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THE FRACTIONAL FREE CONVOLUTION OF R-DIAGONAL

ELEMENTS AND RANDOM POLYNOMIALS UNDER

REPEATED DIFFERENTIATION

ANDREW CAMPBELL, SEAN O’ROURKE, AND DAVID RENFREW

Abstract. We extend the free convolution of Brown measures of R-diagonal
elements introduced by Kösters and Tikhomirov [Probab. Math. Statist. 38
(2018), no. 2, 359–384] to fractional powers. We then show how this fractional
free convolution arises naturally when studying the roots of random polyno-
mials with independent coefficients under repeated differentiation. When the
proportion of derivatives to the degree approaches one, we establish central
limit theorem-type behavior and discuss stable distributions.
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1. Introduction

The definition of the free convolution µ! ν of two compactly supported proba-
bility measures µ, ν on the real line is due to Voiculescu [49]. One can define µ! ν
to be the asymptotic limit of the empirical spectral measure of An+Bn as n → ∞,
where An and Bn are independent n × n random Hermitian matrices, invariant
under unitary conjugation, whose individual empirical spectral measures converge
to µ and ν, respectively. Alternatively, one can define the free convolution using the
R-transform (see (2.1), below, for the definition). Any compactly supported prob-
ability measure µ on the real line is uniquely defined by its R-transform Rµ(z) for
sufficiently small values of the complex argument z. Heuristically, the R-transform
can be viewed as the free probability analogue of the cumulant generating function
from classical probability theory.

In fact, the free convolution µ!ν is the unique compactly supported probability
measure on the real line whose R-transform Rµ!ν satisfies

Rµ!ν(z) = Rµ(z) +Rν(z)

for all sufficiently small values of z. It follows that for an integer k ≥ 1, µ!k, the
free convolution of µ with itself k times, can be characterized by the identity

Rµ!k(z) = kRµ(z) (1.1)

for all sufficiently small z. In fact, using (1.1), one can define the fractional free
convolution µ!k for any real k ≥ 1. This was first shown for k sufficiently large by
Bercovici and Voiculescu [7] and then for all real k ≥ 1 by Nica and Speicher [33].

Amazingly, as the following theorem shows, the free convolution can also be
characterized in terms of random polynomials and the roots of their derivatives
[2,24,46]. We define the empirical root distribution of a polynomial P of degree
d and roots x1, . . . , xd (counted with multiplicity) to be the probability measure

1

d

d∑

i=1

δxi ,

where δx is the point mass at x.

Theorem 1.1 (Hoskins–Kabluchko, Steinerberger, Arizmendi–Garza-Vargas–Perales).
Let µ be a compactly supported probability measure on the real line, and let Pn be
the random polynomial

Pn(x) :=
n∏

i=1

(x −Xi),

where X1, X2, . . . are independent and identically distributed (iid) random variables
with distribution µ. For any fixed t ∈ (0, 1), the empirical root distribution of the
'tn(-th derivative of Pn((1 − t)x) converges weakly almost surely to µ!1/(1−t) as
n → ∞.

In other words, for a random polynomial with iid real roots, the fractional free
convolution µ!1/(1−t) describes the roots of its derivatives. The factor of 1 − t in
Pn((1− t)x) simply scales the roots by (1− t)−1. We refer the reader to Section 3
of [2] for a short proof of a more general version of Theorem 1.1.

One of the goals of this paper is to investigate similar results for a class of random
polynomials with complex roots. In particular, we extend the notion of the free
convolution of Brown measures (defined in (2.7)) that was introduced in [28] to
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fractional powers and show how these fractional convolution powers can be used
to describe a similar relationship as in Theorem 1.1 for random polynomials with
independent coefficients. For a rotationally invariant measure µ in the complex
plane, our result requires acting on µ by a bijection Sq, where (Sqµ)(Dr) := µ(D√

r)
for r > 0 and Dr := {z ∈ C : |z| < r}. An example of how Sq is used to connect
the Brown measure with the roots of random polynomials is given in Theorem 1.2,
below. In fact, this theorem is a special case of our main result, Theorem 4.8. We
discuss this example more in Section 5.1.2.

Theorem 1.2. Let

Pn(z) :=
n∑

k=0

ξkz
k (1.2)

be a random polynomial such that ξ0, ξ1, . . . are iid standard complex Gaussian
random variables. Then the empirical root measure of Pn is known to converge
in probability to the uniform probability measure, µ, on the unit circle. For any
fixed t ∈ (0, 1), the empirical root distribution of the 'tn(-th derivative of Pn((1 −
t)2x) converges weakly in probability to Sq((Sq−1 µ)⊕1/(1−t)) as n → ∞, where the
operation ·⊕1/(1−t) is a fractional power of a convolution ⊕ on rotationally invariant
probability measures, defined in Section 4.1.

Here it is worth noting Sq−1 µ = µ, however we chose to include Sq−1 in the
statement of Theorem 1.2 to match the more general result, Theorem 4.8. It may be
helpful to interpret the rescaling of (1− t)−2 for the roots of the 'tn(-th derivative
of the polynomial as (1− t)−1(1− t)−1, where one factor of (1− t)−1 is to account
for the natural collapse of the roots under differentiation given by the Gauss–
Lucas theorem and the other (1 − t)−1 factor is to match the diffusion under the
convolution.

The definition of ⊕ can be technical for those unfamiliar with free probability
theory, so we illustrate the connection in Theorem 1.2 to sums of random matrices,
with an example first proved in [4]. The analogous notion of the empirical root
measure for an n× n random matrix M is the empirical spectral measure µM

given by

µM :=
1

n

n∑

k=1

δλk(M),

where λ1(M), . . . ,λn(M) ∈ C are the eigenvalues of M (counted with algebraic
multiplicity).

Proposition 1.3 (Basak–Dembo). Fix an integer k ≥ 1, and let U (1)
n , . . . , U (k)

n be
independent n × n Haar distributed unitary random matrices. Then the empirical

spectral measure of U (1)
n + · · · + U (k)

n converges almost surely as n → ∞ to µ⊕k,
where µ is the uniform probability measure on the unit circle.

The convolution power in Theorem 1.2 does not need to be an integer, the
statement is valid for any power larger than 1, whereas Proposition 1.3 requires
integer values. Non-integer powers can be constructed by considering limits of
truncations of random matrices (see Sections 2.2 and 4). To illustrate this point, we
consider limits of the well studied truncations of Haar distributed unitary random
matrices, first computed in [40, 54]
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Figure 1. Numerical simulations illustrating Theorem 1.2 and
Proposition 1.3. The figure on the left shows the radial cumulative
distribution function for the eigenvalues of the sum of two inde-
pendent, Haar distributed unitary random matrices. The figure
on the right is constructed using the random polynomial Pn given
in (1.2) when n = 1000. The figure depicts the radial cumulative
distribution function of the empirical root measure of the n/2-th
derivative of Pn, after applying the push-forward map Sq−1.

Proposition 1.4 ( Życzkowski–Sommers, Dénes–Réffy). Fix a λ ∈ (0, 1) and let
m := mn be such that m

n → λ as n → ∞. Let Un be an n × n Haar distributed
unitary random matrix, and let Pm

n be an n × n self-adjoint projection, onto an
m dimensional subspace. Then the empirical spectral measure of n

mPm
n UnPm

n con-

verges almost surely as n → ∞ to µ⊕1/λ, where as in Theorem 1.2, µ is the uniform
probability measure on the unit circle.

Numerical simulations of Theorem 1.2 and Proposition 1.3 are given in Figure
1. See Section 5.1.2 for further details on µ⊕k.

The paper is organized as follows. In Sections 2 and 3, we will give some necessary
background, known results, and notation concerning free probability theory and
random polynomials, respectively. In Section 4.1, we extend the notion of the free
convolution of Brown measures (see Section 2.1) of R-diagonal elements (see Section
2.4) that was introduced in [28] to fractional powers. Then in Section 4.2, we will
describe how this fractional free convolution is related to roots of derivatives of
random polynomials with independent coefficients. In Section 5 we give several
consequences of this theory and state some examples, giving particular attention
to the distributions that are stable under ⊕ and their relationship to the roots of
derivatives of random polynomials. Finally, in Section 6, we study the dynamics of
repeated differentiation using partial differential equations (PDEs), and we relate
the PDE limits to our main results. The appendix contains some auxiliary results.

2. Free probability theory background

The large n limit of the empirical spectral measure of n × n random matrices
can often be computed using free probability. In this section, we will introduce
the necessary background; we refer the reader to the texts, surveys, and research
articles cited in this section for additional details.
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2.1. Free probability theory background and notation. We work on the non-
commutative probability space (M , τ), where M is a von Neumann algebra with
normal faithful tracial state τ . When working with unbounded elements we consider
the von Neumann algebra that they are affiliated with, see Remarks 2.2 and 2.7,
below. An element u ∈ M is called Haar unitary if u∗u = uu∗ = 1 and τ(un) = 0
for all n ∈ N, where N = {1, 2, 3, . . .} is the set of natural numbers. Here and
in the future we use 1 to denote the identity operator in M . When h is a self-
adjoint element in M , the spectral measure, µh, is the unique compactly supported
probability measure on R such that

τ(hn) =

∫

R

tn dµh(t), n ∈ N.

We now introduce the free probability transform that we will use to characterize
measures. The moment generating function Mµ of a probability measure, µ,
on the real line is given by:

Mµ(z) :=

∫

R

zt

1− zt
dµ(t)

for z ∈ C \ supp(µ). Note that if µ is compactly supported, then for sufficiently
small z we have the power series expansion for Mµ(z):

Mµ(z) =
∞∑

k=1

zkτ(hk) =
∞∑

k=1

zk
∫

R

tk dµ(t).

We then define the R-transform1 Rµ of µ to be the function that satisfies:

Rµ(z(1 +Mµ(z))) = Mµ(z), (2.1)

for z in a neighborhood of the origin with z *= 0. In what follows we will identify the
various transforms of measures with the corresponding transform of the operator
for which the measure was generated, for example Rh := Rµh .

If
∫
R
t dµ(t) *= 0, we can define the S-transform, Sµ, of µ as in [34, 50], by the

identity:

Sµ(z) :=
1

z
R〈−1〉

µ (z) (2.2)

for z in neighborhood of 0. Here (·)〈−1〉 denotes inversion with respect to compo-
sition.

Remark 2.1. The primary utility of the S-transform is that it linearizes multipli-
cation: if a and b are self-adjoint and freely independent (see (2.4), below) such
that µa and µb are supported on R+, then Sab(z) = Sa(z)Sb(z). In what follows
it is useful to note that the S-transform of the delta mass δc(x) is Sδc(z) = c−1

and that the S-transform of µaa∗ can be analytically continued to the open interval
(−1+µa(0), 0) and maps this interval monotonically into R+ (see, for instance [19],
Theorem 4.4). The S-transform can alternatively be defined as

Sµ(z) =
1 + z

z
M 〈−1〉

µ (z),

where the equivalence of these definitions is shown in [34], Remarks 16.18 and 18.16.

