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Abstract

Integration of third-party SDKs are essential in the devel-
opment of mobile apps. However, the rise of in-app privacy
threat against mobile SDKs — called cross-library data har-
vesting (XLDH), targets social media/platform SDKs (called
social SDKs) that handles rich user data. Given the widespread
integration of social SDKs in mobile apps, XLDH presents a
significant privacy risk, as well as raising pressing concerns
regarding legal compliance for app developers, social me-
dia/platform stakeholders, and policymakers. The emerging
XLDH threat, coupled with the increasing demand for privacy
and compliance in line with societal expectations, introduces
unique challenges that cannot be addressed by existing pro-
tection methods against privacy threats or malicious code
on mobile platforms. In response to the XLDH threats, in
our study, we generalize and define the concept of privacy-
preserving social SDKs and their in-app usage, characterize
fundamental challenges for combating the XLDH threat and
ensuring privacy in design and utilization of social SDKs.
We introduce a practical, clean-slate design and end-to-end
systems, called PESP, to facilitate privacy-preserving social

SDKs. Our thorough evaluation demonstrates its satisfactory
effectiveness, performance overhead and practicability for
widespread adoption.

1 Introduction

The integration of third-party software development kits
(SDKs), also known as libraries, third-party libraries or
TPLs, has been now essential in the mobile app development
lifecycle, enhancing app functionalities (e.g., login through
Facebook/Google/Twitter single-sign on, advertising, app
monetization, and analytics). Recent research [64] and news
reports [2, 6, 39, 52] have highlighted a concerning threat
where in-app SDKs have become victims of serious privacy
breaches. These incidents involve malicious data-harvesting
libraries within mobile apps that extensively steal user
data from other SDKs present in the same app (e.g., by

calling the latter’s functions and obtaining the return data,
or by directly accessing their data storage, see § 2). This
phenomenon, called cross library data harvesting (XLDH)
attacks, represents a significant threat to user privacy. Prior
work [64] have identified 42 XLDH libraries across more than
19,000 Google Play apps, cumulatively downloaded nine
billion times. The type of data harvested is highly sensitive
and diverse, including user ID, credentials such as Facebook
access tokens, birthday, photos, genders, page likes, and
friend lists. A notable example is OneAudience, a library
integrated in 1,738 apps with over 100 million downloads,
which was discovered collecting users’ private data from
Facebook and Twitter SDKs. In response, Facebook and
Twitter initiated legal actions to take down OneAudience

(see the lawsuit [36, 47] and media report [39, 52])

Given the rising privacy concerns of XLDH targeting mo-
bile SDKs, SDKs that manage or provide user data emerge
as prime targets. Among these, social-media SDKs (social

SDK), associated with social networks and platforms, stand
out, compared to other common SDKs like ad networks and
analytics, which primarily collect rather than offer data. No-
tably, social SDKs are exceedingly prevalent in mobile appli-
cations; for instance, Facebook and Twitter SDKs are found
in 17.82% and 1.47% of Google Play apps, respectively. This
widespread integration makes them particularly appealing to
XLDH attacks, underscoring the urgent need for robust pri-
vacy protection mechanisms to safeguard user data against
such vulnerabilities.

In addition to endangering mobile users in the wild, XLDH

has a pressing impact on legal compliance, causing serious
concerns for both app developers and social media stakehold-
ers. With XLDH, the data practices of in-app malicious li-
braries (collecting/exfiltrating data from social SDK) are gen-
erally opaque to the app vendor. However, laws (e.g., GDPR
and CCPA) and public policies (e.g., term-of-service policy
of Google Play app store and Apple app store [31]) all man-
date/assume that app vendors should conspicuously disclose
(using a privacy policy) all data practices (e.g., collection,
sharing) occurring in the app, including those performed by
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third-party libraries. The violation of privacy laws/regulations
have caused billions of dollars of penalty by the Federal Trade
Commission (FTC) [42] against the app vendors, often leav-
ing the third-party code modules — the real culprit — hardly
accountable/liable. Moreover, the XLDH related attacks have
been seriously endangering user trust on mainstream social
platforms, mobile platforms, and technology supply chain
(e.g., Android, iOS with their supply chain). With significance
of the emerging XLDH problems, it is imperative to come
up with new technical design to fundamentally eliminate or
control in-app and cross-library data access channels. The
goal is to achieve privacy-preserving mobile SDKs.

Challenges to defeat XLDH and protect social SDKs. The
emerging threat of XLDH against social SDKs and the call
for privacy/compliance guarantee to keep up with citizen ex-
pectation and social norms impose specific new challenges,
which preclude direct application of prior techniques against
privacy threats or malicious code on mobile platforms. As
shown by the prior work [64], the XLDH attacks may be per-
formed by TPLs of diverse functionality categories, such as
analytics, marketing, ads, app maker [1], geofencing [4], etc.
From the defenders’ perspective, accurately predicting the
specific type of libraries responsible for XLDH is difficult. To
protect social SDKs, isolating all untrusted TPLs may not be
practical, which can significantly break or change current pro-
gramming paradigm, app design and runtime performance for
how an app invokes or interacts with its many TPLs (see de-
tailed discussion in § 4.1). Instead of sandboxing potentially
all TPLs that are untrusted, we consider that a more practi-
cal solution is to sandbox the social SDK and protect their
data. Notably, prior privacy enhancing and library-isolation
techniques [46, 48, 50, 51, 56–58, 63, 66, 71], including the
ongoing efforts of Privacy Sandbox on Android (PSoA) [30]
suffer from several key problems for effectively or practically
defeating XLDH (see below).

We note that even PSoA, in its current state, has different
protection goals and threat model from XLDH, and cannot
address XLDH. PSoA currently focuses on and only supports
advertising-related library (called ads libraries in this paper)
by restricting advertising-related library into a separate pro-
cess — called privacy sandbox. The sandbox environment
does not inherit the host app’s permissions and thus prevents
the ads libraries from getting persistent identifiers from the
underlying system (e.g., AdSplit [57]). At the design level,
PSoA does not address XLDH or support social SDK for
a few key reasons. First, PSoA cannot impose social SDK

into a privacy sandbox while still supporting their common
functionalities used by the apps. Unlike ads libraries which
usually come with limited interactions with the host app (thus
one can safely and easily isolate them), social SDKs come
with sophisticated data flows and functionality-level interac-
tions with the rest of the app, such as (1) single sign-on, e.g.,
login through Facebook, Google, Twitter, and Amazon, and
(2) in-app posting to social networks, such as sending tweets

or posting/sharing to Facebook (see a detailed survey of use
cases at § 3.2). The PSoA even assumes that the app should
not impact or interact with SDK behaviors such as contents
or operations of the SDK UI display (to protect ads display
integrity and promote anti-fraud) [13], which contradicts with
designed use cases of social SDKs (see comparison at § 4.3).
Second, PSoA and prior other techniques [54] come with no
design-level privacy guarantee. Specifically, they could not
mandate that data from social SDK be mediated from access
by other libraries or never flows to the host-app. Once a private
data flows into untrusted code space (i.e., the host app with
untrusted libraries), it becomes intractable (e.g., due to hidden
or asynchronous data flows [35], indirect calls [59] being hard
to fully resolve through state-of-the-art static and dynamic
analysis techniques [70]), being completely subject to XLDH.
Although prior techniques [46, 48, 50, 51, 56–58, 63, 71] also
attempted to completely isolate ads libraries from the rest
of the app, similar to PSoA, this is not an option for social

SDK, which requires more sophisticated interactions and data
flows with the host app (see detailed comparison with related
techniques in § 4.3).

Design for privacy-preserving social SDKs. We tackle the
above challenges and take the first step to address the XLDH

at design level under the context of social SDKs. We intro-
duce the privacy-preserving social SDK paradigm (PESP),
a clean-slate, privacy-preserving design for social SDK and
their usage in mobile apps (§ 3.2), nevertheless our design
is mostly general and can be extended to other categories
of SDKs. Specifically, we aim to fundamentally address the
data harvesting against/between libraries (XLDH) through
clean-slate design of social SDK and deployable, end-to-end,
open-source system implementation, while best preserve
expected functionalities of social SDKs. With a principled
approach, first, we propose and generalize three new, essential
properties for the design of social SDKs (by their vendors such
as Facebook, Twitter, Google) and their in-app operation (by
regular apps that adopt them), called privacy-preserving SDK
or PPS properties (§ 3): deterministic data collectors (DDC),
controllable data collectors (CDC), and auditable data collec-
tors (ADC). Further, although we envision the next generation
of social SDKs to be privacy-preserving fulfilling the prop-
erties, we also ensure that our design is backward compatible
by supporting current use cases expected by social me-
dia/platform providers and implemented by app developers,
based on a comprehensive survey in the wild (§ 3.2).

