�JM J ) denotes the space of ϕ ∈ A∗ such that for each
T ∈ A the map M × M � (a, b) �→ ϕ(aTb) (resp. JM J × JM J � (a, b) �→ ϕ(aTb))
is separately normal in each variable and set A�

J = AM�M ∩ AJM J�JM J . Moreover,

we may view (A�
J )

∗ as a von Neumann algebra in the following way, as shown in [13,
Sect. 2]. Denote by pnor ∈ B(L2M)∗∗ the supremum of support projections of states in
B(L2M)∗ that restrict to normal states on M and JM J , so that M and JM J may be
viewed as von Neumann subalgebras of pnorM(A)∗∗ pnor. Note that pnor lies in M(A)∗∗
and pnorM(A)∗∗ pnor is canonically identified with (M(A)

�
J )

∗. Let qA ∈ P(M(A)∗∗) be

the central projection such that qA(M(A)∗∗) = A∗∗ and we may then identify (A�
J )

∗ with
qA pnorM(A)∗∗ pnor = pnor A∗∗ pnor, which is also a von Neumann algebra. Furthermore,
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if B ⊂ A is another C∗-subalgebra with M , JM J ⊂ M(B), we may identify (B�
J )

∗

with qB pnor A∗∗ pnorqB , which is a non-unital subalgebra of (A�
J )

∗.
We will need the following bidual characterization of properly proximal.

Lemma 3.4. [13, Lemma 8.5] Let M be a separable tracial von Neumann algebra with
an M-boundary piece X. Then M is properly proximal relative to X if and only if there
is no M-central state ϕ on

S̃X(M) :=
{
T ∈

(
B(L2M)

�
J

)∗ | [T, a] ∈
(
KX(M)

�
J

)∗
for all a ∈ JM J

}

such that ϕ|M is normal.

Using the above notations, we observe that we may identify S̃X(M) in the following
way:

S̃X(M) = {T ∈ (
B(L2M)

�
J

)∗| [T, a] ∈ (
KX(M)

�
J

)∗
, for any a ∈ JM J }

= {T ∈ pnorB(L2M)∗∗

pnor | [T, a] ∈ qX pnor
(
M(KX(M))

)∗∗
pnorqX, for any a ∈ JM J },

where qX is the identity of KX(M)∗∗ ⊂ (
M(KX(M))

)∗∗. If we set qK = qK(L2 M) to be

the identity of K(L2M)∗∗ ⊂ B(L2M)∗∗, then using the above description of S̃X(M),
we have q⊥

X
S̃X(M)q⊥

X
⊂ q⊥

K
S̃(M), as qX commutes with JM J .

Remark 3.5. Recall that we may embed B(L2M) into (B(L2M)
�
J )

∗ through the u.c.p.
map ιnor, which is given by ιnor = Ad(pnor) ◦ ι, where ι : B(L2M) → B(L2M)∗∗ is
the canonical ∗-homomorphism into the universal envelope, and pnor is the projection
in B(L2M)∗∗ such that pnorB(L2 M)∗∗ pnor = (B(L2 M)

�
J )

∗. Restricting ιnor to C∗-
subalgebra A ⊂ B(L2M) satisfying M, JM J ⊂ M(A) give rise to the embedding of
A into (A�

J )
∗, and (ιnor)|M , (ιnor)|JM J are faithful normal representations of M and

JM J , respectively. Furthermore, although ιnor is not a ∗-homomorphism, we still have
spMeBM = sp{xeB y | x, y ∈ M} is in the multiplicative domain of ιnor, where B ⊂ M
is a von Neumann subalgebra and eB : L2 M → L2B is the Jones projection, by
Lemma 3.8.

Lemma 3.6. Let M be a finite von Neumann algebra and X an M-boundary piece. Let
X0 ⊂ KX(M) be a C∗-subalgebra and {en}n∈I an approximate unit of X0. If ιnor(X0)

is weak∗ dense in (KX(M)
�
J )

∗ and ι(en) commutes with pnor for each n ∈ I , then

limn ιnor(en) ∈ (KX(M)
�
J )

∗ is the identity, where the limit is in the weak∗ topology.

Proof. Let e = limn ιnor(en) ∈ (KX(M)
�
J )

∗ be a weak∗ limit point and for any T ∈ X0,
we have

eιnor(T ) = lim
n

pnorι(en)ι(T )pnor = lim
n

pnorι(enT )pnor = ιnor(T ),

and similarly ιnor(T )e = ιnor(T ). By density of ιnor(X0) ⊂ (KX(M)
�
J )

∗, we conclude

that e is the identity in (KX(M)
�
J )

∗. ��
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Lemma 3.7. Let M be a finite von Neumann algebra and Md ⊂ M, d = 1, . . . , n be
von Neumann subalgebras such that {eMd } are pairwise commuting. Set e = ∨n

d=1eMd .
Suppose M0 ⊂ M is a weakly dense C∗-algebra. Denote by X the M-boundary piece
associated with {Md}nd=1 and X0 ⊂ B(L2M) the norm closure of sp{x1 J y1 JT J y2 J x2 |
xi , yi ∈ M0, T ∈ eB(L2 M)e}. Then ιnor(X0) ⊂ (KX(M)

�
J )

∗ is weak∗ dense.

