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HYPERFINITENESS FOR GROUP ACTIONS ON TREES

SRIVATSAV KUNNAWALKAM ELAYAVALLI, KOICHI OYAKAWA, FORTE SHINKO, AND PIETER SPAAS

Abstract. We identify natural conditions for a countable group acting on a countable tree which

imply that the orbit equivalence relation of the induced action on the Gromov boundary is Borel

hyperfinite. Examples of this condition include acylindrical actions. We also identify a natural

weakening of the aforementioned conditions that implies measure hyperfiniteness of the boundary

action. We then document examples of group actions on trees whose boundary action is not

hyperfinite.

1. Introduction

Recently there has been a trend of proving Borel hyperfiniteness for orbit equivalence relations
associated to natural actions of countable groups. This project sits at the intersection between
descriptive set theory, ergodic theory and geometric group theory. While it is a major open problem
if all actions of amenable groups give rise to hyperfinite equivalence relations (see [Con+23] for
partial results and further references), the problem of identifying hyperfiniteness for natural actions
associated to non-amenable groups is also of great interest and is seen to be tractable in certain
cases.

Presently we are inspired by the following results recorded in chronological order, that summarize
the activity in the aforementioned problem. First Dougherty, Jackson and Kechris in [DJK94]
showed that the tail equivalence relation is hyperfinite, which implies that the action of F2 on the
Gromov boundary of its Cayley graph gives a Borel hyperfinite equivalence relation. Then Huang,
Sabok and Shinko [HSS20] generalized the above result to certain actions of hyperbolic groups. This
was pushed to all hyperbolic groups in [MS20], with a new proof given recently in [NV23]. Other
examples include certain actions of mapping class groups [PS21], relatively hyperbolic groups acting
naturally on the Bowditch boundary [Kar22], and in the general setting of acylindrically hyperbolic
groups [Oya24].

The first main result of this note is the following:

Theorem A. Let G ! T be an action of a countable group on a countable tree, and suppose that
every geodesic ray v in T has an initial segment σ with Stab(σ) = Stab(v). Then the induced action
of G on the Gromov boundary εT is Borel hyperfinite.

Note that the tree need not be locally finite and the action need not be free. An example of
this is when the action is acylindrical (see [Sel97; Osi18]), a very well studied notion in geometric
group theory. Indeed acylindricity implies that every geodesic ray has an initial segment with finite
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stabilizer. The proof of the above main result relies on reducing the problem to tail equivalence,
which was shown to be hyperfinite in [DJK94].

An important particular case of acylindrical actions on trees is the action of the fundamental group
of a closed orientable 3-manifold M on the Bass-Serre tree associated with the JSJ decomposition
of M (see Lemma 2.4 in [WZ10]). If M is not virtually a torus bundle over a circle, our above result
implies hyperfiniteness; otherwise, π1(M) is virtually polycyclic and hyperfiniteness follows from
[Con+23, Corollary 1.9]. Thus we get the following (this application of Theorem A was pointed
out by Denis Osin):

Corollary 1.1. Suppose that M is a closed, orientable, irreducible 3-manifold. Then the action
of π1(M) on the Bass-Serre tree T associated with the JSJ decomposition of M induces a Borel
hyperfinite equivalence relation on the Gromov boundary of T .

We also identify a natural weakening of the condition in Theorem A for the action so that the
induced action on the boundary is measure-hyperfinite, in fact Borel 2-amenable. The following is
the next main result:

Theorem B. Let G ! T be an action of a countable group on a countable tree such that every geo-
desic ray v has an initial segment σ such that Stab(v) is uniformly coamenable (see Definition 4.3)
in Stab(σ). Then the induced action of G on the Gromov boundary εT is Borel 2-amenable, so in
particular measure-hyperfinite.

A question that arises naturally from the above results is the following: Do there exist countable
group actions on trees for which the induced equivalence relation on the Gromov boundary is not
Borel hyperfinite. We answer this question affirmatively and collect some remarks in Section 5. In
particular, we identify natural such examples arising from actions on trees of certain inverse limits
of countable groups.