In our design, we identify, characterize and tackle key de-
sign challenges for privacy-preserving SDKs and combating
XLDH, in particular the dilemma between complete isolation
(i.e., no data flows out of the social SDK) and the functionality-
necessary data flows and interactions between the SDK and
the rest of the app (with untrusted libraries). Once a data flows
into untrusted/app code, we lose privacy guarantee (see § 4).
To fundamentally address the problem, we base our design on
rigorous isolation between social SDK and the app/untrusted
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code (quarantining private data inside social SDK). Despite
the isolation, we propose a novel SDK design that effectively
enables all expected/current functionalities/workflows of so-

cial SDK in mobile apps (e.g., mobile apps can still conve-
niently support user/GUI interactions based on data from the
social SDK), while fulfilling PPS properties for the first time.

End-to-end system implementation and evaluation. We
fully implemented our design of privacy-preserving social

SDK on the recent Android (version 13, r16), and evaluated
our implementation for its effectiveness (fulfilling all PPS

properties and defeating XLDH), compatibility with all cur-
rent use cases of social SDKs, and performance overhead with
satisfactory results (§ 5). In our implementation, we made
no changes to the OS. We implemented a privacy-preserving

Facebook SDK and Twitter SDK (by easily wrapping the cur-
rent Facebook SDK v15.0.1 and Twitter SDK v3.3.0 into our
design) and used them with two demo apps released by Face-
book and Twitter respectively, fulfilling all expected/current
use cases of the SDKs and the PPS properties.

Applicability and relation with the official Privacy Sand-
box on Android. Our design and implementation did not
rely on the PSoA, evidenced by our full implementation on
Android version 13 (r16) without PSoA. Nevertheless, since
PSoA (currently only supporting ads libraries without break-
ing) is requesting feedback from the community, our design
is compatible with PSoA and expected to be easily pluggable
to PSoA to substantially enhance its privacy assurance.

Contributions. The contributions are summarized as follows.

• New understanding and principles for privacy preserv-

ing social-SDKs. We characterize fundamental challenges
in the system design level for combating the emerging pri-
vacy threat against mobile SDKs (XLDH). We generalize
privacy-preserving properties for the design of and opera-
tional practice with social SDK in mobile apps.

• New techniques to achieve privacy-preserving design and

(in-app) usage of social SDKs. We present a practical, novel,
clean-slate design and end-to-end systems to fundamentally
enhance privacy of social SDK and their in-app usage against
the emerging XLDH, enabling their privacy-preserving

properties. Our techniques are practical, implemented and
evaluated, pluggable to the state of the art system (e.g., PSoA).
Our techniques are expected to significantly elevate privacy
assurance and legal-compliance for users and stakeholders
of social media/platforms, and app developers.

2 Background

Emerging privacy attacks between in-app libraries. Fig-
ure 1 illustrates a data-harvesting library (in a mobile app),
which first checks the presence of the Facebook, Twitter and
Google SDKs in the same app, and, if the SDKs exist, it in-
vokes the API functions in those SDKs to acquire the user’s
Facebook/Twitter/Google access token, profile, groups, fa-

vorites, etc. Notably, cross-library data harvesting (XLDH)

in mobile apps can occur through multiple attack vectors be-

sides direct function calls between libraries (and this paper

aims at fundamentally eliminating all XLDH attacks). For ex-
ample, we found that the Facebook SDK maintains app users’
Facebook identifiers and other personal data in a local JSON
file, which can be easily accessed by any libraries in the same
app, presenting a general problem on both Android and iOS.
Essentially, as mentioned earlier, it is hard for the operating
system to impose complete isolation between each individual
library which will seriously break current functionalities and
introduce intolerable programming/performance overhead.
Actually, in modern software development, libraries normally
invoke functions of other libraries (see the principle of modu-
larization for software development [49], which each library
fulfills an independent functionality/task) and hence it is un-
natural to completely isolate each individual library (e.g., one
may no longer call another conveniently and efficiently).

mobile app

Facebook 
library

malicious 
library

ads library

Twitter library

analytics library

return data

call API

malicious 
Server

  upload data

Facebook 
Server

  user login

user data

Figure 1: A Cross-Library Data Harvesting attack (XLDH)

Threat model. We consider that third-party libraries (TPLs)
in mobile apps may intend to harvest user data from other li-
braries in the same app, particularly from social SDK, without
awareness/consent of the app developers, users or the social

SDK vendor. Although social SDKs may also collect user data
from the app or from the underlying OS, this paper focuses
on threats (XLDH) where social SDKs are the targets/victims
of data harvesting. We consider that the social SDK vendors
intend to defeat XLDH against them, which can be a means
to improve user trust or at least mitigating possible trends of
deteriorated user trust. In this regard, we consider the social

SDK is benign. Since XLDH is often opaque to app developers
leading to their privacy noncompliance based on current laws,
we consider that app developers intend to prevent opaque data
collection behaviors in their apps such as XLDH.

3 Goals and Definition for Privacy-Preserving
Social-Media SDK

Current software engineering practices and underlying mobile
systems provide low assurance for the traceability of user
data, not to mention control who has access, especially in
an era full of data brokers and data-harvesting sprees. To
fundamentally address the data harvesting against/between
libraries (XLDH), we propose and generalize three simple
but essential properties for the design and in-app operation of
social SDK, called privacy-preserving SDK (PPS) properties.
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Under the context of XLDH, a social SDK that fulfills the
properties is entitled privacy-preserving SDK.

We summarize the PPS properties in § 3.1. Further, al-
though we envision the next generation of social SDKs and
apps to be privacy-preserving fulfilling the properties, for
convenient adoption and migration, we aim that a practical
design should be backward compatible by supporting current
use cases expected by mainstream social media and platform
providers (§ 3.2).

3.1 Properties for Privacy-Preserving SDKs

PPS property 1: deterministic data collectors (DDC). Com-
pared to XLDH attacks in which it is opaque or hardly known
which party in an app (e.g., a library provided by a certain
data-broker, ads network, analytic platform or any third-party)
collects user data from the target SDK, the DDC property

requires that any party that collects data from the SDK is
deterministic.

PPS property 2: controllable data collectors (CDC). Com-
pared to XLDH attacks in which the SDK provider and the
app developers have little or no control regarding which party
in the app is allowed to collect data from the SDK, the CDC

property requires the SDK design to enable the app developers
and SDK owners to fully control which party can collect data
from the SDK. Note that based on the current laws (GDPR,
CCPA, etc.) and public policies, app developers that failed
to disclose data collection by third-parties in XLDH are li-
able for the privacy noncompliance, and SDK owners such
as Facebook tend to be considered liable for failing to fully
control user data it maintains [3].

PPS property 3: fine-grained, publicly auditable data col-
lectors (ADC). In prior XLDH attacks and other privacy
issues (e.g., partial, inaccurate or inconsistent privacy poli-
cies [14, 15]), key challenges remain for privacy compliance
and audit: (1) the parties that actually collect user data are
undisclosed or not fully disclosed to the users; (2) the dis-
closure granularity is too coarse-grained for effective audit
(e.g., GDPR); (3) the disclosure format (i.e., usually being
natural languages in privacy policies) is difficult for automatic
machine audit. To fundamentally address the problems un-
der the context of XLDH, the ADC property requires that (1)
the list of parties that collect user data from the SDK is pub-
licly auditable, i.e., being available/disclosed to normal users,
app/SDK developers and policymakers, and easily readable
by human and interpretable by machines, (2) the disclosure is
at specific-data level with respect to specific data collectors

Consider two real examples in our study: in
the app com.fairytale.fortune, the XLDH li-
brary com.umeng.socialize collects Twitter User

ID/E-mail from the Twitter SDK and sends it
to http://plbslog.umeng.com; in another app
com.africasunrise.skinseed, the XLDH library
com.revmob collects Facebook users’ AccessToken

Table 1: Use Case Stats

Social Media Provider # of use cases # number of type I workflow # number of type II workflow
Google Play Game Services 19 12 19
Twitter Kit 13 9 13
Vkontakte 16 11 16
Kakao 19 8 19
Snap login, bitmoji kit 9 9 9
Tiktok 18 8 18
Wechat 20 17 20
Alipay 14 12 14
Weibo 20 12 20
Facebook 13 13 13

from the Facebook SDK and sends it to https:

//android.revmob.com. In these cases, the ADC property

requires the (app-specific) disclosure to be as fine-grained as
a mapping from the data to all data collectors:
{

Twitter user ID/email !→ domain plbslog.umeng.com
{

Facebook access token !→ android.revmob.com

Notably, with the CDC property, the above disclosure is
determined by the app developers and SDK vendors and thus
practical (see the design that fulfills all PPS properties in § 4).