1We note that in the free probability literature, there are two different commonly-used R-
transforms, which differ by a factor of z.
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When considering a family of (not necessarily self-adjoint) elements a1, . . . , as ∈
M , we consider their joint ∗-distribution, given by linear functionals from non-
commutative polynomials, Q(X1, X∗

1 , . . . , Xs, X∗
s ), in indeterminantsX1, X∗

1 , . . . , Xs, X∗
s

to C:

τ(Q(a1, a
∗
1 . . . , as, a

∗
s)).

When s = 1, we call this the ∗-distribution of a1.
As in the single variable case, the joint ∗-distribution is encoded in the multi-

variable R-transform, R := Ra1,...,as(z1, . . . , zs), which we define to be the power
series that satisfies the natural generalization of (2.1):

M = R(z1(1 +M), . . . , zn(1 +M)),

where

M := Ma1,...,ak(z1, . . . , zk) :=
∞∑

n=1

k∑

i1,...,in=1

τ(ai1 · · · ain)zi1 · · · zin ,

is the multivariate moment generating function and z1, . . . , zk are non-commuting
indeterminants. The coefficients of the R-transform are called the free cumulants,
and the n-th free cumulant is denoted by κn(ai1 , . . . , ain):

R(z1, . . . , zk) =
∞∑

n=1

k∑

i1,...,in=1

κn(ai1 , · · · , ain)zi1 . . . zin . (2.3)

The free cumulants are multi-linear functions. We refer the reader to [34], Section
16, where the free cumulants are instead first defined through a moment-cumulant
relation and then Theorem 16.15 and Corollary 16.16 show that this is an equiv-
alent definition. In particular, the free cumulants can be recovered from the joint
moments and vice versa.

We now use the R-transform to define free independence of non-commutative
random variables. Once again we will give an analytic definition and refer the
reader to Section 16 of [34] for a combinatorial definition in terms of the free
cumulants, in particular Theorem 16.6 and Remark 16.7, where the equivalence
of the two definitions is shown.

We say that a collection a1, . . . , ak of elements in M are ∗-freely independent

if

Ra1,a∗
1...,ak,a∗

k
(z1, z2 . . . , z2k−1, z2k) = Ra1,a∗

1
(z1, z2)+· · ·+Rak,a∗

k
(z2k−1, z2k), (2.4)

as formal power series. In particular, the mixed cumulants vanish.

Remark 2.2. When considering an unbounded element a, one must instead treat
a as an element affiliated to W ∗(a), the von Neumann algebra generated by the
spectral projections of |a|. We then say unbounded elements are freely independent
if all elements of their respective affiliated algebras are free. We refer the reader
to [20], Section 3, for details.

2.2. The fractional free convolution for self-adjoint operators. Nica and
Speicher [33] give the fractional convolution powers from (1.1) an additional free
probability interpretation, for which we must first introduce additional background.
Let p ∈ M be a self-adjoint projection (meaning that p2 = p) with τ(p) = λ for
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some λ ∈ (0, 1], and then consider the new non-commutative probability space
(Mp, τp) given by2 :

Mp := {[pap] : a ∈ M}
with

τp([pap]) = λ−1τ(pap)

for any a ∈ M. We then consider the map πλ : M → Mp by πλ(a) := [pap], which
we will call the free compression of a. When λ is fixed, we will omit it from the
notation. Note that in Mp, we have that π(a∗) = π(a)∗,π(a) + π(b) = π(a + b),
and π(a)π(b) = π(apb) = π(papbp).

Remark 2.3. In Corollary 1.14 from [33], it is shown that if a is a self-adjoint element
in M with law µ, that is freely independent of p, with τ(p) = 1/k, for k ∈ N, then
kπ(a) has the law µ!k. In Definition 4.1, we will give similar convolution semigroup
for a class of measures on the complex plane, which from [33] can also be related to
the sum of freely independent elements or the free compression of a single element.

2.3. The Brown measure. If a ∈ M is not self-adjoint, then its distribution is
not determined by its moments. Nevertheless, there is a distinguished measure
associated to a, called its Brown measure, which we now introduce. We let ∆
denote the Fuglede–Kadison determinant on (M , τ) (see [14]), and let L denote
log∆. It follows that, for a ∈ M ,

L(a) = L(a∗a)/2 = L(a∗) =

∫

R

log t dµ|a|(t) ∈ [−∞,∞).

The function λ ,→ 1
2πL(a−λ1) is subharmonic on C, and by the Riesz representation

theorem can be identified with a regular probability measure, which is called the
Brown measure for a (see [9]) and is denoted as µa. The measure µa is defined
as

µa :=
1

2π
∇2L(a− λ1)

where ∇2 denotes the Laplacian, interpreted in the distributional sense. Note
that the notation µa agrees with the previously introduced notation for self-adjoint
elements of M . The Brown measure has a number of important properties [19]:

• µa is the unique compactly supported measure that fulfills

L(a− λ1) =

∫

C

log |z − λ| dµa(z)

for Lebesgue almost all complex numbers λ.
• The support of µa is contained in the spectrum of a, and for any natural
number n

τ(an) =

∫

C

zn dµa(z).

• For any arbitrary a, b ∈ M , µab = µba.
• The Brown measure for a Haar unitary element is the Haar measure on the
unit circle.

• The Brown measure of a is determined by its ∗-distribution, but it is not
continuous with respect to convergence of ∗-moments (see, for instance, [32]
Section 11).

2The brackets [] are a formal symbol, which we introduce in order to distinguish Mp from M .
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2.4. R-diagonal elements. In general, the Brown measure is difficult to compute,
but there is a class of elements, which we now introduce, for which the Brown
measure can be computed. Let a be an element of M . Then a is said to be R-

diagonal if a has polar decomposition a = uh, where u is a Haar unitary free
from the radial part h = |a|. See Section 15 of [34] and Sections 2.3 and 2.4 of [8]
for further details about R-diagonal elements. Alternatively, an element a is R-
diagonal if all cumulants except the even cumulants which alternate between a and
a∗ vanish. We will call such cumulants the diagonal terms of the R-transform.
In the tracial setting (meaning the τ(ab) = τ(ba) for all a, b ∈ M ), the vanishing of
the non-diagonal cumulants implies that the R-transform of (a, a∗) is of the form

Ra,a∗(z1, z2) =
∞∑

n=1

αn(z1z2)
n + αn(z2z1)

n,

where
αn := κ2n(a, a

∗, . . . , a, a∗) = κ2n(a
∗, a, . . . , a∗, a);

see [34], Example 16.9.

Remark 2.4. Classes of bi-unitarily invariant randommatrices converge in ∗-distribution
to R-diagonal elements. Although convergence in ∗-distribution is not strong
enough to guarantee convergence of the empirical spectral measure, it was shown
in [18] that the empirical spectral measure does converge to the Brown measure of
an R-diagonal element.

The following theorem, from [19], see also [51], shows that the Brown measure
of R-diagonal elements can be explicitly computed.

Theorem 2.5 (Haagerup–Larsen, Zhong). Let a be an R-diagonal element, and
define

λ1 :=

(∫ ∞

0
x−2dµ|a|(x)

)−1/2

, λ2 :=

(∫ ∞

0
x2dµ|a|(x)

)1/2

, (2.5)

with the convention that λ1 = 0 if
∫∞
0 x−2dµ|a|(x) = ∞. Then the Brown measure

of a is radially symmetric and its radial cumulative distribution function (CDF) is
given by

Fa(r) := µa(Dr) =






0 if r ∈ [0,λ1)

1 + S
〈−1〉
a∗a (r−2) if r ∈ [λ1,λ2)

1 if r ≥ λ2

, (2.6)

where Dr is the closure of the open disk Dr = {z ∈ C : |z| < r}.

Remark 2.6. Note that the Brown measure is always supported on a (possibly
degenerate) ring, centered at the origin. Furthermore, by Remark 2.1, µa has
density when a is not a Haar unitary and 0 is in its support if Sa∗a(z) is unbounded,
with its singularity occurring at z = µa({0})− 1.

Remark 2.7. If a is unbounded, it is said to be R-diagonal if there exists a von
Neumann algebra N , with a faithful, normal, tracial state, and ∗-free elements u
and h affiliated with N , such that u is Haar unitary, h is positive, and a has the
same ∗-distribution as uh. Once again we refer the reader to [20], Section 3. The
Brown measure of an unbounded operator might not be compactly supported, but
formula (2.6) still holds.
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Products and sums of freely independent R-diagonal elements are alsoR-diagonal
[19], making the Brown measure of sums of freely independent R-diagonal elements
a natural object to consider. From (2.6), we see there is a bijection between the set
of Brown measures of R-diagonal elements and measures on R+ such that

∫

R+

log+ |t|dνa < ∞,

given by the correspondence: µa ↔ νa := µaa∗ . Furthermore, there is a bijection
between symmetric probability measures on R and measures on R+, given by the
mapping x → x2. We denote by ν̃a, the inverse image of νa under this map. By
composing these two bijections we get a bijection, H, mapping a class of symmetric
probability measures on R to the Brown measures of R-diagonal elements. In [28],
building on the work of [19], Kösters and Tikhomirov show that if a and b are
∗-freely independent R-diagonal elements, then the Brown measure of a+ b is given
by

µa+b = µa ⊕ µb := H(H−1(µa)!H−1(µb)), (2.7)

where ! is the additive free convolution discussed at the beginning of Section 1.
Note thatH(ν̃a!ν̃b) = H(ν̃a)⊕H(ν̃b). The convolution⊕ is used in [28] to compute
the limiting spectrum of a certain class of polynomials of random matrices with iid
entries. The authors also characterize the Brown measures that are stable under
the ⊕ operation, see Proposition 2.8, below.

The Brown measure of an R-diagonal element is called α-⊕ stable if for any
m ∈ N

µ⊕m = Dm1/αµ,

where, for c ∈ (0,∞), Dc is the scaling operator which maps a probability measure
to the measure induced by the mapping x → cx. We also note that in [6, 52, 53], a
related convolution, denoted !RD, which acts on measures on R+, was studied.

Proposition 2.8 (Kösters–Tikhomirov). The Brown measure of a is α-⊕ stable if
and only if

Saa∗(z) = θ
(−z)

2
α−1

1 + z
(2.8)

for some θ > 0.

Here, and throughout this paper, we use the principal branch of the complex
function zc with branch cut along the negative real axis. We discuss this proposition
further and give an alternative proof in Section 5.5.

3. Random polynomial theory background

In this section, we review some results concerning zeros of random polynomials
and their derivatives. We focus on works which are closely related with the results
in this paper.

Let Pn be a (random) polynomial with complex coefficients of degree n in a
single complex variable. A natural question is to describe the distribution of the

roots of P (k)
n , the k-th derivative of Pn, in terms of the distribution of roots of Pn.

