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Abstract

Wegive a complete and rigorous derivation of themechanical energy for twisted
2D bilayer heterostructures without any approximation beyond the existence of
an empirical many-body site energy. Our results apply to both the continuous and
discontinuous continuum limit. Approximating the intralayer Cauchy–Born energy
by linear elasticity theory and assuming an interlayer coupling via pair potentials,
our model reduces to a modified Allen–Cahn functional. We rigorously control the
error, and, in the case of sufficiently smooth lattice displacements, provide a rate
of convergence for twist angles satisfying a Diophantine condition.
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List of Symbols

A j Matrix of primitive translation vectors in layer j (2.1)
R j Lattice of layer j (2.2)
D j→3− j Disregistry matrix of layer j with respect to layer 3− j (1.1)
�M Moiré unit cell (2.12)
� j Unit cell of layer j (2.3)
R j (N ) Square truncated lattice in layer j , of side-length 2N + 1 (2.4)
B j Matrix of reciprocal primitive translation vectors in layer j (2.5)
R∗

j Reciprocal lattice of layer j (2.6)
A j Sublattice degrees associated with layer j (2.7)

τ
(α j )

j Shift vector in layer j corresponding to the subllatice degree α j ∈ A j (2.7)
BM Matrix of moiré reciprocal primitive translation vectors (2.8)
R∗

M Reciprocal moiré lattice (2.9)
AM Matrix of moiré primitive translation vectors (2.10)
RM Moiré lattice (2.11)
ρM Moiré length scale ratio, see (2.14)
{x}M Moiré disregistry (2.15)
�x�M Projection onto moiré lattice (2.16)
�x� j Projection onto R j (2.17)
{x} j Disregistry with respect to layer j (2.17)
Y j (x, α j ) Total (generalized) lattice position in layer j , associated with position

x and sublattice degree α j ∈ A j (2.20), (2.21)
u Vector u = (u1, u2) consisting of the (moiré-periodic) displacement functions

u j of layer j , j = 1, 2 (2.22)
γ Vector γ = (γ1, γ2) consisting of the origins γ j of layer j , j = 1, 2 (2.22)
α Vector α = (α1, α2) consisting of the sublattice degrees α j ∈ A j of layer j ,

j = 1, 2 (2.22)
V (mono)

j,α j
Monolayer manybody potential in layer j , acting on an atom of sublattice

degree α j ∈ A j , Sect. 2.1.2

�
(mono)
j Sublattice-averaged monolayer site-potential in layer j (2.24)

V (inter)
j,α j

Interlayer manybody potential in layer j , acting on an atom of sublattice
degree α j ∈ A j , Sect. 2.1.2

vα Interlayer pair potential between atoms of typesα1 ∈ A1 in layer 1 andα2 ∈ A2
in layer 2, α = (α1, α2) (2.26)

�
(inter)
j Sublattice-averaged interlayer site-potential in layer j dependent on oppo-
site layer and moiré disregistry (2.28)
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�
(inter)
j,γ Diagonal of �

(inter)
j (2.30)

F�M Fourier transformover thedomain�M, see (2.35); similarly definesF�M×� j

as Fourier transform over the domain �M × � j , see (3.1)

1
(N )

R∗
j
Rescaled Dirichlet kernel associated with the truncated lattice R j (N ) (3.2)

1. Introduction

Setting a two-dimensional lattice on another with a small rotation creates quasi-
periodic moiré patterns on a superlattice scale given by the period of oscillation
of the interlayer disregistry, see Fig. 1. This moiré effect can be understood as
being analoguous to the beating phenomenon in acoustics. At small twist angles,
the moiré scale acts as a slow variable, whereas the individual layer constants act
as fast variables. Consequently, moiré heterostructures are a suitable playground
for multiscale analysis.

In recent years, moiré materials consisting of a few relatively twisted layers
of 2D-crystal structures have attracted great attention since the moiré length scale
offers the possibility of discovering previously inaccessible electronic phases and
other phenomena [38].

The seminal paper in 2011 by Bistritzer and MacDonald [15] predicted that
twisted bilayer graphene (TBG), at an angle of θ ≈ 1.1◦—referred to as the magic
angle—exhibits almost flat electronic bands near the charge neutrality point. As a
consequence of the flat bands, there is a high density of states,which has been known
to provide a platform for emergent electronic phases involving strong electron
interactions. This has been experimentally verified, e.g., in [22,23], where both a
superconducting and a correlated insulating phase have been established. A class of
other 2D materials is given by transition metal dichalcogenides (TMDs). Popular
choices for transition metals include Mo and W and for chalcogens include Se, S,
and Te. In particular, moiré materials have become quantum simulators, i.e., highly
tunable experimental realizations for effective theories predicted by theorists. For
overviews on moiré materials, we refer to, e.g., [26,55,71].

Structural relaxation, the process by which atoms deviate from their monolayer
equilibriumpositions in order tominimize the totalmechanical energy of the twisted
bilayer, can significantly modify the electronic properties of moiré materials. For
example, relaxation enhances the band gap between the flat electronic bands and
other bands in twisted bilayer graphene [87]. In a simplified model of twisted
bilayer graphene with strong relaxation, the chiral model, the almost flat bands
become exactly flat [5,6,83,86]. It is thus critical to develop systematic methods
for modeling structural relaxation and its effects on electronic properties of moiré
materials.

Modeling structural relaxation is complicated by the fact that the atomic struc-
ture of twisted bilayer 2D materials is generally aperiodic (incommensurate) ex-
cept at special commensurate angles [85]. Phenomenological continuum mod-
els for structural relaxation at commensurate twist angles have been proposed in
[72,77,88,90].



103 Page 4 of 57 Arch. Rational Mech. Anal. (2024) 248:103

Fig. 1. Twisted bilayer, with moiré vectors; pictures on top show local environment in
symmetry-related AB and BA (Bernal) stacked regions, pictures below zoom in on two AA
stacked regions separated by a moiré superlattice vector. See Sect. 2.3.3 for a description and
discussion of the energetics of AA, AB, and BA stacking
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Fig. 2. Modulated disregistry D̂ j→3− j (R j ) chosen in [28]. In comparison, the sequence
	
 j→3− j (R j ) of all modulated disregistries chosen in the present work

A systematic approach not restricted to commensurate twist angles or bilayer
structures was proposed in [28]. In this approach, the displacements u j of atoms
in layer j of an incommensurate twisted 2D bilayer structure are assumed to be
continuous functions of the local configuration, or disregistry, which can be iden-
tified with a two-dimensional torus. This is based on the more general concept of a
hull, a compact parametrization of all possible local environments, which has been
introduced in the context of electronic properties of general aperiodic structures,
see, e.g., [7–9] and references therein.

For more general multilayer structures with p > 2 layers [89,91], the hull can
be identified with a 2p − 2 dimensional torus and hence there does not exist a
two-dimensional periodic continuum model in real space. The configuration-space
model proposed in [28] has become increasingly used to model trilayer and more
general structures [92].

Such a parametrization is known to be valid for the Frenkel-Kontorova model
in one dimension, using Aubry-Mather theory [2–4]. In addition, as a function of
the disregistry, a minimizer, if it exists, is smooth as long as the intralayer potential
dominates the interlayer coupling; see [2–4] and also [29] for a simplified model.
When this condition does not hold, theminimizer can be discontinuous at a dense set
of points [2–4,29]. This motivated us to extend the previous framework to include
non-smooth displacements. In two dimensions, we are not aware of any proof
that minimizers of the twisted bilayer energy necessarily admit such a continuous
parameterization, although the assumption is well-motivated given that intralayer
lattice bonds are known to be much stronger than interlayer couplings in TBG and
other van der Waals 2D heterostructures.

The totalmechanical energy of the bilayer is, then, assumed to be decomposable
into a monolayer and an interlayer coupling contribution. For the monolayer part,
[28] starts with many-body site potentials and then passes directly to the Cauchy–
Born approximation, inspired by, e.g., [16,74]. For the interlayer coupling, they
utilize a stacking penalization, the generalized stacking fault energy (GSFE), see
also [36], dependent on a modulated disregistry, i.e., on the relaxed local environ-
ment. Their modulated disregistry is obtained by projecting an interpolated relaxed
position onto the relaxed structure of the other layer, see Fig. 2.

To define the modulated disregistry more precisely, let A j denote the matrix
whose columns are the primitive translation vectors of latticeR j = A j Z

2 describ-
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ing layer j (see the beginning of Sect. 2), and let

D j→3− j := I − A3− j A−1
j (1.1)

denote the disregistry matrix of layer j with respect to layer 3− j , see Sect. 2 below
for more context. We choose Lagrangian coordinates for the lattice displacements
u j . Then the modulated disregistry chosen in [28] is given by

D̂ j→3− j (R j ) = D j→3− j R j + u j (R j ) − u3− j (R j ) , R j ∈ R j ,

see Fig. 2. In particular, since u3− j is not evaluated at a lattice vector of layer
3 − j , the chosen modulated disregistry in [28] only approximates the difference
vectors of nearby atoms from different layers; see Sect. 2.3.4 for a more thorough
discussion.

In order to pass to a thermodynamic limit, [28] employs an ergodic property
for continuous functions of the interlayer disregistry in incommensurate lattices,
derived in [21,68] in the context of 2D incommensurate systems—systems with
a relative irrational angle, see Assumption 1 below. After they approximate the
Cauchy–Born energy by linear elasticity, their resulting model is given by

1

2

2∑

j=1

−
∫

�M
dx

(
Du j (x) : E j : Du j (x)

+ �
(GSFE)
j

(
D j→3− j x + u j (x) − u3− j (x)

))
,

(1.2)

where �M denotes a moiré unit cell, see (2.12) below, and the GSFE �
(GSFE)
j :

R
2 → R is periodic with respect to to latticeR3− j of the other layer. Furthermore,

we abbreviate by

E j,abcd := λ jδabδcd + μ j (δadδbc + δacδbd) , (1.3)

the elasticity tensor where λ j , μ j > 0 are referred to as Lamé parameters. We
adjusted the sign-convention in (1.2) to that chosen in the present work.

In applications, the GSFE is obtained via a density functional theory (DFT)
approach by minimizing the energy of two untwisted parallel layers at a given
xy-shift corresponding to the disregistry, while the system is allowed to relax in
the z-direction, see [24,36]. Periodic boundary conditions can then be chosen to
account for the lattice periodicity.

The relaxation model obtained in [28] has been very successfully applied to de-
termine the relaxed structure of twisted bilayer systems at small twist angles, see,
e.g., [24]. The goal of the present work is to develop a new approach to modeling
relaxation of twisted bilayer 2D materials which builds on and refines several as-
pects of the approach of [28]. In particular, we expect our model to retain accuracy
even at relatively large twist angles, and lend itself better to the systematic study
of lattice vibrations (phonons), which are known to play a significant role in the
electronic properties of many materials.



Arch. Rational Mech. Anal. (2024) 248:103 Page 7 of 57 103

The first key point of our approach is that we start from an exact, i.e., not
interpolated, discrete model for the interlayer energy. More precisely, the interlayer
site potentials depend on the finite difference stencils

	
 j→3− j (R j ) = (
R j + u j (R j ) − R3− j − u3− j (R3− j )

)
R3− j∈R3− j

of displaced lattice positions, see Fig. 2. This approach allows us to pass to the
thermodynamic limit, without first requiring other approximations. Crucially, our
approach still relies on the assumption that the lattice displacements depend on
the local disregistry. Under this assumption, our model encodes all of the structure
of the underlying discrete model, and allows for further approximations at later
steps. Passing to the thermodynamic limit with such a penalization requires a more
general form of the Birkhoff theorem used in [28]. Since we do not invoke any
interpolation or small-angle approximation here, we expect this interlayer energy
to retain accuracy for arbitrary twist angles. We additionally generalize [28] in al-
lowing for finitely-many independent sublattice degrees of freedom, and relaxation
in the vertical direction, perpendicular to the layers.

Although we emphasize the generality of our approach, it is illuminating to
present our configuration-spacemodel under simplifying assumptions. In particular,
this allows for comparisonbetweenourmodel and (1.2). Let us assume the interlayer
many-body potential is given by an even pair potential v. We ignore sublattice
degrees of freedom and lattice shifts, and restrict u j to take values in R

2, i.e., we
ignore out-of-plane relaxation, and assume smooth u j so that the Cauchy–Born
approximation applies. After further approximation by linear elasticity, our model
is given by

1

2

2∑

j=1

−
∫

�M
dx Du j (x) : E j : Du j (x)

+ 1

|�M|
∫

R2
dξ v

(
A1ξ + u1(A1ξ) − A2ξ − u2(A2ξ)

)
.

(1.4)

For the most general case of monolayer and interlayer coupling energy, we refer to
Eqs. (2.25), and (2.29), respectively. We show the difference between the models
for a specific choice of GSFE depending on v in Sect. 2.3.4. A crucial benefit of our
approach is that it is formulated for the more general case of many-body potentials;
another advantage is that our result holds for arbitrary angles, while the result in [28]
was derived only in the small-angle limit.We believe that our analysis is extendable
to multiple layers as in [28]. In Sect. 2.3.2, we provide some more details on the
Cauchy–Born and linear elasticity approximation. We would like to point out that
the interlayer term in (1.4) takes into account that all distances between points of
different layers are attained.

The next main result is, under additional regularity assumptions on the dis-
placements u j , an estimate on the convergence rate for passage to the thermo-
dynamic limit. For this, we introduce the notion of Diophantine 2D rotations, a
two-dimensional analogue of Diophantine numbers, to quantify the incommensu-
rability of twisted 2D bilayer lattices. We show that an ergodic average can be
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rewritten in Fourier representation as a weighted sum involving an appropriately
rescaled Dirichlet kernel. The leading order term in orders of the truncation corre-
sponds to the limit of the ergodic average. The lower order terms can be bounded by
the tail-behavior of the Dirichlet kernel, if we assume an appropriate Diophantine
angle condition, defining Diophantine 2D rotations. Our concept of Diophantine
2D rotations extends the ideas developed in [30] in the context of coupled one-
dimensional chains. Metric Diophantine approximation theory is a vibrant research
area in analytic number theory. We refer to [10,12,59] and references therein for
historic reviews, and, e.g., to [13,14,32,50,73] and references therein for more
recent results.

