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Abstract

Isla Santa Cruz is a volcanic island located in the central Galapagos Archipelago. The island’s northern and southern flanks
are deformed by E-W-trending normal faults not observed on the younger Galapagos shields, and Santa Cruz lacks the large
summit calderas that characterize those structures. To construct a chronology of volcanism and deformation on Santa Cruz,
we employ “°Ar/*° Ar geochronology of lavas and *He exposure dating of fault scarps from across the island. The combination
of Ar—Ar dating with in situ-produced cosmogenic exposure age data provides a powerful tool to evaluate fault chronolo-
gies. The “°Ar/*Ar ages indicate that the island has been volcanically active since at least 1.62 +0.030 Ma (2SD). Volcanism
deposited lavas over the entire island until ~200 ka, when it became focused along an E-W-trending summit vent system; all
dated lavas < 200 ka were emplaced on the southern flank. Structural observations suggest that the island has experienced two
major faulting episodes. Crosscutting relationships of lavas indicate that north flank faults formed after 1.16 +0.070 Ma, but
likely before 416 436 ka, whereas the faults on the southern flank of the island initiated between 201 +37 and 32.6 +4.6 ka,
based on *He exposure dating of fault surfaces. The data are consistent with a model wherein the northeastern faults are asso-
ciated with regional extension owing to the young volcano’s location closer to the Galapagos Spreading Center at the time.
The second phase of volcanism is contemporaneous with the formation of the southern faults. The expression of this younger,
low-volume volcanic phase was likely related to the elongate island morphology established during earlier deformation. The
complex feedback between tectonic and volcanic processes responsible for southward spreading along the southern flank
likely generated persistent E-W-oriented magmatic intrusions. The formation of the Galdpagos Transform Fault and sea-level
fluctuations may be the primary causes of eruptive and deformational episodes on Santa Cruz.
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Introduction
Editorial responsibility: W. W. Chadwick, Jr.; Deputy Executive
Editor: L. Pioli The morphology of a volcanic edifice within any hotspot-gen-
erated archipelago is a product of the interplay between con-
This paper constitutes part of a topical collection: structional volcanic activity and destructive deformational and
Volcanic processes: tectonics, deformation, geodesy, unrest erosional processes (Ramalho et al. 2013). The balance between

these processes changes with time and leads to morphologi-
cal variations of both seamounts and islands (Ramalho et al.
2013). Faulting on the flanks of ocean island volcanoes signals
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The relative magnitudes of internal and external stresses
within an ocean island volcano control the likelihood of a vol-
canic eruption (Gudmundsson 2012), the orientation of magma
emplacement (Takada 1994), and the extent and geometry of
flank spreading and faulting (Le Corvec and Walter 2009).
Internal stresses within a volcanic edifice are induced by mag-
matic overpressures (Huppert and Woods 2002). At ocean
islands, the magnitude of this stress is a result of the buoyancy
force of a magma reservoir, which is related to magma density
(Pinel and Jaupart 2000) and exsolution of volatiles (Geshi et al.
2020). External stresses are generated by local and regional
topography, diminishing as a function of increased magma
storage depth. Regionally, the least compressive stresses will
be dominated by gravitational extension, which in turn reflects
thermal subsidence as a function of increasing distance from
the nearest spreading ridge (Neves et al. 2004) and sea-level
fluctuations (Luttrell and Sandwell 2010). Locally, stresses
are dominated by the load of the volcanic edifice (Pinel and
Jaupart 2003). Eruptions will occur either when the internal
stress exceeds the least compressive external stress or when that
external stress decreases (Gudmundsson 2012). The dominant
causal mechanism will be reflected in the relative orientation of
structures and occurrence of eruptions, as well as their temporal
relationships with tectonic evolution and sea-level fluctuations.
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In this contribution, we investigate the dynamic feedback
between internal and external stresses on Isla Santa Cruz, a
faulted ocean island volcano in the Galapagos Archipelago.
Santa Cruz is an older shield volcano in the Galapagos,
morphologically distinct from the younger volcanoes in the
western archipelago. Enabled by a novel combination of
“OAr/?Ar lava flow geochronology and *He exposure dat-
ing of faults, we use the relative ages of faults and lavas to
determine the dominant processes responsible for volcanism
and deformation during the island’s evolution.

Background

The Galapagos is a hotspot-derived volcanic archipelago that
rests upon a shallow ESE-trending basaltic platform on the
Nazca Plate (Fig. 1; McBirney and Williams 1969). Hot-
spot volcanism in the Galapagos is commonly attributed to
the melting of a mantle plume, sourced in the deep mantle
according to seismic tomography (French and Romanowicz
2015). The westernmost island of Fernandina is the most
active volcano in the archipelago (Kurz et al. 2014), located
at or near the present-day plume center (Hooft et al. 2003;
Villagémez et al. 2007, 2014). As the islands are carried
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Fig.1 a Map of the Galdpagos Archipelago from compiled multi-
resolution bathymetric and topographic data (Ryan et al. 2009). Isla
Santa Cruz and the location of Fig. 2 are near the center of the archi-
pelago. Index contours are shown as bold lines starting at sea level
and at 500 m intervals. Islands are shaded green. Subaerial contour
interval is 250 m, and submarine contour interval is 500 m. Absolute
plate direction and motion for the Nazca Plate are indicated with the
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black arrow and were calculated using Argus et al. (2011). Red line is
the trace of an elevation profile from x to x’ shown in ¢. b Map show-
ing the relative location of the Galapagos Archipelago to Central and
South America. Mid-ocean ridges are solid black lines and trenches
are toothed lines. ¢ Elevation profile across the islands in the central
portion of the archipelago
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eastward on the Nazca Plate, away from the plume (Fig. 1),
magmatism wanes (Ramalho et al. 2013) and they sub-
side (Huppert et al. 2020), resulting in their eventual sub-
mergence ~5 Ma after their initial formation (Geist et al.
2014). This lifecycle is modulated by sea-level fluctuations
(Schwartz et al. 2018) and the proximity of the mantle plume
to the Galapagos Spreading Center (GSC; Harpp and Geist
2018). Migration of the GSC relative to the plume variably
partitions magmatism from the Archipelago to the GSC
(Cleary et al. 2020), which is manifested as aseismic ridges
on the Nazca and Cocos Plates (e.g., Werner et al. 2003;
Harpp et al. 2005; Orellana-Rovirosa and Richards 2018;
Fig. 1). Plume-ridge distances are also modulated by ridge
jumps toward the Galdpagos mantle plume over the past
5 Ma (Mittelstaedt et al. 2012).