3.2 Backward Compatibility for Privacy-
Preserving Social-SDK Design

As mentioned earlier, a key challenge for designing privacy-
preserving SDK systems is that, prior/strict isolation
techniques [30, 46, 48, 50, 51, 56–58, 63, 71] do not restrict
between-library data access and easily break functionalities
of social SDK whose major use cases feature sophisticate
data flows and interactions with the rest of the app. On
the other hand, allowing user data to flow out of the SDK
immediately makes the data intractable — a fundamental
loss of privacy guarantee. That is, to ensure the design
of privacy-preserving SDK and its runtime environment
fulfill the PPS properties without breaking current use cases
of social SDK is a serious challenge, and we tackle this
imperative problem in our study (see our design in § 4).

In this section, we report a comprehensive survey of social

SDK use cases that are expected by 10 mainstream social
platforms (e.g., Facebook, Twitter, Snap, Google Play, most
popular worldwide in terms of user numbers, see Table 1),
whose SDKs have been integrated into 0.01% to 17.86% of
Google Play apps [7]. To comprehensively summarize their
use cases, our approach includes two complementary efforts.
(1) We manually inspected the developer manuals released
by the social platform vendors, with a total of more than 20
MB HTML documents describing the intended usage of APIs
provided by the 10 social SDKs (fully released online [5]).
(2) We thoroughly inspected code level behaviors of 200 pop-
ular real-world apps (with a total of 100B+ downloads [5])
that used these SDKs (20 apps for each SDK, see data collec-
tion below). Specifically, we inspected the apps at the Java
and Smali code level (decompiled through the tools Jadx

and NinjaDroid) and user level with end-to-end app/UI op-
erations. This effort leverages both state-of-the-art program
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analysis tool Flowdroid [32] and thorough manual efforts to
inspect the code that accesses APIs of social SDKs and handle
their data (see below).

In the manual efforts, after collecting all the 200 app sam-
ples, we have two researchers install the apps on rooted An-
droid phones, grant all permissions asked by the apps, and
manually explore and trigger all possible functionalities in
the apps. We manually interacted with the app UI and pin-
pointed possible usages based on the service descriptions and
descriptions in the app UI. During the app execution, we use
Frida [41] to hook invocations of social SDK APIs and then
manually analyze the subsequent control and data flows with
respect to usage of the social SDKs an their data in the app. In
this regard, we also adopt Flowdroid to complement manual
analysis and help us more comprehensively identify control
flows starting from where social SDK APIs are called in the
apps, navigating through the code space and identify data and
control flows related to how the apps use the social SDKs.

Based on the survey, this section below summarizes all
functional use cases of social SDKs in the wild into two
generalized types. We elaborate on our data collection, use-
case survey results as follows. We released the full data set
online [5] for reproducible experiments. The two researchers
that perform this survey and summarize the survey results
are considered co-authors of this work. This is aligned with
common practices of research where intellectual contributors
are acknowledged as co-authors, and their research results go
through evaluation or related artifacts are released at [5] for
experiment reproduction.

Data collection. We selected 10 most popular social SDK

according to the ranking published by two app intelligence
providers, i.e., AppBrain [7] and 42Matters [8]. For each SDK,
we selected the 20 most popular apps based on the rankings
released by the most popular app markets operating in the
corresponding region of the social SDKs (i.e., Google Play
for 7 SDKs and Huawei App Market for the other 3 SDKs
from China). The full list of the 200 apps can be found in [5].

Generalization of workflow patterns for using social SDKs
in mobile apps. Summarizing all use cases of social SDK

expected/implemented by SDK providers and app developers,
we generalize two work-flow patterns that are essential for so-

cial SDKs to interact with the rest of the app to fulfill expected
functionalities as follows. We base our privacy-preserving

SDK design in § 4 by fully regulating the two work-flow
patterns to fulfill the above PPS properties, while preserving
expected functionalities.

Type I workflow of social SDK usage in mobile apps:
Once the app invokes APIs of a social SDK, data flow out
of the social SDK (to the app’s graphical user interface or
GUI) for interactions with the user, including (1) the display
of information to users, (2) letting users choose or edit the
information from a social SDK (before sending to a remote
server). High-level examples are shown in Appendix Figure 4
for more specific use cases including single-sign on (e.g., the

Figure 2: Design Overview of Privacy-Enhancing Social SDK

user identifiers, names obtained from Facebook are shown
in the app GUI) or posting (e.g., sharing/twitting) to a social
platform or to a specific friend/group on the social platform.
Before displaying the data in the app GUI, code developed by
the app or third-parties may transform the data (e.g., using an
image processing library to process a profile photo obtained
from the social network before showing it in the app GUI).
Essentially, Type I work flow is for user interactions on the
app’s user interface.

Type II workflow of social SDK usage in mobile apps:
Once the app invokes APIs of a social SDK, data flow out
of the social SDK into the app space, and eventually flow to a
remote server, either the app server, the social SDK server, or
a third-party’s server (also called Remote Host). For example,
after login with Facebook, Twitter or Google, the user’s
access token, email, names, etc., provided by the social SDK

are sent to the app’s sever, or sent to third-party analytics
platforms and app-monetization platforms (by the app itself
or third-party libraries in the app). Before sending the data
out of the app, code developed by the app or third-parties may
transform the data into their needed format (e.g., wrapping
into a JSON or customized string). Essentially, Type II work

flow is for data sharing with a remote server (the apps’ or
third-parties’ servers).

4 Design for Privacy-Preserving, Social-Media
SDKs

In this section, we present privacy-preserving social SDK

paradigm (PESP), a clean-slate, privacy-preserving design
for social SDK and their usage in mobile apps. We also
provide end-to-end implementation of our design, and
elaborate on how the design defeats XLDH and fulfills the
PPS properties (§ 3.1) while practically enable all expected,
current use cases of social SDK (i.e., the two generalized
types of workflows in § 3.2).
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4.1 Design Overview of PESP

As mentioned earlier, a fundamental design challenge for
privacy-preserving, social SDKs that combat XLDH is the
dilemma between complete isolation (i.e., no data flows out of
the social SDK) and the necessary data flows and interactions
between the SDK and the rest of the app (with third-party
libraries that are untrusted). Once a data from a social SDK

flows into untrusted code space, it is not fully tractable and
we lose privacy guarantee (i.e., the data can be sent to the
Internet/third-parties easily and stealthily bypassing state-of-
the-art defenses including static code analysis, dynamic code
analysis, traffic analysis [53]). To fundamentally address the
problem, we base our design on complete isolation between
social SDKs and the app/untrusted code (by adopting Linux
UID based and process-level isolation of data, runtime,
and GUI guaranteed by the operating system, see § 4.4),
quarantining private user data inside a social SDK itself
and never flowing to the untrusted/app code space. Despite
complete isolation, our key novelty includes new system

design to still enable expected, sophisticated interactions

between the SDK and untrusted/app code (§ 3.2), a security

design goal never achieved before.

System architecture and core components. Figure 2 out-
lines the core systems components under PESP including its
isolation foundation and runtime backed by the Android OS.
In an app, the social SDK and the rest of the app code (simply
referred to as “the app”, denoting all code/components of the
app itself and TPLs excluding the social SDK) are strictly
isolated (based on different Android Runtime (ART) and thus
Linux UIDs, see § 4.4). Upon the app execution, the social

SDK runs in a new Android Runtime process, called SDK

runtime, separated from the app which runs in its original
runtime (Android Runtime) provided by the Android OS.

• App runtime. The app code runs in the app runtime like
a regular mobile app, except that it does not directly obtain
any data from social SDK in the SDK runtime. App code
in the app runtime invokes APIs of the social SDK through
the exposed interface (called trusted API service of the SDK

runtime, see below), and no longer directly gets the data but
rather gets a data handle, called opaque handles with refer-
ence to the SDK data in the SDK runtime (here we adapt and
generalize the concept of opaque handle [38, 44] to mobile
SDKs). PESP ensures that necessary operations and interac-
tions with the social SDK data are all performed inside the
restricted SDK runtime, fully controlled and enforced by SDK

runtime based on the data-sharing policies (see below).

• PESP SDK runtime. The social SDK runs in a separate
Android Runtime process, similar to a regular service process.
Essentially, the SDK runtime encapsulates the original social

SDK (with zero change, see our demo and thorough evaluation
of functionality and privacy on Facebook and Twitter SDKs
in § 5). The invocation from the app runtime to the original
social SDK functions is encapsulated as a simple IPC call to

the SDK runtime, handled by a component called trusted API

service (based on the Android Service class [23]), which
relays the calls to the original social SDK. Once the social

SDK returns the data, the trusted API service maintains the
data but never returns the data to app runtime (to fulfill the
privacy properties). The trusted API service instead returns
a data handle (a kind of opaque handle) to app runtime or
invokes related callback functions in the app runtime.