The final contribution of the present work is that we prove the existence of
a thermodynamic limit for the energy density under least restrictive assumptions.
These assumptions ensure integrability in the limit energy density functional. The
starting point of our approach is a weaker, namely L1, parametrization of the atomic
displacement functions u j as functions of their relative position with respect to the
moiré unit cell �M, modulo a moiré lattice shift. To be more precise, we pass to
the thermodynamic limit for any (u1, u2) such that the limiting site energy is in
L1(�M), where �M is the moiré cell; see Proposition 2.14, and Theorem 2.17.
We show that u j ∈ L∞(�M) ⊂ L1(�M) is sufficient for this in Lemma 4.5.

This parametrization is given meaning by embedding the twisted bilayer model
within the family of models defined by all possible layer shifts (modulo shifts
which leave the bilayer invariant) and applying Birkhoff-type ergodic theorems
which hold up to a measure zero set of shifts, see Sect. 2.4 for more details. In
particular, this perspective allows us to pass to an almost sure thermodynamic limit
without assuming a continuous parametrization of the atomic displacements as in
[28].

One of the promising properties of the models presented here and in [28] are
that they lend themselves to methods from calculus of variations for continuous
systems, even though the underlying system is discrete. As wewill discuss below in
Sect. 2.3.3, the resultingmodel is connected to theAllen–CahnorGinzburg–Landau
energy functional [44,45]. For references on the study of the Allen–Cahn equation,
we refer to, e.g., [20,35,46,65,82] and references therein, for the Ginzburg–Landau
equations, e.g., to [49,52,78,80] and references therein, and for results on more
general semilinear elliptic equations, e.g., to [1,31,39,41,42,53], and references
therein.

An interesting question is whether an existence and regularity theory can be
developed for the thermodynamic limit energy involvingmany-bodymonolayer po-
tentials, before passing to the Cauchy–Born approximation. We do not address this
question in the present work, instead developing the existence and regularity theory
only for displacements for which the intralayer energy can be simplified using the
Cauchy–Born approximation, such as C2-displacements. After this simplification,
the existence and regularity theory are standard, since the Euler–Lagrange equation
is, then, elliptic; see, e.g., [28].

We comment on the practical application of our results, especially to the study
of lattice vibrations (phonons) in twisted bilayer materials. First, we note that pass-
ing to the thermodynamic limit without restricting to smooth or even continuous
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displacements u j should allow us to model more subtle relaxation patterns and
vibrations than those which can be described using the Cauchy–Born or linear elas-
ticity approximation. The use of the GSFE in [58] is limited to nearest neighbor
interactions and does not include out-of-plane displacement. The phonon disper-
sion method given in [64] includes longer-ranged interactions in the GSFE and
out-of-plane displacements. Our interlayer energy is exact, but it needs approxi-
mation since it includes infinite range interactions. A systematic approximation of
our interlayer energy can give a method to compute the phonon dispersion with
controlled accuracy. Finally, we note that our new interlayer misfit energy has the
potential to be highly accurate if implemented with the new generation of machine
learned empirical potentials [70,81]. These issues will be the subjects of forthcom-
ing works.

2. Model Description

In order to state ourmodel, we start by introducing standard notation to describe
general Bravais lattices, see, e.g., [69]. A 2D Bravais lattice consists of 2 primitive
translation vectors, as well as a basis with associated translation vectors, see Fig. 3.
We associate the basis with sublattice degrees of freedom.

In the case of hexagonal lattices, the sublattice degrees of freedom refer to an
additional atom position given a fixed unit cell. In the case of TMDs, it allows to
distinguish between various species of atoms, the metals and chalcogens. Atomic
orbitals present another choice of sublattice degrees of freedom. To understand the
main ideas, the reader may want to ignore the sublattice degrees of freedom on first
reading.

2.1. Notation

2.1.1. Lattices Let θ ∈ R, q > 0, and A ∈ GL2(R). Define

A1 := q−1/2R−θ/2A , A2 := q1/2Rθ/2A , Rφ :=
(
cosφ − sin φ

sin φ cosφ

)
. (2.1)

Let

R j := A j Z
2 , j ∈ {1, 2}, (2.2)

denote two crystal layers at a relative twist angle θ and with a relative lattice
mismatch q, and abbreviate the respective unit cells

� j := A j [0, 1)2 , j ∈ {1, 2} . (2.3)

In addition, denoting �n1, n2� := [n1, n2] ∩ Z whenever n1, n2 ∈ Z, n1 ≤ n2, we
introduce the truncated lattices

R j (N ) := A j �−N , N�2 , j ∈ {1, 2} , N ∈ N . (2.4)
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Fig. 3. Hexagonal graphene lattice. a j refers to the primitive translation vectors, while τ B

is the translation vector for an additional position within a given unit cell. Blue dots refer to
the A lattice, while red dots refer to the B lattice

Furthermore, let

B j := 2π A−T
j , j ∈ {1, 2} (2.5)

denote the matrix of reciprocal vectors, and define the reciprocal lattices

R∗
j := B j Z

2 , j ∈ {1, 2} . (2.6)

Throughout this work, we let j ∈ {1, 2}.
In addition to the latticesR j , we also introduce the sublattice degrees of freedom

A j , j ∈ {1, 2}. A j is assumed to be a finite set, and to each α j ∈ A j , we assign

a unique shift vector τ
(α j )

j ∈ R
2, see Fig. 3. Moreover, as an additional degree of

freedom, we allow layer j to be shifted by γ j ∈ � j . Consequently, the unrelaxed
positions of layer j are given by

γ j + R j + τ
(α j )

j , α j ∈ A j . (2.7)

As explained above, the moiré lattice is another important lattice in incommen-
surate bilayer heterostructures. We will first define this lattice and then explain its
importance. The primitive translation vectors for the moiré frequency lattice then
are given by

BM := B1 − B2 , (2.8)

generating the moiré frequency lattice

R∗
M := BMZ

2 . (2.9)
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Fig. 4. Twisted bilayer with its moiré lattice highlighted in yellow

The corresponding moiré direct lattice vectors are given by

AM := 2π B−T
M = (A−1

1 − A−1
2 )−1 . (2.10)

Then we define the moiré lattice

RM := AMZ
2, (2.11)

together with its unit cell

�M := AM[0, 1)2 . (2.12)

We now explain the importance of the moiré lattice. As can be seen in Fig. 4, the
moiré lattice is the lattice with respect to which the union of the lattices R1 ∪R2
appears almost periodic. This phenomenon can be explained from two different
perspectives.

First, the moiré lattice is the lattice of periodicity for the beating pattern created
by superposing plane waves with the periodicity of each layer.

Observe that we have that

ei(B1e j )·x = ei(B2e j )·x for j = 1, 2 ⇐⇒ x ∈ 2π(B1 − B2)
−T

Z
2 ,

and hence constructive interference at the points of the moiré lattice.
Second, we would like to formalize the idea that the local environment is moiré

(quasi-)periodic, as can be seen in Fig. 1.
For that, observe that, for a lattice vector R1 ∈ R1 in layer 1, its position relative

to the lattice of layer 2 is

R1 mod R2 .

Equivalently, we can consider the position of R1 relative to its projection into layer
2

(I − A2A−1
1 )R1 mod R2 .

This motivates the definition of the disregistry matrices D j→3− j introduced in
(1.1), given by

D1→2 = I − A2A−1
1 = −A2A−1

M , D2→1 = I − A1A−1
2 = A1A−1

M .(2.13)
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With these, we define the local configuration functions

x �→ (I − A2A−1
1 )x mod R2 , x �→ (I − A1A−1

2 )x mod R1 .

Due to (2.13), both of these local configuration functions are periodic with respect
to the moiré lattice RM. This establishes the moiré periodicity for a notion of the
local environment.

Notice that there are other descriptions of the local environment which are
not moiré-periodic, such as the disregistries defined below in (2.15) and (2.17),
although these notions are related to moiré-periodic quantities through (2.18).

Lemma 2.1. (Moiré length scale) For any x ∈ R
2, we have that

|AMx | = [(q1/2 − q−1/2)2 + 4 sin2(θ/2)]− 1
2 |Ax | .

Similarly, we have for any k ∈ R
2 that

|BMk| = [(q1/2 − q−1/2)2 + 4 sin2(θ/2)] 12 |2π A−T k| .
For a proof, we refer to Appendix A. Motivated by this lemma, we define the
characteristic moiré length scale ratio given by

ρM := [(q − q−1)2 + 4 sin2(θ/2)]− 1
2 . (2.14)

In order to specify almost periodicity, we impose the following restrictions:

Assumption 1. (R1,R2) is incommensurate, i.e.,

G1 + G2 = 0 for G j ∈ R∗
j iff G1 = G2 = 0 .

Assumption 1 has been introduced in [21,68]. In addition, we impose the fol-
lowing condition:

Assumption 2. (R∗
1,R∗

2) is incommensurate.

Remark 2.2. Under Assumption 1, it can be readily verified that alsoR j andRM
are incommensurate. In fact, let GM = BMm ∈ R∗

M, m ∈ Z
2, and G1 = B1n ∈

R∗
1, n ∈ Z

2. Then we have that

GM + G1 = B1(m + n) − B2n = 0

iff m = n = 0, see (2.8). Analogously, (R∗
1,R∗

2) being incommensurate implies
that (R∗

j ,R∗
M), j = 1, 2 is incommensurate.

A straight-forward calculation yields the following result:

Lemma 2.3. We have that (R1,R2) is incommensurate iff (q, θ) ∈ R
+ × [0, 2π)

satisfy

q AT Rθ A−T
Z
2 ∩ Z

2 = {0} .
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As a consequence of Assumption 2, the relative positions ofR j with respect to
themoiré lattice never repeat.Wewant to use this assumption to define a continuous
extension of the displacement functions, defined on the (discrete) lattice γ j +R j ,
and corresponding energies. In particular, we use Assumption 2 to relabel lattice
positions by their relative position within a translate of a moiré unit cell.

To this end, we define for x ∈ R
2

{x}M :=
∑

RM∈RM

(x − RM)1�M(x − RM) (= x mod RM) , (2.15)

and

�x�M := x − {x}M . (2.16)

Observe that

1�M(x − RM) = 0 ⇔ x ∈ �M + RM .

Analogously, we define the decomposition with respect to the latticesR j

x = �x� j + {x} j (2.17)

with �x� j ∈ R j , {x} j ∈ � j . An analogous notation has already been used in
[21]. We call {·}M the (local) disregistry with respect to RM and {·} j the (local)
disregistry with respect toR j .

The quasi-moiré-periodicity of the local disregistry can also be understood by
virtue of Lemma 4.2, for we have that

{R1}2 = D1→2 {R1}M + A2

(
1
1

)
, {R2}1 = D2→1 {R2}M . (2.18)

Exact periodicity would mean that similar formulas relating the moiré disregistry
and the individual layer disregistry would hold for general x ∈ R

2 instead of
lattice points R j . However, in Remark 4.3, we prove that there exists no such
affine transformation. In the incommensurate case, there is only quasi-periodicity.
However, in case of commensurate layers, the local disregistry is periodic with
respect to a lattice which is a subset of the moiré lattice RM. Note that in the
commensurate case, methods for periodic systems, such as Bloch-Floquet theory,
become available. For this reason, and since the commensurate case is in any case
not generic, see Proposition 2.5, we ignore this case in the present work.

As a consequence of incommensurability of (R∗
1,R∗

2) and (R∗
j ,R∗

M), respec-
tively, both

��3− j : R j + γ j → �3− j , R j + γ j �→
{

R j + γ j
}
3− j ,

��M : R j + γ j → �M , R j + γ j �→
{

R j + γ j
}
M ,

are one-to-one, j = 1, 2. For a discussion of this bijection, we refer, e.g., to [67].
We call both, ��3− j and ��M , configuration space projections, see also Fig. 4.

Before continuing, we briefly want to comment why we can simultaneously
choose (R1,R2) and (R∗

1,R∗
2) to be incommensurate. For that, we introduce the

notion of Diophantine 2D-rotations, that corresponds to a quantified version of
incommensurability.
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Definition 2.4. Given q > 0, we call θ ∈ R a (q, K , σ )-Diophantine 2D rotation
iff K > 0, σ > 0, and, for all n ∈ Z

2 \ {0},

dist
(
q±1AT R±θ A−T n, Z

2) ≥ K

|n|2σ . (2.19)

This notion of Diophantine 2D rotations is exactly the condition that allows us
to quantify the error in the ergodic approximation, see Proposition 3.5 below. As
in the case of Diophantine numbers, we have that Diophantine 2D rotations are
generic.

Proposition 2.5. For all q > 0, σ > 1433
1248 ≈ 1.1482 and for Lebesgue-almost all

θ ∈ R there exists K > 0 s.t. θ is a (q, K , σ )-Diophantine 2D rotation.

Since almost every angle θ is a Diophantine 2D rotation, the corresponding
lattice (R1,R2) is incommensurate. By applying the same argument to the recip-
rocal lattices, we also have that for almost every θ , (R∗

1,R∗
2) is incommensurate.

In particular, for (Lebesgue-)almost every θ , both, (R1,R2) and (R∗
1,R∗

2), are
incommensurate.

As the classical results for the one-dimensional case, our proof of Proposi-
tion 2.5, see Appendix B, relies on the Borel-Cantelli Lemma.

As usual, the absolute value function |·|will have a context-dependentmeaning.
For finite sets M , |M | denotes the cardinality of M , for bounded measurable sets
� ⊆ R

n , |�| denotes the respective Lebesgue measure, and for x ∈ R
n , |x | denotes

the Euclidean norm.

Remark 2.6. Bourgain-Watt [18] proposed the bound

|Br ∩ Z
2| = πr2 + Or→∞

(
r

517
824+ε

)

for any ε > 0, where 517
824 ≈ 0.6274, compared to 131

208 ≈ 0.6298 in B in the proof
of Proposition 2.5. In particular, this would allow us to lower the lower bound of σ

to 5671
4944 ≈ 1.1471 compared to 1433

1248 ≈ 1.1482 above.
The general lattice problem is a very active research area. For related works,

we refer to [17,19,43,48] and references therein.