The morphology of volcanoes along the central hotspot
track in the Galdpagos varies from west to east (Fig. 1;
McBirney and Williams 1969; White et al. 1993). Younger
western volcanoes (Fernandina, shields of Isabela) are tall
structures (> 1500 m; Fig. 1) with summit calderas that erupt
lava through radial and circumferential vent systems (Chad-
wick and Howard 1991). The eastern islands (i.e., Santiago,
Santa Cruz, San Cristébal) are lower relief than the western
shields (Fig. 1c), characterized by linear summit vent sys-
tems and lacking calderas (Fig. 1a and 1c; Swanson et al.
1974). Gravity surveys on Santa Cruz and San Cristébal
indicate that neither island ever hosted summit calderas,
in contrast to the present-day western Galdpagos shields
(Cleary et al. 2020). This observation suggests that there is
no evolutionary relationship between the eastern islands and
their younger western counterparts (Harpp and Geist 2018).

Santa Cruz is the most populous island in the Galapagos;
most inhabitants (> 10,000) live within a graben formed by
two of the most prominent faults on the island’s southern
flank (Fig. 2 and Fig. 3b). Two phases of volcanism, the
Platform Series and Shield Series (Bow 1979), define the
volcanic stratigraphy of the island. Together, they represent
over a million years of activity that extends to nearly the pre-
sent day (Cox and Dalrymple 1966; Bailey 1976; Bow 1979;
White et al. 1993; Kurz and Geist 1999), with the youngest
dated volcanism recorded and replicated at 24 + 11 ka by
K/Ar geochronology (White et al. 1993). There is a com-
plex history of submergence and re-emergence of the island
recorded as subaerial lavas overlain by marine carbonates
in the stratigraphy exposed, now subaerially, on the island’s
flanks and on minor outlying islands (Bow 1979). This puz-
zling history of long-duration shallow submergence followed
by uplift (Bow 1979) contradicts the prediction of pure
subsidence in response to the island’s motion away from a
mantle plume (Huppert et al. 2020). In this study, we refine
the timing of volcanic activity on Santa Cruz and link it to
the deformation on the island through direct dating of fault
scarps. We test the hypothesis that changes in the dominant

crustal stress fields of the eastern Galapagos volcanoes since
their formation can help explain their deformation and uplift
history relative to the younger western volcanoes.

Methods
Field observations and mapping

During field work on Santa Cruz, we mapped vents and
structural lineaments on the NE and central southern flanks
of the island, including faults and fissures, supplemented
by previous geologic mapping (Bow 1979). Google Earth
satellite imagery and a digital elevation model (d’Ozouville
et al. 2008) enhanced identification of structural features
elsewhere on the island (e.g., Fig. 2b and c; Fig. 3b), where
heavy vegetation limited field access (Fig. 3b).

40Ar/39Ar dating

Lava samples for dating by “’Ar/*’Ar geochronology were
selected on the basis of geochemical variation to be rep-
resentative of the island’s volcanic history (Wilson et al.
2022). Attention was given to sample localities where ages
of lavas could be used to constrain the timing of deformation
on the island. Groundmass samples, ~25 mg, < 1200 pm,
were separated by hand picking from crushed whole rock.
These samples were irradiated and analyzed at Oregon
State University using an ARGUS VI multi-collector noble
gas mass spectrometer following the methods described in
Fox et al. (2021). The incremental heating steps creating a
plateau in *°Ar/*°Ar were averaged to produce an age for
each sample. The reliability of ages was evaluated using the
inverse isochron approach, where samples producing nega-
tive or discordant ages were discarded (Kuiper 2002; Online
Resource 1).

3He surface exposure dating

Cosmogenic *He can be used to quantify the duration of
near-surface exposure to cosmic rays, which serves as a
mechanism to date volcanic eruptions (e.g., Kurz 1986a;
Blard 2021). This approach can be adapted to the direct dat-
ing of deformation. To do this, lava samples are collected
from fault scarps, where their initial exposure is associated
with deformation (Mackey and Quigley 2014; Blahiit et al.
2020). In this scenario, the exposure age of a sample reflects
the age of a scarp-forming event assuming no erosion and
negligible non-cosmogenic *He production (Blard 2021).
We collected samples for *He exposure dating from basaltic
lava flows, typically within vertical fissures formed by nor-
mal faulting in the subsurface (Martel and Langley 2006).
Cosmic rays penetrate rock resulting in *He production in
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Fig.2 a Map of Baltra and Santa Cruz illustrating prominent struc-
tural and volcanic features mapped using satellite data. “Ar/°Ar
ages (ka) are shown in italics, for those samples whose step heating
plateaus are concordant with inverse isochron ages. Details from

the subsurface, but their effect is attenuated as a function
of depth (Dunne et al. 1999). Thus, samples were removed
from fissure/fault walls as low in the volcanic stratigraphy as
possible to minimize cosmogenic exposure prior to faulting.