Despite the data quarantine in SDK runtime, in expected
usages of social SDKs (§ 3.2), an app may want customized
handling of the data (e.g., transformation, sharing to remote
parties, display on UI for user operations). PESP securely en-
ables any customized handling of the data inside the SDK run-

time, specifically inside an internal sandbox (based on isolated

process of Android [20]) called sensitive module sandbox (see
Figure 2). Specifically, during app development, the app de-
velopers can develop certain code modules (e.g., some classes)
or adopt specific TPLs, and compile them into a package (in
the Android-common .dex format [18]) called a Sensitive

Module in PESP, which is separate from the app’s regular ex-
ecutable or package. The Sensitive Modules are to run inside
the sensitive module sandbox (see examples in § 5 and exam-
ple implementations online [5]). A Sensitive Module directly
handles private data of social SDKs (exchanged with the SDK

runtime), but cannot expose it. This is because sensitive mod-

ule sandbox is based on isolated process of Android [20],
which has least privileges such as the lack of network permis-
sions (guaranteed by SE Android [27]) and only communicate
with its creator process, the SDK runtime or specifically the
trusted API service. To serve all functionality requests from
the app runtime while preserving privacy, trusted API service

just provides three simple but generic APIs facing the app

runtime (detailed in § 4.2). The APIs allow the app runtime

to specify which Sensitive Module to use to handle which
data (see API details in § 4.2). In a Sensitive Module, the app
developer’s own code can invoke a TPL to help process data,
and such a TPL is not expected to be changed due to PESP.

In SDK runtime only the trusted API service can decide to
share specific data to a remote party upon the app runtime

requests, based on data-sharing policies of the app and social

SDKs (see data-sharing policies below).

• Privacy-preserving UI paradigm. In the Type I workflow
of original usages of social SDKs, the SDK data was expected
to flow to the app’s UI for the users to view, operate or interact
with: for example, during login with Facebook, the user’s
identifiers, names, etc. from Facebook are filled into the app’s
login window or account creation window (Figure 4c). To
securely support app-specified, UI-based user interactions
with the social SDK data, we introduce a privacy-preserving
UI paradigm (or PESP UI paradigm) — note that this was
not a common use case for ads libraries and thus unsupported
by prior isolation techniques such as PSoA. Specifically, the
app can securely designate a portion of the screen (called s-

screen) to the SDK runtime and the SDK runtime can populate
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data into s-screen, and allow users to operate on it without
ever exposing data to the app runtime. How to customize the
view and actions in s-screen is completely implemented in
a Sensitive Module provided by the app and executed with
privacy guarantee in the SDK runtime (inside the sensitive

module sandbox based on isolated process). We elaborate on
technical details in § 4.2 and end-to-end implementation and
demo with Facebook and Twitter SDKs in § 5.

• Data-Sharing Policies. The data-sharing policies are
specified by the app/SDK developers to fulfill the privacy
properties (§ 3.1). In particular, the policy specifies for the
specific app (or app vendor/domain) the specific date items
that are allowed to be shared with specific data collectors
(see the DDC property and CDC property). The data-sharing

policies should/can be made publicly available under the app
vendor’s domain (e.g., example.com/PA_policy.json), signed
by the app vendor. The social SDK has the authority to addi-
tionally impose a policy overriding part/all of the app vendor’s
policy, fulfilling its data sharing policies. See an example pol-
icy in our supporting websites [5].

With privacy by design, all parties that can collect the data
from social SDK are deterministic, controllable and auditable,
significantly elevating the privacy and compliance assurance
of the social SDK, apps, and the underlying operating system.

Usability for app users. Our entire design is transparent
to app users, who experience no changes. For example, the
app user can operate on the s-screen populated with Face-
book/Twitter SDK data, make selection, edits, and further
submits the data to app/Facebook servers, e.g., during Face-
book/Twitter based app login or account creation, or posting to
the social networks. Figure 3 shows a screenshot in our end-to-
end implementation/evaluation of a privacy-preserving Face-
book SDK used in a demo app, fulfilling all expected/current
use cases of Facebook SDK.

Discussion. Instead of sandboxing potentially all TPLs that
are untrusted, the design of PESP chooses to sandbox so-

cial SDKs, which can be more practical while fulfilling our
protection goal (defeating XLDH attacks). Otherwise (sand-
boxing all non-social libraries), all simple app-to-sdk or sdk-
to-sdk function calls will go with inter-process communica-
tions, which will significantly break current programming
paradigms, runtime performance and app design (a regular
mobile app may utilize tens of third-party SDKs for diverse
functionalities [34]). Further, based on the PESP design, spe-
cific TPLs (e.g., an image processing library) adopted by the
app to process social SDK data are packaged and sandboxed
in a Sensitive Module, while other non-trusted TPLs run in
the app runtime.

4.2 PESP SDK Runtime

We elaborate on design of key components for the SDK run-

time as follows.

Trusted API Service: interface between the app runtime
and SDK runtime The trusted API service provides three
generic APIs facing app code in the app runtime:

• API 1: getDataHandle(original_SDK_API_name,

arguments, optional_callback_function). Similar
to using the original API of the social SDK, the app can
use the original SDK API name and arguments in this
getDataHandle, which will return to the app runtime

data_handles to specific data items. Note that the trusted

API service never returns actual data of social SDKs to the
app runtime. The last argument is optional and specifies
a callback function in the app runtime for the trusted

API service to invoke asynchronously if the original SDK
API cannot return immediately (e.g., delayed by Internet
communication with the social SDK server).

• API 2: sendSensitiveData(data_handles,

remote_host, sensitive_module,

optional_callback_function). API 2 is directly re-
lated to the Type II workflow (§ 3.2), where app developers
intend to send data from the social SDK out to third-party
partners or the app servers. To support this workflow, the app
code from app runtime can use API 2 to let the trusted API

service send specific data (referenced by the data_handles
argument) to specified remote server endpoint (the second
argument).

The third argument sensitive_module is optional and if
specified, the trusted API service will launch the Sensitive

Module (in an isolated process, see below) to process the
data before sending them out to remote servers. Notably, the
Sensitive Module can implement flexibly customized function-
alities or operations on the data of social SDK (texts, images,
videos, or binary data without limitation). This API return
new data_handles referencing to the data after customization.
As mentioned earlier, the trusted API service enforces the
data-sharing policies and determines whether sharing the spe-
cific data with the domain is allowed before sending data to
remote parties. Similar to API 1, the last argument is optional
and specifies a callback function in the app runtime for the
trusted API service to invoke asynchronously.

• API 3: launchSensitiveModuleView(data_handles,

sensitive_module). Recall the Type I workflow where
the app may want display of the social SDK data in the
app specific UI for the user to view or operate. Upon this
API request, the trusted API service launches a GUI view,
implemented by the sensitive module (the second argument)
to display the data (the first argument) — a sensitive module
runs as an isolated process considered as the sensitive

module sandbox. In such a case, the Sensitive Module can be
implemented as a typical Android GUI view (based on the
android.view.View class [29], with UI elements such as
text-boxes and labels defined and laid out like programming
a regular Android UI [25]), including code logic that can
populate provided data to the view’s UI elements (Figure 2)
and further take customized actions on the data.
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Implemented by the Sensitive Module, this GUI view uses
a portion (or entirety) of the screen (see Figure 2), referred
to as s-screen in this design proposal. Note that the Sensi-

tive Module is customized by the app developers (in con-
trast to social SDK vendors) and provided to the SDK run-

time at app packaging time (see § 4.1). This API returns
a SurfaceControlViewHost.SurfacePackge type handle
referencing the view s-screen (returning to the app runtime

that invokes this API). As detailed below, app runtime with
the view’s handle cannot access contents in the view at all
(based on how the Android’s System Display Service [19]
works and how Android manages screens).

In the evaluation (§ 5), we demonstrate that the three simple
yet versatile APIs are capable of satisfying all the use cases of
both Facebook and Twitter SDKs. We showcase this through
an example app provided by Facebook and a proof of concept
app that we developed, incorporating the Twitter SDK. PESP

supports multiple social-SDKs used by one app in respective
runtimes. The app interacts with each SDK-runtime similarly.
We evaluated and released an example app using both the
Facebook and Twitter SDKs under PESP in § 5.4.2.

Security discussion. With XLDH attack surfaces signifi-
cantly reduced by PESP, a potential remaining threat is that
a malicious TPL adopted by the app leverages API 2 to post
sensitive data to public remote hosts, and then the attackers
can monitor the specific endpoints and harvest data there.
Such a threat can be prevented based on data-sharing policies

of PESP or existing privacy enhancing techniques (PETs).
Specifically, thanks to enforcement of data-sharing policies,
the remote hosts targeted in such an attack are considered
to be either hosts of the app or the online social network
(OSN) behind the social SDK. Targeting the former, the at-
tack must be app-specific, which is not an XLDH and has
significantly more limited attack surface than XLDH. If OSN-
owned endpoints are targeted, the OSN’s data-sharing policies
may disallow SDK data to be posted to its public endpoints.
Also, thanks to PESP, the data must be sent to the OSN before
the attacker can harvest them, and thus prior PETs such as
anomaly detection [9] can identify the attack: for example,
massive data of diverse identities are sent to specific OSN
endpoints or timelines, apparently being abnormal.