2.1.2. Energies As described in the introduction, we assume that the lattice dis-
placementsu j are periodic functions of their respective disregistry. Sinceweassume
that (R1,R2) is incommensurate, this is equivalent to parametrizing u j as moiré-
periodic functions instead. For simplicity, we assume that u j ∈ Cper(�M; (R3)A j ),
s.t. the total lattice positions are given by

Y j (γ j + R j , α j ) := γ j + R j + τ
(α j )

j + u j
({

γ j + R j
}
M , α j

)
. (2.20)

Here, we identified the R
2-valued points R j , γ j , τ

(α j )

j with their respective R
3-

embeddings (R j , 0) resp. (γ j , 0) resp. (τ
(α j )

j , 0). We allow the lattice displacement

u j to take values in R
3, in order to account for relaxation in z-direction.
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By identifying u j with its periodic extension to R
2, we also define the general-

ized total lattice positions

Y j (x, α j ) := x + τ
(α j )

j + u j (x, α j ) , (x, α j ) ∈ R
2 ×A j . (2.21)

Throughout this work, we abbreviate

u = (u1, u2) , γ = (γ1, γ2) ∈ �1 × �2 , α = (α1, α2) ∈ A1 ×A2 . (2.22)

As stated above, we assume that the total energy of the coupled bilayer system
can be decomposed into a monolayer and interlayer contribution. For each, we
assume that they can be expressed via sums over site-energies over the individual
layers. We assume that these site-energies depend on the finite difference stencils
originating at the respective site, as well as the sublattice degree type.

We will now present the monolayer and interlayer energy densities, and explain
how their thermodynamic limits can be obtained via ergodic theorems. Here, we
state our results in a general context that only requires the existence of the limiting
energy functional, in order to state results that hold both, in the cases of smooth
and non-smooth displacements. In the case of smooth displacements and for lattice
shifts γ j = 0, we even establish a rate of convergence, see Sect. 2.2. We postpone
a discussion of the non-smooth case to Sect. 2.4.

We present our results in terms of many-body potentials dependent on finite
difference stencils, which yield a more accurate description of materials than just
interatomic pair potentials, such as Kolmogorov-Crespi [57]. However, to better
illustrate our ideas, we decided to also include the case of interlayer pair potentials.
Monolayer potential Let

V (mono)
j,α j

: (R3)R j×A j → R

withα j ∈ A j be given.We assume that V (mono)
j,α j

only depends on the finite (relative)
difference stencils

(
u j (R j + γ j + R′

j , α
′
j ) − u j (R j + γ j , α j )

)
R′

j∈R j ,α
′
j∈A j

.

The reason, for which we may consider dependence only on relative difference
stencils for themonolayer potential, is that the index R′

j encodes a distance between
the evaluation points in the finite differences; this distance is independent of the
reference point R j + γ j .

Example 2.7. (Monolayer pair potentials) In order to illustrate the needed decay
assumptions, we may consider pair potentials w j . For simplicity, let us reduce to
a single sublattice degree of freedom and ignore lattice shifts. Then the model
many-body site potential takes the form

R j �→
∑

R′
j∈R j\{0}

(
w j

(
R′

j + u j (R j + R′
j ) − u j (R j )

)− w j (R′
j )
)
.
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For this reason, one needs to assume a decay assumption in R′
j in the case of

monolayer potentials. Below, we will state assumptions on the site potentials

R j �→ V (mono)
j,α j

((
u j (R j + γ j + R′

j , α
′
j ) − u j (R j + γ j , α j )

)
R′

j∈R j ,α
′
j∈A j

)

that allow us to pass to a thermodynamic limit. For clarity, we omit sufficient
assumptions on V (mono)

j,α j
and u j individually which would imply our assumptions

on the site potentials; these could be obtained by adapting the ideas of, e.g., [16,74].
For γ j ∈ � j , we introduce the monolayer energy density

e(mono)
j,N ,γ j

(u j ) := 1

|� j |(2N + 1)2
∑

α j∈A j

∑

R j∈R j (N )

V (mono)
j,α j

((
u j (R j + γ j + R′

j , α
′
j ) − u j (R j + γ j , α j )

)
(R′

j ,α
′
j )∈R j×A j

)
,

(2.23)

where

|A j [−N − 1/2, N + 1/2]2| = |� j |(2N + 1)2

is the area of the corresponding truncated region covered by the nuclei in layer j .
Observe that, since we defined u j as RM-periodic extensions,

�
(mono)
j [u j ](x)

:= 1

|� j |
∑

α j∈A j

V (mono)
j,α j

⎛

⎝
(

u j (x + R′
j , α

′
j ) − u j (x, α j )

)
R′

j∈R j ,

α′
j∈A j

⎞

⎠ (2.24)

isRM-periodic. If R j ∈ R j , γ j ∈ � j ,�
(mono)
j [u j ](R j+γ j ) denotes the sublattice-

averaged site-potential experienced at R j + γ j . In particular, (2.23) becomes

e(mono)
j,N ,γ j

(u j ) = 1

(2N + 1)2
∑

R j∈R j (N )

�
(mono)
j [u j ](

{
R j + γ j

}
M) .

Then, the ergodic theorem Proposition 2.14 implies, after substituting x �→ A j x ,
that the thermodynamic limit of the monolayer energy is given by

e(mono)
j (u j )

:= 1

|� j |
∑

α j∈A j

−
∫

A−1
j �M

dξ V (mono)
j,α j

⎛

⎝
(

u j (A jξ + R′
j , α

′
j ) − u j (A jξ, α j )

)
R′

j∈R j ,

α′
j∈A j

⎞

⎠

= −
∫

�M
dx �

(mono)
j [u j ](x) , (2.25)

where −∫
�
= 1

|�|
∫
�
denotes the averaging integral over �. This result is given in

Theorem 2.10.
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Interlayer coupling

Definition 2.8. A function

V : (R3)R j×A j → R

is translation-invariant iff for any (aR j ,α j )(R j ,α j )∈R j×A j ∈ (R3)R j×A j and any
R′

j ∈ R j , we have that

V
(
(aR j+R′

j ,α j
)(R j ,α j )∈R j×A j

) = V
(
(aR j ,α j )(R j ,α j )∈R j×A j

)
.

In addition, V is even iff V (x) = V (−x).

Let

V (inter)
j,α j

: (R3)R3− j×A3− j → R ,

with α j ∈ A j be even and translation-invariant. As a special instance, let vα :
R
3 → R, with αk ∈ Ak , k = 1, 2, α = (α1, α2), denote an even pair potential, and

consider

V (inter)
j,α j

(
(aR3− j ,α3− j )R3− j∈R3− j ,

α3− j∈A3− j

)
= 1

2

∑

R3− j∈R3− j
α3− j∈A3− j

vα(aR3− j ,α3− j ) .
(2.26)

Such interatomic pair potentials vα have been constructed using DFT, e.g., in [62,
66,79].

The fact thatwe are using the ordered indexα = (α1, α2) to label pair potentials,
as opposed to, e.g., (α j , α3− j ), is to indicate that pair interactions only depend on
the pair of involved atoms, as opposed to the order of the pair. Whenever there is a
α j or α3− j on the LHS of an equation, and α1 or α2 on the RHS, the corresponding
equation is to be read individually for j = 1 or j = 2, to avoid confusion.

We assume that V (inter)
j,α j

depends on the finite (total) difference stencils

(
Y j (R j + γ j , α j ) − Y3− j (R3− j + γ3− j , α3− j )

)
R3− j∈R3− j ,α3− j∈A3− j

.

In the case of the interlayer potential, the distance between the evaluation points
does depend on the reference point R j + γ j , or its disregistry, respectively.

Example 2.9. (Interlayer pair potentials) For simplicity we can again consider the
special case of pair potentials. Let us again restrict to a single sublattice degree of
freedom, and assume γ j = 0. Then the interlayer site-potential is given by

R j �→
∑

R3− j∈R3− j

v
(
R3− j + u3− j (R3− j ) − R j − u j (R j )

)

=
∑

R3− j∈R3− j

v
(
R3− j −

{
R j

}
3− j + u3− j (R j + R3− j −

{
R j

}
3− j ) − u j (R j )

)
,
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where we recall (2.17). In contrast to monolayer potentials, we now have to correct
the positions by their local disregistry. For a generalization of this idea tomany-body
potentials, we refer to Lemma4.4.Here one could also, analogously to Example 2.7,
subtract the constant contribution

∑
R3− j∈R3− j

v(R3− j − R j ). Since it does not
affect our results, we chose not to include it.

Consequently, we need to impose a decay assumption which is based on the
magnitude of the total distance Y j (x) − Y3− j (y) in the argument. We prove the
existence of a thermodynamic limit based on regularity of the site potentials

R j �→ V (inter)
j,α j

((
Y j (R j + γ j , α j ) − Y3− j (R3− j + γ3− j , α3− j )

)
R3− j∈R3− j ,α3− j∈A3− j

)
.

Again, we expect that this regularity would follow from appropriate assumptions
on V (inter)

j,α j
and u j along the lines of [16,74].

Recalling (2.21), define the interlayer coupling energy density of the j-th layer

e(inter)
j,N ,γ (u) := 1

|� j |(2N + 1)2
∑

R j∈R j (N )

∑

α j∈A j

V (inter)
j,α j

((
Y j (R j + γ j , α j )

− Y3− j (R3− j + γ3− j , α3− j )
)

R3− j ∈ R3− j ,

α3− j ∈ A3− j

)
.

(2.27)

We would like to study the thermodynamic limit of the energy density (2.27)
by employing an appropriate ergodic theorem. Such an ergodic theorem lets us
map a functional defined on the discrete systems R j to a functional defined on
the continuous system �M, via the configuration space isomorphism ��M . As a
useful tool to map in between unit cells of the involved lattices, we recall from
(1.1), see also (2.13), the disregistry matrices:

D1→2 = I − A2A−1
1 = −A2A−1

M , D2→1 = I − A1A−1
2 = A1A−1

M .

In particular, we have that

D j→3− j�M = (−1) j�3− j .

The disregistry matrices D j→3− j have the crucial property that they map between
the different notions of configurations if restricted to the individual non-shifted
lattices, see Lemma 4.2.

As above, we define the sublattice-averaged generalized interlayer site poten-
tials

�
(inter)
j [u](x, y)

:= 1

|� j |
∑

α j∈A j

V (inter)
j,α j

((
y − R3− j + τ

(α j )

j − τ
(α3− j )

3− j + u j (x, α j )

− u3− j (x − y + R3− j , α3− j )
)

R3− j∈R3− j ,

α3− j∈A3− j

)
(2.28)
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for all x, y ∈ R
2. Employing Lemma 4.4, we obtain that

e(inter)
j,N ,γ (u)

= 1

(2N + 1)2
∑

R j∈R j (N )

�
(inter)
j [u]

({
R j + γ j

}
M ,

{
R j + γ j − γ3− j

}
3− j

)
.

Observe that, due to theRM-periodic extension ofu j anddue to the dependence

on the collection of all lattice shiftswith respect toR3− j ,�
(inter)
j [u] isRM×R3− j -

periodic.
Here, we prove a mean ergodic theorem, Proposition 3.3: Let h ∈ L1

loc(R
4) be

RM ×R3− j -periodic.
Recalling (2.18), we then show that

1

(2N + 1)2
∑

R j∈R j (N )

h
({

R j + ωM
}
M ,

{
R j + ω3− j

}
3− j

)

N→∞−−−−→ −
∫

�M
dx h

(
x, D j→3− j x + A3− j A−1

j ωM − ω3− j

)

= −
∫

A−1
j �M

dξ h
(

A jξ + ωM, (A j − A3− j )ξ + ω3− j
)

converges for almost all (ωM, ω3− j ) ∈ �M ×�3− j and also in L1(�M ×�3− j ).
Both, this result and also the previously mentioned ergodic theorem Prop. 2.14, are
special instances of a more general ergodic theorem for group actions, as can be
found, e.g., in [37,54,56], see also Proposition 3.1. These ideas have been previ-
ously applied to incommensurate multilayer structures, see [69, Theorem 2.1], [21,
Proposition 3.5].

We then obtain in Theorem 2.17 that, in the thermodynamic limit N → ∞, the
interlayer coupling potential converges to

e(inter)
j,γ (u) := 1

|� j |
∑

α j∈A j

−
∫

A−1
j �M

dξ V (inter)
j,α j

((
Y j (A jξ + γ j , α j )

− Y3− j (A3− jξ + γ3− j + R3− j , α3− j )
)

R3− j∈R3− j ,

α3− j∈A3− j

)

= −
∫

�M
dx �

(inter)
j,γ [u](x) ,

(2.29)

where

�
(inter)
j,γ [u](x) := �

(inter)
j [u](x, D j→3− j x + A3− j A−1

j γ j − γ3− j ) . (2.30)

Lemma 4.6 yields in the special case of even pair potentials vα that

e(inter)
j,γ (u) = 1

2|�M|
∑

αk∈Ak
k=1,2

∫

R2
dξ vα

(
A1ξ + γ1 + τ

(α1)
1 + u1(A1ξ + γ1, α1)

− A2ξ − γ2 − τ
(α2)
2 − u2(A2ξ + γ2, α2)

)
.
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2.2. Results for Smooth Displacements

We now present our main result for the case of smooth displacements under
some simplifying assumptions.Under these assumptions, our notion ofDiophantine
2D rotations, recall Definition 2.4, allows us to establish a rate of convergence to
the thermodynamic limit of the atomistic energy density. We emphasize that, even
in this setting, our limiting energy functional appears to be novel.

We start by assuming that γ1 = γ2 = 0, and we abbreviate

�
(inter)
j := �

(inter)
j,0 , e(inter)

j,N := e(inter)
j,N ,0 ,

e(inter)
j := e(inter)

j,0 , e(mono)
j,N := e(mono)

j,N ,0 .