Samples were sawed square to a thickness of 2-3 cm and
then crushed and sieved. Olivine grains were handpicked
using a binocular microscope from the 500-850 um, non-
magnetic sieve fraction, unless otherwise noted. Olivine
fractions were analyzed using the helium isotope mass spec-
trometer (MS2) dedicated to rocks and minerals at Woods
Hole Oceanographic Institution, consisting of a custom 90°
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the inset are shown in Fig. 3; names for samples in Fig. 3 inset are
not included on this map. b Satellite image of the faults exposed on
the northwestern flank of Santa Cruz. ¢ Satellite image of the NFS
exposed on the northeastern flank of Santa Cruz

magnetic sector and a quadrupole mass spectrometer (Kurz
1986b; Kurz et al. 1996; Kurz and Geist 1999). Measure-
ments were taken by vacuum crushing and melting extrac-
tions of each olivine mineral separate. Crushing the sample
releases the He contained primarily in melt and fluid inclu-
sions, which is most representative of the inherited compo-
nent and measured as *He/*He (Kurz 1986a). Melting the
crushed fraction in a single step releases the remaining gas,
yielding total concentrations of *He and “He (Kurz 1986a),
a combination of the cosmogenic and magmatic helium in
the olivine powder. The cosmogenic component of the *He
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Fig.3 a Map illustrating prominent structural features identified
using satellite data and the locations of cosmogenic age samples near
the town of Puerto Ayora on the southern flank of Santa Cruz (see
Fig. 2 inset). Faults targeted for geochronology are highlighted in pas-
tel colors. Geochronology sample names are shown in boxes. Loca-
tions of *°Ar/**Ar samples are marked as open black circles, ages (ka)

can be calculated from the two measurements, assuming that
the inherited *He/*He ratio is negligibly affected by cosmo-
genic “He (Kurz 1986b). Radiogenic “He (*He*) can also
affect apparent cosmogenic age (Blard 2021), but for the
relatively young samples in this study, “He* is estimated to
be less than the error on the “He ., measurement (Online
Resource 2) and is negligible. Atmospheric helium adsorp-
tion, occurring after crushing and prior to melting, may lead
to overcorrection of the magmatic *He component by several
percent (Protin et al. 2016) to an extent that cannot be quan-
tified, but was minimized by venting to nitrogen following
the crushing step.

For exposure age calculations, we used the online exposure
age calculator, CREp (Martin et al. 2017). Calculations were
performed using a global average sea-level high-latitude *He
production rate in olivine of 119.03+11.73 at/g/yr (Goehring
et al. 2010), scaled to the latitude and elevation of each sample
site, based on time-dependent LSD model of geomagnetic fluc-
tuations (Lifton et al. 2014) and the ERA40 atmosphere model
(Uppala et al. 2005). All samples were at least partially shielded
by topography (Balco et al. 2008) and from cosmic ray attenu-
ation as a function of sample thickness (Dunne et al. 1999).
Thus, ages were calculated accounting for attenuation based
on the thickness of each sample, an average sample density of
2.7 g/lem?® and topographic shielding from horizon measure-
ments made at each sample site (Online Resource 3). Although
there was additional self-shielding owing to dipping sample
surfaces (Balco et al. 2008), we did not include this adjust-
ment because our horizon measurements generally account
for this aspect of the sample’s geometry (Online Resource 3).
Ultimately, shielding-corrected exposure ages were calculated

in italic text, and cosmogenic *He exposure dating samples as circled
red exes, ages (ka) in red text. Faults are represented as curved black
lines, and the shoreline is demarcated as a thin grey line. Black box
indicates the location of inset b. b Satellite image of the SFS exposed
near the town of Puerto Ayora on the southern flank of Santa Cruz

from each sample’s cosmogenic *He concentrations divided by
the sample-specific production rate. This rate is computed as
the product of scaling factors derived from topographic shield-
ing and sample thickness and the reference sea-level produc-
tion rate. Weighted mean ages are calculated for samples col-
lected ~ 1 km from each other and along the same fault, as they
were likely all originally exposed at the same time, except
where noted in the Results. The complex geometry of the fault
scarp samples, the resultant topographic shielding correction
uncertainties, and uncertainty in production rates all likely to
contribute more uncertainty to the absolute *He exposure age
determinations than the analytical uncertainties.

Results
Fault groups and distributions

We divided the structures on Santa Cruz into two categories
on the basis of morphology and location on the island (Fig. 2).
In general, faults on the northeastern flank of Santa Cruz are
poorly preserved and have vertical offsets that increase shore-
ward (Fig. 2C); these are referred to as the Northern Fault
Series (NFS). In contrast, faults in the south-central sector of
the island are more intact and have vertical offsets that exhibit
no correlation with proximity to the shore; this group is the
Southern Fault Series (SFS; Figs. 2, 3). There are additional
small sets of faults on the northwest and southwest flanks
of Santa Cruz that are distinct from the two primary fault
groups. These isolated faults were not visited in the field cam-
paign, but have been included in the SFS (Fig. 2) because they
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exhibit similar morphological characteristics to SFS faults
according to satellite imagery (Fig. 2b).

The NES have similar morphology and orientation to faults
observed on minor outlying islands near Santa Cruz (e.g., Bal-
tra; Fig. 2). The NFS have a unimodal distribution with a length-
weighted mean orientation of 79° (Fig. 4). Characteristically, the
NEFS separate hanging and footwall blocks by vertical scarps with
large piles of rubble at their bases (Fig. 5); in places, only a steep
rubble pile separates the footwall and hanging wall surfaces, with
no exposed scarp face. The NFS faults occur as both north- and
south-facing structures, forming narrow grabens, such as the one
separating Santa Cruz and Baltra Island (Canal de Itabaca; Fig. 5).

The SFS (Fig. 2) exhibits a bimodal directional distribu-
tion (modes at 80 and 110 °), with a length-weighted mean
orientation of 88° (Fig. 4). The SFS faults are expressed as
vertically offset fissures that breach the upper hinge of nar-
row monoclinal folds (Fig. 6), similar to those observed in
southwest Iceland (Grant and Kattenhorn 2004) and on the
Koae fault system in Hawaii (Peacock and Parfitt 2002). The
vertical fissures on SFS faults accommodate vertical and
horizontal displacements (Fig. 7), suggesting that they are
connected to more shallowly dipping normal faults at depth
(Martel and Langley 2006). The location of the hanging wall
block relative to the footwall alternates north and south of
the fissure, indicating that in the subsurface, fault dips are not
preferentially oriented (e.g., there are two faults that form a
graben bounding Puerto Ayora to its north and south; Fig. 3).