PESP Privacy-preserving UI paradigm. To securely sup-
port app-specific, UI-based user interactions with the social

SDK data, and enable Type I workflows (SDK data flow into
the app UI), we adapt uses of Android’s System Display Ser-
vice (d-Service) and propose a novel GUI rendering technique,
called PESP-GUI. The core idea is that PESP-GUI enables
the trusted SDK runtime and the untrusted app runtime to each
render and operate a portion of the entire screen; SDK runtime

(i.e., the Sensitive Module with API 3) shows the SDK’s pri-
vate data only in its screen portion (called sdk-screen portion
or just s-screen) without ever exposing SDK data to the app

runtime. PESP is aligned with and leverages the design of
Android’s System Display Service, which manages how differ-

ent views, overlays, and windows are stacked at the z-axis to
form a user-facing screen. Specifically, we leverage Android
d-Service to securely stack the s-screen (owned by Sensitive

Module in the SDK runtime) on top of specific position of
the app runtime’s screen (at z-axis, see Figure 3), forming a
user-facing window — users see a normal app window with
social SDK data to view and edit.

More specifically, the API 3 returns to the app runtime a
view handle called surfaceView (of type SurfaceView [28]),
referencing the s-screen operated by the Sensitive Mod-

ule confined in the SDK runtime. The app code in the
app runtime can then call the Android framework API
surfaceView.setChildSurfacePackage [28] to designate
that it wants its specific screen portion (up to 100%) to be
stacked with and thus overwritten (on the z-axis) using the par-
ticular surfaceView. Note that since both the Sensitive Module

(with view layout in the s-screen) and the app window are de-
veloped by the app developers, the final combined user-facing
GUI will look normal for users.

Security discussion. Note that the above screen stacking
technique is based on the true intention of (1) the app (by call-
ing the above API to inform the Android d-Service about the
target screen to use on its top and specific position), and (2) the
SDK runtime by returning reference to the s-screen to the app
(through API 3). Hence, this has key differences from prior
overlay attacks [40] where a malicious app put its overlap or
screen on top of another (victim) app — placing an overlay
on other apps is now strictly restricted by Android requiring
a signature level permission System_Alert_Window and by
Google Play in app vetting [24]. Also note that, in the design
of PESP, despite the screen stacking, the app code or the app

runtime cannot access contents in the s-screen owned by the
SDK runtime. We provide implementation details in § 4.4.

Sensitive Modules. Upon invocation of API 2 and API
3 with a Sensitive Module name specified, a Sensitive

Module is launched by the trusted API service as an isolated

process [20] — called a sensitive module sandbox. Like a
regular isolated process, the Sensitive Module has a Binder

object [17] to communicate and exchange data with its
creator process (the SDK runtime), but is restricted for other
IPC or permissions (e.g., no Internet access). The process
terminates once the related function being launched returns.

Sensitive Storage. Despite the three APIs and the trusted API

service only return data handles, and never return the actual
data, the trusted API service keeps a private storage inside
the SDK runtime for the specific data and its data handles in
the format of {data_handle, data type, data value}. Note that,
with API 3, after a Sensitive Module performs transformation
on a set of multiple data items, it can produce new data and
return them to the trusted API service (through IPC between
an isolated process and its creator process). Then trusted API

service can store the new data, assign new data handles and
record data type as the set of the original data types. This
enables the trusted API service to enforce the data-sharing
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policies based on the data types when sending data to remote
parties (API 2).

Generality of SDK runtime. Our design of SDK runtime is
potentially general for all social SDKs. Our implementation
(§ 4.4) is open-source can be easily used by social SDK ven-
dors to wrap their current social SDKs without changes (see
our demo and evaluation for Facebook and Twitter SDKs in
§ 5). § 5 further encompasses our evaluation of the practical
efforts required for app developers to adopt the new privacy-
preserving paradigm of social SDKs.

4.3 Comparison with Related Work

Comparison with PSoA. There are key design-level differ-
ences between PESP and Google’s ongoing development of
PSoA for the privacy assurance and functionality.

• Privacy assurance. While PSoA aims to separate SDK
permissions from the app, by design, PSoA simply allows
SDK-runtime to return data to untrusted app-runtime (by
invoking SDK APIs) [30] (subject to XLDH-attacks). In sharp
contrast, PESP confines SDK data (in SDK-runtime), thus
elevating privacy assurance (against XLDH).

• Enabling social-SDK functionalities. Confining SDK data
while enabling app-to-SDK functional workflows is challeng-
ing. Such a property is achieved by the PESP UI paradigm
(§ 4.1), securely enabling app-specific, app-implemented op-
erations on the SDK data inside SDK runtime. In contrast,
the PSoA (with its remote-view feature [11]) does not enable
such a key property: operations/implementations in PSoA
remote-views are done by the SDK, and apps just determine
the views’ on-screen location. PSoA currently only focuses
to support advertising-related SDKs [12]. The PSoA even
assumes that the app should not impact or interact with SDK
behaviors such as UI contents or operations of SDK-runtime
(to protect ads display integrity and promote anti-fraud) [13],
which contradicts with designed use cases of social SDKs.

Comparison with other related work. Generally, prior tech-
niques for library isolation, restriction or protection suffer
from several key problems for effectively or practically de-
feating XLDH attacks (Table 4).

• Problem 1: Isolation targets. Many prior techniques aimed
to isolate libraries from the host app [26, 48, 50, 51, 56–58]
(e.g., with separate permissions, processes, storage, or run-
time). They were designed to isolate specific types of TPLs
(e.g., ads related libraries) from the host app, and were usu-
ally not intended or designed to isolate social SDKs or many
libraries. Using their approaches to generally isolate many
libraries may significantly change app-to-library or library-to-
library interactions, programming paradigms, and app designs
(see discussion in § 4.1), thus being less practical. Addition-
ally, adopting their approaches to isolate social SDK or ad-
dress XLDH can incur Problem 2 or Problem 3 discussed
below.

• Problem 2: Incomplete isolation (privacy assurance). Al-
though many prior techniques come with certain levels of
isolation [45, 54, 55, 60, 73] (e.g., permission isolation which
ensures that libraries do not directly inherit permissions of the
host app), like PSoA, they usually come with no design-level
guarantee that data from social SDKs (or generally an SDK
that offers data) never flows to the untrusted, non-isolated
space (e.g., app runtime), directly violating our XLDH secu-
rity goals.

• Problem 3: Functionality compatibility for social SDKs.
Unlike previous works’ assumption [45,46,50,57,58,71] that
ads-related or other SDKs expected little or no functionality
interactions with the host app, thus being more easily isolated
without breaking their functionalities, social SDKs come
with sophisticated or app-specific interactions with the app.
Quarantining SDK user data (inside a social SDK or poten-
tially any SDK that offers data) while enabling necessary,
sophisticated interactions between the SDK and untrusted/app
code is a unique contribution and advantage of PESP.

4.4 Implementation

Privacy-preserving UI paradigm. The type (class) of
the view returned by API 3 to the app runtime is
SurfaceControlViewHost.SurfacePackage [28], which
serves as a reference to the s-screen operated by the Sen-

sitive Module that includes the data of social SDKs. When
the view of the Sensitive Module is created, it is stored in the
screen drawing buffer of Android, shared between the Android

SurfaceFlinger service and the sensitive module sandbox

process (where Sensitive Module runs). Then, an instance
of the class SurfaceControlViewHost.SurfacePackge

is created as a reference to that buffer, and returned
to the app runtime by API 3. Once the app code
in the app runtime receives the reference, it can use
the reference as the parameter to invoke the Android

API SurfaceView.setChildSurfacePackage which es-
sentially tell the SurfaceFlinger service to take the content
of the drawing buffer owned by the Sensitive Module to stack
on specific position of its own screen and overwrite the con-
tent of its own drawing buffer or SurfaceView. Note that, the
overwrite happens in the trusted Android SurfaceFlinger

process, which synthesize the drawing buffer to finalize dis-
play of the user-facing screen, and neither the app runtime nor
the SDK runtime can access contents of each other’s screen
contents (i.e., contents in their respective SurfaceViews).