We denote that

dA1,A2 := max
α�∈A�
�=1,2

|τ (α1)
1 − τ

(α2)
2 | , (2.31)

and for u = (u1, u2) ∈ L∞(R2;R
6), with components u j,k , j = 1, 2, k ∈

{x, y, z},
Lz
u := dA1,A2 + ‖u1,z‖∞ + ‖u2,z‖∞ . (2.32)

Moreover, let

〈x〉 := (1+ |x |2) 1
2

for any x ∈ R
n , n ∈ N. For k, n ∈ N and s > 0 and a Lipschitz domain � ⊆ R

n ,
let

‖ f ‖W k,∞
s (�)

:=
k∑

j=0

‖〈·〉s D j f ‖L∞(�) (2.33)

denote the weighted Sobolev norm, and let

W k,∞
s (�) := { f ∈ W k,∞(�) | ‖ f ‖W k,∞

s (�)
< ∞} (2.34)

denote the associated weighted Sobolev space. In addition, let

L∞
s (�) := { f ∈ L∞(�) | ‖〈·〉s f ‖L∞(�) < ∞}

denote the weighted Lebesgue space.
For f ∈ L1(�M) and GM ∈ R∗

M, we define the Fourier transform

f̂ (GM) := F�M( f )(GM) := −
∫

�M
dx e−iGM·x f (x) . (2.35)

The next result is our main result in the case of smooth displacements.
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Theorem 2.10. Let s > 1, σ > 1433
1248 , and θ ∈ [0, 2π) be a (q, K , σ )-Diophantine

2D rotation for some K > 0. Let � ∈ {mono, inter} and j ∈ {1, 2}. Assume that

�
(�)
j [u j ] ∈ L1(�M) , F�M

(|∇|2(σ+s)�
(�)
j [u j ]

) ∈ �∞(R∗
M) .

In particular, if we assume pair interlayer potentials, assume that for k = 1, 2,
αk ∈ Ak , uk(·, αk) ∈ W 6,∞(R2), and that, see (2.34),

vα ∈ W 6,∞
2r (R2 × [−Lz

u, Lz
u]) .

Then there exists a constant C > 0 such that
∣∣e(�)

j,N − e(�)
j

∣∣ ≤ C

2N + 1
.

In the case of many-body potentials, this theorem is a consequence of the
quantitative ergodic theorem, Proposition 3.5. The proof that the conditions in the
case of interlayer pair potentials are sufficient, is contained in Sect. 4.3.

Remark 2.11. We provide bounds on the constants C > 0 that are explicit, except
for the implicit dependence of the Diophantine constant K > 0 on the chosen angle
θ and the decay σ . In the case of many-body potentials, we obtain

2
√
2

K

(ρM‖A‖2
2π

)2(σ+s)(
ζ(2s) + 2−sζ(s)2

)

sup
GM∈R∗

M
|GM|2(σ+s)|F�M(�

(�)
j [u j ])(GM)| ,

(2.36)

where ζ(σ ) denotes the Riemann zeta function, and we recall ρM from (2.14).
Now abbreviate

κ (pair)(θ, σ ) := sup

( ⋃

N∈N

⋂

n∈Z2:
|n|2≥N

{
K > 0 | dist (AT R±θ A−T n, Z

2) ≥ K

|n|2σ
})

,

and define

M (pair)(θ) := inf
σ∈
(
1433
1248 ,2

)
1

κ (pair)(θ, σ )

(
ζ(6− 2σ) + 2σ−3ζ(3− σ)2

)
. (2.37)

Then an upper bound on the constant C > 0 in the case of interlayer pair potentials
is given by

203
√
2

|�1||�2|
(ρM‖A‖2

2π

)6
M (pair)(θ)(q6 + q−6 + 1)

5r−1π

r − 1
(
1+ dA1,A2 + ‖u1‖W 6,∞ + ‖u2‖W 6,∞

)6+2r ∑

αk∈Ak
k=1,2

‖vα‖W 6,∞
2r (R2×[−Lz

u,L
z
u]) .

Remark 2.12. One could reduce the regularity assumption

F�M
(|∇|2(σ+s)�

(mono)
j [u j ]

) ∈ �∞(R∗
M)

in Theorem 2.10 to assumptions on V (�)
j,α j

and u j individually, in analogy to the case
of pair potentials. However, in order to maintain a clear presentation, we decided
to omit such a result, and leave the details to the interested reader.
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2.3. Discussion of Results

2.3.1. Regularity Assumptions We now want to comment on the imposed reg-
ularity on u j and vα . Our results require smoothness of u j , i.e., u j ∈ W 6,∞(R2),
in order to show convergence with a rate. For an almost sure ergodic theorem to
hold, see Proposition 3.3, we only require u j ∈ L∞(R2). We address this case in
Sect. 2.4 below.

We do not expect general displacements u j to be smooth. As explained above,
if we consider a model consisting of a monolayer contribution and an interlayer
coupling as constructed above, this has been analyzed for the Frenkel-Kontorova
model [4] and a simplified coupled linear chain [29] in the one dimensional case.
Their result is that the energy minimizer is a continuous function of the disregistry
whenever themonolayer energy dominates the interlayer coupling. However, we do
not address the question of smoothness of minimizers in our work. In the Cauchy–
Born approximation, see Sect. 2.3.2 below, we believe that standard ideas in the
theory of semi-linear elliptic equations, as applied in [28], can be utilized to show
that, in case of C∞-smooth and polynomially decaying pair potentials vα , critical
points u = (u1, u2) inherit C∞-smoothness.

In order to obtain a rate of convergence, we require that the weighted Sobolev
norm of vα

6∑

j=0

‖〈·〉2r D jvα‖L∞(R2×[−Lz
u,L

z
u]) < ∞

for some r > 1 is finite, where 〈·〉 = (1+ |x |2) 1
2 and

Lz
u ∼ 1+ ‖u1,z‖∞ + ‖u2,z‖∞ ,

where the involved constant depends on the lattice, see (2.32) below. In particular,
vα obeys the tail-behavior

|vα(x, z)| � 1

|x|2+ as |x| → ∞ (2.38)

for x ∈ R
2, z ∈ [−Lz

u, Lz
u]. As a special case, this includes the Yukawa potential

e−κ|x|
|x| , which accounts for screening effects. Observe that we need to regularize the

potential near the origin.
Notice that in the perpendicular z-direction, we have no tail constraints, but

again we need to regularize the potential near the origin. In particular, we are free
to choose the potential to behave like a Lennard–Jones type potential in z-direction,
away from the origin, which accounts for the van der Waals interaction between
the layers.

In the case that no rate of convergence is obtained, we impose that

‖〈·〉2rvα‖L∞(R2×[−Lz
u,L

z
u]) < ∞

for some r > 1, amounting to the same decay rate (2.38).
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2.3.2. Cauchy–BornApproximation Wewant to further approximate themono-
layer contribution e(mono) by taking a continuum limit. This leads to the Cauchy–
Born approximation, which is a popular approximation in elasticity theory. For that,
we introduce a length-scale a0 � 1 and rescale

A =: a0A0 ,

where A0 is independent of a0. Consequently, R(0)
j := R j/a0 is a0-independent.

For simplicity, we assume only a single sublattice degree of freedom, |A j | = 1.
In addition, we restrict u j to take values in the xy-plane.
Recalling (2.24), and assuming that u is sufficiently regular, say u ∈

C2(�M;R
4), we then obtain for a0 � 1 that

�
(mono)
j [u j ](x) ≈ 1

|� j |V
(mono)
j

(
a0Du j (x) ·R(0)

j

)

= W j
(
Du j (x)

)
,

where W j denotes the Cauchy–Born energy density function. In the linear elasticity
approximation for |Du j | small enough, and assuming isotropy, one has

W j (M) ≈ 1

2
M : E j : M , for all M ∈ R

2×2 ,

with the elasticity tensor E j given in (1.3). In particular, the monolayer energy
density (2.25) satisfies, for a0 � 1,

e(mono)
j (u j ) ≈ 1

2
−
∫

�M
dx Du j (x) : E j : Du j (x) . (2.39)

Example 2.13. Let us, for instance, consider twisted bilayer graphene.
Let θ ∈ [0, 2π ] be an incommensurate angle and let

a0 := √
3 · 1.42 nm ≈ 2.46 nm .

Define

A := a0

(√
3
2

√
3
2− 1

2
1
2

)

and recall from (2.1) that

A1 = R−θ/2A , A2 = Rθ/2A .

Graphene has two sublattice degrees of freedom, denoted by A and B, with asso-
ciated shift vectors

τ
(A)
j = −a0

2
R(−1) j θ/2ê1 , τ

(B)
j = a0

2
R(−1) j θ/2ê1 .
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For simplicity, we can ignore the sublattice degree of freedom in order to compute
the lattice displacements at the center of mass. Then we can set the relaxed lattice
positions to

Ỹ j (R j + γ j , α) := R j + γ j + τ
(α)
j + u j (R j + γ j )

for j = 1, 2, α = A, B.
The Lamé parameters for a single sheet of graphene are given by

λ = 37, 950 meV/unit area , μ = 47, 352 meV/unit area ,

see, e.g., [24]. In order to allow for out-of-plane relaxation, we need to extend the
monolayer energy model, e.g., to

−
∫

�M
dx

1

2

⎛

⎝λ

2∑

k=1

εk,k; j (x)2 + 2μ
2∑

k,�=1

εk,�; j (x)2 + κ|D2u j,3(x)|2
⎞

⎠ ,

where εk,�; j := 1
2 (∂ku j,� + ∂�u j,k + ∂ku j,3∂�u j,3) is the strain tensor, λ, μ are

the Lamé parameters as before, and κ is the bending rigidity, see, e.g., [76]. As an
interatomic pair potential, wemay choose potentials that are radial in the horizontal
direction. E.g., we may choose a Morse potential for the monolayer pair potentials,
and a Lennard–Jones potential accounting for the van der Waals coupling between
the layers, i.e.,

vα(x, z) ≡ v(x, z) := vMorse(|x|)vLJ(|z|)
with

vMorse(r) := E0

[(
e−κ0(r−r0) − 1)2 − 1

]
,

vLJ(r) := 4ε0
[(σ

r

)12 −
(σ

r

)6]
.

Here E0 denotes the dissociation energy, κ0 relates to the stiffness, r0 refers to the
equilibrium position, see [79], ε0, σ > 0 are van der Waals parameters. Strictly
speaking, we need to regularize vz to remove the singularity at the origin for our
methods to apply.

More specialized interlayers potentials have been developed for graphene [57]
and hBN [66], for example.

2.3.3. Relationship with Allen–Cahn Energy Functional As in the previous
section, let us restrict to a single sublattice degree of freedom, |A j | = 1, and

assume that τ
(α j )

j = 0. Assume that v is an interlayer pair potential that is radially
decaying in xy-direction, and set γ j = 0. In addition, we restrict u j to take values
in the xy-plane.

We claim that, in theCauchy–Born approximation, etot(u1, 0), resp., etot(0, u2),

are modified Allen–Cahn functionals. For that, define a stacking fault potential

�
(misfit)
j (x3− j ) := 1

|� j |
∑

R3− j∈R3− j

v
(
x3− j − R3− j

)
(2.40)
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for all x3− j ∈ �3− j , j = 1, 2. We note that the generalized stacking fault energy
(GSFE) more commonly used in numerical computations of relaxation [24,27,28]
approximates the misfit energy by a DFT computation on a periodic cell at zero
twist angle. By construction, �(misfit)

j is periodic with respect to R3− j , j = 1, 2.

�
(misfit)
j (x3− j ) is maximal on the lattice points R3− j ∈ R3− j , which we will refer

to as AA stacking, and minimal at

R3− j + 1

3
A3− j

(
1
1

)
,

which we will refer to as AB stacking, and at

R3− j + 2

3
A3− j

(
1
1

)
,

which we will refer to as BA stacking, see Figs. 1 and 5. In the AA stacking, nuclei
from different layers are stacked on top of each other, while in the AB/BA stacking,
they sit in between three nuclei.

Recalling (2.28) and (1.1), observe that we have the identities

�
(inter)
1 [u1, 0](x, D1→2x) = �

(misfit)
1 (D1→2x + u1(x)) ,

�
(inter)
2 [0, u2](x, D2→1x) = �

(misfit)
2 (D2→1x + u2(x)) . (2.41)

Moreover, Lemma 4.6 implies that

−
∫

�M
dx �

(inter)
1,0 [u](x) = −

∫

�M
dx �

(inter)
2,0 [u](x) .

In the Cauchy–Born approximation a0 � 1, see (2.39), the total energy functional
becomes

etot(u) ≈ 1

2

2∑

j=1

−
∫

�M
dx

(
Du j (x) : E j : Du j (x) + �

(inter)
j,0 [u](x)

)
.

In particular, employing (2.41), we have for a0 � 1 that

etot(u1, 0) ≈ −
∫

�M
dx

(
1

2
Du1(x) : E1 : Du1(x) + �

(misfit)
1

(
D1→2x + u1(x)

))
.

In order to recognize the scaling-behavior with θ → 0, let us rescale y :=
D1→2x , and define U1(y) := u1(D−1

1→2y). For simplicity, we assume that the
layers are purely twisted, i.e., q = 1. Then (A.1) and (A.3) below imply that

AM = 2 sin(θ/2)J A , J :=
(
0 −1
1 0

)
.

Due to D1→2 = −A2A−1
M = 2 sin(θ/2)A2A−1J , see Lemma 4.1, we obtain,

defining ε := 2 sin(θ/2), for some Ẽ1

−
∫

�2

dy

(
ε2

2
DU1(y) : Ẽ1 : DU1(y) + �

(misfit)
1

(
y + U1(y)

))
.
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Rescaling this energy by 1
ε
, we thus obtain

−
∫

�2

dy

(
ε

2
DU1(y) : Ẽ1 : DU1(y) + 1

ε
�

(misfit)
1

(
y + U1(y)

))
,

the algebraic formof the expressionobtained in [28]. Theobtained energy resembles
the Allen–Cahn energy functional, except for the additional explicit dependence
on x . Without setting u2 = 0, one can show that for U2(y) := u2(−D−1

2→1y) the
resulting rescaled energy takes the form

ε

2

2∑

j=1

−
∫

�3− j

dy DU j (y) : Ẽ j : DU j (y)

+1

ε

∫

R2
dy V

(
y + U1(y) − U2(y)

)
, (2.42)

where Ẽ2 and V = v
|�1||�2| are chosen appropriately.