Monogenetic vent and pit crater distributions
and characteristics

Monogenetic vents and pit craters identified in satel-
lite imagery are concentrated along the E-W-trending
spine of the island (Fig. 2). The primary dispersion axis

Galapagos
Spreading
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W

Nazca Plate
motion

/
Northern
Fault System

S vent
distribution

|[Southern Fault System|

Fig.4 Rose diagram summarizing the orientation of prominent struc-
tural features on Santa Cruz Island relative to regional features
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Fig.5 Annotated handheld photograph, facing Northeast, of a North-
ern Fault System (NFS) fault at the northeastern-most tip of Santa
Cruz. The body of water visible in the background is the channel
between Isla Santa Cruz and Baltra

of the volcanic vents is 95°, calculated as the surface-area-
weighted directional distribution in ArcGIS (Fig. 4). Pit cra-
ters, which are products of subterranean magma evacuation,
are elongate and form chains in the direction of magma stor-
age (Wyrick et al. 2004). The mean orientation of pit crater
alignments and elongations on Santa Cruz is 86° (Fig. 4).

4OAr/*°Ar ages of lavas and chronology of volcanism
on Isla Santa Cruz

Of the 15 samples collected for “°Ar/*°Ar dating (Online
Resource 1), 11 produced plateau ages with concord-
ant (overlapping within uncertainty) inverse isochron ages
(Table 1; Figs. 2, 3). Plateau ages from these samples vary
from 1.62+0.03 Ma to 74 +38 ka (all errors on ages are
reported as 2SD). Combined with previous geochronology,
the new ages record a history of volcanism on Santa Cruz that
spans ~ 1.6 Ma (Table 1), extending active volcanism an addi-
tional 300 ka beyond the most recent assessment of the volca-
no’s eruptive history (White et al. 1993). The oldest four ages
are from the northeastern flank of Santa Cruz (Figs. 2, 3); these
samples are all classified as Platform Series lavas (Wilson et al.
2022). Near the island’s summit, samples range in age from
271+ 14 to 125+ 31 ka, sampled from pit crater walls as deep
within the volcano’s stratigraphy as accessible (SC12-027),
and from capping lavas and scoria cones. All samples with
ages younger than 100 ka are located on the island’s southern
flank, consistent with previous observations (Cox and Dalrym-
ple 1966; Bow 1979; White et al. 1993; Kurz and Geist 1999).

Several “*Ar/*°Ar dates provide maximum age constraints on
the formation of faults for both the SES and NFS (Fig. 3). The
uppermost lava flow on the northeast corner of Santa Cruz (SC12-
060; Fig. 2), which was deformed by a fault belonging to the NFS,
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Fig.6 a Annotated photograph
of the Tortuga Bay Trail Fault,
looking southeast toward Puerto
Ayora. b Annotated photograph
of the same fault looking north-
east, taken from the Tortuga
Bay Trail near the location of a

hanging wall Iock

By fault dilation {H
foot wall block

W

foot wall block
4 fault throw ¥

Fig.7 Annotated mosaic of photographs of the Iglesia de Santa Cruz
Fault, part of the SFS, to illustrate the sampling process for cosmo-
genic He samples SC12-584A and SC12-584B. Locations of the
samples are shown as dotted purple lines. Van Kirk (foreground) and
Schwartz (collecting sample) for scale

yields an age of 1.16+0.07 Ma (Table 1). Sample SC12-572B is
the uppermost flow cut by the Puerto Ayora Fault (SES) and has
a plateau age of 416 +36 ka. Sample SC12-015, from the highest
lava flow on the hanging wall side of the Tortuga Bay Trail Fault,
yields an age of 257+ 112 ka (Figs. 3, 8; Table 1).

Magmatic helium isotopic ratios

The *He/*He values obtained upon vacuum crushing of
the olivines (6.3 to 8.8 R/R,; Table 2) are interpreted to
represent the magmatic helium. These magmatic values
have a mid-ocean ridge basalt-like signature that overlaps
but expands the range observed on Santa Cruz (Table 2;
Kurz and Geist 1999; 8.58-9.5 R/R,) and do not support a
strong hotspot helium contribution to this magmatism (up

to 30 R/R,, at Fernandina). The 3He/*He values obtained
upon melting are all significantly greater than the sam-
ples’ ratios measured on crushing (Table 2; Fig. 8) and
are interpreted as a result of cosmogenic production of
3He. The ratios are not significantly affected by grain
size, alteration, or adhering groundmass, which is con-
firmed by duplicate analyses (denoted with “fb” appended
to the end of sample names in Table 2) of samples from
larger (850-1200 pm) and smaller (250-500 um) size
fractions and samples that were mechanically abraded to
remove the outer olivine layer, thus removing any poten-
tial implanted radiogenic helium (Fig. 8).

Surface exposure ages

Twelve surface-exposure ages were calculated for samples col-
lected along three SFS faults exposed around the town of Puerto
Ayora (Fig. 3). The exposure ages (Table 3) are divided into four
groups according to the faults from which they were collected
(Fig. 9). All samples were at least partially shielded by surround-
ing topography, with shielding factors varying along each fault
and ranging from 0.3 to 0.8 (Table 3). For reference, the average
shielding factor of 0.6 nearly doubles the exposure age relative
to a hypothetical unshielded sample containing the same amount
of cosmogenic *He.

Four samples along the Puerto Ayora Fault were collected
from both the hanging and footwall sides of the fault scarp. The
ages vary from 26+ 15 ka to 98+ 18 ka (all errors on expo-
sure ages are reported as 2SD), with a weighted mean age of
32.6+4.6 ka (Table 3; Fig. 9). There is no clear age progression
from east to west along the fault (Fig. 3), and all dates fall within
error of one another, with the exception of the oldest sample
(SC12-589). The latter was collected from the footwall side of
the Puerto Ayora Fault where it meets the ocean, 3—4 km east of
the other samples (Fig. 3). Sample SC12-589 is not used in the
weighted mean age calculated for this fault, given its distance
from the others.
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Table 1 Summary of “°Ar/*Ar eruption ages for Isla Santa Cruz