When the app wants to reclaim the display area
taken by the s-screen, it can simply invoke the Android
ViewGroup.removeView API to remove the SurfaceView

of the SDK runtime from its screen. Hence, data of social

SDK in the SDK runtime is never exposed to the app runtime,
but allowing the app to control how, when and where the
data is shown to the user on the screen. Note that it’s possi-
ble that apps leverage the Android’s MediaProjectManager
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API to take screenshot of the whole display, but every invoca-
tion of MediaProjectManager for whole-display screenshot
requires user consent [21].

SDK runtime. In our current implementation, the trusted

API service is similar to a regular Android service based on
the class Service. The SDK runtime wrapping the origi-
nal social SDK (Figure 2) is packaged with its own pack-
age name. The sensitive module sandbox is created using
the IsolatedProcess flag of Android Service which as-
signs the sandbox process a restrictive uid that has IPC
limitations and strict SELinux policies enforced [20]. The
Sensitive Modules are loaded from the file system using
the DexClassLoader Android API to load all the necessary
Classes in to the sandbox process.

The Sensitive Module in the isolated process can use the
Binder to exchange information and perform IPC with the
trusted API service. The Binder instance was created and ac-
cessible to the Sensitive Module when the trusted API service

create the isolated process. Besides the three public APIs
facing app runtime (§ 4.2), the trusted API service internally
implemented a few more functions to serve requests (through
the IPC) of the Sensitive Module, especially when the Sensi-

tive Module wanted to make HTTPS requests to the remote
servers (sensitive module sandbox cannot access the Internet).
Once a Sensitive Module finishes its code execution, its iso-
lated process terminates. Considering that multiple apps may
use the same social SDK (e.g., the Facebook SDK), in our im-
plementation, the system installs the social SDK as a unique
service that can be invoked and shared by multiple apps.

App runtime. The app code runs in app runtime, which is
exactly the same as the Android Runtime (ART)(with its pre-
decessor as Dalvik runtime) [22] capable of running Dex byte-
code. Since the trusted API service with the SDK runtime is
implemented as a standard Android service [23], invocations
to the three APIs of trusted API service follow the standard
IPC process like invoking any service APIs (using the An-
droid API bindService [16]). In our implementation, for
app code to more easily use the trusted API service APIs,
we additionally provide a convenient client SDK wrapper (of
trusted API service), which is just a trivial wrapper offering
the same function signatures as the three trusted API service

APIs; the app code can import the client SDK wrapper as
an SDK and invokes the three APIs just like invoking nor-
mal SDK functions and the client SDK wrapper consequently
makes the IPC calls.

Isolation in PESP. Our rigorous isolation between the SDK

runtime and app runtime and between the SDK runtime and
Sensitive Module is based on mature techniques, i.e., Linux
UID [26] and Android isolated process [20] respectively. In
our current implementation, similar to and compatible with
Google’s PSoA [30] and the new SDK distribution model [10],
when installing an app utilizing social SDK, the system in-
stalls the app and the social SDK as two separate packages,
assigning different app identifiers and Linux UIDs. Android

package name/identifier serves as a basic building block when
it comes to differentiating the app and social SDK. Note that
different social SDKs have different package names and iden-
tifiers, because we do not assume there exist trust between
different social SDKs in our threat model.

Distribution. Being compatible with the distribution model
of PSoA [10], a social SDK is packaged as a self-contained
package with its transitive dependencies. As mentioned earlier
(§ 4), a Sensitive Module with its dependencies is built into
a self-contained package (.dex format), which is loaded by
SDK-runtime into isolated processes.

5 Evaluation

In this section, we thoroughly evaluate effectiveness, usability,
and performance overhead of PESP. Specifically, we use two
open-source Android apps released by Facebook and Twitter
that integrated the Facebook login SDK [37] and Twitter Kit
SDK [61] respectively: the two apps originally implemented
functionalities for major use cases related to the SDKs such
as login with Facebook and Twitter. In our evaluation, we
implemented our design PESP into the two example apps
while keeping the original functionalities; this is done by
wrapping the in-app Facebook and Twitter SDKs into our SDK

runtime and migrate the app code that originally invokes the
SDK functions into code that invokes the trusted API service.
In the following, we provide three demonstration examples
of the new apps (with PESP) that have implemented key use
cases of Facebook and Twitter SDKs: login with Facebook
(§ 5.1), in-app display of Facebook user profile information
(§ 5.2), login with Twitter (§ 5.3). For each use case, we
evaluate the effectiveness of privacy protection and usability
(efforts needed for the app developers to migrate this app to
the PESP paradigm).

In § 5.4, we report evaluation of end-user facing perfor-
mance overhead under PESP. The evaluation is based on the
above two apps (released by Facebook and Twitter) equipped
with PESP, and we additionally evaluated multiple app sce-
narios with each app integrating multiple social SDKs under
PESP. The results showed that PESP is efficient and practical.
All apps used in our experiments were released with source
code online [5].

5.1 Case Study and Security Analysis: Login
with Facebook under PESP

Login with social SDK is a common use case that is a
prerequisite step for accessing sensitive user data from
the Social Network platform based on the OAuth protocol,
adopted by all 200 apps surveyed in our use case study (§ 3.2).
Originally the login is implemented by the app developers
through placing a Login Button provided by the Facebook
SDK which wrapped the function call to Facebook SDK APIs.
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Once clicked, it will initiate the login flow by navigating
to the web browser on the user’s device (or the Facebook
app) to input the users’ login credential on facebook.com
and finish the authorization to the app. After the login
process ends, the app checks whether the user is logged
in by calling AccessToken.getAccessToken, a Facebook
SDK API that will return the sensitive AccessToken if
the user login is successful. Note that, AccessToken is a
sensitive data because it could be used for fetching additional
sensitive information (e.g., user emails, profile images) from
Facebook’s remote server. If the login succeed, the app will
navigate the user to a new Activity for more functionalities;
otherwise the user will stay in the current Activity that has
the Login Button for user to attempt login again.

Usability evaluation: migration efforts for app develop-
ers. We made 279 lines of code (LOC) changes for this
login functionality, including 47 LOC for implementing a
Sensitive Module (see below). We additionally developed a
data-sharing policy with 5 LOC that only allows the Face-
book data to be sent to the app server (see the policy at [5]).
The Facebook demo app originally has more than 1,200
LOC. Specifically, we made the following two code logic
changes for the app. First, we replace the app’s function
calls to the Facebook SDK API behind the Login Button

with an invocation to the getDataHandle API (API 1) pro-
vided by our new SDK runtime (i.e., trusted API service),
and upon the invocation, the trusted API service will relay
the call and actually invoke the APIs in the original Face-
book SDK. Then the login process continues, allowing the
user to enter their Facebook login credentials in the web
browser (or in the Facebook app if already installed on the
device) and authorize the developer’s app. The second change
needed is to refactor the app’s code logic that navigates to
different activities based on the login results. Specifically,
we implemented a Sensitive Module (47 LOC) that uses
the Facebook SDK API LoginManager.getLoginStatus

or AccessToken.getCurrentAccessToken (by calling API
1 of the trusted API service and pass in the SDK API names):
the former returns login success or failure, and the latter re-
turns AccessToken whose value exists only after a success-
ful login. Our Sensitive Module then requests the trusted

API service to send the login result to the app’s server
using the API 2: sendSensitiveData(data_handles,

remote_host). Then, extra code logic in the app runtime

that pulls from the developer’s server the actual login result
is added to the app.

Effectiveness evaluation: privacy enhance-
ment. In the original app, calls to the sensitive
AccessToken.getCurrentAccessToken function is
used to check whether the login is successful or not by the
app. This exposes the token from the Facebook SDK to the
app code space; also any third-party library in the app can
invoke this Facebook SDK API to get the user’s Facebook
access token. In addition, the function calls to initiate the

login process has to be replaced with the invocation to the
getDataHandle (compared to the original app that directly
invokes Facebook SDK API), also ensuring that sensitive
information stayed in the SDK Runtime, not exposed to
the app runtime. In our PESP enhanced version of the app,
Facebook SDK data cannot flow out to the app runtime
regardless of how the app invokes trusted API service or the
SDK runtime, all confined in the SDK runtime.

5.2 Case Study and Security Analysis: Display
of Facebook User Profile under PESP

Another common use case used by 169 apps out of the 200
apps we found in the use case survey (§ 3.2) is to display user-
names and email addresses obtained from the social network
inside the app’s UI. To implement this use case, app develop-
ers would first acquire the sensitive user profile information
from the Facebook SDK with an invocation to the SDK API
Profile.getCurrentProfile, whose return value contains
the username and email address. After that, the username
and email are used to update the content in the Android View

objects to display them in the UI, so the user can check the
profile information they are going to use with this app, and
modify them on the UI as needed. If the user confirmed the
profile information, the app will send the profile information
to the app server for persistent storage.