Proof. Recall from Lemma 3.2 that X is the norm closure of sp{x1 J y1 J S J y2 J x2 |
xi , yi ∈ M, S ∈ eB(L2 M)e}. First we claim that for any ϕ ∈ KX(M)

�
J and any

T = x1 J y1 J S J y2 J x2 ∈ X, with contractions xi , yi ∈ M and S ∈ eB(L2 M)e, we may
find a sequence Tn ∈ X0 such that ϕ(T − Tn) → 0. Indeed, for each i = 1, 2, take
sequences of contractions xi�, y

i
� ∈ M0 such that lim� ‖xi� −xi‖2 = lim� ‖yi� − yi‖2 = 0.

Observe that for Tm,r, j,k = x1
m J y1

r J S J y
2
j J x

2
k ∈ X0 with m, r, j, k ∈ N, we have

|ϕ(T − Tm,r, j,k)| ≤ |ϕ((x1 − x1
m)J y1 J S J y2 J x2)| + |ϕ(x1

m J (y1 − y1
r )J S J y2 J x2)|

+ |ϕ(x1
m J y1

r J S J (y2 − y2
j )J x2)| + |ϕ(x1

m J y1
r J S J y

2
j J (x2 − x2

k ))|.

For any n ∈ N, pick m(n) ∈ N such that |ϕ((x1 − x1
m(n))J y1 J S J y2 J x2)| < 2−n . This is

possible since ϕ ∈ KX(M)
�
J , which implies that M � x → ϕ(x J y1 J S J y2 J x2) ∈ C is a

normal functional. Next we may pick y1
r(n) such that |ϕ(J (y1−y1

r(n))J x
1
m(n)SJ y2 J x2)| <

2−n , since x1
m(n) is already chosen. Repeating this process, we obtain

Tn = x1
m(n) J y

1
r(n) J S J y

2
j (n) J x

2
k(n) ∈ X0 with |ϕ(T − Tn)| < 22−n , which justifies

the claim.
Moreover, as X is the norm closure of sp{x1 J y1 J S J y2 J x2 | xi , yi ∈ M, S ∈

eB(L2 M)e}, we conclude that for any ϕ ∈ KX(M)
�
J and any T ∈ X, we may a sequence

Tn ∈ X0 such that |ϕ(T − Tn)| → 0. In other words, ιnor(X) is in the weak∗-closure
of ιnor(X0). We remark that the sequence {Tn} is not necessarily uniformly bounded in
norm.

Thus to show ιnor(X0) ⊂ (KX(M)
�
J )

∗ is dense in the weak∗-topology, it suffices to

show ιnor(X) ⊂ (KX(M)
�
J )

∗ is dense in the weak∗-topology. To this end, we show the
unit ball of X is dense in the unit ball of KX(M) in ‖·‖∞,1, which then implies the weak∗-

density of ιnor(X) ⊂ (KX(M)
�
J )

∗ by [13, Proposition 3.1]. Let T ∈ KX(M) ⊂ X
‖·‖∞,1

be a contraction and Tn ∈ X such that ‖T − Tn‖∞,1 → 0. By [13, Proposition
3.1], for each n there exists an, bn, cn, dn ∈ M and zn ∈ M2(B(L2M)) such that
limn(‖an‖2

2 + ‖bn‖2
2)

1/2 = limn ‖zn‖ = limn(‖cn‖2
2 + ‖dn‖2

2)
1/2 = 0 and Tn − T =

(
Jan J
bn

)∗
zn

(
Jcn J
dn

)

. For some N ∈ N, consider projections en =
J1[0,1/N ](a∗

nan + c∗
ncn)J and fn = 1[0,1/N ](b∗

nbn + d∗
n dn) Then ‖en Ja∗

n J‖2,

‖Jcn Jen‖2, ‖ fnb∗
n‖2, ‖dn fn‖2 ≤ 1/N and hence ‖en fn(Tn−T ) fnen‖ → 0 as n → ∞.

Moreover, note that 1−Jen J ≤ N (a∗
nan+c∗

ncn) and ‖an‖2
2, ‖cn‖2

2 → 0, and thus en → 1
in the strong operator topology. Similarly, fn → 1 in the strong operator topology as
well. Finally, we have

‖en fnTn fnen − T ‖∞,1 ≤ ‖en fn(Tn − T ) fnen‖ + ‖en fnT fnen − T ‖∞,1 → 0.

Since en fnTn fnen ∈ X, after renormalization we conclude that T may be approximated
by a sequence of contractions in X in ‖ · ‖∞,1. ��
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Lemma 3.8. Let M be a finite von Neumann algebra and N ⊂ M a von Neumann
subalgebra. Let eN ∈ B(L2M) be the orthogonal projection onto L2N. Then ι(eN ) ∈
B(L2 M)∗∗ commutes with pnor.