Acknowledgements. We thank Kyoto University for hosting three of the authors for the 8th
KTGU Mathematics Workshop for Young Researchers, where the idea for this note was conceived.
We thank Adrian Ioana, Andrew Marks and Damian Osajda for helpful comments. We thank Denis
Osin for suggesting Corollary 1.1.

2. Preliminaries

2.1. Equivalence relations. Let E be an equivalence relation on a set X , and let A → X . We say
that A is a transversal for E if A meets every E-class exactly once. We say that A is E-invariant
if it is a union of E-classes. The saturation of A, denoted [A]E , is the smallest E-invariant set
containing A. We write E!A for the restriction of E to A.

Given a monoid action M ! X , its orbit equivalence relation, denoted EX
M , is the equivalence

relation on X generated by the relation {(x,mx) ∈ X2 : x ∈ X,m ∈ M}. We write X/M to mean
X/EX

M .

A countable Borel equivalence relation (CBER) is an equivalence relation E on a standard
Borel space X , such that E is Borel as a subset of X2, and such that every E-class is countable.

A CBER E on a standard Borel space X is smooth if the following equivalent conditions hold (see
[Kec24, Proposition 3.12]):
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(1) E has a Borel transversal.
(2) The quotient space X/E is standard Borel.

Let E and F be CBERs on standard Borel spaces X and Y respectively. We say that E Borel
reduces to F , written E ≤B F , if there is a Borel map f : X → Y such that for all x, x′ ∈ X , we
have x E x′ ⇐⇒ f(x) F f(x′). Note that Borel reduction is a preorder on CBERs. We say that
E is Borel bireducible with F , written E ∼B F , if the following equivalent conditions hold (see
[Kec24, Theorem 3.32]):

(1) E ≤B F and F ≤B E.
(2) There is a Borel map X → Y which descends to a bijection X/E → Y/F .

We will make use of the following observation. A monoid action M ! X is countable-to-one if
for every x ∈ X , there are only countably many (m,x′) ∈ M ⇐X with mx′ = x.

Lemma 2.1. Let M and N be countable monoids, and let M⇐N ! X be a countable-to-one Borel

action on a standard Borel space such that EX
N is smooth. Then EX

M×N ∼B EX/N
M .

Proof. The quotient map X " X/N descends to a bijection X/(M ⇐N) ↪→→ (X/N)/M . #

A CBER E is Borel hyperfinite if E =
⋃

i Ei for some increasing sequence (Ei)i∈N of CBERs,
each of which has all classes finite.

2.2. Trees. A tree is a connected acyclic undirected simple graph.

Let T be a countable tree. A geodesic (resp. geodesic ray) in T is a finite (resp. infinite)
injective sequence of vertices of T such that subsequent terms are adjacent in T . Given a geodesic
σ and a geodesic ray v, we write σ ⇒ v if σ is a strict initial segment of v (so σ is necessarily
finite). Let Geo(T ) denote the standard Borel space of geodesic rays in T , viewed as a Borel
subset of V (T )N, where V (T ) is the vertex set of T . There is an action N ! Geo(T ) defined by
1 · (v0, v1, v2, . . .) = (v1, v2, v3, . . .). The quotient space Geo(T )/N is called the boundary of T , and

is denoted εT . This is a standard Borel space since EGeo(T )
N

is smooth: for a fixed vertex v ∈ T ,
the set of geodesic rays starting at v is a Borel transversal. The action Aut(T ) ! T commutes with
the action N ! T , so it descends to a Borel action Aut(T ) ! εT .

3. Borel hyperfinite boundary actions

Lemma 3.1. Let E be a CBER on a standard Borel space X, and let (An)n∈N be a cover of X by
Borel sets. If each E!An is smooth, then so is E.

Proof. Each E![An]E is smooth, since any Borel transversal for E!An is also a Borel transversal for
E![An]E . So by replacing each An with its saturation, we can assume that each An is E-invariant.
By passing to subsets, we can further assume that (An)n∈N is a partition. Then each E!An has a
Borel transversal, and the union of these transversals is a Borel transversal for E. #

We can now prove Theorem A from the introduction.