Usability evaluation: migration efforts for app develop-
ers. We changed 196 lines of code (LOC) for this functional-
ity, including a Sensitive Module (73 LOC). This demo app
of Facebook originally has more than 1,200 LOC. Specif-
ically we make the following code changes for the app to
adopt PESP. We replaced the invocation to the sensitive SDK
API Profile.getCurrentProfile with an invocation to
the getDataHandle API of the trusted API service, which
returns an opaque data handle to the Profile object (the
actual value is stored in the SDK Runtime’s in its Sensi-

tive Storage). Next, we removed the original app code logic
that updates the View objects with the sensitive user infor-
mation and instead developed a Sensitive Module (73 LOC)
that implemented a GUI view to display the user informa-
tion (also see the “PESP privacy-preserving UI paradigm”
in § 4.2). Further, the app code logic of sending the user
profile information to the app server is replaced. Instead,
the view of the Sensitive Module includes action code that
sends the user data to its app server. This involves invoca-
tion of the API 2 of the trusted API service, i.e., API 2:

sendSensitiveData(data_handles, remote_host) by
the Sensitive Module. The data-sharing policy includes 5
LOC that only allows the Facebook data to be sent to the app
server (released online [5]).
Effectiveness evaluation: privacy enhancement. Thanks
to the Sensitive Module and PESP privacy-preserving UI
paradigm, sensitive user profile are displayed in the UI with-
out being exposed in the app runtime at any time after the

USENIX Association 33rd USENIX Security Symposium    657



migration, eliminating the XLDH. In addition, the trusted

API service of the SDK runtime can enforce the data-sharing

policies whenever the Sensitive Module tries to (through the
trusted API service) send any data out to any remote hosts.

5.3 Case Study and Security Analysis: Login
with Twitter under PESP

We changed 125 lines of code (LOC) for this functionality,
including a Sensitive Module (52 LOC). This demo app
of Twitter originally has more than 1,300 LOC. The
design of Twitter Kit (SDK) for Android is very similar
to the Facebook SDK for implementing the Login with
Twitter use case. Specifically, Twitter Kit also provided
a Login Button that wrapped the actual OAuth based
user login process and provided Call Back interface
such that the app developer could trigger their own code
logic depending on the success or failure of the login.
Different in the Twitter Kit case is that Twitter uses a pair
of oauth_token and oauth_token_secret inside the
TwitterSession object as the credentials for pulling user
private information from the Social Network platform. The
TwitterSession object also contains sensitive user infor-
mation like the user id and user name. In addition, the demo
app included an extra step of calling Twitter Kit SDK API
TwitterAuthClient.requestEmail, which essentially
sends a HTTP Get request to the Twitter’s server to retrieve
the user’s email address, to verify the credentials are valid.

Usability evaluation: migration efforts for app developers.
The Twitter Kit’s API TwitterAuthClient.requestEmail
original implementation takes an app developer implemented
Call Back interface and return the user’s email in the suc-
cess clause of the Call Back. After adopting our design, an
opaque data handle is returned whether the login is successful
or not to avoid privacy leakage. As a result, we developed a
Sensitive Module (19 LOC) to check the existence of user
email with the opaque data handle and report the result to
the app’s server (which is registered in advance and approved
by the data-sharing policies), then the app code retrieves the
results with a network request. The data-sharing policy in-
cludes 4 LOC that only allows the Twitter data to be sent to
the app server (released online [5]).

Effectiveness evaluation: privacy enhancement. In the orig-
inal app, the TwitterSession object returned by the original
Twitter Kit API that could have leaked user email, user id
and sensitive Twitter API credentials to the untrust app space
exposing malicious libraries. With the PESP paradigm in the
app, this is protected based on opaque data handles and the ac-
tual data never went from the Twitter SDK to the app runtime.
Further, the Sensitive Module design ensures the sensitive user
email to be accessible for app functionalities while the data
flows are fully controlled based on the data-sharing policies.

Table 2: Performance overhead (single social SDK per app)

Use Case Original (ms) PESP-migrated (ms) ∆ (ms)

Login with Facebook 66.45±5.60 138.88±13.24 72.42
Display User Profile 50.01±0.38 89.19±6.732 39.19
Login with Twitter 167.50±6.02 230.10±16.52 62.60

Assuming Normal Distributions, Intervals for 95%
confidence

5.4 Performance Overhead

5.4.1 Evaluation for the Three Use Cases

We conducted our experiment on a Google Pixel 6 phone
running stock Android 13 (r16). We used the three migrated
use cases (with PESP adopted in the two apps) above to
evaluate performance overhead of our design. Since the three
use cases’ original implementation in the sample apps is
mainly for demo purpose (Facebook and Twitter released the
sample apps to show how to use their SDKs and for what use
cases) with no code logic for other app functionalities (i.e.,
functionalities unrelated to Facebook or Twitter) in place, our
evaluation is thus conservative and approximates the potential
upper bound of the performance overhead. We run the test
20 times for both the original and migrated, PESP-based app
implementation and Table 2 summarized the results.

Login with Facebook. We measure the time the app needs to
receive the login success result after the login button is clicked.
In the workflow, once the user clicks the in-app login button,
she is redirected to Facebook.com in the browser (or the
Facebook app if installed), authorizes the app, and is finally
redirected back to the app’s specific UI window with success-
ful login results. For measurement purpose, we subtracted the
time the user needed to authorize the app in the Web browser
(or in the Facebook app), which can be influenced by the
user’s reaction speed and network latency. The subtracted
time is measured by inserting code for timestamp logging in
the apps related to UI operations (e.g., when the login button
is clicked) and activity switching (e.g., right upon the app is
switching to the browser and right after the login success UI
activity is triggered following the authorization). The average
overhead for the migrated implementation is 72.42 ms.

Display Facebook User Profile. We measure the time
needed starting from in-app invocation of the function that
retrieves user profile information to when the rendering of
the views containing the sensitive information is finished. In
the workflow, once the app triggers the API GraphRequest
of the Facebook SDK (using the API getDataHandle of
PESP), the SDK will retrieve the user data from the Facebook
server, and then display the data on a UI activity implemented
by the app (running in a Sensitive Module). We subtracted the
time spent on network requests for the user information from
the Facebook server to exclude the impact of network latency
variations. The subtracted time is measured by inserting code
in the open-source Facebook SDK for timestamp logging
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at corresponding network request callbacks (i.e., before and
after the request). The result shows an overhead of 39.19 ms.

Login with Twitter. Same as the Login with Facebook
case, we measure the time the app need to receive the login
successful result after the login button is clicked excluding
the time the user spent in the browser. The result shows a
overhead of 62.60 ms.

5.4.2 Apps with Multiple Social SDKs

In the above experiments, each app comes with one social

SDK. We further evaluated performance overhead on multiple
apps, with each app using both Facebook and Twitter SDKs
under PESP. Specifically, by combining the above two PESP-
enabled apps that use either the Facebook or Twitter SDK
(§ 5.1 to § 5.3), we developed an app that uses both social
SDKs under PESP. We take this app as the evaluation target
app. As its control group, by combining the two original exam-
ple apps (provided by Facebook and Twitter), we developed
an app using both the Facebook and Twitter SDK (without
PESP). The evaluation target app and its control group share
exactly the same functionalities with both the Facebook and
Twitter SDKs. For the evaluation, we performed experiments
under three scenarios as follows (each result is based on the
average of 20 trials, shown in Table 3).

Scenario 1: multiple PESP-enabled apps use the same
social SDK (Facebook or Twitter SDK). We launch two
instances of the target app (compiled and built under dif-
ferent package names, treated by the Android OS as dif-
ferent apps). We refer to the two instances as PESP In-
stance 1 and 2 respectively. For each use case (Login in

with Facebook, Display User Profile and Login with

Twitter), we run PESP Instance 1 and then Instance 2, with
their performance overhead measured respectively (Table 3).
There is no obvious performance difference between the two
instances. Similarly, we also run two instances of the con-
trol group app (Original Instance 1 and 2 in Table 3). The
performance overhead compared to the control group is low;
e.g., Instance 1 shows an average overhead of about 74.79ms,
38.47ms, 59.91ms compared to Original Instance 1 for the
three use cases respectively.

Scenario 2: single PESP-enabled app uses multiple so-
cial SDKs (Facebook and Twitter SDKs). We launch
one instance of the target app, run the two use cases
sequentially (Login in with Facebook and Login with

Twitter) and measure the time consumed for both use cases.
Compared to the control group, the performance overhead
for executing the two use cases is low (74.0ms and 60.7ms

respectively for the two use cases), which is about the same
with Table 2 that evaluates single social SDK in each app.