Proof. Suppose B(L2M)∗∗ ⊂ B(H) and notice that ξH is in the range of pnor if and
only if M � x → 〈ι(x)ξ, ξ 〉 and JM J � x → 〈ι(x)ξ, ξ 〉 are normal. For ξ ∈ pnorH,
we have ϕ(x) := 〈ι(x)ι(eB)ξ, ι(eN )ξ 〉 = 〈ι(EN (x))ξ, ξ 〉 is also normal for x ∈ M and
JM J , which implies that ι(eN )pnor = pnorι(eN )pnor. It follows that ι(eN ) and pnor
commutes. ��
Lemma 3.9. Let N ⊂ M be a mixing von Neumann subalgebra admitting a Pimsner–
Popa basis {mk} where mk ∈ M. Let XN be the associated boundary piece (see Ex-
ample 3.1), and qK ∈ (K(L2 M)

�
J )

∗, qXN ∈ (KXN (M)
�
J )

∗ be the respective identity
elements. Then

∑

k,l

q⊥
K

ιnor(mk Jml JeN Jm∗
l Jm

∗
k) = q⊥

K
qXN .

Proof. Denote by pk,l = q⊥
K

ιnor(mk Jm∗
l J eN Jml Jm∗

k). Note that since N ⊂ M is mix-
ing, we have eN x J y JeN − eN EN (x)J EN (y)JeN ∈ K(M), i.e, is a compact operator
when viewed as a bounded operator from the normed space M to L2(M). Indeed, we
compute

eN x J y JeN − eN EN (x)J EN (y)J

= eN (x − EN (x))J y JeN + eN EN (x)J (y − EN (y))JeN
= eN (x − EN (x))J (y − EN (y))JeN

+ eN (x − EN (x))J EN (y)JeN + eN EN (x)J (y − EN (y))JeN .

Notice that eN (x − EN (x))J EN (y)JeN = eN EN (x)J (y − EN (y))JeN = 0 and thus

eN x J y JeN − eN EN (x)J EN (y)J = eN (x − EN (x))J (y − EN (y))JeN ∈ K(M).

It then follows that {pk,�} is a family of pairwise orthogonal projections, as

pk,l pk′,l ′ = q⊥
K

ιnor(mk Jml JeN Jm∗
l ml ′ Jm

∗
kmk′eN Jm∗

l ′ Jm
∗
k′)

= q⊥
K

ιnor(mk Jml JeN Jql JqkeN Jm∗
l ′ Jm

∗
k′)δk,k′δl,l ′

= q⊥
K

ιnor(mk Jm
∗
l J eN Jm∗

l ′ Jmk′)δk,k′δl,l ′ ,

where ql ∈ P(N ) such that ql = EN (m∗
l ml) and automatically satisfies mlql = ml (see

Sect. 2.1).
Denote by X0 ⊂ B(L2M) the hereditary C∗-subalgebra generated by x J y JeN for

x, y in the C∗-algebra A generated by {mka}a∈N ,k∈N. It is clear that X0 is an M-boundary
piece and note that A is weakly dense (see Sect. 2.1, (2)) in M .

To see
∑

k,� pk,� = q⊥
K
qXN , it suffices to show

(
∑

k′,l ′
pk′,l ′)ιnor(mk Jm� Ja JbJeN ) = q⊥

K
ιnor(mk Jm� Ja JbJeN ) (1)

and

ιnor(eN Jm� Jmka JbJ )(
∑

k′,l ′
pk′,l ′) = q⊥

K
ιnor(eN Jm� Jmka JbJ ) (2)
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for all a, b ∈ N and k, l ∈ N. Indeed, every element in X0 can be written as a
norm limit of linear spans consisting of elements of the from x1 J y1 JT J y2 J x2, where
xi , yi ∈ A and T ∈ B(L2N ). Further we can assume xi = mka with a ∈ N from den-
sity. Then we will get that for all z ∈ X0,

∑
k,l q

⊥
K

ιnor(mk Jm∗
l J eN Jml Jm∗

k)ιnor(z) =
q⊥
K

ιnor(z). Since by Lemma 3.7 we have X0 is weak∗ dense in (KXN (M)
�
J )

∗, we conclude
∑

k,l q
⊥
K

ιnor(mk Jm∗
l J eN Jml Jm∗

k) = q⊥
K
qXN .

Finally to see (1), notice that a direct computation shows that

pk′,l ′ ιnor(mk Jm� Ja JbJeN ) = δk,k′δl,l ′q
⊥
K

ιnor(mk Jm� Ja JbJeN ).

Similarly, (2) holds as well. ��
Lemma 3.10. Let M be a finite von Neumann algebra and Mi ⊂ M, i = 1, . . . n be von
Neumann subalgebras. Suppose G ⊂ U(M) is a countable group such that G′′ = M
and {u Jv JeMi Jv∗ Ju∗ | u, v ∈ G, i = 1, . . . , n} is a family of pairwise commuting
projections. Let X denote the boundary piece associated to {Mi }ni=1 as in Example 3.1.
Let Xi denote the boundary pieces associated to Mi . Let qi denote the identities of the
von Neumann algebras (KXi (M)

�
J )

∗ and qX denote the identity of (KX(M)
�
J )

∗. Then
we have that qX = ∨n

i=1qi .