2.3.4. Comparison with Previous Result We now give a more detailed compar-
ison of the previous model (1.2) and our new model (1.4) in the simplest possible
setting. Again, we restrict to a single sublattice degree of freedom in each layer, as-
sume that the layers are centered at the origin, γ j = 0, and not mismatched, q = 1.

We will argue that the stacking fault energy �
(misfit)
j , see (2.40), obtained in this

work provides amicroscopicmodel for theGSFE�
(GSFE)
j studied in [24,25,27,28],

see Fig. 5. However, the resulting model even under this modelling assumption is
different from ours obtained in this work.

Setting �
(GSFE)
j = �

(misfit)
j , we obtain, starting from the interlayer energy in

(1.2),

1

|�M|
∫

�M
dx �

(GSFE)
j

(
D j→3− j x + u j (x) − u3− j (x)

)

= 1

|�M||� j |
∫

�M
dx

∑

R3− j∈R3− j

v
(
D j→3− j x − R3− j + u j (x) − u3− j (x)

)
.

As above,we rescale y := D j→3− j x , and defineU j (y) := u j ((−1) j+1D−1
j→3− j y).

Then a straight-forward calculation using Lemma 4.1 yields

1

|�1||�2|
∫

�3− j

dy
∑

R3− j∈R3− j

v
(
y − R3− j + U j (y) − U3− j (A j A−1

3− j y)
)
.

Putting technicalities aside, we interchange orders of integration and summation
and substitute x − R3− j → x and use R3− j -periodicity of U j to obtain

1

|�1||�2|
∫

R2
dy v

(
y + U j (y) − U3− j (A j A−1

3− j y)
)
.
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Including the monolayer contribution and rescaling the total energy by 1
ε
, we thus

obtain

ε

2

2∑

j=1

−
∫

�3− j

dy DU j (y) : Ẽ j : DU j (y)

+1

ε

∫

R2
dy V

(
y + U1(y) − U2(R−θ y)

)
. (2.43)

Comparing (2.43) and (2.42), we notice that U2 in the argument of V is evaluated
at different positions. The difference of arguments is of size |x − R−θ x | ≈ ε|x |
as ε → 0. It was shown in [27] that for a minimizer (U eq

1 , U eq
2 ), ‖DU eq

j ‖2 � 1
ε
.

In particular, numerical computations show that domain walls of thickness ε form,
whereU eq

j has a transitionof order O(1) fromAB toBAstacking.This phenomenon
has been explained more rigorously in the context of the Allen–Cahn energy, see,
e.g., [34] for a nice introduction. Consequently, we expect our derived energy to
vary significantly, of order O(1) at the domain walls, from that obtained in [28].
We plan to address this issue in future works.

2.3.5. Outlook In the Cauchy–Born and linear elasticity approximation, we can
employ ideas from elliptic theory to establish existence, uniqueness, and regularity
of energy minimizers. This remains true as long as the interlayer potential is a
compact perturbation to the intralayer Cauchy–Born energy. In particular, one can
use a contraction map argument as in [28]. We do not elaborate on further details
here, and defer to future works instead.

Furthermore, one can extend the intralayer model that we use beyond linear
elasticity, aswas studied, e.g., in [44,45]. In order to include out-of-plane relaxation,
we need to include an out-of-plane penalization for themonolayer contribution, see,
e.g., [76] and example 2.13 above.

While we develop a model for bilayer systems only, we can extend the model
to systems with an arbitrary finite number of layers, by summing over the pair-wise
coupling of layers. For the case of many-body site potentials, we believe that the
ideas presented in [28] lend themselves to extending our results to the multi-layer
case.

2.4. Results for Rough Displacements

As stated above, it can be useful to access an energy functional when the dis-
placement functions are not necessarily smooth. Due to the use of ergodicity, these
results will only hold almost surely, up to some relative lattice shifts. We will
see that to even formulate the problem for rougher conditions on the displace-
ment functions, we need to introduce a weak notion of lattice dependence for the
displacement functions. In contrast, above the existence of (moiré-)periodic contin-
uous functions attaining assigned values on the lattices yields a strong constraint on
the attainable values. We now introduce a weak lattice dependence, that we refer to
as reconstructability, whichwill allow us to relax this constraint. Reconstructability
in layer j means that there exists a single function u j such that, for almost all lattice
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origins γ j , the values of u j assigned to the corresponding shifted lattice γ j +R j ,
allow us to recover all Fourier coefficients of u j . Consequently, our statements will
only hold up to a nullset of lattice shifts γ1, γ2.

We start by stating an almost sure and mean ergodic theorem that will allow us
to rigorously analyze thermodynamic limits of elastic energies that are functions
of non-smooth displacements u j ∈ L1

(
�M; (R3)A j

)
.

Proposition 2.14. (Ergodic Theorem) For all f ∈ L1(�M)

lim
N→∞

1

(2N + 1)2
∑

R j∈R j (N )

f
({

R j + γ j
}
M

) = −
∫

�M
dx f (x) .

converges almost everywhere in � j and also in the L1(� j )-sense.

Proposition 2.14 follows from amore general ergodic theorem stated here as Propo-
sition 3.1. Our first use of Proposition 2.14 will be to prove in Proposition 2.16 that
the Fourier transform of u j ∈ L1

(
�M; (R3)A j

)
can be reconstructed as a thermo-

dynamic limit from u j (
{
γ j +R j

}
M ,A j ) for almost every γ j ∈ � j .

We now define lattice deformations based on u j ∈ L1
(
�M; (R3)A j

)
.

Assumption 3. There exist displacements u j ∈ L1
(
�M; (R3)A j

)
such that the

total positions on the reference collection of lattices

(
(γ j +R j ) ×A j

)
γ j∈� j

, j ∈ {1, 2} ,

are given by the deformation (2.20).

Assumption 3 implies that whenever
{
γ j + R j

}
M =

{
γ ′

j + R′
j

}

M, we have

that the associated displacements

u j
({

γ j + R j
}
M , α j

) = u j

({
γ ′

j + R′
j

}

M , α j

)

coincide. Since (R∗
1,R∗

2) is incommensurate, this can only happen for γ j  = γ ′
j ,

ensuring that we do not impose a moiré-periodicity constraint.
Observe that the total lattice positions are well-defined only up to a nullset of

lattice shifts γ j ∈ � j . Next we will discuss in which sense the data of u j on a single
lattice suffices to reconstruct u j .

Definition 2.15. We say that u j ∈ L1
(
�M; (R3)A j

)
is reconstructable along γ j +

R j iff for all GM ∈ R∗
M, α j ∈ A j , we have that

lim
N→∞

1

(2N + 1)2
∑

R j∈R j (N )

e−iGM·(γ j+R j )u j (
{
γ j + R j

}
M , α j ) = û j (GM, α j ) .
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In particular, if u j ∈ L p
(
�M; (R3)A j

)
, p > 1, is reconstructable along γ j +R j ,

the Carleson-Hunt Theorem, see, e.g., [40, Chapter 1], implies that for almost all
x ∈ �M and all α j ∈ A j

u j (x, α j ) =
∑

GM∈R∗
M

eiGM·x lim
N→∞

1

(2N + 1)2

∑

R j∈R j (N )

e−iGM·(γ j+R j )u j (
{
γ j + R j

}
M , α j ) .

If u j , v j ∈ L1
(
�M; (R3)A j

)
, we have the uniqueness property that

û j (GM, α j ) = v̂ j (GM, α j )

for all (GM, α j ) ∈ R∗
M ×A j implies that u j = v j , see [40, Corollary 1.11].

As a consequence of Proposition 2.14, we find the following result.

Proposition 2.16. (Almost sure reconstructability) Every u j ∈ L1
(
�M; (R3)A j

)

is reconstructable along γ j +R j for almost every γ j ∈ � j .

For a proof, we refer to Appendix A.
We are now ready to formulate the main result for rough displacements.

Theorem 2.17. Assume that �
(mono)
j [u j ] ∈ L1(�M), and that �

(inter)
j [u] ∈ L1

(�M × �3− j ) and for any γ = (γ1, γ2) ∈ �1 × �2 that �
(inter)
j,γ [u] ∈ L1(�M),

respectively.
In the case of interlayer pair potentials, let r > 1 and assume that, for k = 1, 2,

αk ∈ Ak , uk(·, αk) ∈ L∞(R2), and that

vα ∈ L∞
2r (R

2 × [−Lz
u, Lz

u]) .

We then have for almost all γ ∈ �1 × �2 that

lim
N→∞ e(mono)

j,N ,γ j
(u j ) = e(mono)

j (u j ) , lim
N→∞ e(inter)

j,N ,γ (u) = e(inter)
j,γ (u) .

.

In the case ofmany-body potentials, this result is a direct consequence of the ergodic
theorem Proposition 2.14. The proof that the conditions in the case of interlayer
pair potentials are sufficient, are contained in Sect. 4.3.

2.5. Sketch of the Proof

The technical tools used for the thermodynamic limit stem from ergodic theory.
We prove an almost sure and mean ergodic theorem, see Proposition 3.3, and a
quantitative ergodic theorem, see Proposition 3.5. The latter is inspired by [30]
which shows uniform convergence with respect to shifts of the lattice origin, for
the one-dimensional case. In contrast to [30], our approach is two-dimensional and
based on studying the convergence properties of the approximate Dirichlet kernel
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associated with the ergodic average over the truncated lattice. We directly compute
an L1-limit for smooth functions, which, by density, yields a general L1-limit.
In order to obtain convergence almost everywhere, we invoke a general ergodic
theorem 3.5 as stated, e.g., in [56]. For a more detailed description of our approach,
see Sect. 3.

3. Ergodic Theorems

We start by stating ergodic theorems in a sufficiently general setting, as devel-
oped, e.g., in [54,56], see also [37]. Then we explain how these general ideas can
be applied in the present setting.

3.1. Review of General Ergodic Theorems

Given a probability space (�,�, P) and a group G, recall that a group action
G � � is measure-preserving iff

g.P(B) := P(g−1.B) = P(B)

for all B ∈ � and g ∈ G. Moreover, we call a measurable map f : � → R

G-invariant iff g. f := f ◦ g−1 = f for any g ∈ G P−almost surely. Similarly,
we call measurable set B G-invariant iff 1B is G-invariant. Let �G denote the sub
σ -algebra of � of all G-invariant sets in �.

Given a measurable function f : � → R and a finite subset H ⊆ G, we define
the ergodic average

AH ( f ) := 1

|H |
∑

g∈H

g−1. f .

A sequence (HN )N∈N of non-empty finite subsets of G is called a Følner
sequence iff

lim
N→∞

|gHN!HN |
|HN | = 0

for all g ∈ G, where A!B denotes the symmetric difference of sets A, B. (HN )N∈N
is tempered iff there is C > 0 s.t.

∣∣∣∣∣

N−1⋃

k=1

H−1
k HN

∣∣∣∣∣ ≤ C |HN |

for all N ∈ N, N ≥ 2.
We finish this general introduction with the following pointwise ergodic theo-

rem as stated, e.g., in [56, Theorem 4.28]:
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Proposition 3.1. (PointwiseErgodicTheorem)Let (�,�, P)be a probability space
and G � � be a measure-preserving group action. Let (HN )N∈N be a tempered
Følner sequence. Then we have that for all f ∈ L1(�) and

lim
N→∞AHN ( f ) = E[ f |�G]

P−almost surely and in the L1-sense, where E[·|�G] denotes the conditional ex-
pectation given the σ -algebra �G of G-invariant events.

Remark 3.2. Recall that the conditional expectationE[ f |�G] is the unique (�,�G)-
measurable function such that

∫

C
dP(ω) E[ f |�G](ω) =

∫

C
dP(ω) f (ω)

for all (G-invariant) sets C ∈ �G .

3.2. Ergodicity in Incommensurate Bilayer Systems

We now turn to the system at hand and explore how ergodicity arises as a
consequence of the underlying incommensurate geometry. To apply the general
ergodic setting above, we set G = R j and HN := R j (N ), see (2.4). It is straight-
forward to verify that (R j (N ))N∈N is both Følner and tempered. We leave the
details to the interested reader.

Let T
2 = R

2/Z
2 denote the standard 2-torus, and

�
(per)
M := AMT

2 , �
(per)
3− j := A3− j T

2

denote the tori associated with the moiré unit cell �M and with the unit cell �3− j

of layer 3− j , respectively. Let B denote the respective Borel σ -algebra over �.

Thenwechoose� = �
(per)
M ×�

(per)
3− j and study theLebesgue-measure preserving

group action of R j on � given by translations, i.e., R j .ω := ω + (R j , R j ). As a
consequence of Proposition 3.1, we prove the following statement:

Proposition 3.3. (Pointwise and Mean Ergodic Theorem) Let h ∈ L1
loc(R

4) be
RM ×R3− j -periodic. Then

lim
N→∞AR j (N )(h)(ωM, ω3− j ) = −

∫

A−1
j �M

dξ h
(

A j ξ + ωM, (A j − A3− j )ξ + ω3− j
)

= −
∫

�M
dx h

(
x, D j→3− j (x − ωM) + ω3− j

)

= −
∫

�3− j

dy h
(
D−1

j→3− j (y − ω3− j ) + ωM, y
)

converges for almost all (ωM, ω3− j ) ∈ �M × �3− j and also in L1(�M ×
�3− j ).
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Remark 3.4. Let h ∈ L1
loc(�

(per)
M × �

(per)
3− j ).

In addition, let BR j denote the σ -algebra of R j -invariant Borel subsets of

�
(per)
M × �

(per)
3− j , where the R j -action is given as above by R j .ω = ω + (R j , R j ).

Then one can prove directly that

E[h|�R j ](ωM, ω3− j ) = −
∫

A−1
j �M

dξ h
(

A jξ + ωM, (A j − A3− j )ξ + ω3− j
)
.

Lebesgue-almost everywhere, where the conditional expectation on the l.h.s. is
taken with respect to the uniform distribution on �

(per)
M × �

(per)
3− j .

We find the argument presented in the proof of Proposition 3.3 appealing be-
cause it provides a means to calculate the conditional expectation.