Sample Latitude Longitude  Elevation  Plateau + %P°Ar  Inverse + N* OArOAr,  +
name age isochron
age
° ° m ka 2SD ka 2SD 2SD
Concordant ages
SC12-011 -0.73148  -90.31692 47 73.6 38 94 83.5 51 11 295.1 55
SC12-038 -0.61789  -90.36569 623 125 31 94 69.3 42 14 300.5 34
SC12-046 -0.66620 -90.39413 388 151 17 95 180 45 12 289.0 9.8
SC12-027 -0.63759  -90.29519 416 208 14 74 242 35 8 292.3 32
SC12-015 -0.74286  -90.32467 41 257 112 95 320 171 15 294.4 34
SC12-040 -0.61715  -90.36520 603 271 17 81 282 54 9 294.5 4.7
SC12-572B -0.73636  -90.30458 38 416 36 98 386 76 12 296.7 2.7
SC12-012 -0.69863  -90.22364 O 699 80 67 594 143 9 296.7 1.5
SC12-060 -0.49394  -90.28582 30 1160 70 58 1470 630 6 290.1 12
SC12-059 -0.49388 -90.28613 28 1350 70 100 1270 70 20 300.3 22
SC12-067 —0.49090 -90.25342 48 1360 30 100 1370 40 17 295.2 1.0
SC12-020 -0.56739  -90.17453 36 1620 30 100 1620 40 20 296.4 2.8
Discordant or negative inverse isochron ages
SC12-059 -0.49388 -90.28613 28 1260 210 66 370 230 12 313.2 20
SC12-024 -0.58360 -90.17330 16 40.1 106 97 -250 112 19 297.4 1.7
SC12-584B -0.73856  -90.32131 31 900 600 25 -2210 3990 3 305.2 27
SC12-070 -0.51437 -90.29446 72 -3700 660 60 2780 2060 16 290.4 23

# Number of heating steps used in plateau and inverse isochron age calculations
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Fig.8 Helium isotope ratios for crushing and melting experiments
performed on cosmogenic dating samples. Error bars are 2SD. Colors
of samples correspond to the highlighted faults in Fig. 3. Dashed
lines connect different aliquots of the same sample. Equal isotope
ratios from crushing and melting would fall along the 1:1 line and
would be consistent with zero age, based on the assumption that all
melt *He/*He above the line is produced by cosmogenic *He

Three samples were collected from the Tortuga Bay Trail Fault
(Fig. 3). Two were from sites adjacent to each other within the
same fissure, where one massively jointed lava flow detached

@ Springer

along a cooling joint. The ages of these two samples should,
therefore, be identical and represent the same deformation event.
The sample from the hanging wall side of the fissure, SC12-016,
yielded an exposure age of 32.2+5.8 ka, indistinguishable from
the adjacent sample from the footwall side of the fissure (SC12-
614: 30.4+5.8 ka; Fig. 8). We collected a third sample (SC12-
610) from the same fault less than one kilometer southeast of
the other two, which yielded an age of 41.6+7.5 ka (Fig. 8). We
calculated a weighted mean age for the Tortuga Bay Trail Fault
of 34.6+4.1 ka from these three samples, which is coeval with
formation of the North Puerto Ayora Fault.

Two samples from the same lava flow were analyzed
for exposure ages from adjacent faces of the same fissure
(SC12-584A and 584B; Fig. 7) on the Iglesia de Santa
Cruz Fault (Fig. 3). In this location, joint patterns in
the basalt could be matched across the fissure (Fig. 7).
Therefore, the two samples should share an identical
exposure history, which in turn represents the age of
the fissure. When corrected for shielding, the two ages
are indistinguishable from each other at 73 + 16 ka and
64 + 13 ka (Table 3; Fig. 8). The samples have a weighted
mean age of 67.7 +6.9 ka. The average age of the Igle-
sia de Santa Cruz Fault is about twice that of the larger
faults to its north and south.

Two samples collected from the Well Fault yielded both
the youngest and oldest exposure ages of any of the Santa
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Table 3 Inputs for cosmogenic *He exposure age calculation and ages (numbers in bold are weighted mean ages calculated for each fault seg-
ment, see Results for details), organized as in Table 2

Sample name Latitude Longitude Elevation Productionrate  Sample Topographic Shielding cor- +
scaling factor® thickness  shielding factor® rected exposure
age®
° ° m cm ka 2SD

Puerto Ayora Fault 32.6 4.6
SC12-606 -0.73129  -90.320 49.50 0.64 2.0 0.6032 34.5 6.1
SC12-582 -0.73267 -90.313 24.00 0.65 22 0.3820 55 35
SC12-583 -0.73421  -90.309 32.60 0.62 2.0 0.6457 29.5 8.9
SC12-583-fb -0.73421  -90.309 32.60 0.63 2.0 0.6457 33 21
SC12-581 -0.73431  -90.309 27.10 0.61 2.7 0.5419 26 15
SC12-589 -0.74602  —90.284 22.90 0.65 3.0 0.7744 98 18
Iglesia de Santa Cruz Fault 67.7 6.9
SC12-584A —0.73858  —90.321 20.60 0.65 2.0 0.6817 73 16
SC12-584A-fb —0.73858  —90.321 20.60 0.65 2.0 0.6817 71 15
SC12-584B —0.73858  —90.321 20.60 0.65 2.0 0.5878 64 13
SC12-584B-fb —-0.73858  —90.321 20.60 0.65 2.0 0.5878 64 13
Tortuga Bay Trail Fault 34.6 4.1
SC12-016 -0.74324  -90.324 25.80 0.62 2.0 0.7176 322 5.8
SC12-614 -0.74324  -90.324 25.80 0.62 2.0 0.4211 30.4 8.7
SC12-610 -0.74544  -90.321 29.00 0.66 2.0 0.7468 41.6 7.5
Well Fault

SC12-611A-C -0.74902  -90.348 25.00 0.57 2.0 0.5066 16.8 42
SC12-611B —0.74902  -90.348 25.00 0.67 2.0 0.2731 201 37

# calculated from latitude, longitude and elevation using CREp online calculator (Martin et al. 2017)

® calculated from Balco et al. (2008) using topographic shielding measurements from Online Resource 3