Theorem 3.2. Let G ! T be an action of a countable group on a countable tree such that every
geodesic ray v in T has an initial segment σ with Stab(v) = Stab(σ). Then E∂T

G is Borel hyperfinite.
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Proof. For every geodesic σ, let Geoσ(T ) be the set of geodesic rays v extending σ such that
Stab(v) = Stab(σ). Then (Geoσ(T ))σ is a cover of Geo(T ) by our condition and for any geodesic σ,

Geoσ(T ) is closed. Furthermore, for every σ, we have EGeo(T )
G !Geoσ(T ) = EGeoσ(T )

Stab(σ) . Now we see

that the action Stab(σ) ! Geoσ(T ) is trivial, since Stab(v) = Stab(σ) for any v ∈ Geoσ(T ), hence

this equivalence relation is smooth. We conclude that EGeo(T )
G is smooth by Lemma 3.1, and thus

EGeo(T )/G
N

is Borel hyperfinite by [DJK94, Corollary 8.2]. By applying Lemma 2.1 twice, we have

E∂T
G ∼B EGeo(T )

G×N
∼B EGeo(T )/G

N
. Since hyperfiniteness is closed under Borel reduction (see [JKL02,

Proposition 1.3(ii)]), we get that E∂T
G is Borel hyperfinite. #

Example 3.3. A natural example of an action satisfying the condition from Theorem 3.2 is any
amalgamated free product G = H ∗C K acting on its Bass-Serre tree ([Ser80]), when the amalgam
C is almost malnormal. Indeed, in that case gCg−1 ∩ C is finite for every g ∈ G \ C by definition,
which means that the stabilizer of any segment of length at least 2 is finite.

4. Measure-hyperfinite boundary actions

Let A be a set. View A as a subset of %1(A), by treating elements of %1(A) as formal R-linear
combinations of elements of A. A probability measure on A is a non-negative element p ∈ %1(A)
with ⇔p⇔1 = 1. Let Prob(A) denote the set of probability measures on A. Any function A⇐B → C
extends linearly to a function Prob(A)⇐Prob(B) → Prob(C). In particular, if M is a monoid, then
Prob(M) is a monoid, and every monoid action M ! X extends to an action Prob(M) ! Prob(X).

A CBER E on X is Borel amenable if there is a sequence (pi)i∈N, where each pi is a function
taking every x ∈ X to some pxi ∈ Prob([x]E), such that

∀(x, y) ∈ E ∀ε > 0 ∀∞i ⇔pxi − pyi ⇔1 < ε

(where ∀∞i means “for all but finitely many i”) and such that for every i ∈ N, the function E → R

defined by (x, y) /→ pxi ({y}) is Borel.

A CBER E on X is Borel 2-amenable if there is a sequence (pi,j)i,j∈N, where each pi,j is a
function taking every x ∈ X to some pxi,j ∈ Prob([x]E), such that

∀(x, y) ∈ E ∀ε > 0 ∀∞i ∀∞j ⇔pxi,j − pyi,j⇔1 < ε,

and such that for every (i, j) ∈ N2, the function E → R defined by (x, y) /→ pxi,j({y}) is Borel.

Let Φ ∈ {hyperfinite, amenable, 2-amenable}, and let E be a CBER on a standard Borel space X .
Given a Borel probability measure µ on X , we say that E is µ-Φ if there is a µ-conull subset X ′ → X
such that E!X ′ is “Borel Φ”. We say that E is measure-Φ if E is µ-Φ for every Borel probability
measure µ on X . If we require X ′ to be invariant, we get an a priori stronger condition for being
µ-Φ for a single µ. However, if we allow ourselves to pass to a stricter measure, e.g.

∑ 1
2n gnµ where

G = (gn)n is a group whose action generates E, the E-saturation of a null set will remain a null
set, and hence we could assume X ′ to be E-invariant.

The following is essentially in the proof of [JKL02, 2.13(ii)], see also [Kec24, Theorem 9.21].

Proposition 4.1. Let E be a CBER on a standard Borel space X. If µ is a Borel probability
measure on X and E is µ-2-amenable, then E is µ-hyperfinite. In particular, if E is Borel 2-
amenable, then E is measure-hyperfinite.
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Proof. By the Connes-Feldman-Weiss theorem [CFW81], it suffices to show that E is µ-amenable.
By the Feldman-Moore theorem [FM77], there is a countable group G and a Borel action G ! X
such that E = EX

G . Since E is µ-2-amenable, we have

(1) ∀µx ∀g ∈ G ∀ε > 0 ∀∞i ∀∞j ⇔pxi,j − pgxi,j⇔1 < ε.