Using the notion of Diophantine 2D rotations, see Definition 2.4, we obtain the
following quantitative ergodic theorem:

Proposition 3.5. (Quantitative Ergodic Theorem) Let q > 0, σ > 1433
1248 , s > 1, and

let θ be a (q, K , σ )-Diophantine 2D rotation for some K > 0. Let f ∈ L1(�M)

be such that F�M
(|∇|2(σ+s) f

) ∈ �∞(R∗
M). Then we have for all N ∈ N large

enough that

∣∣∣∣
1

(
2N + 1

)2
∑

R j∈AR j (N )

f (
{

R j
}
M) − −

∫

�M
dx f (x)

∣∣∣∣

≤ 2
√
2

K

(ρM‖A‖2
2π

)2(σ+s)(
ζ(2s) + 2−sζ(s)2

)

sup
GM∈R∗

M
|GM|2(σ+s)| f̂ (GM)| 1

2N + 1
.

For proofs of these ergodic theorems, we refer to Appendix C.

Remark 3.6. Our methods would allow us to adapt Proposition 3.5 to the more
general setting in Proposition 3.3. However, for presentational purposes, we chose
to omit such a result and leave the details to the interested reader.

We now want to motivate how to prove Propositions 3.3 and 3.5.

3.3. Dirichlet Kernel as a Discrepancy Function

Our idea is based on using periodicity of the functions which we are averaging
over the individual lattices by representing them via their Fourier expansion. Aver-
aging the corresponding Fourier basis (exp(iG · (·)))G over a discrete set leads to
the emergence of the Dirichlet kernel, normalized by the number of lattice points.
This is a common idea in Fourier analysis, see, e.g., [40], and has been applied,
e.g., in [33,84] to derive a discretization error in Riemann sums.
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Let h ∈ L p(�M × �3− j ), p > 1. In addition to the Fourier transform defined
in (2.35), for h ∈ L1(�M × � j ) and (GM, G j ) ∈ (R∗

M,R∗
j ), define

ĥ(GM, G j ) := F�M×� j (h)(GM)

:= −
∫

� j

dy −
∫

�M
dx e−i(GM·x+G j ·y)h(x, y) .

(3.1)

Here, we abuse notation and interpret ĥ in the local context.
Using this Fourier transform, we obtain that for almost all (ωM, ω3− j ) ∈

�
(per)
M × �

(per)
3− j

1

(2N + 1)2
∑

R j∈R j (N )

h
( {

R j + ωM
}
M ,

{
R j + ω3− j

}
3− j

)

=
∑

R j∈R j (N )

∑

G3−j ∈ R∗
3−j ,

GM ∈ R∗
M

ei(GM·{R j+ωM}M+G3−j ·{R j+ω3−j}3−j )ĥ(GM, G3−j ) .

Realizing that R∗
M · �x�M ⊆ 2πZ for any x ∈ R

2, we have that

eiGM·{x}M = eiGM·x

for any x ∈ R
2. A straight-forward calculation analogous to the computation of the

Dirichlet kernel yields

1
(N )

R∗
j
(G) := 1

(2N + 1)2
∑

R j∈R j (N )

eiG·R j

=
2∏

�=1

sin
(
(2N + 1)(AT

j G)�/2
)

(2N + 1) sin
(
(AT

j G)�/2
) ,

(3.2)

where y� denotes the �th Euclidean coordinate of y. Using this notation, we obtain
that

1

(2N + 1)2
∑

R j∈R j (N )

h
( {

R j + ωM
}
M ,

{
R j + ω3− j

}
3− j

)

=
∑

G3− j ∈ R∗
3− j ,

GM ∈ R∗
M

1
(N )

R∗
j
(G3− j + GM) ĥ(GM, G3− j )e

i(GM·ωM+G3− j ·ω3− j ) .

(3.3)

If f ∈ L p(�M), analogous steps yield
1

(2N + 1)2
∑

R j∈R j (N )

f (
{

R j
}
M) =

∑

GM∈R∗
M

1
(N )

R∗
j
(GM) f̂ (GM) . (3.4)
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Next, we will study the convergence properties of 1(N )

R∗
j
.

Properties of the Dirichlet kernel For all G j ∈ R∗
j , we have that

1
(N )

R∗
j
(G j ) = 1 .

Moreover, for all G ∈ R
2 \R∗

j , it holds that

|1(N )

R∗
j
(G)| ≤ 1

2N + 1
min
�=1,2

1∣∣ sin
(
(AT

j G)�/2
)∣∣ .

In particular, we obtain that for all G ∈ R
2

lim
N→∞1

(N )

R∗
j
(G) = 1R∗

j
(G) .

In particular, if we can interchange the order of taking the limit N → ∞ and
summing over G3− j and GM, (3.3) implies that

1

(2N + 1)2

∑

R j∈R j (N )

h
( {

R j + ωM
}
M ,

{
R j + ω3− j

}
3− j

)

=N→∞−−−−→
∑

G3−j ∈ R∗
3−j ,

GM ∈ R∗
M

1R∗
j
(G3−j +GM) ĥ(GM, G3−j )e

i(GM·ωM+G3− j ·ω3−j ) .

Again, assuming interchangeability of involved sums and integrals, we arrive, after
a straight-forward calculation, at

−
∫

A−1
j �M

dx h
(

A j x + ωM, (A j − A3− j )x + ω3− j
)
,

as stated in Proposition 3.3. In order to interchange limits, sums, and integrals, we
use the fact that we study the convergence in L1(�

(per)
M ×�

(per)
3− j ), in order to restrict

to C∞-smooth functions.
In order to extract a rate of convergence in (3.3), we need to analyze the tail-

behavior of 1(N )

R∗
j
. For general irrational angles, the rate of convergence can be

arbitrarily slow. However, we show in the proof of Proposition 3.5, in Appendix C,
that for Diophantine 2D rotations θ , see Definition 2.4, and all GM ∈ R∗

M \ {0},
we have that

|1(N )

R∗
j
(GM)| ≤ Cσ,q,A,θ |GM|2σ

2N + 1
(3.5)

for any σ > 1433
1248 , where Cσ,q,A,θ depends only on σ , q, A, and θ . In particular,

employing (3.5), (3.4) implies that
∣∣∣∣

1

(2N + 1)2
∑

R j∈R j (N )

f
( {

R j
}
M

) − −
∫

�M
dx f (x)

∣∣∣∣

≤ Cσ,q,A,θ

∑

GM∈R∗
M\{0}

|GM|2σ | f̂ (GM)| 1

2N + 1
.
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Lemma A.1 then implies for any s > 1 that
∣∣∣∣

1

(2N + 1)2
∑

R j∈R j (N )

f
( {

R j
}
M

) − −
∫

�M
dx f (x)

∣∣∣∣

≤ Cσ,q,A,θ 4
(ρM‖A‖2

2π

)2s(
ζ(2s) + 2−sζ(s)2

)

sup
GM∈R∗

M
|GM|2(σ+s)| f̂ (GM)| 1

2N + 1
,

(3.6)

where the constant Cσ,q,A,θ is the same as in (3.5).

4. Proofs of Results

Wenowwant to showhow the ergodic theorems obtained in the previous section
can be used to show the existence of the thermodynamic limits of the mechanical
energy densities presented above. To that end, we show that the energy densities
for lattice truncations can be represented as averages over appropriate periodic
functions. In the case of interlayer pair potentials, we show how to represent the
resulting limit energy density in a more convenient way.

4.1. Equivalence of Disregistries

Recall the disregistry matrices

D j→3− j = I − A3− j A−1
j ;

see (2.13) and (2.1) above.

Lemma 4.1. The disregistry matrices have the following properties:

(1) D j→3− j = (−1) j A3− j A−1
M,

(2) −D3− j→ j D−1
j→3− j = −D−1

j→3− j D3− j→ j = A j A−1
3− j = I − D3− j→ j ,

(3) |D−1
j→3− j x | = q(−1) j+11/2ρ−1

M|x |,
(4) |(D−1

j→3− j − I )x | = q(−1) j1/2ρ−1
M|x |.

Proof. We show the computations for j = 1; j = 2 can be computed analogously.
We have proved (1) already above in (2.13). For (2), we employ (1) and obtain

−D2→1D−1
1→2 = A1A−1

MAMA−1
2 = A1A−1

2 = I − D2→1 ,

where, in the last step, we employ (2.13). Similarly, using (1) again, we have that

−D−1
1→2D2→1 = AMA−1

2 A1A−1
M = AM(A−1

2 A1 − I )A−1
M + I

= −AMA−1
MA1A−1

M + I = A1A−1
2 .
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Observe that, due to (2.1), |A2x | = q
1
2 |Ax |. By (1), we thus have that

|D−1
1→2x | = |A2A−1

Mx | = q1/2|AA−1
Mx | = q

1
2 ρ−1

M|x | ,

where, in the last step, we employed Lemma 2.1. By (2), we have that

D−1
1→2 − I = D−1

1→2(I − D1→2) = −D−1
2→1 ,

which is why (4) follows from (3). This concludes the proof. "#

Lemma 4.1 establishes a relation between the different disregistry notions. Next,
we will specify this relation. Define

v� j := A j

(
1
1

)
.

Lemma 4.2. Let R j ∈ R j , j ∈ {1, 2}. Then we have that

{R1}2 = D1→2 {R1}M + v�2 ,

{R2}1 = D2→1 {R2}M .

Proof. Observe that A2A−1
k Rk ∈ R2 for Rk ∈ Rk , k ∈ {1,M}. Hence we find

that

{R1}2 = {D1→2R1}2 =
{
−A2A−1

MR1

}

2

=
{
−A2A−1

M {R1}M
}

2
= D1→2 {R1}M + v�2 ∈ �2 ,

where, in the last step, we used the fact that v�2 ∈ R2. The second identity follows
analogously. This concludes the proof. "#

Remark 4.3. Lemma 4.2 is sensitive to the lattice origin. More precisely, there is
no affine map between {x}3− j and {x}M for general x ∈ R

2. In fact, assume that
there is a matrix M such that for all x ∈ R

2,

x = M(x +RM) + R3− j .

In particular, this requires MRM ⊆ R3− j , which implies

M ∈ A−1
MA3− j Z

2×2 .

However, e.g., (I − M)
√
2v�3− j  ∈ R3− j . Thus, no such M exists.
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4.2. Lattice Reduction Formulae

Recall definitions (2.28) of �
(inter)
j [u] and (2.30) of �

(inter)
j,γ [u].

Lemma 4.4. For all x ∈ R
2 and all γ3− j ∈ �3− j , we have that

1

|� j |
∑

α j∈A j

V (inter)
j,α j

((
Y j (x, α j ) − Y3− j (R3− j + γ3− j , α3− j )

)
R3− j∈R3− j ,

α3− j∈A3− j

)

= �
(inter)
j [u]({x}M ,

{
x − γ3− j

}
3− j ) .

In the case x = R j ∈ R j and γ3− j = 0, we even have

1

|� j |
∑

α j∈A j

V (inter)
j,α j

((
Y j (R j , α j ) − Y3− j (R3− j , α3− j )

)
R3− j∈R3− j ,

α3− j∈A3− j

)

= �
(inter)
j,0 [u]({R j

}
M) .

Proof. By translation-invariance of V (inter)
j,α j

, we may shift the index

R3− j → R3− j +
⌊

x − γ3− j
⌋
3− j .

Employing RM-periodicity of u j and definition (2.17) of �x�3− j , the first claim
then follows from definition (2.28).

In the case x = R j ∈ R j and γ3− j = 0, recall from Lemma 4.2 that

{
R j

}
3− j = D j→3− j

{
R j

}
M + v�2δ j,1 .

Then the statement follows from (2.30) after shifting R3− j → R3− j + v�2δ j,1 and
using translation-invariance. This concludes the proof. "#

Define for all y ∈ R
2

g j,α,γ3− j (y) := τ
(α j )

j − τ
(α3− j )

3− j + u j (D−1
j→3− j (y + γ3− j ), α j )

− u3− j (D−1
j→3− j (y + γ3− j ) − y, α3− j ) .

(4.1)

We now establish sufficient conditions on the pair potentials vα for the ergodic
theorems above to be applicable.

Lemma 4.5. Let r > 1. Assume that, for α j ∈ A j , j = 1, 2, u j (·, α j ) ∈ L∞(�M),
and that f ∈ L∞

2r (R
2 × [−Lz

u, Lz
u]). Then we have that

∫

R2
dx | f (x + g j,α,γ3− j (x))| ≤ 5r−1π

r − 1

(
1+ dA1,A2 + ‖u1‖∞ + ‖u2‖∞

)2r

‖〈·〉2r f ‖L∞(R2×[−Lz
u,L

z
u]) .
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Proof. Recalling definition 2.2 of 〈·〉, we have that
∫

R2
dx | f (x + g j,α,γ3− j (x))|

≤ ‖〈·〉2r f (· + g j,α,γ3− j )‖L∞(R2)

∫

R2
dx 〈x〉−2r .

(4.2)

Observe that

〈x + y〉2r = (1+ |x + y|2)r

≤ (
1+ 2(|x |2 + |y|2))r

,

by Cauchy-Schwarz and monotonicity of t �→ tr . Using convexity of t �→ tr , we
thus find that

〈x + y〉2r ≤ 5r
(1
5
+ 2

5

(|x |2 + |y|2)
)r

≤2 · 5r−1(1+ |x |2r + |y|2r ) .

(4.3)

Recall from (2.31) that

dA1,A2 = max
α j∈A j
j=1,2

|τ (α1)
1 − τ

(α2)
2 | .