In general, the roots of Pn and P (k)
n are related by the Gauss–Lucas theorem, which

guarantees the zeros of P (k)
n lie in the convex hull of the roots of Pn. However, the

example Pn(z) = zn − 1 shows that the roots of Pn and P (k)
n need not have similar
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distributions, even when k = 1. However, for many models of random polynomials,

the roots of Pn and P (k)
n are similar when n tends to infinity and k is fixed (or

grows slowly with n) [10,11,21,22,23,25,31,35,37,38,39,41,47]. In this section, we
describe some known results for the case when k is proportional to the degree n.

3.1. Random polynomials with independent coefficients. Theorem 1.1 deals
with polynomials with independent roots. A different and more widely-studied
model involves polynomials with independent coefficients. The limiting root mea-
sure for these polynomials was described in [27]. Let

Pn(z) :=
n∑

k=0

ξkPk,nz
k (3.1)

be a random polynomial with general coefficients, where Pk,n are deterministic com-
plex coefficients and ξk are non-degenerate iid complex-valued random variables. It
will be convenient to assume that

P(ξ0 = 0) = 0 and E log(1 + |ξ0|) < ∞. (3.2)

The coefficients Pk,n are assumed to satisfy the following assumption.

Assumption 3.1. There exists a function P : [0,∞) → [0,∞) so that

(1) P (t) > 0 for t ∈ [0, 1) and P (t) = 0 for t > 1;
(2) P is continuous on [0, 1) and left continuous at 1; and
(3) limn→∞ sup0≤k≤n

∣∣|Pk,n|1/n − P ( kn )
∣∣ = 0.

Let Pn be the random polynomial from (3.1). Heuristically, Assumption 3.1 im-
plies that the coefficients Pk,n are roughly en logP (k/n) for some continuous function
P . In order to study the roots, we define the random measure

µn :=
1

n

∑

z∈C:Pn(z)=0

δz ,

where δz is a Dirac point mass at z and we agree the roots are counted with
multiplicities. Recall that for any r > 0, Dr = {z ∈ C : |z| < r} is the open disk
of radius r centered at the origin. In [27], Kabluchko and Zaporozhets establish
several results describing the asymptotic behavior of the zeros of random analytic
functions. In the special case when the random analytic function is Pn, their results
reduce to the following.

Theorem 3.2 (Kabluchko–Zaporozhets [27]). Let Pn be the random polynomial
given in (3.1), where Pk,n are deterministic coefficients satisfying Assumption 3.1
for some function P (t) and ξ0, ξ1, . . . are iid non-degenerate complex-valued random
variables which satisfy E log(1+ |ξ0|) < ∞. Let I : R → R∪{+∞} be the Legendre-
Fenchel transform of u(t) = − logP (t), where we use the convention that log 0 =
−∞. That is,

I(s) := sup
t≥0

(st− u(t)) = sup
t≥0

(st+ logP (t)).

Then µn converges in probability to the deterministic, rotationally invariant mea-
sure, µ, which is characterized by

µ(Dr) := I ′(log r), r > 0.
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Here, as a convention, I ′ is the left derivative of I. Since I is convex, the left
derivative exists everywhere.

In [27], Kabluchko and Zaporozhets also characterize a set of rotationally invari-
ant measures on C that arise when one studies the asymptotic behavior of zeros of
random analytic functions. We will need a related class of rotationally invariant
probability measures on C. To this end, we denote by RP(C) the set of rotationally
invariant probability measures on C and define the set

RPp(C) :=

{
µ ∈ RP(C) :

∫ 1

0
µ (Dr) r

−1 dr < ∞
}
.

We note that the upper bound of 1 in the integral is not particularly important, and
could be replaced by any positive constant for an equivalent definition. In particu-
lar, a measure µ ∈ RPp(C) cannot have an atom at the origin. Here, the subscript
‘p’ refers to polynomials since RPp(C) represents the set of probability measures
that can arise as the limit of empirical root measures of random polynomials with
independent coefficients as explained in Remark 3.3 below.

Remark 3.3. Every measure µ ∈ RPp(C) can arise as the limiting empirical root
measure of a random polynomial with independent coefficients. This follows from
the arguments given by Kabluchko and Zaporozhets in [27], Theorem 2.9. Although
Theorem 2.9 from [27] is stated for random analytic functions, the proof can be
specialized to random polynomials when µ is a probability measure; we now outline
the argument. Let µ ∈ RPp(C), and define I(s) =

∫ s
−∞ µ(Der )dr. Additionally

define the Legendre–Fenchel transform of I:

u(t) := sup
s∈R

(st− I(s)).

Then the random polynomials Pn(z) =
∑n

k=0 ξkPk,nzk with Pk,n = e−nu(k/n) sat-
isfy Assumption 3.1 with P = e−u. This follows exactly as in [27] with the obser-
vation that for any finite measure µ such that I(s) < ∞ for all s ∈ R one has

lim sup
t→∞

I(t)

t
= µ(C),

and hence for a probability measure µ, u(t) = +∞ for t > 1. Thus, P (t) = 0 for
any t > 1.

Let Pn be the random polynomial from (3.1). We are interested in the Nn-th

derivative P (Nn)
n of Pn, which will be of degree Dn := n − Nn. In order to study

its zeros, we slightly abuse notation and define the random measure

µDn :=
1

Dn

∑

z∈C:P (Nn)
n (z)=0

δz,

where δz is a Dirac point mass at z, and we again agree the roots are counted with
multiplicities.

Building on the work of Kabluchko and Zaporozhets [27], Feng and Yao [13]

establish the following result for the zeros of P (Nn)
n .

Theorem 3.4 (Feng–Yao [13]). Let Pn be the random polynomial given in (3.1),
where Pk,n are deterministic coefficients satisfying Assumption 3.1 for some func-
tion P (t) and ξ0, ξ1, . . . are iid non-degenerate complex-valued random variables
which satisfy (3.2).
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(1) If limn→∞ Nn/n = 0, let I : R → R ∪ {+∞} be the Legendre-Fenchel trans-
form of u(x) = − logP (x), then µDn converges in probability to a rotationally
invariant measure µ in the complex plane given by µ(Dr) := I ′(log r) for all
r > 0. In particular, µDn has the same limit as µn.

(2) If limn→∞ Nn/n = t ∈ (0, 1), let ut(x) = − log p(x + t) − (x + t) log(x +
t) + x log x − (1 − t) log(1 − t) if 0 ≤ x ≤ 1 − t and −∞ if x > 1 − t. Let
It : R → R∪{+∞} be the Legendre-Fenchel transform of ut, then µDn converges
in probability to a rotationally invariant measure µt in the complex plane given
by µt(Dr) :=

1
1−tI

′
t(log r) for all r > 0.

Here, as a convention, I ′ and I ′t are the left derivatives of I and It, respectively.
The main idea behind Theorem 3.4 is that if the coefficients of Pn satisfy Assump-
tion 3.1, then the coefficients of the Nn-th derivative of Pn satisfy essentially the
same assumption with a (possibly) different exponential profile.

In [13], Feng and Yao also consider certain special cases, such as the Kac
and elliptic models, where they compute the limiting behavior of the zeros when
limn→∞ Nn/n = 1. We will discuss these cases and some generalizations in Sec-
tions 5.4 and 5.6. In particular, Proposition 5.7 gives a partial answer to questions
posed by Feng and Yao on the limiting root distributions when limn→∞ Nn/n = 1,
illustrating the importance of the tail of the original root measure to the potential
limits.

3.2. PDEs describing the behavior of roots under repeated differentia-

tion. Another approach to studying the distribution of zeros of Pn (or its large n
limit) and its 'tn(-th derivative for some 0 < t < 1 is to relate them by a partial
differential equation (PDE); in this case, we will often think of t as time, with t = 0
corresponding to the empirical distribution of roots of Pn (or its large n limit).

Suppose Pn is a polynomial of degree n having all its roots on the real line with
density f(0, x). In [45], Steinerberger introduced the following PDE for the density

f(t, x) of the zeros of P (-tn.)
n :

ft +
1

π

(
arctan

(
Hf

f

))

x

= 0, (3.3)

where the equation holds on the support supp f and Hf is the Hilbert transform
of f .

A similar result has been introduced when the roots of Pn are rotationally in-
variant in the complex plane. Indeed, given the initial radial density ψ(x, 0) of
the zeros at t = 0, the PDE from [36] describes the radial density ψ(x, t) at time
0 ≤ t < 1. The equation is

∂ψ(x, t)

∂t
=

∂

∂x

(
ψ(x, t)

1
x

∫ x
0 ψ(y, t)dy

)

x ≥ 0, 0 ≤ t < 1. (3.4)

Here, we use the convention that x ≥ 0 either denotes x ∈ [0, C] (for some finite
positive constant C) or x ∈ [0,∞), depending on whether the density is compactly
supported or not. In the former case, by rescaling, we will often assume without
loss of generality that C = 1.

In [24], Hoskins and Kabluchko relate the radial (part of the) distribution func-
tion

Ψt(x) := Ψ(x, t) :=

∫ x

0
ψ(y, t)dy
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at time t to the initial distribution

Ψ0(x) := Ψ(x, 0) =

∫ x

0
ψ(y, 0)dy.

They show that Ψt(x) satisfies the equation

Ψ〈−1〉
t (x)

x
=

Ψ〈−1〉
0 (x+ t)

x+ t
(3.5)

for 0 < x < 1− t and 0 ≤ t < 1.
In [15], Galligo derives a system of two coupled equations to model the motion

of real and complex roots for real polynomials under repeated differentiation.
We explore (3.4) and some related PDEs more in Section 6.
The functions Ψt considered in (3.5) are radial cumulative distribution functions

of sub-probability measures, however a simple normalization results in a similar
identity for radial CDFs of probability measures. The function Ψt also need not
have a true inverse for (3.5) to provide meaningful information on polynomial roots
under differentiation. Instead, (3.5) can be interpreted as an identity on the gener-
alized left-continuous inverse of the CDF, or quantile function of the distribution.
In Appendix A, we review some basic results on quantile functions which will be
used in the proofs of our main results in Sections 4 and 5.4.

3.3. Connections to free probability theory. The PDE in (3.3) also appeared
in [44] to describe the fractional free convolution. In the case of a polynomial with
real roots, Steinerberger [46] proposed an interpretation of the density of zeros of
repeated derivatives in terms of free probability theory. This interpretation has
been further explored in [2,24], culminating in generalized versions of Theorem 1.1.
In particular, the work [2] establishes a connection between the real case and finite
free probability theory, a subject developed in [29, 30].

In a similar spirit, Kabluchko [26] showed that the zeros of real-rooted trigono-
metric polynomials under repeated differentiation in the asymptotic limit can be
described in terms of a free multiplicative convolution involving the free unitary
Poisson distribution.