Proof. Recall from the beginning of this section that (KX(M)
�
J )

∗ is a von Neumann
algebra, as M, JM J are in the multiplier algebra of M(KX(M)). It is easy to see that
qX ≥ qi for each i .

Now we show that qX ≤ ∨n
i=1qi . Let Fn ⊂ G be an increasing family of finite

subsets such that ∪Fn = G. Let e0 = ∨i eMi and en = ∨u,v∈Fnu Jv J (∨i eMi )Jv∗ Ju∗.
Since {u Jv JeMi Jv∗ Ju∗ | u, v ∈ G, i = 1, . . . , n} is a family of pairwise commuting
projections, we have en ∈ X by Lemma 3.2. If we denote by X0 = {x1 J y1 JT J y2 J x2 |
x1, x2, y1, y2 ∈ M0, T ∈ e0B(L2 M)e0}, where M0 is the C∗-subalgebra generated
by G, then one checks that {en} is an approximate unit of X0. In fact, note that for
u, v ∈ G, we have e0 Jv Juen = (u Jv J )(u∗ Jv∗ Je0 Jv Ju)en = e0 Jv Ju whenever
u∗ Jv∗ Je0 Jv Ju ≤ en , i.e., whenever u∗, v∗ ∈ Fn . Since M0 is the C∗-algebra generated
by G, this shows that for any x, y ∈ M0, ‖(e0 J y J x)en − e0 J y J x‖ → 0 as n → ∞.
Similarly, we also have ‖en(e0 J y J x) − e0 J y J x‖ → 0 as n → ∞, and hence {en} is
an approximate unit for X0.

We claim that ιnor(en) ≤ ∨n
i=1qi . Note that ∨u,v∈Fnu Jv JeMi Jv∗ Ju∗ ∈ Xi and

hence ιnor(∨u,v∈Fnu Jv JeMi Jv∗ Ju∗) ≤ qi . Furthermore, since

ιnor(en) = ιnor(∨u,v∈Fn (∨i u Jv JeMi Jv∗ Ju∗)) = ιnor(∨i (∨u,v∈Fn
u Jv JeMi Jv∗ Ju∗)) ≤ ∨n

i=1qi ,

by Lemmas 3.6 and 3.7 we see that qX = limn ιnor(en) ≤ ∨n
i=1qi . ��

3.3. Induced boundary pieces in the bidual.

Lemma 3.11. Let M be a finite von Neumann algebra and N ⊂ pMp a von Neumann
subalgebra for some 0 �= p ∈ P(M). Set E := Ad(eN ) ◦ Ad(pJpJ ) : B(L2M) →
B(L2N ). Then its restriction E|S(M) maps S(M) to S(N ). Moreover, there exists a u.c.p.
map Ẽ : S̃(M) → S̃(N ) such that Ẽ|M agrees with the conditional expectation from M
to N.
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Proof. To see E|S(M) : S(M) → S(N ), note that pJpJeN JNa JN = Ja J pJpJeN
for any a ∈ N . and E : B(L2 M) → B(L2N ) is ‖ · ‖∞,1-continuous. Thus for any
T ∈ S(M) and any a ∈ N , we have

[E(T ), JNa JN ] = E([T, Ja J ]) ∈ E(K(M)
‖·‖∞,1

) = K(N )
‖·‖∞,1 = K

∞,1(N ),

i.e., E(T ) ∈ S(N ).

Note that E∗ : B(L2N )∗ → B(L2M)∗ maps B(L2N )
�
J to B(L2M)

�
J by [13, Lemma

5.3], and similarly E∗ : (K(L2N ))
�
J → (K(L2M))

�
J . Therefore Ẽ := (E∗

|B(L2N )
�
J
)∗ :

(B(L2 M)
�
J )

∗ → (B(L2N )
�
J )

∗ and Ẽ|(K(L2 M))
�
J )

∗ : (K(L2 M)
�
J )

∗ → (K(L2N )
�
J )

∗.

Hence we conclude that Ẽ : S̃(M) → S̃(N ) with Ẽ|M agrees with the conditional
expectation from M to N . ��

3.4. Relative biexactness and relative proper proximality. Given a countable discrete
group �, a boundary piece I is a � ×� invariant closed ideal such that c0� ⊂ I ⊂ �∞�

[5]. The small at infinity compactification of � relative to I is the spectrum of the C∗-
algebra SI (�) = { f ∈ �∞� | f − Rt f ∈ I, for any t ∈ �}. Recall that � is said
to be biexact relative to X if � � SI (�)/I is topologically amenable [5], [7, Chapter
15], [30]. We remark that this is equivalent to � � SI (�) is amenable. Indeed, first
note that we have a �-equivariant unital embedding �∞� ↪→ I ∗∗ by taking {ei } ∈ I
a �-asymptotically invariant approximate unit and consider a weak∗ limit point of φi :
�∞� � f → ei f ∈ I ⊂ I ∗∗. Since we have � � I ∗∗ ⊕ (SI (�)/I )∗∗ = SI (�)∗∗ is
amenable, and it follows that � � SI (�) is an amenable action [8, Proposition 2.7].