The definition (4.1) of g j,α,γ3− j thus implies

‖g j,α,γ3− j ‖∞ ≤ dA1,A2 + ‖u1‖∞ + ‖u2‖∞ , (4.4)

and that

‖(g j,α,γ3− j )z‖∞ ≤ dA1,A2 + ‖u1,z‖∞ + ‖u2,z‖∞ = Lz
u , (4.5)

see definition (2.32) of Lz
u. A straight-forward computation yields
∫

R2
dx 〈x〉−2r = π

2(r − 1)
. (4.6)

In addition, observe that for any x ∈ �1(Z) we have that

‖x‖�r ≤ ‖x‖
r−1

r
�∞ ‖x‖

1
r
�1

≤ ‖x‖�1 . (4.7)

Collecting (4.3), (4.4), (4.5), and (4.6), (4.2) implies
∫

R2
dx | f (x + g j,α,γ3− j (x))|

≤ 5r−1π

r − 1

(
‖(1+ | · +g j,α,γ3− j |2r ) f (· + g j,α,γ3− j )‖L∞(R2)

+ ‖|g j,α,γ3− j |2r f (· + g j,α,γ3− j )‖L∞(R2)

)

≤ 5r−1π

r − 1

(
1+ dA1,A2 + ‖u1‖∞ + ‖u2‖∞

)2r

‖〈·〉2r f ‖L∞(R2×[−Lz
u,L

z
u]) ,

where, in the last step, we applied (4.7). This concludes the proof. "#
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Lemma 4.6. Let r > 1 and γ3− j ∈ �3− j . Assume that, for α j ∈ A j , j = 1, 2,
u j (·, α j ) ∈ L∞(�M), and that

vα ∈ L∞
2r (R

2 × [−Lz
u, Lz

u]) .

Then we have that �
(inter)
j,γ [u] ∈ L1(�M) and that

F�M(�
(inter)
j,γ [u])(GM)

= 1

2|�M|
∑

αk∈Ak
k=1,2

∫

R2
dx e−iGM·(A j x+γ j )vα

(
A1x + γ1 + τ

(α1)
1

+ u1(A1x + γ1, α1) − A2x − γ2 − τ
(α2)
2 − u2(A2x + γ2, α2)

)
.

In particular, we have that

−
∫

�M
dx �

(inter)
j,γ [u](x) = −

∫

�M
dx �

(inter)
3− j,γ [u](x) .

Proof. Assume that vα and u j are simple functions. Interchanging integration and
summation, we then have that

F�M(�
(inter)
j,γ [u])(GM)

= 1

2|� j |
∑

αk∈Ak
k=1,2

∑

R3− j∈R3− j

−
∫

�M
dx e−iGM·xvα

(
D j→3− j x − R3− j

+ A3− j A−1
j γ j − γ3− j + τ

(α j )

j − τ
(α3− j )

3− j + u j (x, α j )

− u3− j (R3− j + A3− j A−1
j γ j + γ3− j + (I − D j→3− j )x, α3− j )

)
.

Substituting y := D j→3− j x + A3− j A−1
j γ j − R3− j − γ3− j and interchanging

integration and summation again, we obtain

F�M (�
(inter)
j,γ [u])(GM) = | det(D−1

j→3− j )|
2|�M||� j |

∑

αk∈Ak
k=1,2

∫

R2
dy

∑

R3− j∈R3− j

e−iGM·D−1
j→3− j (y−A3− j A−1

j γ j+R3− j+γ3− j )

1D j→3− j �M+A3− j A−1
j γ j−R3− j−γ3− j

(y) vα

(
y + τ

(α j )

j − τ
(α3− j )

3− j

+ u j (D−1
j→3− j (y − A3− j A−1

j γ j + R3− j + γ3− j ), α j )

− u3− j (D−1
j→3− j (y − A3− j A−1

j γ j + R3− j + γ3− j ) − y, α3− j )
)

.

(4.8)

Observe that, by (2.13), (2.13), (2.3), and (2.12),

| det(D j→3− j )| = | det(A3− j )|
| det(AM)| = |�3− j |

|�M| . (4.9)
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In addition, by (2.13), (2.13), and (2.6), we have that

D−T
j→3− jR∗

M = R∗
3− j . (4.10)

Furthermore, Lemma 4.2 implies that

D j→3− j�M = (−1) j�3− j , (4.11)

and that

D−1
j→3− jR3− j = RM . (4.12)

Collecting (4.9), (4.10), (4.11), (4.12), and using the facts that

⋃

R3− j∈R3− j

(
(−1) j�3− j − R3− j − γ3− j

) = R
2 ,

and that uk(·, αk) isRM-periodic, (4.8) yields

F�M(�
(inter)
j,γ [u])(GM)

= 1

2|�1||�2|
∑

αk∈Ak
k=1,2

∫

R2
dy e−iGM·D−1

j→3− j (y−A3− j A−1
j γ j+γ3− j )

vα

(
y + τ

(α j )

j − τ
(α3− j )

3− j

+ u j (D−1
j→3− j (y − A3− j A−1

j γ j + γ3− j ), α j )

− u3− j (D−1
j→3− j (y − A3− j A−1

j γ j + γ3− j ) − y, α3− j )
)

.

(4.13)

Using the fact that

A j − A3− j = D j→3− j A j = (−1) j A3− j A−1
MA j ,

see Lemma 4.1, and substituting y = (A j − A3− j )ξ + γ j − γ3− j , we obtain

F�M(�
(inter)
j,γ [u])(GM)

= 1

2|�M|
∑

αk∈Ak
k=1,2

∫

R2
dξ e−iGM·(A j ξ+γ j )vα

(
A1ξ + γ1 + τ

(α1)
1

+ u1(A1ξ + γ1, α1) − A2ξ − γ2 − τ
(α2)
2 − u2(A2ξ + γ2, α2)

)
,

(4.14)

where we also employed that vα is even. Due to Lemma 4.5, we can extend (4.13),
and thus (4.14), to all

vα ∈ L∞
2r (R

2 × [−Lz
u, Lz

u]) .

This finishes the proof. "#
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Define for almost all x, y ∈ R
2

h j,α(x, y) := τ
(α j )

j − τ
(α3− j )

3− j + u j (x, α j ) − u3− j (x − y, α3− j ) .

For a pair-potential (2.26), (2.28) becomes

�
(inter)
j [u](x, y)

= 1

2|� j |
∑

αk∈Ak
k=1,2

∑

R3− j
∈R3− j

vα

(
y − R3− j + h j,α(x, y − R3− j )

)
.

Lemma 4.7. Let r > 1. Assume that, for α j ∈ A j , j = 1, 2, u j (·, α j ) ∈ L∞(�M),
and that

vα ∈ L∞
2r (R

2 × [−Lz
u, Lz

u]) .

Then we have that �
(inter)
j [u] ∈ L1(�M × �3− j ).

Proof. The idea of this proof follows the steps in the proofs of the two previous
Lemmata. As above, assume that vα and u j are simple functions.

Let

ψ(x, y) := 1

2|� j |
∑

αk∈Ak
k=1,2

vα

(
y + h j,α(x, y)

)
.

Then we have that
∫

�M
dx

∫

�3− j

dy |�(inter)
j [u](x, y)|

≤
∑

R3− j∈R3− j

∫

�M
dx

∫

�3− j

dy |ψ(x − R3− j , y)| .

Shifting x − R3− j → x , we obtain
∫

�M
dx

∫

�3− j

dy |�(inter)
j [u](x, y)|

≤
∑

R3− j∈R3− j

∫

�3− j−R3− j

dx
∫

�M
dy |ψ(x, y)|

=
∫

R2
dx

∫

�M
dy |ψ(x, y)| ,

(4.15)

where, again, we used the fact that
⋃

R3− j∈R3− j

(
�3− j − R3− j

) = R
2 .
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Due to
∫

R2
dx 〈x〉−2r < ∞

for r > 1, (4.15) implies

∫

�M
dx

∫

�3− j

dy |�(inter)
j [u](x, y)|

� ‖〈x〉2rψ(x, y)‖L∞
x,y

.

With analogous steps as in the proof of Lemma 4.5, we have that

‖〈x〉2rψ(x, y)‖L∞
x,y

� (1+ dA1,A2 + ‖u1‖∞ + ‖u2‖∞)2r

∑

αk∈Ak
k=1,2

‖〈·〉2rvα‖L∞(R2×[−Lz
u,L

z
u]) < ∞

by assumption on vα . This concludes the proof. "#

4.3. Proofs of Main Theorems

Proof of Theorem 2.10. We are left with proving the upper bound in the case of
interlayer pair potentials. Observe that, due to σ > 1433

1248 and s > 1, we have that⌈
σ + s

⌉ ≥ 3. We choose s = 3− σ for some σ ∈ ( 1433
1248 , 2

)
.

Employing the first part of the theorem, we have that

|e(inter)
j,N ,0 (u) − e(inter)

j,0 (u)| ≤ err(MB)

2N + 1
(4.16)

with err(MB) given in (2.36), with the choice s = 3− σ , � = inter, by

err(MB)
j = 2

√
2

K

(ρM‖A‖2
2π

)6(
ζ(6− 2σ) + 2σ−3ζ(3− σ)2

)

sup
GM∈R∗

M
|GM|6|F�M(�

(inter)
j,0 [u])(GM)| .

(4.17)

Since σ ∈ ( 1433
1248 , 2

)
was arbitrary, (4.16) and (4.17) imply

|e(inter)
j,N ,0 (u) − e(inter)

j,0 (u)| ≤ 2
√
2
(√3|�M|

23π2

)3
M (pair)(θ)

sup
GM∈R∗

M
|GM|6|F�M(�

(inter)
j,0 [u])(GM)| ,

(4.18)
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where we recall definition (2.37) of M (pair)(θ). (4.13) in the proof of Lemma 4.6
implies

F�M(�
(inter)
j,γ [u])(GM)

= 1

2|�1||�2|
∑

αk∈Ak
k=1,2

∫

R2
dy e−i D−T

j→3− j GM·(y+γ3− j )vα

(
y + τ

(α j )

j

− τ
(α3− j )

3− j + u j (D−1
j→3− j y, α j ) − u3− j (D−1

j→3− j y − y, α3− j )
)
.

In particular, we have thatF�M(�
(inter)
j,0 [u])(0) = e(inter)

j,0 (u). As in (4.1), we define

g j,α(y) := τ
(α j )

j − τ
(α3− j )

3− j + u j (D−1
j→3− j y, α j ) − u3− j (D−1

j→3− j y − y, α3− j ) .

(4.19)

Now let σ ∈ ( 1433
1248 , 2

)
be arbitrary. Using Lemma 4.1 and the definition of the

fractional derivative |∇| via Fourier multiplication, we find that

|GM|6F�M(�
(inter)
j,0 [u])(GM)

= 1

2|�1||�2|
( ρM

q(−1) j+11/2

)6 ∑

αk∈Ak
k=1,2

∫

R2
dy e−i D−T

j→3− j GM·y

|∇y |6
(
vα

(
y + g j,α(y)

))

≤ 1

2|�1||�2|
( ρM

q(−1) j+11/2

)6 ∑

αk∈Ak
k=1,2

‖(−
)3vα(· + g j,α)‖1 .

(4.20)

For any n ∈ N, define

R(n) := {rn ∈ N
n
0 |

n∑

j=1

jr j = n} . (4.21)

Using the Faá di Bruno formula and recalling (4.21), we have that

‖(−
)3vα(· + g j,α)‖1
≤ 6!

∑

r6∈R(6)

∥∥(D|r6|1vα

)
(· + g j,α)

∥∥
1

6∏

k=1

1

rk !
(

δk,1 + ‖Dk g j,α‖∞
k!

)rk

≤ 6!
∑

r6∈R(6)

∥∥(D|r6|1vα

)
(· + g j,α)

∥∥
1

(
1+

6∑

k=1

‖Dk g j,α‖∞
)|r6|1 6∏

k=1

1

rk !(k!)rk
.

(4.22)
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Employing definition (4.21), we obtain that

1 ≤ |r6|1 =
6∑

k=1

rk ≤
6∑

k=1

krk = 6

for all r6 ∈ R(6). Hence, (4.22) yields

‖(−
)3vα(· + gα)‖1 ≤ B6

6∑

k=1

∥∥(Dkvα

)
(· + g j,α)

∥∥
1

(
1+

6∑

�=1

‖D�gα‖∞
)6

,

(4.23)

where

B6 := 6!
∑

r6∈R(6)

6∏

k=1

1

rk !(k!)rk
= ∂6λ

∣∣∣
λ=0

eeλ−1 = 203 (4.24)

denotes the 6th Bell number.
Recalling definition (4.19) of g j,α and employing Lemma 4.1, we find that

‖D�g j,α‖∞ ≤‖D�u j (D−1
j→3− j (·), α j )‖∞

+ ‖D�u3− j ((D−1
j→3− j − I )(·), α3− j )‖∞

≤
(q(−1) j+11/2

ρM

)�‖D�u1(·, α1)‖∞

+
(q(−1) j1/2

ρM

)�‖D�u2(·, α2)‖∞

≤ q(−1) j+1�/2 + q(−1) j �/2

ρ�
M

(‖D�u1‖∞ + ‖D�u2‖∞
)
.

(4.25)

Lemma 4.5 implies
∥∥(Dkvα

)
(· + g j,α)

∥∥
1

≤ 5r−1π

r − 1

(
1+ dA1,A2 + ‖u1‖∞ + ‖u2‖∞

)2r

‖〈·〉2r (Dkvα

)‖L∞(R2×[−Lz
u,L

z
u]) .

(4.26)

Collecting (4.20), (4.22), (4.23), (4.24), (4.25), and (4.26), and recalling theweighted
Sobolev norm (2.33), we obtain

sup
GM

∣∣∣|GM|6F�M(�
(inter)
j,0 [u])(GM)

∣∣∣

≤ 203
1+ q(−1) j6

2|�1||�2|
5r−1π

r − 1
(
1+ dA1,A2 + ‖u1‖W 6,∞ + ‖u2‖W 6,∞

)6+2r

∑

αk∈Ak
k=1,2

‖vα‖W 6,∞
2r (R2×[−Lz

u,L
z
u]) .
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Together with (4.18), this concludes the proof. "#
Proof of Theorem 2.17. We are left with proving that the conditions in the case of
interlayer pair potentials are sufficient.

Lemma 4.7 implies that �(inter)
j [u] ∈ L1(�M × �3− j ). Moreover, Lemma 4.6

implies that �
(inter)
1 [u] ∈ L1(�M). Thus, the conditions of Proposition 3.3 are

satisfied. "#
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A. Lattice Calculus

Proof of Lemma 2.1. By definitions (2.8) and (2.1), we have that

AM = (A−1
1 − A−1

2 )−1 = (q1/2Rθ/2 − q−1/2R−θ/2)
−1A . (A.1)

Consequently, we obtain that

BM = (q1/2R−θ/2 − q−1/2Rθ/2)2π A−T . (A.2)

Observe that

q1/2Rθ/2 − q−1/2R−θ/2 =
(

(q1/2 − q−1/2) cos(θ/2) −(q1/2 + q−1/2) sin(θ/2)
(q1/2 + q−1/2) sin(θ/2) (q1/2 − q−1/2) cos(θ/2)

)
.