We claim that there exists a function f : N → N such that

(2) ∀µx ∀g ∈ G ∀ε > 0 ∀∞i ∀j ≥ f(i) ⇔pxi,j − pgxi,j⇔1 < ε.

Indeed, let G = {g1, g2, · · · } be an enumeration of the elements of G and define a Borel probability
measure ν on X ⇐ G ⇐ N satisfying ν|X×{(gn,m)} = 1

2nmµ for any (n,m) ∈ N2. For i, j ∈ N, we
define

Aij = {(x, g,m) ∈ X ⇐G⇐ N | ∀j′ ≥ j, ⇔pxi,j′ − pgxi,j′⇔1 <
1

m
}.

Since (Aij)j∈N is increasing and ν(X ⇐ G ⇐ N) < ∞, for each i ∈ N, there exists f(i) ∈ N such
that the set Ai =

⋃
j∈N

Aij \ Aif(i) satisfies ν(Ai) < 1
2i . By the Borel-Cantelli lemma, the set

A =
⋂

k∈N

⋃
i≥k Ai is ν-null. Define A(g,m) = {x ∈ X | (x, g,m) ∈ A} for each (g,m) ∈ G⇐ N and

B =
⋃

(g,m)∈G×N
A(g,m). Note that for x /∈ B, we have by definition that for each (g,m) ∈ G ⇐ N,

(x, g,m) /∈ A, i.e. (x, g,m) /∈ Ai for all but finitely many i. In other words, together with (1) this
implies

(3) ∀µx ∈ X \B ∀g ∈ G ∀m ∈ N ∀∞i ∀j ≥ f(i) ⇔pxi,j − pgxi,j⇔1 <
1

m
.

Meanwhile, B is µ-null since µ(A(gn,m)) = 2nmν(A(gn,m)) ≤ 2nmν(A) = 0. Hence, (3) implies (2).
By (2), (pi,f(i))i∈N witnesses µ-amenability of E. #

Definition 4.2. Let G ! X be a group action. Given a finite subset S ∈ G and ε > 0, an
(S, ε)-Reiter function is a probability measure p on G such that for every s ∈ S and every x ∈ X ,
we have ⇔px− psx⇔1 < ε (where py ∈ Prob(G · y) denotes the pushforward measure under the map
g /→ gy).

Definition 4.3. Let G be a group. A subgroup H ≤ G is uniformly coamenable if the action
G ! G/H satisfies that for every finite S ∈ G and every ε > 0, there is an (S, ε)-Reiter function.

Natural examples of uniformly coamenable subgroups include coamenable normal subgroups.

Lemma 4.4. Let G ! X be a Borel action of a countable group on a standard Borel space. If
every stabilizer is uniformly coamenable in G, then EX

G is Borel amenable.

Proof. Denote by Prob∗(G) the subset of Prob(G) consisting of finitely supported Q-valued proba-
bility measures. Fix an ordering on Prob∗(G) isomorphic to (N, <), and fix an increasing sequence
(Sn)n∈N of finite subsets of G such that

⋃
n Sn = G.

For every n ∈ N and x ∈ X , let pxn be the first (in the ordering) element of Prob∗(G) which is an
(Sn, 1/n)-Reiter function for G ! G/ Stab(x); this exists since Prob∗(G) is dense in Prob(G). Set
qxn = pxnx.

Now fix x ∈ X and g ∈ G. Since pxn = pgxn and ⇔pxnx− pxngx⇔ < 1
n if g ∈ Sn, we have

⇔qxn − qgxn ⇔ = ⇔pxnx− pgxn gx⇔ = ⇔pxnx− pxngx⇔ → 0.

Thus (qn)n∈N witnesses Borel amenability of G ! X . #
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Lemma 4.5. Let E be a CBER on a standard Borel space X, and let (An)n∈N be a cover of X by
Borel sets. If each E!An is Borel amenable, then so is E.