While the above works provide connections between differentiation and free prob-
ability, and hence random matrices, in the large degree limit these connections can
also be seen at finite degree. The following result of Gorin and Marcus [17] provides
such a connection.

Theorem 3.5 ( [17] Theorem 1.1). Let Pn be a degree n monic polynomial with
real roots and let Dn be a n× n diagonal matrix whose entries are the roots of Pn.
Let Un be a n × n Haar distributed random unitary matrix and Ak,n the top left
k × k corner of UDU∗. If Qn is the characteristic polynomial of Ak,n, then

EQn(z) =
1

n(n− 1) · · · (k + 1)

(
∂

∂z

)n−k

Pn(z).

Taking the k × k corner of UDU∗ can be seen as the finite n version of the free
compression described in Section 2.2, which is in turn related to free addition. The
full result of [17] is much more general than what is stated here. They consider
several random matrix models and operations with natural free probabilistic limits
and how they relate to polynomial operations. Similar themes were developed by
Gorin and Kleptsyn [16].
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In this paper, we further explore connections between zeros of random polyno-
mials and free probability theory in the case when the polynomials have roots in
the complex plane.

4. The fractional free convolution for R-diagonal elements

In this section we use the relationship given in [33] between the distribution
of a and π(a) to extend the ⊕ operation to fractional powers. We then give an
alternative expression for the Brown measure of the sum of k identically distributed,
freely independent R-diagonal elements. Our expression is more direct, as it does
not require using the bijection H, given in (2.7), and computing the free convolution
powers of symmetric probability measures.

4.1. Fractional free convolution powers of the Brown measure.

Definition 4.1 (R-diagonal fractional free convolution). Let a be an R-diagonal
element with Brown measure µa. For k > 1 a real number, we define µ⊕k

a to be the
radially symmetric probability measure with radial CDF given by

µ⊕k
a (Dr) :=

{
1 + S

〈−1〉
k (r−2) if r ∈ (0,λ(k)2 )

1 if r ≥ λ(k)2

(4.1)

for r > 0, where for z ∈ C, in a neighborhood of [−1, 0], we define

Sk(z) :=
1 + z/k

k(1 + z)
Saa∗(z/k), (4.2)

λ(k)2 :=
√
kλ2, and λ2 is given by (2.5).

The following proposition gives elementary properties of the probability measure
µ⊕k
a . Then we will give a proposition that shows the fractional free convolution

agrees with the previous definition of ⊕ for integer values of k.

Proposition 4.2. Let k > 1 be a real number, and let µa be the Brown measure of
an R-diagonal element a. Let R ∈ [0,∞] be the smallest radius of the closed disk
that µa is supported on. Then

(1) µ⊕k
a ({0}) = max{0, 1− k(1 − µa({0}))};

(2) on C \ {0}, µ⊕k
a has density, which is supported and positive on the closed disk

of radius
√
kR, centered at the origin.

Proposition 4.3. Let k ≥ 1 be an integer and a1, . . . , ak be freely independent
copies of an R-diagonal element a. Then the Brown measure of a1+ · · ·+ak is µ⊕k

a

(as defined in Definition 4.1). Furthermore, µ⊕j
a forms a convolution semigroup:

(
µ⊕j
a

)⊕l
= µ⊕jl

a (4.3)

for all real j, l ≥ 1.

Proof of Proposition 4.2. Let ν be the spectral measure of aa∗ and Sk be as in
(4.2). Throughout the proof we will use that Sν is a decreasing function on (−1+
ν({0}), 0) with range (λ−2

2 ,λ−2
1 ).

To prove 1, we first note that if µa({0}) = 0 then Sν and hence Sk is finite on
(−1, 0) and thus µ⊕k({0}) = 0. If µa(0) *= 0 then Sν is singular at −1+µa({0}),
and thus by (4.2), Sk is singular at k(−1 + µa({0})), giving an atom at zero with
weight 1− k(1 − µa({0})) if this quantity is positive and no atom otherwise.
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To prove 2, we use that the prefactor, 1+z/k
k(1+z) , and hence the entire term in (4.2)

is strictly monotonic on [−1, 0]. Thus, when combined with (2.6), we find that µ⊕k
a

has positive density (by Corollary 4.5 of [19] the density of the Brown measure is
positive on its support). Then showing that the inner radius of µ⊕k

a is 0 is equivalent
to showing that the S-transform is singular at −1 + µ⊕k

a ({0}). If µ⊕k
a ({0}) > 0,

from 1 we see that this happens. On the other hand, if µ⊕k
a ({0}) = 0, then from

(4.2) we have that for all k > 1, the prefactor is singular at −1. To compute the
outer radius, we note that Sk(0) = 1

kSaa∗(0) = 1
kR2 , and conclude that µ⊕k

a is

supported on the disk of radius
√
kR, as desired. "

Before we prove Proposition 4.3, we will show that the ∗-distributions of kπk−1(a)
and a1 + · · · + ak are the same, and hence both elements have the same Brown
measure. Proposition 4.3 will then follow by computing the Brown measure of
π(a). As mentioned in Section 2.2, [33] provides a natural connection between

πk−1(a) and
∑k

i=1 ai. In fact, in [33] it is shown that this relationship holds for
not just for a single a but for the joint distribution of the family (a1, . . . , ak). The
following lemma follows from their results (see also [33] Sections 14 and 15), we
include it for completeness.

Lemma 4.4. Let a, a1, . . . , ak be as in Proposition 4.3. The ∗-distributions of
kπk−1(a) and a1 + · · · + ak are equal. Furthermore, they are both R-diagonal ele-
ments.

Proof. We begin by relating the free cumulants of (πλ(a),πλ(a)∗) to those of (a, a∗).
We then specialize to λ = 1/k. We will now omit the subscript λ from πλ.

By Theorem 14.10 of [34] the free cumulants of (π(a),π(a)∗) are a rescaling of
the free cumulants (a, a∗) by λ−1:

κMp
n (π(aε1 ), . . . ,π(aεn)) = λ−1κn(λa

ε1 , . . . ,λaεn) (4.4)

with εi ∈ {1, ∗}. Here we have introduced the superscript Mp to make it clear
that all relevant quantities are computed with respect to τp. In particular, because
a is R-diagonal, the non-diagonal cumulants vanish, meaning π(λ−1a) is also R-
diagonal, and its diagonal cumulants are:

κMp
n (π(λ−1a),π(λ−1a∗) . . . ,π(λ−1a),π(λ−1a∗)) = λ−1κn(a, a

∗, . . . , a, a∗).

On the other hand, if a1, . . . , ak are ∗-freely independent, non-commutative random
variables with the same ∗-distribution as a, then x(k) := a1 + · · · + ak is also R-
diagonal with

κn(x
(k), x(k)∗, . . . , x(k), x(k)∗) =

k∑

i=1

κn(ai, a
∗
i , . . . , ai, a

∗
i ) = k κn(a, a

∗, . . . , a, a∗),

where we have used that, by freeness, the mixed cumulants vanish.
Setting λ = k−1, we see that x(k) and kπ(a) have the same ∗-distribution, as

desired. "

To compute the Brown measure of a1+ · · ·+ak in Proposition 4.3, it now suffices
to compute the S-transform of πk−1 (a)πk−1 (a)∗; we will use the following lemma to
compute this S-transform. We remark that similar computations were done in [1]
to study the Brown measure of products of truncations of ∗-freely independent Haar
unitary elements.
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Lemma 4.5. Let p ∈ M be a projection with τ(p) = λ ∈ (0, 1], a ∈ M , an R-
diagonal element, 3 and x ∈ M be self-adjoint, such that p is free from a and x.
Then we have for z in a neighborhood of the origin that:

(1) Sp(z) = 1+z
λ+z

(2) Spapa∗p(z) =
(

1+z
λ+z

)2
Saa∗(z)

(3) Sπ(x)(z) =
λ(z+1)
λz+1 Spxp(λz)

Proof. To prove 1, we begin by computing the moment generating function for p:

Mp(z) =
∞∑

k=1

τ(pk)zk =
∞∑

k=1

λzk =
λz

1− z
.

We then compute its inverse and get its S-transform:

M 〈−1〉(z) =
z

λ+ z
and thus Sp(z) =

1 + z

z
M 〈−1〉(z) =

1 + z

λ+ z
.

To prove 2, we use that τ is tracial so the S-transform of papa∗p equals the
S-transform of p2apa∗ and hence papa∗. Then, because a is R-diagonal, p and a
are free, and hence p is free from apa∗, the S-transform of papa∗ factorizes as

Spapa∗p(z) = Sp(z)Sapa∗(z) = Sp(z)
2
Saa∗(z).

The desired result follows by applying 1.
To prove 3, we use that the moments of π(x) equal the corresponding moments

of pxp, rescaled by λ, so:

λMπ(x)(z) = Mpxp(z).

Then the S-transform is

Sπ(x)(z) =
z + 1

z
M 〈−1〉

π(x) (z) =
z + 1

z
M 〈−1〉

pxp (λz) =
λ(z + 1)

λz + 1
Spxp(λz),

as desired. "

We now apply the above lemma to compute the S-transform of
π(a)π(a)∗ = π(a)π(a∗) = π(papa∗p) = π(apa∗).

Proof of Proposition 4.3. We begin by applying 3 from Lemma 4.5 to papa∗p and
then 2 to the result:

Sπ(papa∗p)(z) =
λ(z + 1)

λz + 1
Spapa∗p(λz) =

λ(z + 1)

λz + 1

(1 + λz)2

(λ + λz)2
Saa∗(λz) =

1 + λz

λ(1 + z)
Saa∗(λz).

Then using that Sλ−2π(a)π(a)∗ = λ2Sπ(a)π(a)∗ gives

Sλ−2π(a)π(a)∗(z) =
λ(1 + λz)

1 + z
Saa∗(λz). (4.5)

Setting λ = 1/k shows that the Brown measure of kπ(a) and hence, by Lemma
4.4, a1 + · · ·+ ak is µ⊕k

a , as (4.5) is the S-transform given in (4.2).

3We thank Martin Auer and an anonymous referee for pointing out an error in our previous
assumptions to this lemma.
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We see that µ⊕j
a forms a semigroup by using (4.2) to compute the S-transforms

of each side of (4.3):

1 + z/l

l(1 + z)

1 + (z/l)/j

j(1 + z/l)
Saa∗

(
z/l

j

)
=

1 + z/(lj)

lj(1 + z)
Saa∗

(
z

lj

)
.

"

4.2. Connection between Brown measures and derivatives of random

polynomials. We now relate the fractional free convolution to the roots of the
derivatives of random polynomials.

Given that the measures in RPp arise as the limiting root distribution for poly-
nomials with random coefficients, it makes sense to define RPp as the domain of the
differentiation flow. Additionally, we let Φt(r) :=

1
1−tΨt(r), be a rescaling of Ψt in

(3.5), in order to keep the total mass constant. It is easy to see that Φt satisfies the
following definition. Throughout we will use Φ〈−1〉 to denote the quantile function
of a radial CDF Φ, see Appendix A.