¢ calculated using CREp online calculator using topographic shielding factor, scaled production rate and *He, ., (Table 2)

Cruz faults, at 16.8 +4.2 ka and 201 +37 ka (Fig. 9). The
samples were located on opposing sides of a fissure less
than 10 m apart (Fig. 10). Given the disparity between the
ages, a weighted mean age was not calculated for this fault.
The younger of the samples, SC12-611A, was collected
from the footwall of the Well Fault’s fissure an estimated
15 m from the top of the footwall, and the older sample
(SC12-611B) was collected from 1-2 m from the top of the
hanging wall (Fig. 10). Thus, the age relationship between
the two samples cannot be reconciled by progressive fault
slip. In this case, we interpret the young age of this sample
to be the result of recent erosion of the fissure wall, not the
original faulting event. Instead, the older age of SC12-611B
at 201 +37 ka is considered to best represent the formation
date of the Well Fault in this location; it is also the oldest
exposure age recorded for faulting on the island’s southern
flank.

Chronology of deformation on Isla Santa Cruz
On the basis of crosscutting relationships, the “*Ar/**Ar ages

indicate that the NFS was active after 1160+ 70 ka (Fig. 3).
No samples were collected from the NFS with enough fresh

@ Springer

olivine for exposure dating. Indirect evidence, however,
indicates that the NFS is older than the SFS. First, there are
lavas that flow around existing NFS scarps (e.g., Bow 1979),
which provide a lower age boundary to the faults. One of
these lavas was dated by Ar—Ar methods (SC12-024, Fig. 2),
but yielded an unreliable plateau age (Table 1). On the basis
of field observations of weathering, NFS scarps appear older
than the SFS. Given that the northern flank of Santa Cruz is
more arid (~50 mm/yr rainfall) than the heavily vegetated
southern flank (~400 mm/yr; Grant and Boag 1980; Fig. 6),
erosion rates are likely slower in the north than in the south.
Nevertheless, the SFS are better preserved than the NFS
(Figs. 5 and 6), with the majority of the NFS reduced to
rubbly slopes (Fig. 5). Thus, we conclude that the NFS were
formed during or after Platform Series volcanism, but before
the maximum age recorded by SFS-cut lavas at 416 + 36 ka.

The *He exposure ages on the SFS faults overlap the
“OAr/3°Ar ages and corroborate the finding that deforma-
tion by the SFS occurred after 416 + 36 ka, as indicated
by the oldest dated lava crosscut by the Well Fault in the
SFS (Fig. 3). Synchronous *°Ar/*°Ar and exposure ages,
however, make it clear that deformation and faulting on
the southern flank were contemporaneous (overlapping
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Fig.9 Cosmogenic *He exposure ages for 12 samples collected from
vertical fault scarps along four of the primary faults on the southern
flank of Santa Cruz (Fig. 4). Samples that were collected from the
same fault are grouped together and arranged from west to east along
strike of the fault from which they were collected. Squares are ages
corrected for topographic and geometric shielding with correspond-
ing error bars that include both analytical and production rate uncer-
tainty (2SD). Replicate analyses made on different aliquots (labeled

s “fb”) of the same sample are connected with a dashed line.
Weighted mean ages are calculated for each fault (except the Well
Fault, see Results for explanation) and represented as horizontal black
bars, with uncertainty for the weighted mean age shown as a lighter
grey box (Table 3)

probability density function peaks; Fig. 11a). The exposure
ages indicate that faulting began at the eastern and western
extents of the SFS, where the oldest samples were collected
(98-201 ka; Figs. 3, 9). The youngest fault segments (Puerto
Ayora Fault and the Tortuga Bay Trail Fault; Fig. 3) have
identical weighted mean ages (~ 35 ka; Fig. 9), providing
a constraint on the age of the graben at Puerto Ayora. The
graben formed contemporaneously with the youngest dated
volcanism on the island, 24 + 11 ka (White et al. 1993).

Discussion

Tectonic controls on the origins of the NFS
and platform series volcanism

The presence or absence of extensional deformation on a
volcanic edifice can provide insight into ongoing magmatic
or tectonic processes; fault kinematics as well as spatial
and temporal relationships between volcanic and structural
features can also be used to infer origins of those defor-
mational features. On Santa Cruz, the NFS vertical offsets

Fig. 10 Annotated photograph of the Well Fault near the sampling
location for SC12-610A, from the foot wall block of the fissure and
SC12-610B from the hanging wall block, both collected~1 m from
ground level (i.e., the concrete footpath)

increase toward the shoreline (Figs. 2, 3). Assuming a fault’s
displacement is centered at its initiation point (e.g., Wat-
terson 1986), the NFS must have begun propagating at or
beyond the island’s coastline. Moreover, the NFS orienta-
tions are parallel to structures on minor outlying islands,
such as Santa Fe, located southeast of Santa Cruz (Fig. 1;
Bow 1979). Consequently, we conclude that the stress field
responsible for the formation of the NFS was probably
regional, and not controlled by gravitational forces associ-
ated with edifice topography alone.

Given the present-day half-spreading rate of the GSC
(i.e., motion of the Nazca Plate relative to the GSC; ~25 m/
ka; Argus et al. 2011), Santa Cruz was 25-50 km closer
to the GSC between its emergence (2.3 Ma; Geist et al.
2014) and the end of most Platform Series volcanism
(1.16 £0.070 Ma; Wilson et al. 2022). The minimum
compressive stress for a mid-ocean ridge is predicted to
be orthogonal to the strike of the ridge, which is greatest
near the spreading center and decreases as a function of
distance from the ridge (Neves et al. 2004). The mean
orientation of the NFS (79°) is similar to but less than the
average strike of the GSC (95°; Fig. 4) and consistent with