(A.3)
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A straight-forward calculation yields

|(q1/2Rθ/2 − q−1/2R−θ/2)x |2 = [(q1/2 − q−1/2)2 + 4 sin2(θ/2)]|x |2 .

Consequently, we have that

|(q1/2Rθ/2 − q−1/2R−θ/2)
−1x | = [(q1/2 − q−1/2)2 + 4 sin2(θ/2)]− 1

2 |x | .
Together with (A.1) resp. (A.2), this concludes the proof. "#
Proof of Proposition 2.16. By Proposition 3.1, let (NGM))GM∈R∗

M be a sequence
of nullsets such that for all GM ∈ R∗

M and all γ j ∈ � j \NGM

lim
N→∞

1

(2N + 1)2
∑

R j∈R j (N )

e−iGM·(γ j+R j )u j (γ j + R j , α j )

= −
∫

�M
dx e−iGM·x u j (x, α j ) = û j (GM, α j ) ,

where we used the fact that

e−iGM·x = e−iGM·{x}M .

Then

N :=
⋃

GM∈R∗
M

NGM

is a nullset, and for all γ j ∈ � j \N , we have that

lim
N→∞

1

(2N + 1)2
∑

R j∈R j (N )

e−iGM·(γ j+R j )u j (γ j + R j , α j ) = û j (GM, α j ) .

This concludes the proof. "#
Lemma A.1. Let s > 1. Then we have that

∑

GM∈R∗
M\{0}

1

|GM|2s
≤ 4

(ρM‖A‖2
2π

)2s(
ζ(2s) + 2−sζ(s)2

)
.

Proof. Lemma 2.1 yields

|BMn|2 = (2π)2ρ−2
M|A−T n|2

≥ (2π)2ρ−2
M‖A‖−2

2 |n|2 (A.4a)

≥ 2 · (2π)2ρ−2
M‖A‖−2

2 |n1| · |n2| , (A.4b)

where, in the last step, we applied the geometric-quadratic-mean inequality. We
split the sum over R∗

M \ {0} into
{BMn | n1n2 = 0, (n1, n2)  = (0, 0)}∪̇{BMn | n1, n2  = 0} .



103 Page 48 of 57 Arch. Rational Mech. Anal. (2024) 248:103

Applying (A.4a) on GM in the first set and (A.4b) on the latter, we obtain

∑

GM∈R∗
M\{0}

1

|GM|2s
≤

(ρM‖A‖2
2π

)2s[
4
∑

n∈N

1

n2s
+ 2−s

(
2
∑

n∈N

1

ns

)2]

= 4
(ρM‖A‖2

2π

)2s(
ζ(2s) + 2−sζ(s)2

)
,

where we recognize the Riemann zeta function ζ(σ ) = ∑
m∈N 1

mσ , σ > 1. This
concludes the proof. "#

B. Existence of Diophantine 2D Rotations

We now prove Proposition 2.5. It suffices to show that for almost every θ ∈ R and
all σ > 1433

1248 , there exists K > 0 such that for all n ∈ Z
2 \ {0}

dist
(
q AT Rθ A−T n, Z

2) ≥ K

|n|2σ
holds.
Due to 2π -periodicity of Rθ , it suffices to show that Lebesgue-almost every θ ∈
[0, 2π) is a Diophantine 2D rotation. We follow the classical strategy to apply the
Borel-Cantelli Lemma to the complement. In particular, let

� :=
⋂

σ> 1433
1248

⋃

K>0,
N∈N

⋂

n∈Z2:
|n|2≥N

⋂

m∈Z2

{
θ ∈ [0, 2π) | |q AT Rθ A−T n − m| ≥ K

|n|2σ
}

.

� consists of all θ ∈ [0, 2π) such that for all σ > 1433
1248 there exists K > 0 and

N ∈ N s.t. for all n ∈ Z
2 with |n|2 ≥ N we have that

dist
(
q AT Rθ A−T n, Z

2) ≥ K

|n|2σ . (B.1)

Taking K̃ := min
{

K ,min|n|2<N dist
(
q AT Rθ A−T n, Z

2
)}
, we can extend (B.1) to

hold for all n ∈ Z
2 \ {0} by lowering K to K̃ . Our goal is to show that |�| = 2π .

Let

EN (σ ) :=
⋂

K>0

⋃

n∈Z2

|n|2=N

⋃

m∈Z2

{
θ ∈ [0, 2π) | |q AT Rθ A−T n − m| <

K

|n|2σ
}

.

Since A is invertible, we have that |AT · | and | · | are equivalent norms. More
precisely, we have that

‖AT ‖−1
2 |AT v| ≤ |v| ≤ ‖A−T ‖2|AT v| , (B.2)
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where ‖ · ‖2 denotes the spectral/Hilbert-Schmidt norm. In particular, we have that

EN (σ ) ⊆
⋃

n∈Z2

|n|2=N

⋃

m∈Z2

{
θ ∈ [0, 2π) | |q Rθ A−T n − A−T m| <

1

|n|2σ
}

,

In order to apply Borel-Cantelli, we need to control the asymptotic behavior of the
Lebesgue measures of the sets EN in order to study their summability. We have
that

|EN (σ )|

≤
∑

n∈Z2

|n|2=N

∑

m∈Z2∣∣|A−T m|−|q A−T n|
∣∣< 1

|n|2σ

∫ 2π

0
dθ 1B 1

|n|2σ
(A−T m)

(
q Rθ A−T n

)
. (B.3)

Observe that for large |n|, we have that |A−T m| ≈σ |q A−T n|. In particular, the
integrand vanishes unless θ is on an arc of length ∼ |n|−2σ for a circle of radius
|q A−T n| ∼ |n|, see (B.2), about the angle defined by A−T n. In particular, we
obtain that

∫ 2π

0
dθ 1B 1

|n|2σ
(A−T m)

(
Rθ A−T n

)
�q,σ,A

1

|n|1+2σ (B.4)

for sufficiently large n. In addition, for r > 0, Levitan [63] obtained the bound

|Br ∩ q A−T
Z
2| = πr2

| det(q A−T )| + Or→∞(r
2
3 ) ,

see also [61] for a related works, and also [47]. As a consequence, we find that
∑

m∈Z2

1B|n|−2σ (q A−T n)(A−T m)

≤
∣∣∣
(

B|q A−T n|+ 1
|n|2σ

\ B|q A−T n|− 1
|n|2σ

)
∩ A−T

Z
2
∣∣∣

= (|q A−T n| + 1

|n|2σ
)2 − (|q A−T n| − 1

|n|2σ
)2 + O|n|→∞(|n| 23 )

�q,σ,A |n| 23 ,

(B.5)

for 2σ > 1. In addition, Huxley [51] showed that

|Br ∩ Z
2| = πr2 + Or→∞(r

131
208 log(r)

18627
8320 ) ,

see also [11,18,60] for recent progress. Consequently, we obtain that

|{n ∈ Z
2 | |n|2 = N }| ≤ ∣∣((B√

N+δ \ B√
N−δ) ∩ Z

2)∣∣

� N
131
416+ε

(B.6)

for any δ, ε > 0.
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Collecting (B.4), (B.5), and (B.6), (B.3) yields

|EN (σ )| �σ,A N
131
416+ 1

3− 1
2−σ+ε = N

185
1248−σ+ε

for any N ∈ N large enough. In particular, choosing any

σ >
185

1248
+ 1 = 1433

1248

and any 0 < ε < σ − 1433
1248 , we obtain that

∑

N∈N
|EN (σ )| < ∞ .

Then the Borel-Cantelli Lemma yields that

∣∣∣
∞⋂

N0=1

∞⋃

N=N0

EN (σ )

∣∣∣ = 0 . (B.7)

Observe that EN (σ ) is decreasing in σ , i.e.,

EN (σ ′) ⊆ EN (σ )

for σ ≤ σ ′. Thus, and using (B.7), we obtain that

∣∣∣
⋃

σ> 1433
624

∞⋂

N0=1

∞⋃

N=N0

EN (σ )

∣∣∣ ≤
∞∑

�=1

∣∣∣
∞⋂

N0=1

∞⋃

N=N0

EN
(1433
1248

+ 1

�

)∣∣∣

= 0 .

Using the fact that

� ⊇
( ⋃

σ> 1433
1248

∞⋂

N0=1

∞⋃

N=N0

EN (σ )
)c

,

we finish the proof.

C. Proofs of Ergodic Theorems

Proof of Proposition 3.3. Proposition 3.1 implies almost sure pointwise conver-
gence. For both, almost sure and L1-convergence, imply convergence in probabil-
ity, it suffices to compute the L1-limit. Using standard approximation arguments,
we may assume that h is a C∞-smooth function. By dominated convergence, it
suffices the almost sure pointwise limit.
W.l.o.g. we set j = 1.



Arch. Rational Mech. Anal. (2024) 248:103 Page 51 of 57 103

(3.3) implies that

AR1(N )(h)(ωM, ω2)

=
∑

G2∈R∗
2,

GM∈R∗
M

1
(N )

R∗
1
(G2 + GM) ĥ(GM, G2)e

i[GM·ωM+G2·ω2]

Using dominated convergence, we obtain that

lim
N→∞AR1(N )(h)(ωM, ω2)

=
∑

G2∈R∗
2,

GM∈R∗
M

1R∗
1
(G2 + GM) ĥ(GM, G2)e

i[GM·ωM+G2·ω2] . (C.1)

Now observe that, due to (2.13), (2.13),

DT
1→2G2 = −AM−T AT

2 G2 ∈ R∗
M ,

(I − DT
1→2)G2 = A−T

1 AT
2 G2 ∈ R∗

1 .

Thus, and using the fact that (R1,RM) is incommensurate, we have that

1R∗
1
(G2 + GM) = 1R∗

1
(DT

1→2G2 + GM) = δGM,−DT
1→2G2

. (C.2)

Employing (C.2), (C.1) implies

lim
N→∞AR1(N )(h)(ωM, ω2)

=
∑

G2∈R∗
2

ĥ(−DT
1→2G2, G2)e

i[−DT
1→2G2·ωM+G2·ω2] . (C.3)

Recalling (2.35) and (3.1), and using Fubini, we have that

∑

G2∈R∗
2

ĥ(−DT
1→2G2, G2)e

i[−DT
1→2G2·ωM+G2·ω2]

=
∑

G2∈R∗
2

−
∫

�M
dx F�2 [h(x, ·)](G2)e

iG2·[D1→2(x−ωM)+ω2] .

Using Fubini again, we thus find that

∑

G2∈R∗
2

ĥ(−DT
1→2G2, G2)e

i[−DT
1→2G2·ωM+G2·ω2]

= −
∫

�M
dx

∑

G2∈R∗
2

eiG2·[D1→2(x−ωM)+ω2]F�2 [h(x, ·)](G2)

= −
∫

�M
dx h

(
x, D1→2(x − ωM) + ω2

)
,

(C.4)
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where, in the second-to-last step, we used the Fourier inversion formula. Substitut-
ing x = A1ξ + ωM, and recalling (2.13), yields

−
∫

�M
dx h

(
x, D1→2(x − ωM) + ω2

)

= −
∫

A−1
1 �M

dξ h
(

A1ξ + ωM, (A1 − A2)ξ + ω2
) (C.5)

Collecting (C.3), (C.4), and (C.5), we conclude the proof. "#

Proof of Proposition 3.5. We start by calculating for GM = BMn ∈ R∗
M

AT
1 GM = AT

1 BMn

= 2π(I − AT
1 A−T

2 )n

= 2π(I − AT Rθ A−T )n ,

(C.6)

where we recall (2.1), (2.5), and (2.8). Similarly, we find that

AT
2 GM = 2π(q−1AT R−θ A−T − I )n . (C.7)

In particular, using (C.6), (C.7), and (3.2), a straight-forward calculation yields

1
(N )

R∗
j
(BMn)

=
2∏

�=1

sin
(
π dist

(
(q(−1) j+1

AT R(−1) j+1θ A−T n)�, Z
)(
2N + 1

))

(2N + 1) sin
(
π dist

(
(q(−1) j+1 AT R(−1) j+1θ A−T n)�, Z

)) .

(C.8)

Observe that

dist(x, Z)

| sin(πx)| = dist(x, Z)

| sin (π dist(x, Z)
)| ≤ 1

π
sup

0<y<π/2

y

sin(y)
≤ 1

2
.

Let n ∈ Z
2 \ {0}. Recalling (C.8), we thus obtain that

max
�=1,2

dist
(
(q(−1) j+1

AT R(−1) j+1θ A−T n)�, Z
)
1

(N )

R∗
j
(BMn)

≤ 1

π(2N + 1)
sup

0<y<π/2

y

sin(y)

= 1

2(2N + 1)
.

(C.9)
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Using (C.9) and employing the fact that
√

a2 + b2 ≤ √
2max{|a|, |b|}, we find

that

|1(N )

R∗
j
(BMn)|

=
max�=1,2 dist

(
(q(−1) j+1

AT R(−1) j+1θ A−T n)�, Z
)|1(N )

R∗
j
(BMn)|

dist
(
q(−1) j+1 AT R(−1) j+1θ A−T n, Z2

)

× dist
(
q(−1) j+1

AT R(−1) j+1θ A−T n, Z
2
)

max�=1,2 dist
(
(q(−1) j+1 AT R(−1) j+1θ A−T n)�, Z

)

≤ |n|2σ√
2K (2N + 1)

.

(C.10)

Here, we recognize the Diophantine condition (2.19) in the second line of (C.10).
Recall from (A.4a) that

|n| ≤ ρM‖A‖2
2π

|BMn| .
In particular, we arrive at

|1(N )

R∗
j
(GM)| ≤ 1√

2K

(ρM‖A‖2
2π

)2σ |GM|2σ 1

2N + 1
(C.11)

for any GM ∈ R∗
M \ {0}. Using (C.11) and the steps leading to (3.6), we thus

conclude the proof. "#
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