The following is a general version of [13, Theorem 7.1], whose proof follows sim-
ilarly. For the convenience of the reader we include the proof sketch below. A more
general version of this is obtained in the upcoming work [14].

Theorem 3.12. Let M = L� where � is an nonamenable group that is biexact relative
to a finite family of subgroups {�i }i∈I . Denote by X the M-boundary piece associated
with {L�i }i∈I . If A ⊂ pMp for some 0 �= p ∈ P(M) such that A has no amenable
direct summands, then A is properly proximal relative to X

A, where X
A is the induced

A-boundary piece as in Remark 3.3).

Proof. Consider the �-equivariant diagonal embedding �∞(�) ⊂ B(�2�). Note that
under this embedding c0(�, {�i }i∈I ) is sent to X. Denote by SX(�) = { f ∈ �∞(�)| f −
f g ∈ c0(�, {�i }i∈I ), ∀g ∈ �}, the relative small at infinity compactification at the group
level. Restricting this embedding to SX(�) then gives a �-equivariant embedding into
SX(M). Therefore we obtain a ∗-homomorphism from SX(�)�r � → B(�2(�)) whose
image is contained in SX(M). Composing this with the map E from Lemma 3.11, we
obtain a u.c.p map φ : SX(�) �r � → SXA(A). By hypothesis we have a projection
p0 ∈ Z(A) and an Ap0 bimodular u.c.p map � : SXA(A) → Ap0. Further composing
with this map we obtain a u.c.p map from φ̃ : SX(�) �r � → Ap0.

Now set ϕ : SX(�) �r � → C, by ϕ(x) := 〈x p̂0, p̂0〉
τ(p) . We then get a representation

πϕ : SX(�) �r � → Hϕ and a state ϕ̃ ∈ B(Hϕ)∗ such that ϕ = ϕ̃ ◦ πϕ . Since C∗
r (�) is

weakly dense in M , we see by an argument of Boutonnet–Carderi (see Propositon 4.1
in [2]) that there is a projection q ∈ (πϕ(SX(�) �r �))′′ such that ϕ̃(q) = 1 and there
exists a normal unital ∗-homomorphism ι : L(�) → qπϕ(SX(�) �r �))′′q.
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Since � is biexact relative to X, we have that SX(�) �r � is a nuclear C∗-algebra.
Therefore there is a u.c.p map ι̃ : B(�2(�)) → q(SX(�) �r �)′′q extending ι. Now we
see that ϕ̃ ◦ ι̃ is an Ap0 central state on B(�2(�)) showing that A has an amenable direct
summand, which is a contradiction. ��

In the case of general free products of finite von Neumann algebras M = M1 ∗ M2
it ought to be the case that that if A ⊂ M such that A has no amenable direct summand,
then A ⊂ M is properly proximal relative to the boundary piece generated by M1 and
M2. However, currently we are only able to obtain this with an additional technical
assumption that Mi ∼= L�i where �i are exact, so that �1 ∗ �2 is biexact relative to
{�1, �2} [7, Proposition 15.3.12]. We record below a general result about subalgebras
in free products which follows essentially from Theorem 9.1 in [13], however we do not
get the boundary piece associated to the subalgebras Mi . We instead get the boundary
piece associated to the word length:

Let M1, M2 be two finite von Neumann algebras and M = M1 ∗ M2 be the tracial
free product. Let A ⊂ M be a nonamenable subalgebra. Consider the free product
deformation from [22], i.e., M̃ = M ∗ LF2, θt = Ad(ut1) ∗ Ad(ut2) ∈ Aut(M̃), with
ut1 = exp(i tα1), ut2 = exp(i tα2), where α1, α2 are selfadjoint element in LF2 such that
exp(iα1) = u1, exp(iα2) = u2 and u1, u2 are Haar unitaries in LF2. For t > 0, we
have EM ◦ αt = P0 +

∑∞
n=1(sin(π t)/π t)2n Pn (see Sect. 2.5 in [20]), where Pn is the

orthogonal projection to Hn = ⊕(i1,··· ,in)∈Sn L2(Mi1 � C) ⊗ · · · ⊗ L2(Min � C) and Sn
is the set of alternating sequences of length n. Consider the hereditary C∗-algebra XF
generated by {Pn}n≥0.

Proposition 3.13. In the above setup, there exists a projection p ∈ A such that Ap is
amenable and Ap⊥ is properly proximal relative to XF .