@ Springer
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Fig. 11 a Summary of geochronological results shown as probability
density functions for exposure ages of fault scarps and eruption ages
determined by “°Ar/*°Ar (this study) and eruption ages from previ-
ous studies, including *He exposure (Kurz and Geist 1999) and K/
Ar geochronology (Cox and Dalrymple 1966; Bailey 1976; Bow

the location of Santa Cruz on the western edge of a projec-
tion of a right-stepping “locked-transform” fault, along
strike of the GSC (Neves et al. 2004). Multiple southward
jumps of the eastern segment of the GSC between 1.0 and
2.5 Ma (Mittelstaedt et al. 2012) that extended the trans-
form fault could have generated or enhanced the “locked-
transform” stress field, required to generate faults that are
not simply orthogonal to the ridge itself (Fig. 4). Thus,
regional extension that caused NFS faulting likely reflects
the influence of the proximal GSC on Santa Cruz dur-
ing the spreading center’s reconfiguration. Furthermore,
crustal and lithospheric thinning from regional extension
may have caused isostatic rebound that resulted in uplift
(Weissel and Karner 1989), which is required to explain
the subaerial exposure of marine carbonates on sea-cliff
sections, tens of meters above the sea surface today (Bow

@ Springer

1979; White et al. 1993). b Summary of geochronological results
from a compared to the sea level curve for the past 300 ka (Bin-
tanja et al. 2005; see text for details). ¢ Cumulative density functions
from curves in b. Sea-level curve represents the cumulative sea-level
decrease over the last 300 ka

1979). An alternative explanation is that relatively fast
sea-level rise since the last glacial maximum has outpaced
subsidence related to isostatic compensation.

Alternative explanations for faulting observed in east-
ern Gal4pagos islands have been proposed, or are possi-
ble. Swanson et al. (1974) invoked upward flexure of the
Galapagos Platform in response to a buoyant mantle plume
(Huppert et al. 2020) as an explanation for regional exten-
sion that generated both faulting and uplift across the central
Galapagos; they suggested that the mantle plume defined an
east—west-oriented sheet spanning the width of the archipel-
ago. Recent seismic tomography (Villagémez et al. 2014),
however, indicates that elevated mantle temperatures asso-
ciated with the Galapagos plume define a vertical cylinder
restricted to the western archipelago, making upward flexure
of the lithosphere an unlikely cause of NFS deformation.
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Another possibility is that the faults are the result of gravi-
tational spreading of the margins of the Galapagos platform
(McGuire 1996). The lack of clearly defined faults on islands
in the central archipelago that emerged after the cessation of
NFS faulting ~ 1 Ma (e.g., Santiago; Gibson et al. 2012; Flo-
reana; Harpp et al. 2014) suggests that regional deformation
had ceased prior to the emergence of these islands. Gravita-
tional spreading of the platform, by contrast, should be an
ongoing process, even today. Therefore, we conclude that the
geochronology data presented here are most consistent with
a model in which regional extension and uplift of the older
Galédpagos islands are related to Santa Cruz’s proximity to the
GSC and its tectonic reconfigurations between 1 and 2.5 Ma.

Topographic controls on the formation of the SFS
and shield series volcanism

The SFS defines a bimodal (Fig. 4), concave-outward distri-
bution, with faults trending northeast on the southwestern
flank but northwest on the southeastern flank (Fig. 2). These
geometries are consistent with formation in a topographi-
cally dominated stress regime (Dieterich 1988). Gravitational
extension alone, however, is not sufficient to cause such
deformation, because Santa Cruz’s flank slopes (34 ; Fig. 1)
are shallower than the angle of repose, even for unconsoli-
dated cinder cones (20"; Porter 1972). An alternative expla-
nation is that faults are formed in response to magmatism,
similar to continental rifts (Medynski et al. 2016), given the
nearly synchronous record of the initiation and cessation
of summit and southern flank volcanism (271 + 17 ka this
study to 24 + 11 ka White et al. 1993) and fault formation
(201 +£37 ka to 32.6+4.6 ka (Fig. 11b and c).

Graben formation in volcanic settings is a common conse-
quence of shallow dike emplacement (e.g., Rubin 1992; Trip-
panera et al. 2015; Ruch et al. 2016). Thus, the presence of
grabens in both the NFS (Fig. 5) and SFS (Fig. 3) may be evi-
dence that deformation was driven by volcanism during both
faulting events. We propose that the faults formed in response
to persistent E-W-diking events that exploited the local stress
regime generated by the existing E-W elongate volcanic edi-
fice, which in turn is a result of the older NFS deformation.

There was a broad migration of volcanism during the
Shield Series (Wilson et al. 2022) coincident with the tim-
ing of SFS deformation. Lava flows were emplaced on both
the northern and southern flanks of the island until 220 ka
(White et al. 1993; Kurz and Geist 1999; this study). Vol-
canism was focused along the E-W-trending summit vent
system by 271+ 17 ka and continued there until at least
125 +31 ka (Fig. 2). The beginning of this interval coin-
cides approximately with the two oldest exposure ages of the
SFS, 201 +37 and 98 + 18 ka (Fig. 11b). Samples younger
than 220 ka are concentrated exclusively on or south of the
summit vents (Fig. 2; Kurz and Geist 1999; White et al.

1993; Figs. 2, 3), indicating that by 220 ka, volcanism on
the island was migrating south of the summit, directing lava
flows onto the southern flank until 24 + 11 ka (White et al.
1993). This timing of eruptive activity coincides with the
youngest exposure ages of faulting (e.g., 32.6 +4.6; Fig. 9).
The reorientation of eruptive features toward an unstable
island flank has been observed at other volcanoes, including
Hawaii (Le Corvec and Walter 2009) and the Canary Islands
(Walter et al. 2005), and is consistent with our observations
at Santa Cruz. Consequently, we suggest that a feedback
loop was established between persistent east—west-oriented
dike intrusions and flank instability, leading to the southward
migration of Shield Series volcanism and SFS formation.