Scenario 3: multiple PESP-enabled apps use multiple so-
cial SDKs (Facebook and Twitter SDKs). Similar to Sce-
nario 1, we launch two instances of the target app. Then in
each instance we run the two use cases (Login in with

Facebook and Login with Twitter) and measure the time
(PESP Instance 1 followed by PESP Instance 2). Compared
to the control group, the average performance overhead for
executing the two use cases is around 85.6ms and 63.6ms

(PESP Instance 1). There is no obvious performance differ-
ence between the two PESP app instances.

6 Discussion

Long-term maintenance and updates. As mentioned in
§ 4.1, the design and implementation of PESP is directly
compatible with PSoA of the official Android. PESP can sup-
plement PSoA to protect social SDKs, while PSoA currently
only supports ads-related SDKs. Notably, in PESP, the indi-
vidual social SDKs are wrapped under the SDK runtime and
the original social SDKs expect minimum or no changes. The
design and implementation of such a SDK runtime is general,
not specific to individual social networks (our implementa-
tion that can directly wrap the Facebook, Twitter or other
social SDKs is released online [5]). With future emerging
threats against the SDKs, one may just update the general
SDK runtime, which can be maintained with the Android or
community efforts including ours. We expect that PESP will
motivate more research and development efforts that tackle
hard defense problems or emerging privacy threats and im-
prove privacy assurance for mobile apps and TPLs.
Sensitive information returned from the app server. After
collecting user data from the SDK runtime, benign app servers
might hand the data to the app runtime, flowing private data
into untrusted code space. Although we acknowledge that
this presents a privacy threat (similar to prior studies show-
ing that malicious libraries can harvest the host-app’s data
from the app-specific UI or server), it is not a XLDH threat
and has significantly more limited attack surface than XLDH.
Specifically, from the attackers’ perspective (a data-harvesting
library that has sneaked into mobile apps), with XLDH, the
malicious library can succeed in all apps using the same attack
vector/approach (accessing the same function/interface of the
target social SDK); in contrast, the other threat in question
has to target app-specific UI components, code modules or
interfaces to find the private data, which is significantly less
effective and more costly for the attackers. Hence, our design
defeats XLDH, significantly reduces privacy attack surfaces
and elevates privacy assurance.
Generalizability to other types of SDK. Our design is gen-
eral (not relying on social SDKs), and may be applicable to
potentially all SDKs that provide or manage data, or want to
protect their data. Also note that to ensure the privacy assur-
ance against XLDH while supporting in-app functionalities
of social SDKs, our design is based on a thorough survey of
in-app use of 20 popular social SDKs (§ 3.2). To use PESP

or extend it for protecting more types of SDKs, a thorough
survey of their functionality use cases are necessary, which we
leave for our future work. Moreover, PESP and PSoA share
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Table 3: Performance overhead (multiple social SDKs per app)

Use Case Original Instance 1 Original Instance 2 PESP Instance 1 (ms) ∆ (ms) PESP Instance 2 (ms) ∆ (ms)

Login with Facebook (Scenario 1) 65.91±1.92 67.69±2.69 140.7±3.93 74.79 142.3±5.91 74.61

Display User Profile (Scenario 1) 50.33±0.33 50.55±0.53 88.8±1.81 38.47 89.25±3.93 38.7

Login with Twitter (Scenario 1) 167.04±12.51 173.95±17.68 226.85±13.45 59.91 240.15±20.59 66.2

Login with Facebook/Twitter (Scenario 2)
FB:70.2±8.48

−
FB:144.2±11.69 74.0

− −
TW:159.9±24.90 TW:220.6±25.40 60.7

Login with Facebook/Twitter (Scenario 3)
FB:62.0±3.73 FB:70.3±15.11 FB:147.6±25.38 85.6 FB:149.1±36.3 78.0

TW:158.7±21.1 TW:185.4±25.56 TW:222.3±20.2 63.6 TW:251.2±26.69 65.8

Assuming Normal Distributions, Intervals for 95% confidence (FB: Login in with Facebook; TW: Login with Twitter)

Table 4: Comparison with prior privacy protection techniques

Year Name Techniques Category P1 P2 P3
2012 Aurasium [66] App Compartmentalization n/a ✗ ✔

2013 AppGuard [33] App Compartmentalization n/a ✗ ✔

2013 LayerCake [54] App Compartmentalization n/a ✗ ✔

2014 COMPAC [65] App Compartmentalization n/a ✗ ✔

2016 DroidDisintegrator [60] App Compartmentalization n/a ✗ ✔

2016 CASE [73] App Compartmentalization n/a ✗ ✔

2017 FineDroid [72] App Compartmentalization n/a ✗ ✔

2017 CompARTist [45] App Compartmentalization n/a ✗ ✗

2018 BreakApp [62] App Compartmentalization n/a ✗ ✔

2021 SEApp [55] App Compartmentalization n/a ✗ ✔

2011 AppFence [43] Taint Tracking n/a ✗ ✔

2012 DroidScope [68] Taint Tracking n/a ✗ ✔

2016 TaintART [59] Taint Tracking n/a ✗ ✔

2016 PIFT [69] Taint Tracking n/a ✗ ✔

2017 TaintMan [70] Taint Tracking n/a ✗ ✔

2018 NDroid [67] Taint Tracking n/a ✗ ✔

2012 AdDroid [50] TPL Isolation ✗ ✗ ✗

2012 AdSplit [57] TPL Isolation ✗ ✗ ✗

2013 AFrame [71] TPL Isolation ✗ ✗ ✗

2013 Sanadbox [46] TPL Isolation ✗ ✗ ✗

2014 NativeGuard [58] TPL Isolation ✗ ✗ ✗

2015 PEDAL [48] TPL Isolation ✗ ✗ ✔

2016 FLEXDroid [56] TPL Isolation ✗ ✗ ✔

2016 LibCage [63] TPL Isolation ✗ ✗ ✔

2021 LibCapsule [51] TPL Isolation ✗ ✗ ✔

2022 PSoA [30] TPL Isolation ✔ ✗ ✔

2023 PESP (This Work) TPL Isolation ✔ ✔ ✔

fundamentals in the runtime and distribution model, partic-
ularly isolating the SDK in a runtime separate from the app.
With shared fundamentals, PESP can be incorporated into
PSoA to support social use cases and potentially all SDKs
that offer data. Note that currently PSoA primarily focuses
on supporting ads-related SDKs, which, compared to social

SDKs, expect much less or no functionality interactions with
the host app.

Applicability to other OS. Our design isn’t limited to An-
droid. Android implemented the easy-to-use isolation and
flexible UI composition (Section 4.4), which were needed
to implement our design. These features/flexibilities were
designed for better engineering/security/testing. Other OSes
may also implement such features, enabling implementation
of our design.

7 Related Work

Third-party library (TPL) isolation. To enable privilege
separation, the TPLs are isolated in these techniques through

various design. In all the prior approaches [46, 48, 50, 51, 56–
58, 63, 71], the design usually focused on preventing TPLs
from accessing the Android system resource (by restricting
their permissions), without restricting them from accessing
data from social SDKs. Those prior techniques generally suf-
fered from the Problem 1 and 2 summarized in § 4.3.

App compartmentalization. App compartmentalization re-
lated techniques provides finer granularity by differentiat-
ing inner parts of an app from other parts when enforcing
access control and isolation (e.g., attributing API calls or
resource access to individual SDKs, classes, or processes,
depending on the designed granularity of individual ap-
proaches) [33, 45, 54–56, 60, 62, 65, 66, 72, 73]. Those prior
techniques generally suffer from Problem 2 summarized in
§ 4.3.

Taint based approaches. Taint based approaches [35, 43, 59,
67–70] are not sufficient as a protection method against XLDH

due to their incomplete coverage and incomplete modeling of
the implicit flow, leading to sensitive user information leak
without privacy guarantee that our design achieves.

8 Conclusion

In this paper, we generalize and define privacy-preserving so-

cial SDK and their uses, characterize fundamental challenges
for combating the XLDH threat and guaranteeing privacy.
Specifically, we present a practical, clean-slate design and
end-to-end systems to enable privacy-preserving social SDK.
Our evaluation demonstrates its satisfactory effectiveness,
performance overhead and feasibility for adoption. Our
techniques will contribute to significantly elevating privacy
and compliance assurance for multiple stakeholders. Our
efforts will help policymakers better understand, define and
regulate the privacy-preserving mobile software supply chain.
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Appendix

Due to space limit, more Appendix can be found at [5].

Figure 3: A screenshot of a privacy-preserving Facebook
SDK used in a demo app, fulfilling the Display User Profile
use cases of Facebook SDK (Sensitive Information masked,
the area with gray background indicates the displayed filled
by the privacy-preserving Facebook SDK)

(a) Login with Facebook (b) To authorize the app

(c) Display of user profiles

(d) In-app posting to social

networks

Figure 4: Prominent examples of social SDK usage in mobile
apps (personal information blurred in red frames, including
user profile information and names of the group being joined
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