Proof. It follows from the proof of [13, Proposition 9.1] that there exists an M-bimodular
u.c.p. map φ : (Mop)′ ∩B(L2M̃�L2 M) → S̃XF (M). Moreover, since L2M̃�L2 M ∼=
L2 M⊗K as an M-M bimodule for some right M module K [20, Lemma 2.10], we may
restrict φ to B(L2 M)⊗ idK. Take p ∈ Z(A) to be the maximal projection such that Ap
is amenable and p �= 1 as A is nonamenable. If Ap⊥ is not properly proximal relative
to X inside M , i.e., there exists an A-central state ϕ on S̃XF (M) which is normal when
restricted to p⊥Mp⊥. Then pick q ∈ Z(Ap⊥) be the support projection of (ϕ ◦ φ)|Ap⊥
and we have Aq is amenable, which contradicts the maximality of p. ��

4. The Upgrading Theorem

Proof of Theorem 1.1. First notice that since A is properly proximal relative to X inside
M , it has no amenable direct summand by (3) of Remark 3.3. Let f ∈ Z(A) be the
projection such that A f ⊥ is the maximal properly proximal direct summand of A by
(4) of Remark 3.3, and we may assume f �= 0 since otherwise A would be properly
proximal. Therefore A f has no amenable direct summand, is properly proximal relative
to X inside M by (2) of Remark 3.3 and has no properly proximal direct summand. It
follows from Lemma 3.4 that there exists an A f -central state μ on S̃(A f ) such that μ|A f
is normal. Moreover, by a maximal argument, we may assume μ|Z(A f ) is faithful, as
A f has no properly proximal direct summand.

Let Ẽ : S̃(M) → S̃(A f ) be the u.c.p. map as in Lemma 3.11. Define a state ϕ = μ ◦
Ẽ : S̃(M) → C, and it follows that ϕ is A f -central and ϕ| f M f is a faithful normal state.
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Let qK be the identity of the von Neumann algebra (K(L2 M)
�
J )

∗ ⊂ (B(L2 M)
�
J )

∗, qX
the identity of von Neumann algebra (KX(M)

�
J )

∗ ⊂ (B(L2 M)
�
J )

∗. Note that qK ≤ qX
as K(L2M) ⊂ KX(M).

First we analyze the support of ϕ. Observe that ϕ(q⊥
K

) = 1. Indeed, if ϕ(qK) > 0, i.e.,

ϕ does not vanish on (K(L2M)
�
J )

∗, then we may restrict ϕ to B(L2M), which embeds

into (K(L2M)
�
J )

∗ as a normal operator M-system [13, Sect. 8], and this shows that A f
would have an amenable direct summand. Moreover, we have ϕ(qX) = 1. Indeed, if
ϕ(q⊥

X
) > 0, then

1

μ(q⊥
X

)
ϕ ◦ Ad(q⊥

X
) : S̃X(M) → C

would be an A f -central that restricts to a normal state on f M f . Since SX(M) naturally
embeds into S̃X(M), this contradicts that A f is properly proximal relative to X inside
M . Therefore we conclude that ϕ(qXq⊥

K
) = 1.

For each 1 ≤ i ≤ n, denote by Xi := XMi ⊂ B(L2M) the M-boundary piece asso-
ciated with Mi and qi ∈ (KXi (M)

�
J )

∗ the identity. Since ∨n
i=1qi = qX by Lemma 3.10

and [qi , q j ] = 0 by Lemma 3.9 and condition (2), we have ϕ(q jq⊥
K

) > 0 for some
1 ≤ j ≤ n.

Claim: there exists a u.c.p. map φ : 〈M, eMj 〉 → q⊥
K
q j S̃(M)q j such that φ(x) = q⊥

K
q j x

for any x ∈ M .

Proof of the claim.. Denote by {mk}k≥0 ⊂ M a bounded Pimsner–Popa basis of M over
Mi . For each n ≥ 0, consider the u.c.p. map ψn : 〈M, eMj 〉 → 〈M, eMj 〉 given by

ψn(x) = (
∑

k≤n

mkeMjm
∗
k)x(

∑

�≤n

m�eMjm
∗
�),

and notice that ψn maps 〈M, eMj 〉 into the ∗-subalgebra A0 := sp{mkaeMjm
∗
� | a ∈

Mj , k, � ≥ 0}.
Recall notations from Remark 3.5. By Lemma 3.8, we have

{ιnor(Jmk JeMj Jm
∗
k J )}k≥0 ⊂ (B(L2M)

�
J )

∗

is a family of pairwise orthogonal projections. Set

e j =
∑

k≥0

ιnor(Jmk JeMj Jm
∗
k J ) ∈ (B(L2M)

�
J )

∗

and define the map

φ0 : A0 → q⊥
K

(B(L2M)
�
J )

∗

mraeMjm
∗
� �→ q⊥

K
ιnor(mra)e j ιnor(m

∗
�).

It is easy to check that φ0 is well-defined. We then check that φ0 is a ∗-homomorphism.
It suffices to show that for any x ∈ M , we have

q⊥
K
e j ιnor(x)e j = q⊥

K
ιnor(EMj (x))e j . (3)
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Now we compute,

q⊥
K
e j ιnor(x)e j

= q⊥
K

∑

k,�≥0

ιnor
(
(Jmk JeMj Jm

∗
k J )x(Jm� JeMj Jm

∗
� J )

)

= q⊥
K

∑

k≥0

ιnor
(
(Jmk JeMj Jm

∗
k J )x(Jmk JeMj Jm

∗
k J )

)

+
∑

k �=�

ιnor
(
(Jmk JeMj Jm

∗
k J )x(Jm� JeMj Jm

∗
� J )

)
.