Proof. By [JKL02, Proposition 2.15(iv)], each E![An]E is Borel amenable, so by replacing each
An with [An]E , we can assume that each An is E-invariant. By [JKL02, Proposition 2.15(i)], by
passing to subsets, we can further assume that (An)n∈N is a partition. Then we are done by [JKL02,
Proposition 2.15(vi)]. #

We are now ready to prove Theorem B from the introduction.

Theorem 4.6. Let G ! T be an action of a countable group on a countable tree such that every
geodesic ray v has an initial segment σ such that Stab(v) is uniformly coamenable in Stab(σ). Then
E∂T

G is Borel 2-amenable, so in particular measure-hyperfinite.

Proof. For every geodesic σ, let Geoσ(T ) be the set of geodesic rays v extending σ such that Stab(v)
is uniformly coamenable in Stab(σ). Then (Geoσ(T ))σ is a cover of Geo(T ). We also claim that
Geoσ(T ) is Borel for any geodesic σ. Indeed, let (Sn)n∈N and Prob∗(G) be as in the proof of
Lemma 4.4 and for each n ∈ N and p ∈ Prob∗(G), we define

An,p = {v ∈ Geo(T ) | σ ⇒ v ∧ max
g∈Sn

⇔pv− pgv⇔1 ≤
1

n
}.

Since the action G ! Geo(T ) is an action by homeomorphisms, An,p is closed. Hence, Geoσ(T )
is Borel since v ∈ Geoσ(T ) ⇔ [∀n ∈ N ∃p ∈ Prob∗(G) v ∈ An,p]. For every σ, we have

EGeo(T )
G !Geoσ(T ) = EGeoσ(T )

Stab(σ) , and every stabilizer of the action Stab(σ) ! Geoσ(T ) is uniformly

coamenable in Stab(σ) by hypothesis, so this equivalence relation is Borel amenable by Lemma 4.4.

Hence EGeo(T )
G is Borel amenable by Lemma 4.5, and thus EGeo(T )

G×N
is Borel 2-amenable by [JKL02,

Proposition 2.15(ix)]. By Lemma 2.1, we have E∂T
G ∼B EGeo(T )

G×N
. Since Borel 2-amenability is closed

under Borel reduction (see [JKL02, Proposition 2.15(ii)]), we get that E∂T
G is Borel 2-amenable.

Measure-hyperfiniteness follows from Proposition 4.1. #

5. Prodiscrete actions

A Borel action of a countable group G on a standard Borel space is prodiscrete (or modular) if
it is the inverse limit of countable G-sets, or equivalently, if it is isomorphic to the boundary action
G ! εT of a rooted action G ! T on a countable tree, where an action is rooted if it has a fixed
point (see [Kec05, Fact 1.1]). See [Kec24, Section 10.8] for background on prodiscrete actions.

Example 5.1. Let G be a countable residually finite group. Then G admits a free pmp prodiscrete
action (see [Kec05, Fact 1.4]), meaning that there is a rooted action G ! T on a countable tree
and a Borel probability measure µ on εT , such that the boundary action G ! εT preserves µ and
is µ-almost everywhere free.

• If G is non-amenable (for instance, if G is a non-abelian free group), then E∂T
G is not

µ-hyperfinite (see [JKL02, Proposition 2.5(ii)]).
• If G is antitreeable, then E∂T

G is not µ-treeable. A countable group is antitreeable if it
admits no treeable free pmp actions (see [Kec24, Section 10.7(2)]). There are many examples
of antitreeable groups, for instance, any infinite property (T) group, or any product of a
non-amenable group by an infinite group.
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It is known that prodiscrete actions cannot be arbitrarily complicated, since for instance, it was
shown in [Hjo05] that the free part of the Bernoulli shift F2 ! 2F2 does not Borel reduce to the
orbit equivalence relation of any prodiscrete action (see [Kec24, Section 10.8] for more examples,
where they are called “antimodular”). It is not known whether this result can be extended to all
boundary actions:

Question 5.2. If G ! T is an action of a countable group on a countable tree, is it true that the
free part of the Bernoulli shift F2 ! 2F2 does not Borel reduce to E∂T

G ?
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