Definition 4.6. Let µ ∈ RPp with radial CDF Φ0. The differentiation flow
starting from µ is the subset {µt}0≤t<1 of RPp such that µt is the probability
measure with radial CDF Φt, and quantile functions satisfying

Φ〈−1〉
t (x) =

x(1 − t)Φ〈−1〉
0 ((1− t)x+ t)

x(1 − t) + t
, (4.6)

for x ∈ (0, 1), where Φ〈−1〉
t is the quantile function of Φt and the existence of such

measures follows from Lemma A.2 and the fact that the functions defined by (4.6)
are left-continuous and non-decreasing.

Remark 4.7. Equation (4.6) is a rescaled version of (3.5) to ensure the total mass of
the associated measure is 1. Hence, if µ is the measure arising in part 1 of Theorem
3.4, then for any t ∈ (0, 1) µt is exactly the limiting measure in part 2 of Theorem
3.4.

We now connect the differentiation flow to the fractional free convolution of
Brownmeasures, which can be seen in Figure 2. For a rotationally invariant measure
µ in the complex plane, recall that Sqµ(Dr) := µ(D√

r) for r > 0, where Dr := {z ∈
C : |z| < r}, and Sq−1 µ(Dr) = µ(Dr2) is the inverse map.

Brown Measure Polynomial Root Measure

Compressed Brown Measure Derivative Root Measure

Sq

Compression, π Repeated Differentiation, µ→µt

Sq−1

Figure 2. This diagram represents the relationship between the
free compression of R-diagonal elements and repeated differentia-
tion of random polynomials. The map Sq on radially symmetric
measures is defined before Theorem 1.2. Note, when comparing
repeated differentiation directly to free compressions there is no
need to include any rescaling of the roots, unlike when comparing
to the convolution ⊕.
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For a degree n random polynomial Pn, we will be interested in the roots of the
'tn(-th derivative of Pn, where t ∈ (0, 1). It is often convenient to view t as time,
with t = 0 corresponding to the initial distribution of roots.

Theorem 4.8. Let

Pn(z) =
n∑

k=0

ξkPk,nz
k

be a random polynomial, with Pk,n satisfying Assumption 3.1 and ξk being iid ran-
dom variables satisfying (3.2), such that µ is the limiting empirical root distribution
of Pn. Additionally, assume there exists an R-diagonal element a affiliated to some
non-commutative probability space (M, τ) with Brown measure Sq−1 µ. For any
fixed t ∈ (0, 1), let µt be the limiting empirical root distribution of the 'tn(-th deriv-
ative of Pn((1 − t)2x) as n → ∞ (whose existence is guaranteed by Theorem 3.4),
then

µt = Sq[(Sq−1 µ)⊕1/(1−t)].

Proof. Let a be an R-diagonal element with Brown measure Sq−1 µ. We then let
Fa(r) be the radial CDF of the Brown measure of a. From (2.6), we have that

Fa(r) = 1 + S
〈−1〉
a∗a (r−2), for r ∈ [λ1,λ2]. Solving for F 〈−1〉

a gives:

F 〈−1〉
a (x) =

1√
Sa∗a(x− 1)

,

for x ∈ (0, 1).
Let λ = 1− t and Fλ be the radial CDF of the measure (Sq−1 µ)⊕1/λ, recalling

the definition of Sk in (4.2) and setting k = λ−1, we have from (4.1) that

F 〈−1〉
λ (x) =

1
√

Sλ−1(x− 1)
,

for x ∈ (0, 1).
Evaluating (4.2) at z = x− 1 and k = λ−1 gives:

Sλ−1(x− 1) =
λ

x
(λ(x − 1) + 1)Sa∗a(λ(x − 1)).

Which in terms of F 〈−1〉
λ and F 〈−1〉

a (x) is

F 〈−1〉
λ (x) =

√
x

λ(1 + λ(x− 1))
F 〈−1〉
a ((x − 1)λ+ 1). (4.7)

We let Gλ be the radial CDF of Sq(Sq−1 µ)⊕1/λ and Ga the radial CDF of µ. We
see from (4.7) that

G〈−1〉
λ (x) =

x

λ(1 + λ(x − 1))
G〈−1〉

a ((x − 1)λ+ 1). (4.8)

After comparing (4.8) to (4.6) with t = 1− λ and initial condition Φ0 = Ga we see
that

G〈−1〉
λ (x) =

1

λ2
Φ〈−1〉

1−λ (x)

for all x ∈ (0, 1). As discussed in Remark 4.7, Φ1−λ is the limiting radial CDF of
the '(1− λ)n(-th derivative of Pn(x). Hence, Gλ is the limiting radial CDF of the
'(1− λ)n(-th derivative of Pn(λ2x). "
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We conclude this section by translating properties of the fractional free convo-
lution of Brown measures to the differentiation flow.

Proposition 4.9. Let µ ∈ RPp(C). Then

(1) For any t ∈ (0, 1), 0 is in the support of µt.
(2) For any t ∈ (0, 1), µt has density on C. In particular µt({z : |z| = r}) = 0 for

any r > 0.

Proof. This follows in a completely analogous way to the proof of Proposition 4.2
with (4.6) replacing (4.2). "

5. Consequences of the theory and examples

In this section, we consider some examples and consequences of Theorem 4.8.
Section 5.1 considers specific examples with explicit distributions, while Sections
5.2 and 5.3 consider more general comparisons between random polynomials and
algebraic operators of R-diagonal elements. Finally, as Theorem 4.8 relates dif-
ferentiation to addition of R-diagonal elements Sections 5.4, 5.5, and 5.6 consider
limit theorems for repeated differentiation as the number of derivatives approaches
the degree and stable laws.

5.1. Examples. In this section we consider specific examples to compare the sum
of R-diagonal elements to repeated differentiation of random polynomials in Theo-
rem 4.8.

5.1.1. Circular law and random Taylor polynomials. We call an element c ∈ M a
standard circular element if its R-transform (recall (2.3)) is

Rc,c∗(z1, z2) = z1z2 + z2z1,

We call

Pn(z) =
n∑

k=0

ξknk

k!
zk, (5.1)

where ξ0, ξ1, . . . are iid random variables satisfying (3.2), the random Taylor

polynomial4. In this section we will show that

Sq(µπλ(c)) = µt

when λ = 1− t.
The Brown measure of a standard circular element is the uniform measure on

the unit disk. A standard computation (see, for example, [19] Example 5.1) shows
that the S-transform of cc∗ is:

Scc∗(z) =
1

1 + z
.

From (4.5), we have that

Sλ−2πλ(c)πλ(c)∗(z) =
λ(1 + λz)

1 + z

1

1 + λz
=

λ

1 + z
,

which recovers the result from [19] that the free compression of a standard circular
element by πλ is just λ1/2 times a standard circular element. Furthermore, setting
λ = k−1 verifies the well known fact that if c1, . . . , ck are ∗-freely independent
standard circular elements, then k−1/2

∑k
i=1 ci is also a standard circular element.

4The name “random Taylor polynomial” for this model comes from [36].



20 ANDREW CAMPBELL, SEAN O’ROURKE, AND DAVID RENFREW

To match this Brown measure with the roots of a random polynomial, we remove
the λ−2 factor to get:

Sπλ(c)πλ(c)∗(z) =
1

λ(1 + z)
,

Which from Theorem 2.5 gives that the radial CDF of µπ(c) is

Fπλ(c)(r) =
r2

λ

for r ∈ [0,
√
λ].

The limiting root distribution the polynomials (5.1) has density 1
2π|z| and radial

CDF Φ(r) = r for r ∈ [0, 1]. It is then a simple calculation to see from (4.6) that
µt has radial CDF Φt(r) = r

1−t for r ∈ [0, 1 − t], and is just a rescaling of Φ, by

(1− t)−1. Choosing t = 1−λ, we have that Fπλ(c)(r) = Φ1−λ(r2), as expected from
Theorem 4.8.

5.1.2. Haar unitaries. We now discuss the example in Theorem 1.2 in more detail.
We begin by giving examples from [19] of sums of freely independent Haar unitary
elements and of the product of a free projection and a Haar unitary, whose Brown
were computed by less direct methods than using (4.2). We then discuss the Kac
random polynomial.

In [19], Haagerup and Larsen consider

u(k) := u1 + u2 + · · ·+ uk

where u1, u2, . . . , uk are ∗-freely independent, Haar unitary elements and show that
the S-transform of u(k)u(k)∗ is

Su(k)u(k)∗ (z) =
z + k

k2(z + 1)
, (5.2)

and hence the Brown measure has radial CDF

Fµ
u(k)

(r) = (k − 1)
r2

k2 − r2
(5.3)

for r ∈ [0,
√
k].

On the other hand (5.2) is exactly the multiplicative factor in (4.2), so (5.2)
is also the S-transform of up(up)∗, where u is a Haar unitary element and p is a
∗-freely independent projection with trace τ(p) = k−1.

The Brown measure of up was also considered in [19]. After removing the atom
of the Brown measure at 0 it follows from their result that πλ(u) has radial CDF

Fπ(u)(r) =

{
1−λ
λ

r2

1−r2 , 0 ≤ r ≤
√
λ

1, r ≥
√
λ

. (5.4)

Setting k = λ−1, this expression, as expected, is a dilation of (5.3) by k.
The Brown measure of u is the uniform probability measure on the unit circle

in C. Hence, even after applying Sq, the natural random polynomial to compare
to is the Kac polynomial

Pn(z) =
n∑

k=1

ξkz
k, (5.5)
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where ξ0, ξ1, . . . , are iid random variables satisfying (3.2). The empirical root mea-
sure of Kac polynomials converges, see for example Theorem 3.2, in probability to
the uniform probability measure on the unit circle.

Let t = 1 − λ ∈ (0, 1). Feng and Yao [13] established that the empirical root

measure of P /(tn)0
n converges (see Theorem 3.4) in probability to the measure with

radial CDF

Φt(r) =

{
t

1−t
r

1−r , 0 ≤ r < 1− t

1, r ≥ 1− t
. (5.6)

Then Φt is the push-forward of Fπ(u) under Sq, as given in Figure 2.

5.2. Products of R-diagonal elements and random polynomials. In this
section, we give an operation on random polynomials, namely coefficient-wise mul-
tiplication, which also describes products of free R-diagonal elements. Products
of free R-diagonal elements are simpler than sums, so we are also able to consider
elements which are free but not necessarily identically distributed.