By Remark 2.2, we have (Jmk JeMj Jm
∗
k J )(x−EMj (x))(Jm� JeMj Jm

∗
� J ) ∈ B(L2 M)

is a compact operator from
M to L2M for k �= �. Since (Jmk JeMj Jm

∗
k J )EMj (x)(Jm� JeMj Jm

∗
� J ) = 0 if � �=

k, we have
∑

k �=� q
⊥
K

ιnor(Jmk JeMj Jm
∗
k J x Jm� JeMj Jm

∗
� J ) = 0. Similarly, one checks

thatq⊥
K

ιnor
(
(Jmk JeMj Jm

∗
k J )x(Jmk JeMj Jm

∗
k J )

) = q⊥
K

ιnor
(
EMj (x)(Jmk JeMj Jm

∗
k J )

)
.

It then follows from (3) that φ0 is a ∗-homomorphism. Now we verify that φ0 is norm
continuous.

Given
∑d

i=1 mki ai eM j m
∗
�i

∈ A0, we may assume that ki �= k j and �i �= � j if i �= j .

Consider Pk = q⊥
K

∑d
i=1 ιnor(Jmk Jm�i eM j m

∗
�i
Jm∗

k J ) and

Qk = q⊥
K

∑d
i=1 ιnor(Jmk Jmki eM j m

∗
ki
Jm∗

k J ). We have Pk and Qk are a projections
and Pk Pr = QkQr = 0 if k �= r by Remark 2.2. And for the same reason, we have
ιnor(eMjm

∗
�i
Jm∗

k J )Pk = q⊥
K

ιnor(eMjm
∗
�i
Jm∗

k J ) as well as ιnor(eMjm
∗
ki
Jm∗

k J )Qk =
q⊥
K

ιnor(eMjm
∗
ki
Jm∗

k J ) for each 1 ≤ i ≤ d. LetHbe the Hilbert space where (B(L2M)
�
J )

∗
is represented on. For ξ, η ∈ (H)1, we compute

|〈φ0(

d∑

i=1

mki ai eM j m
∗
�i

)ξ, η〉|

≤
∑

k≥0

|
d∑

i=1

〈q⊥
K

ιnor(eMjm
∗
�i
Jm∗

k J )ξ, ιnor(Jmk Jmki eM j ai )
∗η〉|

=
∑

k≥0

|
d∑

i=1

〈ιnor(eMjm
∗
�i
Jm∗

k J )Pkξ, ιnor(Jmk Jmki eM j ai )
∗Qkη〉|

≤
∑

k≥0

‖ιnor(Jmk J (

d∑

i=1

mki ai eM j m
∗
�i

)Jm∗
k J )‖‖Pkξ‖‖Qkη‖

≤ (sup
k∈N

‖mk‖2)‖
d∑

i=1

mki ai eM j m
∗
�i

‖(
∑

k≥0

‖Pkξ‖2)1/2(
∑

k≥0

‖Qkξ‖2)1/2

≤ (sup
k∈N

‖mk‖2)‖
d∑

i=1

mki ai eM j m
∗
�i

‖.

This shows that φ0 is norm continuous as required.
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Lastly we show that φ0 maps into q⊥
K

S̃(M). As ιnor(M) commutes with ιnor(JM J ),
it suffices to show [e j , ιnor(Ju J )] = 0 for any u ∈ G, which follows from condition (2).
Indeed,

ιnor(Ju J )e j ιnor(Ju
∗ J ) = q⊥

K

( ∑

k≥0

ιnor(Jumk JeMj Jm
∗
ku

∗ J )
)
,

while

Jumk JeMj Jm
∗
ku

∗ J = Jmku uk JeMj Ju
∗
km

∗
ku J = Jmku JeMj Jm

∗
ku J,

and hence

ιnor(Ju J )e j ιnor(Ju
∗ J ) = q⊥

K

(∑

k≥0

ιnor(Jmku JeMj Jm
∗
ku J )

) ≤ e j ,

for any u ∈ G. Since G is a group, we actually have ιnor(Ju J )e j ιnor(Ju∗ J ) = e j , as
desired.