External causes of volcanism at Isla Santa Cruz

At Santa Cruz, contemporaneous “°Ar/*’Ar and *He expo-
sure ages corroborate a link between deformation and vol-
canism, at least during the formation of the SFS. Unlike the
western Galapagos today, however, there is no evidence that
the stress field during the formation of either the NFS or
SFS was dominated by periodic overpressure cycles asso-
ciated with magma recharge (Huppert and Woods 2002;
Chadwick and Dieterich 1995). In the presence of shallow
magma reservoirs, magmatic overpressure generates radial
or circumferential features expressed as directional distri-
bution of vents and structures, which are not observed on
Santa Cruz (Fig. 4; Chadwick and Howard 1991). Therefore,
we suggest that Santa Cruz has never hosted a long-lived,
shallow magma reservoir. This interpretation is consistent
with relatively primitive and variable lava compositions, of
all ages, on Santa Cruz that indicate a persistent absence
of a thermochemically buffered, magma storage reservoir
(Wilson et al. 2022). In addition, gravity measurements on
Santa Cruz do not record the same positive Bouguer anoma-
lies that are observed in the western archipelago that are
predicted to result from the formation of dense-cumulates,
generated during periods of shallow magma storage (Cleary
et al 2020). By contrast, we have shown that deformation
and volcanism exploited linear, E-W-trending regional or
gravitational stress regimes during Shield Series volcanism
and the formation of the NFS and SFS (Figs. 2 and 4). Given
that the ages of these fault systems span nearly the entire
duration of exposed volcanism on the island, we suggest that
the orientation of magma emplacement has been controlled
primarily by the existing external stress field.

The lack of a magmatically dominated stress regime (i.e.,
radial or circumferential faulting) during volcanism and
deformation on Santa Cruz could be the result of a consist-
ently lower magma supply to the island than is the case for
the western volcanoes today. A decreased magma supply
would prevent formation of a shallow, steady-state magma
reservoir required to impart a radial stress field during

@ Springer
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volcanism. Santa Cruz likely had a reduced magma supply
early in its construction owing to the island’s proximity to
the GSC (Wilson and Hey 1995; Mittelstaedt et al. 2012;
Cleary et al. 2020); by contrast, the younger Galdpagos vol-
canoes, which formed at a greater plume-ridge distance,
likely have a more robust magma flux (Harpp and Geist
2018). A proximal ridge siphons plume material toward its
axis, as exhibited by many geochemical and geophysical
studies that document migration of plume material to nearby
spreading centers (Detrick et al. 2002).

More recently, Santa Cruz’s low magma supply is the
result of increased distance of the island from the center of
the plume (Fig. 1). Unlike the western Galapagos volcanoes,
where eruptions are caused primarily by magma overpres-
sures (Vigouroux et al. 2008; Bell et al. 2021) or triggered
by seismic events (Gregg et al. 2018), we suggest that in
the eastern Galdpagos, the relatively low-volume melts are
stored until there are changes in the least-compressive stress
regime, such as extension related to the reconfiguration of
the GSC during Platform Series volcanism.

An additional driver of volcanic activity at Santa Cruz
may be sea-level changes (McGuire et al. 1997). There is a
rough correlation between the timing of recent volcanism
and sea-level regressions at Santa Cruz (Fig. 11b). During
times when sea level dropped significantly, particularly dur-
ing the regressions leading up to the last two largest glacial
maxima~ 150 ka and 20 ka (Bintanja et al. 2005), there is an
increase in the number of eruption and deformation-related
exposure ages (Fig. 11b). The most recent glacial maximum
at~20 ka also broadly coincides with the youngest recorded
deformation and volcanic events on Santa Cruz (Tables 1
and 2). This relationship is further supported by the syn-
chronous increase in slope of the cumulative probability
density functions for eruption ages and exposure ages when
compared to the curve for cumulative sea level fall at ~50 ka
(Fig. 11c). Furthermore, the summed cumulative density
functions for all eruptive ages closely resemble the shape of
the curve for cumulative sea-level fall (Fig. 11¢). The influ-
ence of sea-level change on volcanism also explains the lack
of eruption- and deformation-related exposure ages recorded
since the last glacial maximum and subsequent transgres-
sion (Figs. 10b and c). Consequently, we suggest that during
regressions when sea level drops by at least 100 m, there
may be sufficient decompression to trigger diking events that
lead to flank deformation and eruptions. Additionally, under-
cutting of the island’s flanks during sea-level low stands
(Ramalho et al. 2013), as evidenced by steep erosional cliffs
on the island’s flanks, may lead to their oversteepening and
subsequent gravitational collapse, further enhancing magma
emplacement and volcanism. The relationship between the
timing of sea-level regression and volcanism has been rec-
ognized in other low-magma flux ocean island systems such
as the Canary (Lietz and Schmincke 1975) and Cape Verde
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Islands (Samrock et al. 2019) and may be linked to Pleisto-
cene volcanism in the Azores (Ramalho et al. 2020). Like
Santa Cruz, other ocean island volcanoes derived from low
buoyancy flux hotspots or near-ridge plumes may be espe-
cially susceptible to changes in external stress as a trigger
for volcanism and deformation.

Conclusions

Through the application of *°Ar/*’Ar dating of lavas and
3He exposure ages of fault scarps, we have shown that there
were two linked phases of deformation and volcanism on
Isla Santa Cruz. Initial deformation is recorded on a fault
system exposed on the northeastern flank of the island that
occurred contemporaneously with an early phase of vol-
canism between 1.14 Ma and 420 ka, exploiting a regional
stress field associated with the formation and extension of
the Galapagos Transform Fault. More recently, deformation
on the island’s southern flank occurred during (<225 ka)
and until the end of (~ 35 ka) a second phase of volcanism.
Throughout this protracted history of volcanism and defor-
mation, the island experienced a relatively low magma flux
compared to the younger western shield volcanoes in the
archipelago, reflecting the island’s proximity to the Galapa-
gos Spreading Center early in its formation. Given this lower
magma flux, the island’s morphology and evolution has been
dominated by external stresses, as opposed to the periodic
overpressure cycles associated with magma recharge that
governs the formation of the western volcanoes today. To
this end, the timing of volcanic eruptions and deformation
are dictated by changes in tectonic stresses at nearby mid-
ocean ridges, reconfigurations of those tectonic boundaries,
and/or changes in stress associated with unloading during
sea-level regressions. The timing of volcanism and defor-
mation at Santa Cruz indicates that a feedback loop can be
established between these two processes and that the initial
magnitude and changes in the rate of magma supply are a
primary control on the evolution of an ocean island.
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