Proposition 5.1. Let

Pn(z) :=
n∑

k=0

ξkPk,nz
k,

and

Qn(z) :=
n∑

k=0

ξkQk,nz
k,

be random polynomials where Pk,n and Qk,n are deterministic coefficients satisfying
Assumption 3.1 for some functions P (z) and Q(z) respectively, and ξ0, ξ1, . . . are iid
non-degenerate complex-valued random variables which satisfy E log(1 + |ξ0|) < ∞.
Let µP and µQ be the limits (as given by Theorem 3.2) of the empirical root measures
of Pn and Qn respectively. Define the random polynomial

Sn(z) :=
n∑

k=0

Pk,nQk,nξkz
k.

Then Pk,nQk,n satisfy Assumption 3.1 with function S(z) := P (z)Q(z), and the

radial quantile function, Φ〈−1〉
S , of the (again as given by Theorem 3.2) limiting

empirical root measure, µS, is given by

Φ〈−1〉
S (x) = Φ〈−1〉

P (x)Φ〈−1〉
Q (x), (5.7)

where Φ〈−1〉
P and Φ〈−1〉

Q are the radial quantile functions of µP and µQ, respectively.

Moreover, if x and y are ∗-free R-diagonal elements such that µx = Sq−1 µP and
µy = Sq−1 µQ, then µxy = Sq−1 µS.
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Proof. It is immediate to see S satisfies points 1 and 2 of Assumption 3.1. For 3,
note

lim
n→∞

sup
0≤k≤n

∣∣∣∣|Pk,nQk,n|1/n − P

(
k

n

)
Q

(
k

n

)∣∣∣∣

≤ lim
n→∞

sup
0≤k≤n

[ ∣∣∣∣|Pk,nQk,n|1/n − P

(
k

n

)
|Qk,n|1/n

∣∣∣∣

+

∣∣∣∣P
(
k

n

)
|Qk,n|1/n − P

(
k

n

)
Q

(
k

n

)∣∣∣∣

]

= 0,

where the last equality follows from the continuity, and hence boundedness, of P and

Q. It remains to show the quantile function Φ〈−1〉
S factors as the radial quantile

functions Φ〈−1〉
P and Φ〈−1〉

Q . Let I : R → R ∪ {+∞} be the Legendre–Fenchel
transform of u(x) = − logS(x), then

ΦS(r) = I ′(log r), r > 0. (5.8)

We will assume u, − logP , and − logQ are convex functions. Otherwise, we can

take the Legendre–Fenchel transformation twice to get new functions ũ, −̃ logP ,

and −̃ logQ which are convex. As the Legendre–Fenchel transform is an involution
on convex functions, this change has no affect on ΦS , ΦP , or ΦQ. To consider
quantile functions, we note from general properties of Legendre–Fenchel transforms
that [I ′]〈−1〉 = u′ (see for example [43], specifically Corollary 23.5.1). Taking (gen-
eralized) inverses in (5.8)

Φ〈−1〉
S (x) = exp

(
[I ′]−1(x)

)
= exp (u′(x)) = exp

(
−

d

dx
logP (x) −

d

dx
logQ(x)

)

= Φ〈−1〉
P (x)Φ〈−1〉

Q (x).

To compute the Brown measure of xy we use the relationship Sxyy∗x∗ = Sxx∗Syy∗

for any ∗-free R-diagonal elements, this relationship follows by taking the S-transform
of Proposition 3.6(ii) in [19]. Hence, from (2.6) the radial quantile function of µxy

is F 〈−1〉
xy = F 〈−1〉

x F 〈−1〉
y . This completes the proof of the final statement by noting

Φ〈−1〉
P = [F 〈−1〉

x ]2 and Φ〈−1〉
Q = [F 〈−1〉

y ]2. "

5.3. Commutator of R-diagonal elements. In this section, we combine the
last section with Proposition 4.3 and consider the (anti-)commutator of two free
R-diagonal elements x, y. At the end of the section, we specialize to the case that
x and y are both circular elements.

Proposition 5.2. Let x and y be free R-diagonal elements. Let λx2 ,λ
y
2 be as in

Theorem 2.5, for x and y, respectively, and let λ2 =
√
2λx2λ

y
2 and

Scomm(z) =
2 + z

4(1 + z)
Sx∗x(z/2)Sy∗y(z/2).

Then the Brown measure of xy ± yx is given by:

µxy±yx(Dr) =

{
1 + S

〈−1〉
comm(r−2) if 0 < r < λ2

1 if r ≥ λ2
.
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Proof. We prove the statement for the commutator, the anti-commutator is com-
pletely analogous. Our main goal in this proof, is to rewrite xy − yx as the sum of
two ∗-free, identically distributed R-diagonal elements, we will do this through a
series of reductions. We begin with a standard trick when working with R-diagonal
elements and introduce a new Haar unitary u, that is ∗-freely independent from x
and y. Then, because x and y are R-diagonal, we have that (ux, yu∗) has the same
∗-distribution as (x, y), and thus we can instead consider the Brown measure of

uxyu∗ − yu∗ux = uxyu∗ − yx.

Furthermore, uxyu∗ and yx are ∗-freely independent (see for example, Exercise
5.24 [34]), so we can introduce two more R-diagonal elements a, b such that (a, b)
has the same ∗-distribution as (x, y), and then compute the Brown measure of
ab− yx Then, because yx and −yx have the same ∗-distributions, we can consider
the Brown measure of ab+ yx. The Brown measure of yx, and thus ab, as ab and
yx have the same Brown measure, was given in Proposition 5.1. Then since the
∗-distribution of yx and ab are the same, we can apply Proposition 4.3 with k = 2
to complete the proof. "

Before specializing to commutators of circular elements, we give a polynomial
interpretation of the commutator of general R-diagonal elements. Let Pn, Qn, x,
and y be exactly as in Proposition 5.1. Define the random polynomial

Cn(z) =

-n/2.∑

j=0

ξj+/n/20Pj+/n/20,nQj+/n/20,n
(j + 2n/23)!
2n/23!4j

zj .

One can check using Theorem 4.8, Proposition 5.1, and the proof of Proposition
5.2 that µxy±yx = Sq−1 µC .

We now consider the Brown measure of the commutator of two ∗-free circular
elements. We note that this model was considered in [12], where it is shown that the
empirical spectral distribution of any quadratic polynomial in independent Ginibre
random matrices converges to the Brown measure of the corresponding polynomial
in ∗-free circular elements, but the Brown measure was not computed.

Since Sxx∗(z) = Syy∗(z) = 1
1+z , we have that

Scomm(z) =
2 + z

4(1 + z)

4

(2 + z)2
=

1

(1 + z)(2 + z)
.

Proposition 5.2 then gives that the radial CDF of the Brown measure of xy− yx is

µxy−yx(Dr) = 1 +
−3 +

√
1 + 4r2

2
=

−1 +
√
1 + 4r2

2

for r ∈ (0,
√
2).

5.4. The limit of the differentiation flow. In this section we consider the lim-
iting behavior of polynomial roots as the proportion of derivatives to the degree
approaches one. With Theorem 4.8 connecting repeated differentiation of random
polynomials to sums of free random variables, it is natural to consider distributions
which are stable under the differentiation flow defined by (4.6) and serve as central
limits for the convolution. For α ∈ (0, 2], let µα ∈ RPp(C) be the measure with
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radial CDF Φ0,α such that Φ〈−1〉
0,α (x) = x

(1−x)
2
α−1

. It is then easy to check (recall

(4.6)) that

Φ〈−1〉
t,α (x) = (1− t)2−

2
αΦ〈−1〉

0,α (x),

for all x, t ∈ (0, 1). Hence, µt
α is µα, up to a t-dependent rescaling of the support,

and we refer to µα as stable under the differentiation flow. Of course, scalar
dilations of stable laws are also stable. So we provide the following general definition
of differentiation stable.

Definition 5.3. Let µ be a rotationally invariant probability measure with invert-
ible radial CDF Φ. µ is said to be α-differentiation stable for α ∈ (0, 2] if there
exists some θ > 0 such that

Φ〈−1〉(x) = θ
x

(1− x)
2
α−1

, (5.9)

for all x ∈ [0, 1).

As the following proposition demonstrates this definition of α-differentiation sta-
ble is consistent with the already existing notion of α-⊕ stable and Theorem 4.8.

Proposition 5.4. A radially symmetric probability measure µ is α-differentiation
stable if and only if Sq−1 µ is α-⊕ stable.

Proof. The proof is an immediate consequence of Theorem 2.5 and Proposition
2.8. "

For simplicity of presentation we consider initial root distributions with power
law tail decay and compact support/super-polynomial tail decay separately in The-
orem 5.5 and Corollary 5.6 respectively. The proofs however are nearly identical,
with the power law decay requiring only a short extra initial discussion on regularly
varying functions5.

Theorem 5.5 (Limit of repeated differentiation). Let µ ∈ RPp(C) with unbounded
support and radial CDF Φ0 such that

lim
r→∞

1− Φ0(r)

L(r)r−
α

2−α
= 1, (5.10)

for some α ∈ (0, 2) and some positive slowly varying function L. Let {Φt}t∈[0,1) be
the family defined by (4.6). Then, there exists a positive slowly varying function
g : [1,∞) → [1,∞) such that the radially symmetric probability measures µ̃t with ra-

dial CDF Φ̃t(x) = Φt

(
g((1− t)−1)(1 − t)2−

2
αx
)
converges weakly to the probability

measure µα with radial quantile function Φ〈−1〉
0,α (x) = x

(1−x)
2
α−1

as t → 1−.

To understand the rescaling in Theorem 5.5 it is helpful to rewrite (1 − t)2−
2
α

as (1 − t)(1 − t)−( 2
α−1). The (1 − t)−( 2

α−1) term is to manage the tail decay of
the measure, as described by (5.10). The (1− t) term corrects for the natural flow
inward of polynomial roots under differentiation, as described by the Gauss-Lucas
theorem.

Before the proof of Theorem 5.5 we give a brief discussion of how it may be
interpreted as some type of central limit theorem. For simplicity assume g is the

5See, for example, [42] for background on regularly varying and slowly varying functions.
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constant function g(x) = 1 First, let x1, x2, . . . be some sequence of freely inde-
pendent identically distributed R-diagonal elements such that µx1 = Sq−1 µ. If
t = 1− 1

k for some natural number k, then from Theorem 4.8 we see that Sq−1 µ̃t

is the Brown measure of
x1 + · · ·+ xk

k
1
α

.

Thus, taking the t → 1− limit of µ̃t is essentially the same as taking the k → ∞
limit of x1+···+xk

k
1
α

. In this way Theorem 5.5 is essentially a generalized central limit

theorem for R-diagonal elements translated, through Theorem 4.8, to the language
of repeated differentiation of random polynomials.

Proof of Theorem 5.5. From (5.10) we have that 1
1−Φ0

is α
2−α -varying. Thus, see

Resnick [42] Proposition 0.8, the function y ,→ Φ〈−1〉
0

(
1− 1

y

)
is 2−α

α -varying in y.