Combining all the above arugments, we may extend φ0 : A → q⊥
K

S̃(M) to a ∗-

homomorphism on A, where A = A0
‖·‖

is a C∗-algebra.
The next step is to define the map φ. For each n ≥ 0, set φn := φ0 ◦ ψn :

〈M, eMj 〉 → q⊥
K

S̃(M), which is c.p. and subunital by construction. We may then pick

φ ∈ CB(〈M, eMj 〉, q⊥
K

S̃(M)) a weak∗ limit point of {φn}n∈N, which exists as q⊥
K

S̃(M)

is a von Neumann algebra.
We claim that

Ad(q j ) ◦ φ : 〈M, eMj 〉 → q⊥
K
q j S̃(M)q j

is an M-bimodular u.c.p. map, which amounts to showing φ(x) = q⊥
K
q j ιnor(x) for any

x ∈ M .
In fact, for any x ∈ M , we have

φ(x) = lim
n→∞ φ0

( ∑

0≤k,�≤n

(mkEMj (m
∗
k xm�)eMjm

∗
�)

)

= q⊥
K

lim
n→∞

∑

0≤k,�≤n

ιnor(mkEMj (m
∗
k xm�))e j ιnor(m

∗
�)

= q⊥
K

lim
n→∞

∑

0≤k,�≤n

(
ιnor(mk)e j ιnor(m

∗
k)

)
ιnor(x)

(
ιnor(m�)e j ιnor(m

∗
�)

)
,

where the last equation follows from (3). Finally, note that {pk}k≥0 is a family of pairwise
orthogonal projections by Remark 2.2, where

pk := q⊥
K

ιnor(mk)e j ιnor(m
∗
k) = q⊥

K

∑

r≥0

ιnor(Jmr JmkeMjm
∗
k Jm

∗
r J ),

and
∑

k≥0 pk = ∑
k,r≥0 q

⊥
K

ιnor(Jmr JmkeMjm
∗
k Jm

∗
r J ) = q⊥

K
q j by Lemma 3.9. There-

fore, we conclude that φ(x) = q⊥
K
q j ιnor(x), as desired. ��
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Now consider ν = ϕ ◦φ ∈ 〈M, eMj 〉∗ and notice that 1
ϕ(q⊥

K
q j )

ν is an A f -central state,

which is a normal state when restricted to f M f . Let f j ∈ Z((A f )′ ∩ f M f ) be the
support projection of ν|Z((A f )′∩ f M f ) and then we have A f j is amenable relative to Mj

inside M [33, Theorem 2.1]. Apply the same argument for each i with ϕ(q⊥
K
qi ) > 0, we

then obtain projections fi ∈ f M f (possibly 0) such that A fi is amenable relative to Mi
inside M .

Finally, to show ∨n
i=1 fi = f , note that ϕ(qi fi ) = ϕ(qi ) as

ϕ(qi f
⊥
i ) = ϕ(q⊥

K
qi f

⊥
i ) = ϕ(φ( f ⊥

i )) = ν( f ⊥
i ) = 0.

Consequently we have

ϕ(∨n
i=1 fi ) ≥ ϕ(∨n

i=1qi fi ) ≥ ϕ(∨n
i=1qi ) = 1,

and hence ∨n
i=1 fi = f by the faithfulness of ϕ| f M f . Since fi ∈ Z((A f )′ ∩ f M f ), we

may rearrange these projections so that
∑n

i=1 fi = f . ��

5. Proofs of Main Theorems

Proof of Theorem 1.3. This follows from noticing that the Jones projections eL�i pair-
wise commute, and then applying Theorems 1.1 and 3.12. ��
Theorem 5.1. Let (M1, τ1) and (M2, τ2) be such that Mi ∼= L�i where�i are countable
exact groups and M = M1 ∗M2 be the tracial free product. Let A ⊂ M be von Neumann
subalgebra, then there exists projections {pi }3

i=1 ∈ Z(A′ ∩ M) such that Api ≺M Mi

for each i = 1 and 2, Ap3 is amenable and A(∨3
i=1 pi )

⊥ is properly proximal.

Proof of Theorem 5.1. First note that the free products of the exact groups �i is biexact
relative to {�1, �2} [7, Proposition 15.3.12] and [eM1 , eM2 ] = 0. Then by Theorem 3.12,
we may take f1 and f2 from Theorem 1.1 and let p′

i ∈ Z(A fi ) be the maximal projection
such that Ap′

i is amenable for each i = 1, 2. Set pi = fi − p′
i for i = 1 and 2, and

p3 = p′
1 + p′

2 and the rest follows from Lemma 2.3. ��
Proof of Corollary 1.4. Since A ⊂ M has no properly proximal direct summand, it
follows from Theorems 1.1 and 3.12 that there exists central projections f1 and f2 in
Z(A′ ∩M) such that A fi is amenable relative to Mi inside M for each i , and f1 + f2 = 1.

If A f2 is not amenable, then by Lemma 2.3 we have that A f2 ≺M M2. However,
since A ∩ M1 is diffuse, we may pick a sequence of trace zero unitaries {un} in A ∩ M1
converging to 0. One then checks that ‖EM2(xun f2y)‖2 → 0 for any x , y ∈ M , which
is a contradiction. Therefore A is amenable relative to M1 inside M . And then it follows
from Theorem 2.4 that A ⊂ M1. ��
Proof of Corollary 1.8. Note that in the case of A = L�1, we have Z(A′ ∩ M) = C

and hence Theorem 5.1 implies that either L�1 ≺M L�1 or L�1 ≺M L�2 ∗ · · · ∗ L�m .
The same argument as in [15, Corollary 8.1] deduces the desired result. ��
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