Thus there exists a positive slowly varying function g : [1,∞) → (0,∞) such that

Φ〈−1〉
0

(
1− 1

y

)
∼ g(y)y

2−α
α as y → ∞. Defining the function f(t) = g

(
1

1−t

)−1
, it

is then straightforward to check that

lim
x→1−

f(x)(1 − x)
2
α−1Φ〈−1〉

0 = 1, and lim
t→1−

f(t)

f((1− t)x+ t)
= 1 (5.11)

for every x ∈ (0, 1).
Fix x ∈ (0, 1). We have

lim
t→1−

Φ̃〈−1〉
t (x) = lim

t→1−
f(t)(1− t)−(2− 2

α )Φ〈−1〉
t (x)

= lim
t→1−

x

(1− t)x+ t
f(t)(1 − t)

2
α−1Φ〈−1〉

0 ((1− t)x+ t)

= lim
t→1−

x

(1− t)x+ t
· f(t)(1− t)

2
α−1

f((1− t)x+ t)(1− ((1 − t)x+ t))
2
α−1

=
x

(1− x)
2
α−1

,

where the third equality follows from (5.11). Hence Φ̃〈−1〉
t converges to Φ〈−1〉

0,α point-

wise on (0, 1). It then follows from Lemma A.3 that Φ̃t converges to Φ0,α pointwise
on (0,∞) as t → 1−. This completes the proof. "

The following is stated as a corollary of Theorem 5.5 with α = 2, i.e., measures
with compact support or super-polynomial tail decay. In these cases (5.10) is ill-

defined, however looking at the proof it is still true that y ,→ Φ〈−1〉
0

(
1− 1

y

)
is 0-

varying in y. Hence, the proof of Corollary 5.6 is identical to the proof of Theorem
5.5 beginning from the second line. For simplicity we state it only for measures
with compact support. It is worth noting the limit is Sq applied to the uniform
distribution on the unit disk in the complex plane, i.e., the Circular Law, one of
the most important measures in non-Hermitian free probability theory.

Corollary 5.6. Let µ be a probability measure in RPp(C) with radial cumulative
distributed function Φ0 such that inf{x ≥ 0 : Φ0(x) = 1} = 1. Then

lim
t→1−

Φt((1− t)r) = r, (5.12)

for any fixed r ∈ (0, 1), where Φt is the radial CDF of µt.
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5.5. Stable laws. In [28], the Brown measures that are stable under the ⊕ opera-
tion are characterized. One way to establish this characterization is via the bijection
H, so it suffices to determine the symmetric probability measures that are stable
under !, and then determine their S-transforms. This was done in [3], building
upon the work of [5], where it is shown that the S-transform of any symmetric free
stable distribution is of the form:

Sα(z) = θei(2−α) π
2α z

1
α−1 = θi(−z)1/α−1

for 0 < α ≤ 2, and some constant θ > 0. Additionally, they prove that for ν̃, a
symmetric probability measure on R:

S
2
ν̃ (z) =

1 + z

z
Sν(z),

where ν is the probability measure on R+ induced by the map x → x2, as given
before (2.7). So we see that if ν̃ is a symmetric free stable distribution then the
S-transform of ν is:

Sν(z) = θ
(−z)

2
α−1

1 + z
(5.13)

for some (possibly different) constant θ > 0. This is exactly the expression in (2.8).
We now give an alternative, more direct, proof of Proposition 2.8, that the Brown
measure of a is α-⊕ stable when the S-transform of µaa∗ is of the form (5.13),
without relying on the characterization of stable laws on R.

Proof of Proposition 2.8. We will show that the S-transforms in (2.8), which we
remind the reader is just (5.13) with ν replaced by aa∗, are exactly the class of
functions that are invariant under applying π and rescaling as in (4.5).

If Saa∗(z) = (−z)
2
α−1

1+z then a simple rescaling of the argument gives:

Saa∗(z) =
λ−2/αλ(1 + λz)

1 + z
Saa∗(λz).

Additionally, these are exactly the class of functions that are invariant after rescal-
ing by λ and then multiplying by cλ(1+λz)

1+z , for some constant c. But from (4.5),

we have that the right-hand side is equal to the S-transform of λ2/α−2πλ(a)πλ(a).
In other words, the Brown measure is invariant under the map a → λ1/α−1πλ(a),
which, by Proposition 4.3, has the same law as

a1 + · · ·+ ak
k1/α

when λ = k−1. "

The case α = 2 corresponds to the circular element, considered in Section 5.1.1.
More generally, in [28], it is shown that if l = 2

α − 1 is an integer, then the Brown
measure of x0x

−1
1 · · ·x−1

l , where the xi’s are ∗-freely independent circular elements,
is α-⊕ stable.

In the remainder of this section, we use Proposition 5.1 to directly relate the
measures µα appearing in Theorem 5.5 to random polynomials with independent
coefficients. In principle, random polynomials with independent coefficients whose
empirical root measures converge to µα could be reverse engineered from the ra-
dial quantile function and Theorem 3.2. We will instead use Proposition 5.1 and
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already known results on α-⊕ stable laws to construct simple coefficients for these
polynomials which transform quite nicely under differentiation.

For l = 2
α − 1 an integer, we let x0, x1, . . . , xl be free circular elements. We have

already seen in Section 5.1.1 that the random polynomial

Cn(z) =
n∑

k=0

nk

k!
ξkz

k,

have limiting root measure Sqµx0 . One can verify through the S-transform and
and radial quantile function that the random polynomial

Dn(z) =
n∑

k=0

k!

nk

(
n

k

)
ξkz

k

has limiting root measure Sqµx−1
1
. Applying Proposition 5.1 we see that the random

polynomial

Sn(z) =
n∑

k=0

(
k!

nk

)l−1(n
k

)l

ξkz
k, (5.14)

has limiting root measure Sqµx0x
−1
1 ···x−1

l
, and hence is differentiation stable. Of

course (5.14) makes sense for any l ≥ 0. The stability of Sn can also be seen
directly by a straightforward computation

S′
n(z) =

n∑

k=1

k

(
k!

nk

)l−1 (n
k

)l

ξkz
k−1 =

n∑

k=1

(
k − 1!

(n− 1)k−1

)l−1

n

(
1− 1

n

)(k−1)(l−1) (n− 1

k − 1

)l

ξkz
k−1

d
= nSn−1

((
1− 1

n

)l−1

z

)

.

5.6. Limits of elliptic polynomials and some questions of Feng and Yao.

Theorem 5.5 considers root behavior as the ratio of derivatives to the degree, t,
tends to 1 after the degree is sent to infinity. The limiting root measure when
t tends to 1 simultaneously with the degree tending to infinity may not always
converge to one of the measures in Theorem 5.5. See the discussion after Theorem
5 in [13]. In this section we consider some examples of this simultaneous limit and
remark on some questions posed in [13]. Specifically we consider coefficients

Pk,n =

(
n

k

)w

, (5.15)

for w ≥ 0. Kabluchko and Zaporozhets [27] refer these as elliptic polynomials.
In [13] Theorem 6, Feng and Yao computed the limiting root distribution for elliptic
polynomials with w = 1

2 , as the proportion of derivatives tends to one with the
degree. The limit, after rescaling, in their work is the measure µ1/2 from Theorem
5.5. Feng and Yao [13] additionally consider the limiting root distribution for
derivatives of random Kac polynomials (introduced in Section (5.1.2)), which can
be viewed as w = 0 elliptic polynomials, as the proportion of derivatives tend to
one as the degree tends to infinity. The limit, again after rescaling, matches that
of Corollary 5.6. Without rescaling, the limiting empirical root measure of both
models would be a point mass at 0. Feng and Yao pose the following questions for
a general random polynomial as defined in (3.1):
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(1) If Nn = n −Dn where Dn = o(n) and Dn → ∞ with n, then when is δ0 the

limiting root distribution of P (/Nn0)
n ?

(2) If the limiting root distribution of P (/Nn0)
n is δ0, does there exist a rescaling of

the roots giving a non-degenerate limit? If so, what is the scaling?

Theorem 5.5 suggests that the answer to both questions should depend largely on
the tail of the limiting root measure. However, to fully answer both questions some
additional regularity on the coefficients would need to be considered (again see the
discussion following Theorem 5 in [13]). In the following proposition we partially
answer these questions.

Proposition 5.7. For α ∈ (0, 2], let Pn be the general random polynomial defined
in (3.1) such that ξ1, ξ2, . . . satisfy (3.2) and

Pk,n =

(
n

k

) 2
α−1

. (5.16)

Let Nn = n−Dn where Dn is such that Dn = o(n) and Dn → ∞ as n → ∞, and let

Rn =
(

n
Dn

)2− 2
α
. Let P̃n be the random polynomial defined by P̃n(z) = Pn(z/Rn).

Then the empirical root measure of P̃ (/Nn0)
n converges in probability as n → ∞ to

the probability measure µα defined in Theorem 5.5.
Moreover, if

µDn =
1

Dn

∑

z∈C:P (#Nn$)
n (z)=0

δz,

then weakly, in probability,

lim
n→∞

µDn =






0, 0 < α < 1

µ1, α = 1

δ0, 1 < α ≤ 2

, (5.17)

where δ0 is a point mass at the origin, 0 is the zero measure, and µ1 is defined in
Theorem 5.5.

Letting t = Nn
n , and noting n

Dn
= (1 − t)−1 we see that the scaling in Proposi-

tion 5.7 matches that of Theorem 5.5. We expect this phenomenon holds in more
generality, i.e., under sufficient regularity conditions on the coefficients of Pn the
scaling should depend only on the tail of the limiting root measure and the limiting
empirical measure for the rescaled roots should be µα.

Proof of Proposition 5.7. To simplify notation, let β = 2
α − 1. Proposition 5.7 is

a straightforward generalization of Theorem 6 in [13]. We sketch the necessary

changes. The
(

n
Dn

)−β
term in the rescaling is used to control the coefficients Pk,n,

Nn ≤ k ≤ n of Pn, while the additional
(

n
Dn

)
term is used to control how the

coefficients evolve under differentiation. We can then conclude that if P̃k,n are the

coefficients of P̃n, then

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣
1

Dn
log P̃k,n − log P̃β

(
k

Dn

)∣∣∣∣ = 0, (5.18)
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where

logPβ(x) = −x log x− β(1− x) log(1− x) + (1− β)x+ β − 1 (5.19)

for 0 ≤ x ≤ 1 and logPβ(x) = −∞ for x > 1. The conclusion then follows from
(5.18), (5.19), Theorem 3.4 and the observation in [27] that the limiting empirical
root measure is given by the push-forward of the Lebesgue measure under the map
x ,→ exp

(
− d

dx logPβ(x)
)
. "

6. PDEs describing the limiting behavior of the roots

In this section, we focus on PDEs describing the dynamics of the limiting radial
probability density functions and radial cumulative distribution functions under
repeated differentiation.

Given the initial radial density ψ(x, 0) of the zeros at t = 0, the PDE in (3.4)
describes the radial density ψ(x, t) at time 0 ≤ t < 1. As shown in [36], there is a
constant loss of mass for the solution:

d

dt

∫ ∞

0
ψ(x, t) dx = −1.

In other words, if ψ(x, 0) is the radial part of a probability density function (PDF),
then ψ(x, t) has mass 1− t. One can renormalize so that ψ(x, t) has total mass 1,
but this new function will not satisfy (3.4). In this section, we informally derive
new PDEs for this PDF and its corresponding CDF. We will also derive a PDE
for the Brown measure. Although the derivations are informal, the purposes of
this section is to show how our results and examples from the previous sections are
consistent with the PDE approach [36, 45] to studying repeated differentiation of
random polynomials.

6.1. Derivation of PDE for the PDF and CDF. We define the PDF as

ϕ(x, t) :=
ψ(x, t)

1− t
, x ≥ 0, 0 ≤ t < 1,

where ψ(x, t) is a solution to (3.4). Recall that we use the convention that x ≥
0 either denotes x ∈ [0, C] (for some finite positive constant C) or x ∈ [0,∞),
depending on whether the density is compactly supported or not. The function
ϕ(x, t) will then satisfy the equation

(1 − t)
∂ϕ(x, t)

∂t
=

∂

∂x

(
ϕ(x, t)

1
x

∫ x
0 ϕ(y, t)dy

)

+ ϕ(x, t), x ≥ 0, 0 ≤ t < 1. (6.1)

Indeed, from (3.4), we derive

∂ϕ(x, t)

∂t
=

1

1− t

∂ψ(x, t)

∂t
+

1

(1 − t)2
ψ(x, t)

=
1

1− t

∂

∂x

(
ψ(x, t)

1
x

∫ x
0 ψ(y, t)dy

)

+
1

1− t
ϕ(x, t)

=
1

1− t

∂

∂x

(
ϕ(x, t)

1
x

∫ x
0 ϕ(y, t)dy

)

+
1

1− t
ϕ(x, t).

Thus, by rearranging, we obtain (6.1).
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It is easy to check that if
∫∞
0 ϕ(x, 0) dx = 1, then the solution to (6.1) satisfies∫∞

0 ϕ(x, t) dx = 1 for all 0 ≤ t < 1. In fact, from (6.1), we have

(1 − t)
∂

∂t

∫ ∞

0
ϕ(x, t) dx =

∫ ∞

0
(1− t)

∂ϕ(x, t)

∂t
dx

=

∫ ∞

0

∂

∂x

(
ϕ(x, t)

1
x

∫ x
0 ϕ(y, t)dy

)

dx+

∫ ∞

0
ϕ(x, t) dx

= − lim
ε→0

ϕ(ε, t)
1
ε

∫ ε
0 ϕ(y, t) dy

+

∫ ∞

0
ϕ(x, t) dx

= −1 +

∫ ∞

0
ϕ(x, t) dx,

where we used the regularity of the solution, and we assumed x ,→ ϕ(x, 0) is com-
pactly supported, which by the Gauss–Lucas theorem hints that the support of
x ,→ ϕ(x, t) is contained in the support of x ,→ ϕ(x, 0) for all 0 ≤ t < 1. Thus, if
y(t) =

∫∞
0 ϕ(x, t) dx, we obtain the linear ODE:

(1− t)y′ = y − 1,

which admits the solution

y(t) =
C

1− t
+

t

t− 1

for a constant C depending on the initial value. In fact, if y(0) = 1, then C = 1,
and we find the constant solution y(t) = 1 for all 0 ≤ t < 1, as desired.

Define the cumulative distribution function of the solution ϕ(x, t) of (6.1) as

Φ(x, t) =

∫ x

0
ϕ(y, t)dy.

Then, using (6.1), we obtain

(1 − t)
∂Φ(x, t)

∂t
=

∫ x

0
(1− t)

∂ϕ(y, t)

∂t
dy

=

∫ x

0

∂

∂y

(
ϕ(y, t)

1
y

∫ y
0 ϕ(z, t)dz

)

dy +

∫ x

0
ϕ(y, t)dy

=

∫ x

0

∂

∂y

(

y

∂Φ(y,t)
∂y∫ y

0 ϕ(z, t)dz

)

dy + Φ(x, t)

=
x∂Φ(x,t)

∂x

Φ(x, t)
− 1 + Φ(x, t).

We conclude that Φ(x, t) satisfies the following PDE:

(1− t)
∂Φ(x, t)

∂t
=

x∂Φ(x,t)
∂x

Φ(x, t)
− 1 + Φ(x, t), x ≥ 0, 0 ≤ t < 1. (6.2)

Equation (6.2) is similar to the PDE derived in Section 2.3 of [24], where the CDF
is not normalized to have total mass 1. Now that we have a PDE for the CDF,
we can compare (6.2) to the examples in the previous sections. For instance, it is
easy to check that Φ(x, t) = Φ0,1(x) = x

1+x from Section 5.4 satisfies (6.2).
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6.2. Rescaling the x coordinate. If Φ(x, 0) at t = 0 is supported on x ∈ [0, 1],
we expect that Φ(x, t) is supported on x ∈ [0, 1 − t] for 0 ≤ t < 1. If we define
Φ̃(x, t) = Φ((1− t)x, t), then Φ̃(x, t) is supported on x ∈ [0, 1] for all 0 ≤ t < 1 but
will no longer satisfy (6.2). One can easily derive the PDE that Φ̃(x, t) does satisfy
using (6.2). Indeed, by the chain rule, we have

∂Φ̃(x, t)

∂t
= −x

∂Φ((1− t)x, t)

∂x
+
∂Φ((1− t)x, t)

∂t
,

Φ̃(x, t)

∂x
= (1− t)

∂Φ((1− t)x, t)

∂x
.

In particular, this implies that

(1− t)
∂Φ̃(x, t)

∂t
= −x

∂Φ̃(x, t)

∂x
+ (1− t)

∂Φ((1− t)x, t)

∂t
.

Thus, from (6.2), we obtain the following PDE for Φ̃(x, t):

(1 − t)
Φ̃(x, t)

∂t
= −x

∂Φ̃(x, t)

∂x
+

x∂Φ̃(x,t)
∂x

Φ̃(x, t)
− 1 + Φ̃(x, t), x ≥ 0, 0 ≤ t < 1.

(6.3)
One can now take the t → 1− limit in (6.3). Indeed, if Φ̃(x) = limt→1− Φ̃(x, t) and

limt→1−
∂Φ̃(x,t)

∂x = Φ̃′(x), then one arrives at the following ODE for Φ̃(x):

xΦ̃′(x) =
xΦ̃′(x)

Φ̃(x)
− 1 + Φ̃(x), x ≥ 0. (6.4)

It is straightforward to check that the example Φ̃(x) = x from Theorem 5.6 solves
(6.4).

In a similar fashion, using (6.1), one can also derive a PDE for the rescaled PDF
ϕ̃(x, t) = (1− t)ϕ((1 − t)x, t) and take the limit t → 1−.

6.3. CDF for the Brown measure. Using the connection between random poly-
nomials and the Brown measure discussed in Section 4.2, we can similarly derive
PDEs for the radial parts of the PDF and CDF for the Brown measure. Let

F (x, t) = Φ(x2, t), x ≥ 0, 0 ≤ t < 1

be the CDF of the radial part of the Brown measure, where Φ(x, t) is the radial
part of the CDF, defined in Section 6.1 above. Using (6.2), we find

(1− t)
∂F (x, t)

∂t
= (1− t)

∂Φ(x2, t)

∂t

=
x2 ∂Φ(x2,t)

∂x

Φ(x2, t)
− 1 + Φ(x2, t).

Thus, since
∂F (x, t)

∂x
= 2x

∂Φ(x2, t)

∂x
,

we conclude with the following PDE for F (x, t):

(1− t)
∂F (x, t)

∂t
=

x∂F (x,t)
∂x

2F (x, t)
− 1 + F (x, t), x ≥ 0, 0 ≤ t < 1.
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Similarly, using (6.1), one can also derive a PDE for the PDF of the radial part
of the Brown measure given by f(x, t) = 2xϕ(x2, t); we omit the details.
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Appendix A. Quantile functions

In this section, we review some basic facts used throughout the paper concerning
quantile functions of real-valued random variables.

Definition A.1. Let F be the CDF of a real valued random variable. The quantile
function Q : [0, 1) → R of F is the function defined by

Q(p) := inf{x ∈ R : F (x) ≥ p}. (A.1)

The following lemma contains some essential results on quantile functions.

Lemma A.2. Let F be a CDF with quantile function Q.

(1) For every x ∈ R and p ∈ [0, 1), F (x) ≥ p if and only if Q(p) ≤ x.
(2) Q is left-continuous and non-decreasing.
(3) If F is invertible, then Q = F−1.

Moreover, the quantile function uniquely determines F and any left-continuous non-
decreasing function on [0, 1) is the quantile function of a unique distribution.

Proof. See [48] Lemma 21.1 for a proof of the first three statements. For the final
statements, let Q be a left-continuous non-decreasing function on [0, 1). Define the
function F : R → [0, 1] by

F (x) = max (sup{p ∈ [0, 1) : Q(p) ≤ x}, 0) , (A.2)

with the convention that sup ∅ = −∞. It is straightforward to check F is non-
decreasing,

lim
x→−∞

F (x) = 0, and lim
x→∞

F (x) = 1.

Fix x ∈ R, and assume for the sake of contradiction that F is not right-continuous
at x. Then there exists δ > 0 such that for any ε > 0, F (x + ε) − F (x) > δ. Let
ε > 0, then

F (x+ ε) > F (x) + δ. (A.3)

From (A.2), (A.3) and the monotonicity of Q we have that

Q(F (x) + δ) ≤ x+ ε. (A.4)

As ε > 0 was arbitrary, we have that

Q(F (x) + δ) ≤ x,



R-DIAGONAL ELEMENTS AND RANDOM POLYNOMIALS 33

a contradiction of (A.2). Thus, F defined by (A.2) is right-continuous on R.
Let F1 and F2 both be the CDF of distinct distributions both with quantile

function Q. Let x ∈ R be such that F1(x) > F2(x). Let p ∈ (F2(x), F1(x)), then
from Lemma A.2 1

F1(x) ≥ p ⇔ Q(p) ≤ x ⇔ F2(x) ≥ p,

a contradiction. Hence, F defined by (A.2) is unique. "

The following lemma describes convergence in distribution in terms of quantile
functions.

Lemma A.3 (See van der Vaart [48] Lemma 21.2). Let X1, X2, . . . , and X∞ be real
valued random variables with quantile functions Q1, Q2, . . . , and Q∞ respectively.
Then Xn converges in distribution to X∞ if and only if Qn(p) converges to Q∞(p)
for every continuity point p ∈ [0, 1) of Q∞.
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